Svarbu

Vertimas yra bendruomenės pastangos, prie kurių jūs galite prisijungti. Šis puslapis šiuo metu išverstas 50.42%.

28.1.13. Taškų debesies duomenų valdymas

NEW in 3.32

Pastaba

Šie algoritmai galimi tik jei QGIS naudoja PDAL bibliotekos 2.5.0 ar naujesnę versiją.

28.1.13.1. Priskirti projekciją

Priskiria taškų debesies sluoksniui koordinačių atskaitos sistemą, jei jos nėra ar ji neteisinga. Sukuriamas naujas sluoksnis.

Taip pat žiūrėkite

Reproject

Parametrai

Užrašas

Pavadinimas

Tipas

Aprašymas

Įvesties sluoksnis

INPUT

[taškų debesis]

Input point cloud layer to assign a CRS to

Desired CRS

CRS

[crs]

The CRS to apply to the layer

Output layer

OUTPUT

[taškų debesis]

Numatytas: [Įrašyti į laikiną failą]

Nurodykite taškų debesies failą, kurį naudoti kaip išvestį. Vienas iš:

  • Įrašyti į laikiną failą

  • Įrašyti į failą…

Išvestys

Užrašas

Pavadinimas

Tipas

Aprašymas

Pakeistas

OUTPUT

[taškų debesis]

Output point cloud layer with a new CRS. Currently supported formats are .LAS, .LAZ, .COPC.LAZ and .VPC.

Python code

Algorithm ID: pdal:assignprojection

import processing
processing.run("algorithm_id", {parameter_dictionary})

The algorithm id is displayed when you hover over the algorithm in the Processing Toolbox. The parameter dictionary provides the parameter NAMEs and values. See Using processing algorithms from the console for details on how to run processing algorithms from the Python console.

28.1.13.2. Build virtual point cloud (VPC)

Creates a virtual point cloud (VPC) from input point cloud data.

If you leave the optional parameters unchecked, the VPC file will be built very quickly as the algorithm will only read metadata of input files. With any of the optional parameters set, the algorithm will read all points which can take some time.

../../../../_images/point_cloud_buildvpc.png

Fig. 28.13 Generating Virtual Point Cloud with overview from a set of point cloud tiles

Taip pat žiūrėkite

Merge

Parametrai

Užrašas

Pavadinimas

Tipas

Aprašymas

Input layers

LAYERS

[point cloud] [list]

Input point cloud layers to combine inside a virtual point cloud layer

Calculate boundary polygon

BOUNDARY

[boolean]

Default: False

Set to True to show the exact boundaries of data (rather than just rectangular extent)

Calculate statistics

STATISTICS

[boolean]

Default: False

Set to True to understand ranges of values of the various attributes

Build overview point cloud

OVERVIEW

[boolean]

Default: False

Generates a single “thinned” point cloud of all the input data (using only every 1000th point from original data).

The overview point cloud will be created next to the VPC file - for example, for mydata.vpc, the overview point cloud would be named mydata-overview.copc.laz.

Virtual point cloud

OUTPUT

[taškų debesis]

Numatytas: [Įrašyti į laikiną failą]

Specify the point cloud file to build the data into. One of:

  • Įrašyti į laikiną failą

  • Įrašyti į failą…

Išvestys

Užrašas

Pavadinimas

Tipas

Aprašymas

Virtual point cloud

OUTPUT

[raster]

Output point cloud layer combining all the input data, as a virtual file.

Python code

Algorithm ID: pdal:virtualpointcloud

import processing
processing.run("algorithm_id", {parameter_dictionary})

The algorithm id is displayed when you hover over the algorithm in the Processing Toolbox. The parameter dictionary provides the parameter NAMEs and values. See Using processing algorithms from the console for details on how to run processing algorithms from the Python console.

28.1.13.3. Clip

Clips a point cloud layer by a polygon layer so that the resulting point cloud contains only points within the polygons.

../../../../_images/point_cloud_clip.png

Fig. 28.14 Clipping an input point cloud layer with a polygon coverage

Parametrai

Baziniai parametrai

Užrašas

Pavadinimas

Tipas

Aprašymas

Įvesties sluoksnis

INPUT

[taškų debesis]

Input point cloud layer to clip

Clipping polygons

OVERLAY

[vector: polygon]

Polygon vector layer to use as coverage for clipping the points

Clipped

OUTPUT

[taškų debesis]

Numatytas: [Įrašyti į laikiną failą]

Specify the point cloud file to export the clipped points to. One of:

  • Įrašyti į laikiną failą

  • Įrašyti į failą…

Advanced parameters

Užrašas

Pavadinimas

Tipas

Aprašymas

Filter expression

Optional

FILTER_EXPRESSION

[expression]

A PDAL expression for selecting a subset of features in the point cloud data

Cropping extent

Optional

FILTER_EXTENT

[extent]

A map extent for selecting a subset of features in the point cloud data

Available methods are:

  • Calculate from layer…: uses extent of a layer loaded in the current project

  • Calculate from layout map…: uses extent of a layout map item in the active project

  • Calculate from bookmark…: uses extent of a saved bookmark

  • Use map canvas extent

  • Draw on canvas: click and drag a rectangle delimiting the area to take into account

  • Enter the coordinates as xmin, xmax, ymin, ymax

Išvestys

Užrašas

Pavadinimas

Tipas

Aprašymas

Clipped

OUTPUT

[raster]

Output point cloud whose features are the points within the coverage polygon layer.

Python code

Algorithm ID: pdal:clip

import processing
processing.run("algorithm_id", {parameter_dictionary})

The algorithm id is displayed when you hover over the algorithm in the Processing Toolbox. The parameter dictionary provides the parameter NAMEs and values. See Using processing algorithms from the console for details on how to run processing algorithms from the Python console.

28.1.13.4. Create COPC

Creates the index for all the input point cloud files in a batch mode.

Parametrai

Užrašas

Pavadinimas

Tipas

Aprašymas

Input layers

LAYERS

[point cloud] [list]

Input point cloud layers to create an index for

Output directory

Optional

OUTPUT

[folder]

Default: [Skip output]

Specify the folder to create the new files in. One of:

  • Skip Output

  • Save to a Temporary Directory

  • Save to Directory

Išvestys

Užrašas

Pavadinimas

Tipas

Aprašymas

Output directory

OUTPUT

[folder]

Output folder containing point cloud layers with accompanying COPC index files.

Python code

Algorithm ID: pdal:createcopc

import processing
processing.run("algorithm_id", {parameter_dictionary})

The algorithm id is displayed when you hover over the algorithm in the Processing Toolbox. The parameter dictionary provides the parameter NAMEs and values. See Using processing algorithms from the console for details on how to run processing algorithms from the Python console.

28.1.13.5. Information

Outputs basic metadata from an input point cloud file.

Example of output information:

LAS           1.4
point format  6
count         56736130
scale         0.001 0.001 0.001
offset        431749.999 5440919.999 968.898
extent        431250 5440420 424.266
              432249.999 5441419.999 1513.531
crs           ETRS89 / UTM zone 34N (N-E) (EPSG:3046)  (vertical CRS missing!)
units         horizontal=metre  vertical=unknown

Attributes:
- X floating 8
- Y floating 8
- Z floating 8
- Intensity unsigned 2
- ReturnNumber unsigned 1
- NumberOfReturns unsigned 1
- ScanDirectionFlag unsigned 1
- EdgeOfFlightLine unsigned 1
- Classification unsigned 1
- ScanAngleRank floating 4
- UserData unsigned 1
- PointSourceId unsigned 2
- GpsTime floating 8
- ScanChannel unsigned 1
- ClassFlags unsigned 1

Parametrai

Užrašas

Pavadinimas

Tipas

Aprašymas

Įvesties sluoksnis

INPUT

[taškų debesis]

Input point cloud layer to extract metadata information from

Layer information

OUTPUT

[file]

Numatytas: [Įrašyti į laikiną failą]

Specify the file to store the metadata information. One of:

  • Įrašyti į laikiną failą

  • Įrašyti į failą…

Išvestys

Užrašas

Pavadinimas

Tipas

Aprašymas

Layer information

OUTPUT

[vector]

HTML file to store the metadata information.

Python code

Algorithm ID: pdal:info

import processing
processing.run("algorithm_id", {parameter_dictionary})

The algorithm id is displayed when you hover over the algorithm in the Processing Toolbox. The parameter dictionary provides the parameter NAMEs and values. See Using processing algorithms from the console for details on how to run processing algorithms from the Python console.

28.1.13.6. Merge

Merges multiple point cloud files into a single one.

Taip pat žiūrėkite

Build virtual point cloud (VPC)

Parametrai

Baziniai parametrai

Užrašas

Pavadinimas

Tipas

Aprašymas

Input layers

LAYERS

[point cloud] [list]

Input point cloud layers to merge into a single one

Merged

OUTPUT

[taškų debesis]

Numatytas: [Įrašyti į laikiną failą]

Specify the output point cloud merging input files. One of:

  • Įrašyti į laikiną failą

  • Įrašyti į failą…

Advanced parameters

Užrašas

Pavadinimas

Tipas

Aprašymas

Filter expression

Optional

FILTER_EXPRESSION

[expression]

A PDAL expression for selecting a subset of features in the point cloud data

Cropping extent

Optional

FILTER_EXTENT

[extent]

A map extent for selecting a subset of features in the point cloud data

Available methods are:

  • Calculate from layer…: uses extent of a layer loaded in the current project

  • Calculate from layout map…: uses extent of a layout map item in the active project

  • Calculate from bookmark…: uses extent of a saved bookmark

  • Use map canvas extent

  • Draw on canvas: click and drag a rectangle delimiting the area to take into account

  • Enter the coordinates as xmin, xmax, ymin, ymax

Išvestys

Užrašas

Pavadinimas

Tipas

Aprašymas

Merged

OUTPUT

[taškų debesis]

Output point cloud layer merging all the input files.

Python code

Algorithm ID: pdal:merge

import processing
processing.run("algorithm_id", {parameter_dictionary})

The algorithm id is displayed when you hover over the algorithm in the Processing Toolbox. The parameter dictionary provides the parameter NAMEs and values. See Using processing algorithms from the console for details on how to run processing algorithms from the Python console.

28.1.13.7. Reproject

Reprojects a point cloud to a different Coordinate Reference System (CRS).

Taip pat žiūrėkite

Priskirti projekciją

Parametrai

Užrašas

Pavadinimas

Tipas

Aprašymas

Įvesties sluoksnis

INPUT

[taškų debesis]

Input point cloud layer to reproject to a different CRS

Target CRS

CRS

[crs]

The CRS to apply to the layer

Reprojected

OUTPUT

[taškų debesis]

Numatytas: [Įrašyti į laikiną failą]

Specify the reprojected point cloud file. One of:

  • Įrašyti į laikiną failą

  • Įrašyti į failą…

Advanced parameters

Užrašas

Pavadinimas

Tipas

Aprašymas

Coordinate operation

Optional

OPERATION

[datum]

The datum transformation to use to reproject the data between the origin and target systems.

Išvestys

Užrašas

Pavadinimas

Tipas

Aprašymas

REPROJECTED

OUTPUT

[taškų debesis]

Output point cloud layer in the target CRS.

Python code

Algorithm ID: pdal:reproject

import processing
processing.run("algorithm_id", {parameter_dictionary})

The algorithm id is displayed when you hover over the algorithm in the Processing Toolbox. The parameter dictionary provides the parameter NAMEs and values. See Using processing algorithms from the console for details on how to run processing algorithms from the Python console.

28.1.13.8. Thin (by sampling radius)

Creates a thinned version of the point cloud by performing sampling by distance point (reduces the number of points within a certain radius).

../../../../_images/point_cloud_thin.gif

Fig. 28.15 Thining point cloud (by sampling radius)

Taip pat žiūrėkite

Thin (by skipping points)

Parametrai

Baziniai parametrai

Užrašas

Pavadinimas

Tipas

Aprašymas

Įvesties sluoksnis

INPUT

[taškų debesis]

Input point cloud layer to create a thinned version from

Sampling radius (in map units)

SAMPLING_RADIUS

[number]

Default: 1.0

Distance within which points are sampled to a unique point

Thinned (by radius)

OUTPUT

[taškų debesis]

Numatytas: [Įrašyti į laikiną failą]

Specify the output point cloud with reduced points. One of:

  • Įrašyti į laikiną failą

  • Įrašyti į failą…

Advanced parameters

Užrašas

Pavadinimas

Tipas

Aprašymas

Filter expression

Optional

FILTER_EXPRESSION

[expression]

A PDAL expression for selecting a subset of features in the point cloud data

Cropping extent

Optional

FILTER_EXTENT

[extent]

A map extent for selecting a subset of features in the point cloud data

Available methods are:

  • Calculate from layer…: uses extent of a layer loaded in the current project

  • Calculate from layout map…: uses extent of a layout map item in the active project

  • Calculate from bookmark…: uses extent of a saved bookmark

  • Use map canvas extent

  • Draw on canvas: click and drag a rectangle delimiting the area to take into account

  • Enter the coordinates as xmin, xmax, ymin, ymax

Išvestys

Užrašas

Pavadinimas

Tipas

Aprašymas

Thinned (by radius)

OUTPUT

[taškų debesis]

Output point cloud layer with reduced points.

Python code

Algorithm ID: pdal:thinbyradius

import processing
processing.run("algorithm_id", {parameter_dictionary})

The algorithm id is displayed when you hover over the algorithm in the Processing Toolbox. The parameter dictionary provides the parameter NAMEs and values. See Using processing algorithms from the console for details on how to run processing algorithms from the Python console.

28.1.13.9. Thin (by skipping points)

Creates a thinned version of the point cloud by keeping only every N-th point (reduces the number of points by skipping nearby points).

Taip pat žiūrėkite

Thin (by sampling radius)

Parametrai

Baziniai parametrai

Užrašas

Pavadinimas

Tipas

Aprašymas

Įvesties sluoksnis

INPUT

[taškų debesis]

Input point cloud layer to create a thinned version from

Number of points to skip

POINTS_NUMBER

[number]

Default: 1

Keep only every N-th point in the input layer

Thinned (by decimation)

OUTPUT

[taškų debesis]

Numatytas: [Įrašyti į laikiną failą]

Specify the output point cloud with reduced points. One of:

  • Įrašyti į laikiną failą

  • Įrašyti į failą…

Advanced parameters

Užrašas

Pavadinimas

Tipas

Aprašymas

Filter expression

Optional

FILTER_EXPRESSION

[expression]

A PDAL expression for selecting a subset of features in the point cloud data

Cropping extent

Optional

FILTER_EXTENT

[extent]

A map extent for selecting a subset of features in the point cloud data

Available methods are:

  • Calculate from layer…: uses extent of a layer loaded in the current project

  • Calculate from layout map…: uses extent of a layout map item in the active project

  • Calculate from bookmark…: uses extent of a saved bookmark

  • Use map canvas extent

  • Draw on canvas: click and drag a rectangle delimiting the area to take into account

  • Enter the coordinates as xmin, xmax, ymin, ymax

Išvestys

Užrašas

Pavadinimas

Tipas

Aprašymas

Thinned (by decimation)

OUTPUT

[taškų debesis]

Output point cloud layer with reduced points.

Python code

Algorithm ID: pdal:thinbydecimate

import processing
processing.run("algorithm_id", {parameter_dictionary})

The algorithm id is displayed when you hover over the algorithm in the Processing Toolbox. The parameter dictionary provides the parameter NAMEs and values. See Using processing algorithms from the console for details on how to run processing algorithms from the Python console.

28.1.13.10. Tile

Creates tiles from input point cloud files, recommended for best performance (in display or analysis) with such datasets in QGIS.

Parametrai

Baziniai parametrai

Užrašas

Pavadinimas

Tipas

Aprašymas

Input layers

LAYERS

[point cloud] [list]

Input point cloud layers to create tiles from

Tile length

LENGTH

[number]

Default: 1000.0

Size of the edge of each generated tile

Output directory

OUTPUT

[folder]

Default: [Save to temporary folder]

Specify the folder to store the generated tiles. One of:

  • Save to a Temporary Directory

  • Save to Directory

Advanced parameters

Užrašas

Pavadinimas

Tipas

Aprašymas

Assign CRS

Optional

CRS

[crs]

The CRS to apply to the layer

Išvestys

Užrašas

Pavadinimas

Tipas

Aprašymas

Output directory

OUTPUT

[folder]

Output folder containing the tiles generated from input files.

Python code

Algorithm ID: pdal:tile

import processing
processing.run("algorithm_id", {parameter_dictionary})

The algorithm id is displayed when you hover over the algorithm in the Processing Toolbox. The parameter dictionary provides the parameter NAMEs and values. See Using processing algorithms from the console for details on how to run processing algorithms from the Python console.