3. Векторные данные
Цель: |
Ознакомиться с моделями векторных данных, используемыми в ГИС. |
|
Основные понятия: |
вектор, точка, полилиния, полигон, вершина, геометрия, масштаб, качество данных, символика, источник данных |
3.1. Обзор
Vector data provide a way to represent real world features within the GIS environment. A feature is anything you can see on the landscape. Imagine you are standing on the top of a hill. Looking down you can see houses, roads, trees, rivers, and so on (see Рис. 3.28). Each one of these things would be a feature when we represent them in a GIS Application. Vector features have attributes, which consist of text or numerical information that describe the features.
A vector feature has its shape represented using geometry. The geometry is
made up of one or more interconnected vertices. A vertex describes a position
in space using an X, Y and optionally Z axis. Geometries which have
vertices with a Z
axis are often referred to as 2.5D since they describe
height or depth at each vertex, but not both.
When a feature’s geometry consists of only a single vertex, it is referred to as a point feature (see illustration Рис. 3.29). Where the geometry consists of two or more vertices and the first and last vertex are not equal, a polyline feature is formed (see illustration Рис. 3.30). Where three or more vertices are present, and the last vertex is equal to the first, an enclosed polygon feature is formed (see illustration Рис. 3.31).
Looking back at the picture of a landscape we showed you further up, you should be able to see the different types of features in the way that a GIS represents them now (see illustration Рис. 3.32).
3.2. Точечные объекты в деталях
Первое, что необходимо понять, когда речь идет о точечных объектах, что, их использование зависит от масштаба. Рассмотрим это на примере городов. Если у нас есть мелкомасштабная карта (которая охватывает большую область), города лучше обозначать точками. Однако, при увеличении карты и переходе к более крупным масштабам, границы городов лучше отображать как полиногы.
Выбор точек для представления объектов реального мира зависит от используемого масштаба (как далеко вы находитесь от объекта), удобства (создание точечных объектов занимает меньше времени) и типа объектов (некоторые вещи, например телефонные будки, нет смысла хранить в виде полигонов).
As we show in illustration Рис. 3.29, a point feature has an X, Y and optionally, Z value. The X and Y values will depend on the Coordinate Reference System (CRS) being used. We are going to go into more detail about Coordinate Reference Systems in a later tutorial. For now let’s simply say that a CRS is a way to accurately describe where a particular place is on the earth’s surface. One of the most common reference systems is Longitude and Latitude. Lines of Longitude run from the North Pole to the South Pole. Lines of Latitude run from the East to West. You can describe precisely where you are at any place on the earth by giving someone your Longitude (X) and Latitude (Y). If you make a similar measurement for a tree or a telephone pole and marked it on a map, you will have created a point feature.
Так как мы знаем, что Земля не плоская, полезно добавлять к точкам и координату Z. Она описывает высоту объекта над уровнем моря.
3.3. Полилинии в деталях
Where a point feature is a single vertex, a polyline has two or more vertices. The polyline is a continuous path drawn through each vertex, as shown in Рис. 3.30. When two vertices are joined, a line is created. When more than two are joined, they form a „line of lines“, or polyline.
Полилинии используются для отображения линейных объектов, таких как дороги, реки, горизонтали, тропинки, авиамаршруты и т.д. Иногда к полилиниям предъявляются дополнительные требования помимо основных требований к геометрии. Так, горизонтали могут соприкасаться (например, на скалах) но не должны пересекаться. Аналогично полилинии, используемые для хранения дорожной сети, должны быть соединены на перекрестках. В некоторых ГИС-приложениях вы можете задавать такие специальные правила для объектов и ГИС будет следить за тем, чтобы полилинии соответствовали им.
If a curved polyline has very large distances between vertices, it may appear angular or jagged, depending on the scale at which it is viewed (see Рис. 3.33). Because of this it is important that polylines are digitised (captured into the computer) with distances between vertices that are small enough for the scale at which you want to use the data.
The attributes of a polyline describe its properties or characteristics. For example a road polyline may have attributes that describe whether it is surfaced with gravel or tar, how many lanes it has, whether it is a one way street, and so on. The GIS can use these attributes to symbolise the polyline feature with a suitable colour or line style.
3.4. Полигоны в деталях
Полигональные объекты это замкнутые области такие как плотины, острова, границы стран и подобные. Как и полилинии, полигональные объекты создаются из ряда узлов, соединенных линией. Однако, так как полигон всегда описывает замкнутую область, первый и последний узел всегда должны совпадать! Полигоны часто имеют общую геометрию — границы, общие для нескольких соседних полигонов. Многие ГИС-приложения могут следить за тем, чтобы границы смежных полигонов совпадали. Более подробно это рассматривается в разделе Топология этого руководства.
Как точки и полилинии, полигоны имеют атрибуты. Атрибуты описывают каждый полигон. Например, плотина может иметь атрибуты со значениями глубины и качества воды.
3.5. Векторные данные в слоях
Now that we have described what vector data is, let’s look at how vector data is managed and used in a GIS environment. Most GIS applications group vector features into layers. Features in a layer have the same geometry type (e.g. they will all be points) and the same kinds of attributes (e.g. information about what species a tree is for a trees layer). For example if you have recorded the positions of all the footpaths in your school, they will usually be stored together on the computer hard disk and shown in the GIS as a single layer. This is convenient because it allows you to hide or show all of the features for that layer in your GIS application with a single mouse click.
3.6. Редактирование векторных данных
ГИС-приложения позволяют создавать и редактировать геометрии объектов слоя — этот процесс называется оцифровка и будет подробно рассмотрен позже. Если слой содержит полигоны (например, здания), ГИС-приложение позволит вам создать новые полигоны в этом слое. Аналогично, если вы захотите изменить форму объекта, приложение разрешить сделать это только в том случае, если измененная геометрия будет оставаться корректной. К примеру, вы не сможете отредактировать линию так, чтобы она состояла только из одного узла — вспомните предыдущий материал: линия должна иметь как миниму два узла.
Создание и редактирование векторных данных является важной функцией ГИС, т.к. это один из основных способов получить необходимые данные. Например, вы занимаетесь мониторингом загрязнений в речке. Вы можете использовать ГИС для оцифровки всех стоков ливневых вод (в виде точечного слоя). Также вы можете оцифровать саму речку (как линейный объект). И, наконец, можно снять показания уровня кислотности (pH) вдоль реки и нанести эти места на карту (тоже в виде точечного слоя).
Помимо создания собственных данных можно использовать существующие свободные векторные данные. Так, вы можете получить данные, используемые на картах масштаба 1:50000 в Управлении геодезии и картографии.
3.7. Масштаб и векторные данные
Map scale is an important issue to consider when working with vector data in a GIS. When data is captured, it is usually digitised from existing maps, or by taking information from surveyor records and global positioning system devices. Maps have different scales, so if you import vector data from a map into a GIS environment (for example by digitising paper maps), the digital vector data will have the same scale issues as the original map. This effect can be seen in illustrations Рис. 3.34 and Рис. 3.35. Many issues can arise from making a poor choice of map scale. For example using the vector data in illustration Рис. 3.34 to plan a wetland conservation area could result in important parts of the wetland being left out of the reserve! On the other hand if you are trying to create a regional map, using data captured at 1:1000 000 might be just fine and will save you a lot of time and effort capturing the data.
3.8. Символика
When you add vector layers to the map view in a GIS application, they will be drawn with random colours and basic symbols. One of the great advantages of using a GIS is that you can create personalised maps very easily. The GIS program will let you choose colours to suite the feature type (e.g. you can tell it to draw a water bodies vector layer in blue). The GIS will also let you adjust the symbol used. So if you have a trees point layer, you can show each tree position with a small picture of a tree, rather than the basic circle marker that the GIS uses when you first load the layer (see illustrations Рис. 3.36, Рис. 3.37 and Рис. 3.38).
Символика это удобный инструмент, делающий карты наглядными и упрощающий работу с ГИС-данными. В следующих главах ((Атрибуты векторных данных) мы более подробно рассмотрим как символика может помочь в понимании ГИС-данных.
3.9. Что можно делать в векторными данными в ГИС?
В самом простом случае использовать векторные данные в ГИС можно точно так же, как и обычную топографическую карту. Настоящая сила ГИС проявляется когда нам потребуется получить ответы на вопросы вида: «какие дома попадали в зону затопления на протяжении 100 лет?», «где разместить больницу, чтобы она была доступна наибольшему числу пациентов?», «кто из учащихся проживает в заданном районе?». ГИС является отличным инструментом для получения ответов на подобные вопросы при помощи векторных данных. Обычно процесс получения ответов на такие вопросы называют пространственным анализом. В последующих разделах он будет рассмотрен подробнее.
3.10. Проблемы векторных данных
При работе с векторными данными могут возникать некоторые проблемы. Мы уже упоминали о проблемах, связаных с оцифровкой данных в различных масштабах. Кроме того, векторные данные требуют обслуживания и доработки, чтобы быть уверенными в их точности и надежности. Неточные векторные данные могут быть получены при использовании неправильно настроенных инструментов оцифровки; когда люди, выполняющие оцифровку, недостаточно аккуратны; когда на процесс сбора и подготовки данных выделено недостаточно средств и т.д.
If you have poor quality vector data, you can often detect this when viewing the data in a GIS. For example slivers can occur when the edges of two polygon areas don’t meet properly (see Рис. 3.39).
Overshoots can occur when a line feature such as a road does not meet another road exactly at an intersection. Undershoots can occur when a line feature (e.g. a river) does not exactly meet another feature to which it should be connected. Figure Рис. 3.40 demonstrates what undershoots and overshoots look like.
Чтобы подобные ошибки не возникали, важно выполнять оцифровку данных очень внимательно и аккуратно. В разделе, посвященном топологии, мы рассмотрим некоторые из этих ошибок более подробно.
3.11. Что мы узнали?
Подведём итоги:
Векторные данные использутся для отображения объектов реального мира в ГИС.
Векторные объекты имеют геометрию одного из типов: точка, линия или полигон.
Каждый объект имеет атрибуты, описывающие его.
Геометрия объекта состоит из набора узлов.
Точечная геометрия состоит из одного узла (X, Y и, необязательно, Z).
Линейная геометрия состоит из двух и более узлов, формирующих линию.
Полональная геометрия состоит как минимум из четырёх узлов, описывающих замкнутую область. Первый и последний узел всегда одинаковы.
Выбор того или иного типа геомерии зависит от масштаба, удобства и целей использования данных в ГИС.
Большинство ГИС-приложений не позволяют хранить различные типы геометрий в одном слое.
Оцифровка это процесс создания цифровых векторных данных, путем их рисования в ГИС.
Векторные данные могут иметь проблемы с качеством, такие как перехлесты, недоводы и щели, о которых необходимо помнить.
Векторые данные могут использоваться для пространственного анализа в ГИС, например, для поиска ближашей больницы или школы.
We have summarised the GIS Vector Data concept in Figure Рис. 3.41.
3.12. Попробуйте сами!
Вот некоторые идеи для заданий:
Using a copy of a toposheet map for your local area (like the one shown in Рис. 3.42), see if your learners can identify examples of the different types of vector data by highlighting them on the map.
Подумайте, как вы будете создавать векторные объекты, соответвствующие объектам школьного двора, в ГИС. Создайте таблицу различных объектов, расположенных вокруг школы и попросите учащихся определить какой тип геометрии лучше всего использовать для этих объектов в ГИС. В качестве примера используйте таблицу table_vector_1.
Реальный объект |
Подходящий тип геометрии |
---|---|
Флагшток |
|
Футбольное поле |
|
Тропинки вокруг школы |
|
Места расположения кранов |
|
И т.д. |
Table Vector 1: Создайте аналогичную таблицу (оставив поле с типом геометрии пустым) и попросите учащихся определить подходящий тип геометрии.
3.13. Стоит учесть
Если у вас нет компьютера, можно использовать топографическую карту и прозрачную пленку, чтобы рассказать о векторных данных.
3.14. Дополнительная литература
Подробную информацию о работе с векторными данными в QGIS можно найти в Руководстве пользователя QGIS.
3.15. Что дальше?
В следующем разделе мы познакомимся с атрибутивными данными и узнаем как использовать их для описания векторных объектов.