Outdated version of the documentation. Find the latest one here.

座標参照系

gentleLogo

目的:

座標参照系を理解する

キーワード:

座標参照系(CRS)、地図投影法、「その場で」投影、緯度、経度、北距、東距

概要

Map projections try to portray the surface of the earth or a portion of the earth on a flat piece of paper or computer screen. A coordinate reference system (CRS) then defines, with the help of coordinates, how the two-dimensional, projected map in your GIS is related to real places on the earth. The decision as to which map projection and coordinate reference system to use, depends on the regional extent of the area you want to work in, on the analysis you want to do and often on the availability of data.

地図投影法の詳細

地球の形を表現する従前の方法は,球体を使う方法です。しかしながら,この方法には問題があります。球体は地球の形状の大半を保持し,大陸の大きさという空間的特徴を表すが,ポケットにしまって持ち歩くのは大変難しい。それは,相当な小縮尺(例えば1:100,000,000)で使うときのみ便利です。

GISアプリケーションで一般に使われる大部分の主題地図データは,かなり大きい縮尺です。典型的なGISデータセットは,1:250000かそれより大きいです。このサイズの球体は,製作するのが高価で難しく,持ち歩くのも困難です。このため,地図制作者は,球状の地球を二次元でかなり正確に表す 地図投影法 と呼ばれる技術を発展させてきた。

近距離で見ると、地球は比較的平坦に見えます。しかし、宇宙から見ると、地球は比較的球形であることがわかります。地図は、次の地図制作の話題の中で見られるように、現実の表現です。それらは、地物だけでなく、地物の形状と空間配置を表すように設計されています。各地図投影法には 長所短所 があります。地図の最適な投影法は、地図の 縮尺 がどれほどで、それが使用される目的が何であるかによって変わります。たとえば、ある投影法は、アフリカ大陸全体の地図作成に使用すると許容範囲外の歪みが生じるが、自国内での 大縮尺(詳細)地図 には優れた選択肢となります。地図投影法の性質は、地図のデザイン面に何かしら影響する場合もあります。投影法は、小領域に適するものあれば、東西に大きく広がる地図領域に適するもの、南北に大きく広がる地図領域に適するものもあります。

地図投影法の大きな3つ

The process of creating map projections can be visualised by positioning a light source inside a transparent globe on which opaque earth features are placed. Then project the feature outlines onto a two-dimensional flat piece of paper. Different ways of projecting can be produced by surrounding the globe in a cylindrical fashion, as a cone, or even as a flat surface. Each of these methods produces what is called a map projection family. Therefore, there is a family of planar projections, a family of cylindrical projections, and another called conical projections (see figure_projection_families)

../../_images/projection_families.png

3つの地図投影の族。それらは)円筒投影、b)円錐投影、c)平面投影と表せます。

今日では、もちろん、平らな紙片に球状の地球を投影するプロセスは、幾何学と三角法という数学的原理を用いて行われます。これは、地球を通過する光の物理的な投影を再現します。

地図投影の精度

Map projections are never absolutely accurate representations of the spherical earth. As a result of the map projection process, every map shows distortions of angular conformity, distance and area. A map projection may combine several of these characteristics, or may be a compromise that distorts all the properties of area, distance and angular conformity, within some acceptable limit. Examples of compromise projections are the Winkel Tripel projection and the Robinson projection (see figure_robinson_projection), which are often used for world maps.

../../_images/robinson_projection.png

ロビンソン投影は面積、角度整合と距離の歪みが許容される妥協点です。

地図投影で同時にすべての特性を維持するのは通常不可能です。これは、正確な分析操作を実行したい場合、分析のための最良の特性を与える地図投影を使用する必要があることを意味します。たとえば地図上で距離を計測する必要がある場合は、データに対して距離精度が高い地図投影を使用してみてください。

正角性を持つ地図投影

球で作業する場合、羅針図の主な方向(北、東、南、西)は常に相互に90度で発生します。言い換えれば、東は常に北へ90度の角度で発生します。正しい 角度性質 を維持することは地図投影上でも保存できます。正角性のこの性質を保持する地図投影は 正角 または 等角投影 と呼ばれます。

角度関係の保存 が重要であるときはこれらの投影が使用されます。これらは一般に航行や気象の業務に使用されています。大きな領域では地図上の真の角度を維持することは困難であり、これは地球の小さな部分のためにだけ試みるべきことを覚えておくことが重要です。正角の投影のタイプは領域の歪みをもたらし、地図上での面積計測がなされる場合にそれらが不正確になるだろうことを意味します。領域が大きいほど面積計測の精度は低くなります。例は メルカトル図法figure_mercator_projection に示すように)と ランベルト正角円錐図法 です。米国地質調査所は、その地形図の多くで正角投影を使用しています。

../../_images/mercator_projection.png

メルカトル図法は、例えば、角度関係が重要である場合に使用されるが、面積の関係が歪んでいます。

正しい距離を持つ地図投影法

地図投影での目標が正確な距離を計測することである場合は、十分に距離を維持するように設計された投影を選択する必要があります。このような投影は 等距投影 と呼ばれ、地図の 縮尺一定に保存 されることを必要とします。地図は、地図上の投影の中心から他の場所へ距離を正しく表すとき、等距です。 等距投影 は投影の中心からまたは所定の線に沿って、正確な距離を維持します。これらの投影は、ラジオや地震の図化のため、および航行に使用されています。 プレートカレ等距離円筒figure_plate_caree_projection 参照) 正距円筒図法 は、等距離射影の2つの良い例です。 正距方位図法figure_azimuthal_equidistant_projection 参照)は国連の紋章に用いられる投影です。

../../_images/plate_carree_projection.png

正確な距離測定が重要であるときは、例えばプレートカレ等距円筒投影が使用されます。

../../_images/azimuthal_equidistant_projection.png

国際連合のロゴは正距方位図法が用いられています。

正しい面積を持つ投影法

When a map portrays areas over the entire map, so that all mapped areas have the same proportional relationship to the areas on the Earth that they represent, the map is an equal area map. In practice, general reference and educational maps most often require the use of equal area projections. As the name implies, these maps are best used when calculations of area are the dominant calculations you will perform. If, for example, you are trying to analyse a particular area in your town to find out whether it is large enough for a new shopping mall, equal area projections are the best choice. On the one hand, the larger the area you are analysing, the more precise your area measures will be, if you use an equal area projection rather than another type. On the other hand, an equal area projection results in** distortions of angular conformity** when dealing with large areas. Small areas will be far less prone to having their angles distorted when you use an equal area projection. Alber’s equal area, Lambert’s equal area and Mollweide Equal Area Cylindrical projections (shown in figure_mollweide_equal_area_projection) are types of equal area projections that are often encountered in GIS work.

../../_images/mollweide_equal_area_projection.png

モルワイデ等積円筒投影は、例えば、地図化された領域はすべて、地球上の領域に同一の比例関係を有していることを保証します。

地図投影は非常に複雑なトピックであることに留意してください。世界的な利用可能な異なる投影法は何百もあり、それぞれが紙の平らな部分にできるだけ忠実に地球の表面の特定の部分を描写しようとします。実際にどの投影を使用するかは多くの場合、ご自身のために選択されます。ほとんどの国では一般的に使用される投影があり、人々はデータを交換するとき 全国的傾向 に従います。

座標参照系(CRS)の詳細

座標系(CRS)の助けを借りて、地球上のあらゆる場所は、座標と呼ばれる3つの数字のセットで指定できます。一般にCRSは 投影座標系 (デカルト又は直角座標系とも呼ばれる)と 地理座標系 に分類できます。

地理座標系

地理座標参照系を使用することは非常に一般的です。それらは、地球の表面上の位置を記述するために緯度および経度と、時には高さ値を使用しています。最も一般的なものは WGS 84 と呼ばれています。

緯線 は赤道に平行に走り、北から南(または南から北へ)の180等分されたセクションに地球を分割します。緯度の基準線は赤道であり、各 半球 は緯度1度を表す90のセクションに分割されています。北半球では、緯度は赤道の0度から北極の90度までで測定されます。南半球では、緯度は赤道の0度から南極の90度までで測定されます。地図のデジタル化を簡素化するために、南半球の緯度度には負の値(0〜-90°)が割り当てられることがよくあります。地球のどこにいても、緯線間の距離は同じです(60海里)。絵画的な図は figure_geographic_crs を参照してください。

../../_images/geographic_crs.png

緯線は赤道に平行で、経線は本初子午線がグリニッジを通る地理座標系。

一方 経線 は均一性の標準に非常によく立っていません。経線は赤道に垂直に引かれ両極に収束します。経度のための基準線(本初子午線)は、イングランドのグリニッジを通って北極から南極まで引かれます。続く経線は本初子午線の東または西にゼロから180°まで測定されます。本初子午線の西値は、デジタル地図アプリケーションで使用するために負の値が割り当てられることに注意してください。絵\ビューについては figure_geographic_crs を参照してください。

赤道で、そして赤道のみで、経度の線で表される距離は緯度1度で表される距離に等しくなります。極の方に移動するにつれ経線間の距離は徐々に小さくなっていき、ちょうど極の位置になると経度の全ての360°は単一の点で表現され、上に指を置くことができるでしょう(手袋を着用したくなるでしょうが )。地理座標系を使用すると、赤道では約12363.365平方キロメートルを覆う正方形に地球を分割する線格子を得られます、—手始めには良いですがその正方形内の何かの位置を決定するために非常に有用ではありません。

真に有用であるためには、地図の格子は、(精度の許容レベルで)地図上の点の位置を記述するために使用できるように、十分小さな部分に分割されなければなりません。これを達成するために、度は ' )と " )に分割されます。1度は60分、1分は60秒です(1度は3600秒)。したがって、赤道では、緯度または経度の1秒= 30.87624メートルです。

投影座標参照系

二次元座標参照系は、一般的に二つの軸によって定義されます。それらは互いに直角に、いわゆる XY平面 (左側の figure_projected_crs 参照)を形成します。普通は横軸が X で縦軸が Y でラベルされています。三次元座標参照系においては、普通 Z でラベルされる別の軸が追加されます。この軸も XY 軸に対して直角です。 Z 軸は、空間の三次元(右側の figure_projected_crs 参照)を提供します。球座標で表現されるすべての点は X Y Z 座標として表現できます。

../../_images/projected_crs.png

二次元と三次元の基準座標系。

南半球(赤道南)での投影座標参照系は通常、特定の 経度 で赤道にその原点を有しています。これは、Y-値は南に増加し、X-値は西に増加することを意味します。北半球(赤道北)でも、原点は特定の 経度 での赤道です。しかし今度は、Y値は北に増加し、X-値は東に増加します。次のセクションではしばしば南アフリカについて使用されるユニバーサル横メルカトル(UTM)と呼ばれる投影座標参照系を記載しています。

ユニバーサル横メルカトル(UTM)CRS詳細

ユニバーサル横メルカトル(UTM)座標系は、特定 経度 での 赤道 にその原点があります。今、Y値は南に増加し、X値は西に増加します。UTM CRSは、グローバル地図投影です。これは、それが一般的に世界中で使用されている、と意味します。しかし、既に上の「地図投影の精度」セクションに記載したように、領域が大きくなる(例えば、南アフリカ)ほど、角合わせ、距離、面積でより大きな歪みが発生します。大きすぎる歪みを回避するために、世界は東から西へ経度幅 6度60の等しいゾーン に分割されています。 UTMゾーン には国際日付線から始まる 1〜60 の番号が付けられていて( ゾーン1 は西経180度)、 国際日付線 に戻るまで東へと進みます( ゾーン60 は東経180度) figure_utm_zones に示すように。

../../_images/utm_zones.png

ユニバーサル横メルカトルゾーン。南アフリカにはUTMゾーン33S、34S、35S、36Sが使用されています。

figure_utm_zonesfigure_utm_for_sa に見られるように、南アフリカは、歪みを最小限に抑えるために4つの UTMゾーン で覆われています。 ゾーンUTM 33SUTM 34SUTM 35SUTM 36S と呼ばれています。ゾーンの後の S はそのUTMゾーンが 赤道の南 に位置することを意味します。

../../_images/utm_for_sa.png

UTMゾーンは、その中央経度(経絡)と33S、34S、35S、36Sとは、高い精度で南アフリカを投影するために使用されます。赤の十字は関心領域(AOI)を示します。

例えば、 figure_utm_for_sa に赤い十字の付いた 関心領域(AOI) 内の二次元の座標を定義したいとします。領域が UTMゾーン35S 内に位置していることを、見ることができます。これが意味することは、歪みを最小限に抑え、正確な分析結果を得るために、座標系として UTMゾーン35S を使用する必要があることです。

The position of a coordinate in UTM south of the equator must be indicated with the zone number (35) and with its northing (y) value and easting (x) value in meters. The northing value is the distance of the position from the equator in meters. The easting value is the distance from the central meridian (longitude) of the used UTM zone. For UTM zone 35S it is 27 degrees East as shown in figure_utm_for_sa. Furthermore, because we are south of the equator and negative values are not allowed in the UTM coordinate reference system, we have to add a so called false northing value of 10,000,000 m to the northing (y) value and a false easting value of 500,000 m to the easting (x) value. This sounds difficult, so, we will do an example that shows you how to find the correct UTM 35S coordinate for the Area of Interest.

The northing (y) value

The place we are looking for is 3,550,000 meters south of the equator, so the northing (y) value gets a negative sign and is -3,550,000 m. According to the UTM definitions we have to add a false northing value of 10,000,000 m. This means the northing (y) value of our coordinate is 6,450,000 m (-3,550,000 m + 10,000,000 m).

The easting (x) value

First we have to find the central meridian (longitude) for the UTM zone 35S. As we can see in figure_utm_for_sa it is 27 degrees East. The place we are looking for is 85,000 meters West from the central meridian. Just like the northing value, the easting (x) value gets a negative sign, giving a result of -85,000 m. According to the UTM definitions we have to add a false easting value of 500,000 m. This means the easting (x) value of our coordinate is 415,000 m (-85,000 m + 500,000 m). Finally, we have to add the zone number to the easting value to get the correct value.

結果として、我々の 関心地点 の座標、 UTMゾーン35S に投影されるものは、このように記述されるでしょう: 35 415,000メートル東 /6,450,000メートル北 。GISによっては、正しいUTMゾーン35Sが定義されその座標系内で単位がメートルに設定されているとき、座標は単に 415,000 6,450,000 として現れる可能性があります。

「その場で」投影

おそらく想像できるでしょうが、GISで使用するデータが異なる座標参照系に投影されている状況はありえます。たとえば、UTM 35Sで投影された南アフリカの国境を示すベクターレイヤーと、WGS 84地理座標系で与えられた降雨に関する地点情報のベクターレイヤーがあるとします。GISではこれら2つのベクターレイヤーは、投影が異なるので、地図ウィンドウ中で全く異なる領域に配置されます。

この問題を解決するために、多くのGISでは その場で 投影と呼ばれる機能が含まれています。つまり、GISを開始したときに特定の投影法を 定義 できます。また、ロードしたすべてのレイヤーは、座標系がどのようなものであっても、定義した投影法で自動的に表示されます。この機能は、GISの地図ウィンドウ内で 異なる 参照系にあるかもしれないレイヤーを重ねることを可能にします。

一般的な問題 / 注意すべき点

地図投影 の話題は非常に複雑であり、地理、測量、あるいはその他のGIS関連科学を研究している専門家ですら地図投影と基準座標系を正しく定義できないことがよくあります。GISで作業するときは通常、開始するデータをすでに投影しています。ほとんどの場合、これらのデータは、特定のCRSに投影されますので、新しいCRSを作成したり、そのデータをある CRSから別のCRSへ再投影する必要はありません。ですが、地図投影とCRSが意味することについて理解があるといつでも役に立ちます。

何を学びましたか?

このワークシートに覆われたものを包んでみましょう:

  • 地図投影 は紙またはコンピュータ画面の二次元の平面部分に地球の表面を描きます。

  • 全世界的な地図投影はありますが、ほとんどの地図投影は地球の表面の 小領域を投影するのに最適 なように作成されています。

  • 地図投影では、球形の地球を絶対的に正確な表現することは決してありません。それらは 正角性、距離および面積における歪み を示します。地図投影ですべてのこれらの特性を同時に保つことは不可能です。

  • 座標参照系 (CRS)は、座標の助けを借りて、二次元の投影図が地球の実位置にどう関係づけられるかを定義します。

  • 異なる2つの座標参照系があります。地理座標系投影座標系 です。

  • その場で 投影は、別の座標参照系で投影されているレイヤーを重ねることを可能にするGISの機能です。

やってみよう

ここでは人に教える際のアイデアをいくつか述べていきます:

  • QGISを起動し、同じ領域で投影が異なる2つのレイヤーをロードして、生徒たちに2つのレイヤー上でいくつかの場所の座標を見つけさせましょう。二つのレイヤーをオーバーレイすることは不可能であることを示せます。その後、 プロジェクトのプロパティ ダイアログの中で地理/ WGS 84などの座標系を定義し、チェックボックス checkbox 「その場で」CRS変換 を有効にします。同じ領域の二つのレイヤーを再度ロードし、生徒たちに「その場で」投影がどのように機能するかを見せます。

  • QGISで プロジェクトのプロパティ ダイアログを開き、生徒たちがこのトピックが複雑であること理解するように多くの異なった座標系を見せる ことができます。「その場で」CRS変換が有効であると、同一のレイヤーを違った投影で表示するように違ったCRSを選択できます。

考えてみよう

If you don’t have a computer available, you can show your pupils the principles of the three map projection families. Get a globe and paper and demonstrate how cylindrical, conical and planar projections work in general. With the help of a transparency sheet you can draw a two-dimensional coordinate reference system showing X axes and Y axes. Then, let your pupils define coordinates (x and y values) for different places.

より詳しく知りたい場合は

図書:

  • Chang, Kang-Tsung (2006). Introduction to Geographic Information Systems. 3rd Edition. McGraw Hill. ISBN: 0070658986
  • DeMers, Michael N. (2005). Fundamentals of Geographic Information Systems. 3rd Edition. Wiley. ISBN: 9814126195
  • Galati, Stephen R. (2006): Geographic Information Systems Demystified. Artech House Inc. ISBN: 158053533X

ウェブサイト:

QGISユーザーガイドでは,地図投影法の操作についてより詳細な情報が含まれています.

次は?

続くセクションでは 地図投影法 について詳しく見ていきます。