6. Testarea Unităților
Din noiembrie 2007 am cerut ca toate noile caracteristici care intră în versiunea master să fie însoțite de teste de unitate. Inițial ne-am limitat la qgis_core, apoi vom extinde această cerință pentru alte părți ale bazei de cod, o dată ce dezvoltatorii se vor familiariza cu procedurile pentru testele de unitate, detaliate în secțiunile următoare.
6.1. Cadrul de testare QGIS - o privire de ansamblu
Unit testing is carried out using a combination of QTestLib (the Qt testing library) and CTest (a framework for compiling and running tests as part of the CMake build process). Lets take an overview of the process before we delve into the details:
There is some code you want to test, e.g. a class or function. Extreme programming advocates suggest that the code should not even be written yet when you start building your tests, and then as you implement your code you can immediately validate each new functional part you add with your test. In practice you will probably need to write tests for pre-existing code in QGIS since we are starting with a testing framework well after much application logic has already been implemented.
Creați un test de unitate. Acest lucru se întâmplă în directorul
<QGIS Source Dir>/tests/src/core
, în cazul bibliotecilor de bază. Testul este de fapt un client care creează o instanță a unei clase, apelând unele metode ale acestei clase. Acesta va verifica valorile returnate din fiecare metodă, pentru a se asigura că se potrivesc valorilor așteptate. În cazul în care unul dintre apeluri eșuează, testul de unitate va eșua.Includeți macro-urile QtTestLib în clasa dvs. de test. Macrocomenzile sunt procesate de către compilatorul de obiecte meta Qt (MOC) și transformă clasa de testare într-o aplicație executabilă.
Adăugați o secțiune la fișierul CMakeLists.txt din directorul testelor dvs., care va construi testul.
Asigurați-vă că ați activat
ENABLE_TESTING
în ccmake / cmakesetup. Astfel, vă veți asigura că testele dumneavoastră se compilează atunci când tastați make.You optionally add test data to
<QGIS Source Dir>/tests/testdata
if your test is data driven (e.g. needs to load a shapefile). These test data should be as small as possible and wherever possible you should use the existing datasets already there. Your tests should never modify this data in situ, but rather make a temporary copy somewhere if needed.Compilați sursele, apoi efectuați instalarea. Faceți acest lucru utilizând procedura normală
make && (sudo) make install
.You run your tests. This is normally done simply by doing
make test
after themake install
step, though we will explain other approaches that offer more fine grained control over running tests.
Right with that overview in mind, we will delve into a bit of detail. We’ve already done much of the configuration for you in CMake and other places in the source tree so all you need to do are the easy bits - writing unit tests!
6.2. Crearea unui test de unitate
Creating a unit test is easy - typically you will do this by just creating a
single .cpp
file (no .h
file is used) and implement all your
test methods as public methods that return void. We’ll use a simple test class for
QgsRasterLayer
throughout the section that follows to illustrate. By convention
we will name our test with the same name as the class they are testing but
prefixed with «Test». So our test implementation goes in a file called
testqgsrasterlayer.cpp
and the class itself will be TestQgsRasterLayer
.
First we add our standard copyright banner:
/***************************************************************************
testqgsvectorfilewriter.cpp
--------------------------------------
Date : Friday, Jan 27, 2015
Copyright: (C) 2015 by Tim Sutton
Email: [email protected]
***************************************************************************
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
***************************************************************************/
Next we start our includes needed for the tests we plan to run. There is one special include all tests should have:
#include <QtTest/QtTest>
Mai departe, continuați implementarea normală a clasei, incluzând antetele de care aveți nevoie:
//Qt includes...
#include <QObject>
#include <QString>
#include <QObject>
#include <QApplication>
#include <QFileInfo>
#include <QDir>
//qgis includes...
#include <qgsrasterlayer.h>
#include <qgsrasterbandstats.h>
#include <qgsapplication.h>
Din moment ce combinăm atât declarația clasei cât și implementarea într-un singur fișier, urmează declarația clasei. Vom începe cu documentația doxygen. Fiecare caz de testare trebuie să fie documentat în mod corespunzător. Folosim directiva doxygen ingroup, astfel încât toate Unitățile de Testare apar ca module în documentația Doxygen generată. Urmează apoi o scurtă descriere a unității de testare, clasa trebuind să moștenească QObject și să includă macrocomanda Q_OBJECT.
/** \ingroup UnitTests
* This is a unit test for the QgsRasterLayer class.
*/
class TestQgsRasterLayer: public QObject
{
Q_OBJECT
All our test methods are implemented as private slots. The QtTest framework
will sequentially call each private slot method in the test class. There are
four «special» methods which if implemented will be called at the start of the
unit test (initTestCase
), at the end of the unit test
(cleanupTestCase
). Before each test method is called, the init()
method will be called and after each test method is called the cleanup()
method is called. These methods are handy in that they allow you to allocate
and cleanup resources prior to running each test, and the test unit as a whole.
private slots:
// will be called before the first testfunction is executed.
void initTestCase();
// will be called after the last testfunction was executed.
void cleanupTestCase(){};
// will be called before each testfunction is executed.
void init(){};
// will be called after every testfunction.
void cleanup();
Then come your test methods, all of which should take no parameters and should return void. The methods will be called in order of declaration. We are implementing two methods here which illustrate two types of testing.
In the first case we want to generally test if the various parts of the class are working, We can use a functional testing approach. Once again, extreme programmers would advocate writing these tests before implementing the class. Then as you work your way through your class implementation you iteratively run your unit tests. More and more test functions should complete successfully as your class implementation work progresses, and when the whole unit test passes, your new class is done and is now complete with a repeatable way to validate it.
Typically your unit tests would only cover the public API of your class, and normally you do not need to write tests for accessors and mutators. If it should happen that an accessor or mutator is not working as expected you would normally implement a regression test to check for this.
//
// Functional Testing
//
/** Check if a raster is valid. */
void isValid();
// more functional tests here ...
6.2.1. Implementing a regression test
Next we implement our regression tests. Regression tests should be implemented to replicate the conditions of a particular bug. For example:
We received a report by email that the cell count by rasters was off by 1, throwing off all the statistics for the raster bands.
We opened a bug report (ticket #832)
We created a regression test that replicated the bug using a small test dataset (a 10x10 raster).
We ran the test, verifying that it did indeed fail (the cell count was 99 instead of 100).
Then we went to fix the bug and reran the unit test and the regression test passed. We committed the regression test along with the bug fix. Now if anybody breakes this in the source code again in the future, we can immediately identify that the code has regressed.
Better yet, before committing any changes in the future, running our tests will ensure our changes don’t have unexpected side effects - like breaking existing functionality.
Mai există un beneficiu al prezenței testelor de regresie - acestea pot aduce economie de timp. Dacă ați depanat vreodată o eroare care a implicat efectuarea de modificări în codul sursă, urmată de rularea aplicației și efectuarea unei serii de pași extrem de complicați pentru a reproduce problema, va fi imediat evident că simpla implementare a testului de regresie înainte de corectarea erorii permite automatizarea testării, ceea ce reprezintă o eliminare eficientă a defectelor.
To implement your regression test, you should follow the naming convention of regression<TicketID> for your test functions. If no ticket exists for the regression, you should create one first. Using this approach allows the person running a failed regression test easily go and find out more information.
//
// Regression Testing
//
/** This is our second test case...to check if a raster
* reports its dimensions properly. It is a regression test
* for ticket #832 which was fixed with change r7650.
*/
void regression832();
// more regression tests go here ...
Finally in your test class declaration you can declare privately any data
members and helper methods your unit test may need. In our case we will declare
a QgsRasterLayer *
which can be used by any of our test methods. The raster
layer will be created in the initTestCase()
function which is run before any
other tests, and then destroyed using cleanupTestCase()
which is run after all
tests. By declaring helper methods (which may be called by various test
functions) privately, you can ensure that they won’t be automatically run by the
QTest executable that is created when we compile our test.
private:
// Here we have any data structures that may need to
// be used in many test cases.
QgsRasterLayer * mpLayer;
};
Astfel se termină declarația clasei noastre. Implementarea are loc pur și simplu, în partea de jos a fișierului. Mai întâi are loc inițializarea și curățarea funcțiilor:
void TestQgsRasterLayer::initTestCase()
{
// init QGIS's paths - true means that all path will be inited from prefix
QString qgisPath = QCoreApplication::applicationDirPath ();
QgsApplication::setPrefixPath(qgisPath, TRUE);
#ifdef Q_OS_LINUX
QgsApplication::setPkgDataPath(qgisPath + "/../share/qgis");
#endif
//create some objects that will be used in all tests...
std::cout << "PrefixPATH: " << QgsApplication::prefixPath().toLocal8Bit().data() << std::endl;
std::cout << "PluginPATH: " << QgsApplication::pluginPath().toLocal8Bit().data() << std::endl;
std::cout << "PkgData PATH: " << QgsApplication::pkgDataPath().toLocal8Bit().data() << std::endl;
std::cout << "User DB PATH: " << QgsApplication::qgisUserDbFilePath().toLocal8Bit().data() << std::endl;
//create a raster layer that will be used in all tests...
QString myFileName (TEST_DATA_DIR); //defined in CmakeLists.txt
myFileName = myFileName + QDir::separator() + "tenbytenraster.asc";
QFileInfo myRasterFileInfo ( myFileName );
mpLayer = new QgsRasterLayer ( myRasterFileInfo.filePath(),
myRasterFileInfo.completeBaseName() );
}
void TestQgsRasterLayer::cleanupTestCase()
{
delete mpLayer;
}
Funcția de inițializare de mai sus ilustrează câteva lucruri interesante.
We needed to manually set the QGIS application data path so that resources such as
srs.db
can be found properly.Secondly, this is a data driven test so we needed to provide a way to generically locate the
tenbytenraster.asc
file. This was achieved by using the compiler defineTEST_DATA_PATH
. The define is created in theCMakeLists.txt
configuration file under<QGIS Source Root>/tests/CMakeLists.txt
and is available to all QGIS unit tests. If you need test data for your test, commit it under<QGIS Source Root>/tests/testdata
. You should only commit very small datasets here. If your test needs to modify the test data, it should make a copy of it first.
Qt oferă, de asemenea, alte câteva mecanisme interesante pentru testarea dirijată cu ajutorul datelor, așa că, dacă vă interesează să aflați mai multe despre acest subiect, consultați documentația Qt.
Next lets look at our functional test. The isValid()
test simply checks the
raster layer was correctly loaded in the initTestCase. QVERIFY is a Qt macro
that you can use to evaluate a test condition. There are a few other use
macros Qt provide for use in your tests including:
QCOMPARE ( actual, expected )
QEXPECT_FAIL ( dataIndex, comment, mode )
QFAIL ( message )
QFETCH ( type, name )
QSKIP ( description, mode )
QTEST ( actual, testElement )
QTEST_APPLESS_MAIN ( TestClass )
QTEST_MAIN ( TestClass )
QTEST_NOOP_MAIN ()
QVERIFY2 ( condition, message )
QVERIFY ( condition )
QWARN ( message )
Unele dintre aceste macro-uri sunt utile numai atunci când se utilizează cadrul de lucru Qt, pentru testarea cu ajutorul datelor (a se vedea documentația Qt, pentru mai multe detalii).
void TestQgsRasterLayer::isValid()
{
QVERIFY ( mpLayer->isValid() );
}
În mod normal, testele funcționale ar putea acoperi toată gama de funcționalități a claselor dvs. API publice, acolo unde este fezabil. Testele funcționale fiind gata, ne putem uita la exemplul nostru de test de regresie.
Având în vedere că problema #832 raportează un număr eronat de celule, scrierea testului nostru constă pur și simplu în folosirea macrocomenzii QVERIFY, pentru a verifica dacă numărul de celule corespunde valorii așteptate:
void TestQgsRasterLayer::regression832()
{
QVERIFY ( mpLayer->getRasterXDim() == 10 );
QVERIFY ( mpLayer->getRasterYDim() == 10 );
// regression check for ticket #832
// note getRasterBandStats call is base 1
QVERIFY ( mpLayer->getRasterBandStats(1).elementCountInt == 100 );
}
With all the unit test functions implemented, there’s one final thing we need to add to our test class:
QTEST_MAIN(TestQgsRasterLayer)
#include "testqgsrasterlayer.moc"
The purpose of these two lines is to signal to Qt’s moc that this is a QtTest
(it will generate a main method that in turn calls each test function. The last
line is the include for the MOC generated sources. You should replace
testqgsrasterlayer
with the name of your class in lower case.
6.3. Comparing images for rendering tests
Rendering images on different environments can produce subtle differences due to platform-specific implementations (e.g. different font rendering and antialiasing algorithms), to the fonts available on the system and for other obscure reasons.
When a rendering test runs on Travis and fails, look for the dash link at the very bottom of the Travis log. This link will take you to a cdash page where you can see the rendered vs expected images, along with a „difference” image which highlights in red any pixels which did not match the reference image.
The QGIS unit test system has support for adding „mask” images, which are used to indicate when a rendered image may differ from the reference image. A mask image is an image (with the same name as the reference image, but including a _mask.png suffix), and should be the same dimensions as the reference image. In a mask image the pixel values indicate how much that individual pixel can differ from the reference image, so a black pixel indicates that the pixel in the rendered image must exactly match the same pixel in the reference image. A pixel with RGB 2, 2, 2 means that the rendered image can vary by up to 2 in its RGB values from the reference image, and a fully white pixel (255, 255, 255) means that the pixel is effectively ignored when comparing the expected and rendered images.
A utility script to generate mask images is available as
scripts/generate_test_mask_image.py
. This script is used by passing it the
path of a reference image (e.g. tests/testdata/control_images/annotations/expected_annotation_fillstyle/expected_annotation_fillstyle.png
)
and the path to your rendered image.
E.g.
scripts/generate_test_mask_image.py tests/testdata/control_images/annotations/expected_annotation_fillstyle/expected_annotation_fillstyle.png /tmp/path_to_rendered_image.png
You can shortcut the path to the reference image by passing a partial part of the test name instead, e.g.
scripts/generate_test_mask_image.py annotation_fillstyle /tmp/path_to_rendered_image.png
(This shortcut only works if a single matching reference image is found. If multiple matches are found you will need to provide the full path to the reference image.)
The script also accepts http urls for the rendered image, so you can directly copy a rendered image url from the cdash results page and pass it to the script.
Be careful when generating mask images - you should always view the generated mask image and review any white areas in the image. Since these pixels are ignored, make sure that these white images do not cover any important portions of the reference image – otherwise your unit test will be meaningless!
Similarly, you can manually „white out” portions of the mask if you deliberately want to exclude them from the test. This can be useful e.g. for tests which mix symbol and text rendering (such as legend tests), where the unit test is not designed to test the rendered text and you don’t want the test to be subject to cross-platform text rendering differences.
To compare images in QGIS unit tests you should use the class
QgsMultiRenderChecker
or one of its subclasses.
To improve tests robustness here are few tips:
Disable antialiasing if you can, as this minimizes cross-platform rendering differences.
Make sure your reference images are „chunky”… i.e. don’t have 1 px wide lines or other fine features, and use large, bold fonts (14 points or more is recommended).
Sometimes tests generate slightly different sized images (e.g. legend rendering tests, where the image size is dependent on font rendering size - which is subject to cross-platform differences). To account for this, use
QgsMultiRenderChecker::setSizeTolerance()
and specify the maximum number of pixels that the rendered image width and height differ from the reference image.Don’t use transparent backgrounds in reference images (CDash does not support them). Instead, use
QgsMultiRenderChecker::drawBackground()
to draw a checkboard pattern for the reference image background.When fonts are required, use the font specified in
QgsFontUtils::standardTestFontFamily()
(„QGIS Vera Sans”).
If travis reports errors for new images (for instance due to antialiasing or font differences), the script parse_dash_results.py can help you when you are updating the local test masks.
6.4. Adăugarea testului de unitate în CMakeLists.txt
Adding your unit test to the build system is simply a matter of editing the
CMakeLists.txt
in the test directory, cloning one of the existing test
blocks, and then replacing your test class name into it. For example:
# QgsRasterLayer test
ADD_QGIS_TEST(rasterlayertest testqgsrasterlayer.cpp)
6.4.1. Adăugarea macocomenzii ADD_QGIS_TEST
We’ll run through these lines briefly to explain what they do, but if you are not interested, just do the step explained in the above section.
MACRO (ADD_QGIS_TEST testname testsrc)
SET(qgis_${testname}_SRCS ${testsrc} ${util_SRCS})
SET(qgis_${testname}_MOC_CPPS ${testsrc})
QT4_WRAP_CPP(qgis_${testname}_MOC_SRCS ${qgis_${testname}_MOC_CPPS})
ADD_CUSTOM_TARGET(qgis_${testname}moc ALL DEPENDS ${qgis_${testname}_MOC_SRCS})
ADD_EXECUTABLE(qgis_${testname} ${qgis_${testname}_SRCS})
ADD_DEPENDENCIES(qgis_${testname} qgis_${testname}moc)
TARGET_LINK_LIBRARIES(qgis_${testname} ${QT_LIBRARIES} qgis_core)
SET_TARGET_PROPERTIES(qgis_${testname}
PROPERTIES
# skip the full RPATH for the build tree
SKIP_BUILD_RPATHTRUE
# when building, use the install RPATH already
# (so it doesn't need to relink when installing)
BUILD_WITH_INSTALL_RPATH TRUE
# the RPATH to be used when installing
INSTALL_RPATH ${QGIS_LIB_DIR}
# add the automatically determined parts of the RPATH
# which point to directories outside the build tree to the install RPATH
INSTALL_RPATH_USE_LINK_PATH true)
IF (APPLE)
# For Mac OS X, the executable must be at the root of the bundle's executable folder
INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX})
ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/qgis_${testname})
ELSE (APPLE)
INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX}/bin)
ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/bin/qgis_${testname})
ENDIF (APPLE)
ENDMACRO (ADD_QGIS_TEST)
Let’s look a little more in detail at the individual lines. First we define the list of sources for our test. Since we have only one source file (following the methodology described above where class declaration and definition are in the same file) its a simple statement:
SET(qgis_${testname}_SRCS ${testsrc} ${util_SRCS})
Din moment ce clasa noastră de test trebuie să fie executată prin intermediul compilatorului meta-obiect (MOC) din Qt, trebuie să indicăm acest lucru printr-o pereche de linii:
SET(qgis_${testname}_MOC_CPPS ${testsrc})
QT4_WRAP_CPP(qgis_${testname}_MOC_SRCS ${qgis_${testname}_MOC_CPPS})
ADD_CUSTOM_TARGET(qgis_${testname}moc ALL DEPENDS ${qgis_${testname}_MOC_SRCS})
Next we tell cmake that it must make an executable from the test class. Remember in the previous section on the last line of the class implementation we included the moc outputs directly into our test class, so that will give it (among other things) a main method so the class can be compiled as an executable:
ADD_EXECUTABLE(qgis_${testname} ${qgis_${testname}_SRCS})
ADD_DEPENDENCIES(qgis_${testname} qgis_${testname}moc)
Next we need to specify any library dependencies. At the moment, classes have been implemented with a catch-all QT_LIBRARIES dependency, but we will be working to replace that with the specific Qt libraries that each class needs only. Of course you also need to link to the relevant qgis libraries as required by your unit test.
TARGET_LINK_LIBRARIES(qgis_${testname} ${QT_LIBRARIES} qgis_core)
Next we tell cmake to install the tests to the same place as the qgis binaries itself. This is something we plan to remove in the future so that the tests can run directly from inside the source tree.
SET_TARGET_PROPERTIES(qgis_${testname}
PROPERTIES
# skip the full RPATH for the build tree
SKIP_BUILD_RPATHTRUE
# when building, use the install RPATH already
# (so it doesn't need to relink when installing)
BUILD_WITH_INSTALL_RPATH TRUE
# the RPATH to be used when installing
INSTALL_RPATH ${QGIS_LIB_DIR}
# add the automatically determined parts of the RPATH
# which point to directories outside the build tree to the install RPATH
INSTALL_RPATH_USE_LINK_PATH true)
IF (APPLE)
# For Mac OS X, the executable must be at the root of the bundle's executable folder
INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX})
ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/qgis_${testname})
ELSE (APPLE)
INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX}/bin)
ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/bin/qgis_${testname})
ENDIF (APPLE)
Finally the above uses ADD_TEST
to register the test with cmake / ctest.
Here is where the best magic happens - we register the class with ctest. If you
recall in the overview we gave in the beginning of this section, we are using
both QtTest and CTest together. To recap, QtTest adds a main method to your
test unit and handles calling your test methods within the class. It also
provides some macros like QVERIFY
that you can use as to test for
failure of the tests using conditions. The output from a QtTest unit test is an
executable which you can run from the command line. However when you have a
suite of tests and you want to run each executable in turn, and better yet
integrate running tests into the build process, the CTest is what we use.
6.5. Compilarea testului de unitate
Pentru a compila testul de unitate rewbuie doar să vă asigurați că ENABLE_TESTS = true
în configurația cmake. Există două moduri de a face acest lucru:
Rulați
ccmake ..
( saucmakesetup ..
sub windows) și setați, în mod interactiv, fanionulENABLE_TESTS
peON
.Adăugați o linie de comandă pentru fanion în cmake ex.:
cmake -DENABLE_TESTS=true ..
La urmă, doar compilați normal QGIS, iar testele ar trebui să se compileze, la rândul lor.
6.6. Rularea testelor dumneavoastră
Cel mai simplu mod de a rula testele este ca parte a procesului normal de compilare:
make && make install && make test
The make test
command will invoke CTest which will run each test that was
registered using the ADD_TEST CMake directive described above. Typical output
from make test
will look like this:
Running tests...
Start processing tests
Test project /Users/tim/dev/cpp/qgis/build
## 13 Testing qgis_applicationtest***Exception: Other
## 23 Testing qgis_filewritertest *** Passed
## 33 Testing qgis_rasterlayertest*** Passed
## 0 tests passed, 3 tests failed out of 3
The following tests FAILED:
## 1- qgis_applicationtest (OTHER_FAULT)
Errors while running CTest
make: *** [test] Error 8
Dacă un test eșuează, puteți utiliza comanda ctest pentru a-i examina mai îndeaproape cauza. Utilizați opțiunea -R
pentru a specifica un regex pentru testele pe care doriți să le rulați, și un `` -V`` pentru a obține o ieșire detaliată:
$ ctest -R appl -V
Start processing tests
Test project /Users/tim/dev/cpp/qgis/build
Constructing a list of tests
Done constructing a list of tests
Changing directory into /Users/tim/dev/cpp/qgis/build/tests/src/core
## 13 Testing qgis_applicationtest
Test command: /Users/tim/dev/cpp/qgis/build/tests/src/core/qgis_applicationtest
********* Start testing of TestQgsApplication *********
Config: Using QTest library 4.3.0, Qt 4.3.0
PASS : TestQgsApplication::initTestCase()
PrefixPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/../
PluginPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//lib/qgis
PkgData PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis
User DB PATH: /Users/tim/.qgis/qgis.db
PASS : TestQgsApplication::getPaths()
PrefixPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/../
PluginPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//lib/qgis
PkgData PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis
User DB PATH: /Users/tim/.qgis/qgis.db
QDEBUG : TestQgsApplication::checkTheme() Checking if a theme icon exists:
QDEBUG : TestQgsApplication::checkTheme()
/Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis/themes/default//mIconProjectionDisabled.png
FAIL!: TestQgsApplication::checkTheme() '!myPixmap.isNull()' returned FALSE. ()
Loc: [/Users/tim/dev/cpp/qgis/tests/src/core/testqgsapplication.cpp(59)]
PASS : TestQgsApplication::cleanupTestCase()
Totals: 3 passed, 1 failed, 0 skipped
********* Finished testing of TestQgsApplication *********
-- Process completed
***Failed
## 0 tests passed, 1 tests failed out of 1
The following tests FAILED:
## 1- qgis_applicationtest (Failed)
Errors while running CTest
6.6.1. Running individual tests
C++ tests are ordinary applications. You can run them from the build folder like any executable.
$ ./output/bin/qgis_dxfexporttest
********* Start testing of TestQgsDxfExport *********
Config: Using QtTest library 5.12.5, Qt 5.12.5 (x86_64-little_endian-lp64 shared (dynamic) release build; by GCC 9.2.1 20190827 (Red Hat 9.2.1-1))
PASS : TestQgsDxfExport::initTestCase()
PASS : TestQgsDxfExport::testPoints()
PASS : TestQgsDxfExport::testLines()
...
Totals: 19 passed, 4 failed, 0 skipped, 0 blacklisted, 612ms
********* Finished testing of TestQgsDxfExport *********
These tests also take command line arguments. This makes it possible to run a specific subset of tests:
$ ./output/bin/qgis_dxfexporttest testPoints
********* Start testing of TestQgsDxfExport *********
Config: Using QtTest library 5.12.5, Qt 5.12.5 (x86_64-little_endian-lp64 shared (dynamic) release build; by GCC 9.2.1 20190827 (Red Hat 9.2.1-1))
PASS : TestQgsDxfExport::initTestCase()
PASS : TestQgsDxfExport::testPoints()
PASS : TestQgsDxfExport::cleanupTestCase()
Totals: 3 passed, 0 failed, 0 skipped, 0 blacklisted, 272ms
********* Finished testing of TestQgsDxfExport *********
6.6.2. Debugging unit tests
C++ Tests
For C++ unit tests, QtCreator automatically adds run targets, so you can start them from the debugger.
If you go to Projects and there to the Build & Run –> Desktop Run tab, you can also specify command line parameters that will allow a subset of the tests to be run inside a .cpp file in the debugger.
Python Tests
It’s also possible to start Python unit tests from QtCreator with GDB. For
this, you need to go to Projects and choose Run under
Build & Run.
Then add a new Run configuration
with the executable /usr/bin/python3
and the Command line arguments set to the path of the unit test python file,
e.g.
/home/user/dev/qgis/QGIS/tests/src/python/test_qgsattributeformeditorwidget.py
.
Now also change the Run Environment
and add 3 new variables:
Variable |
Value |
PYTHONPATH |
[build]/output/python/:[build]/output/python/plugins:[source]/tests/src/python |
QGIS_PREFIX_PATH |
[build]/output |
LD_LIBRARY_PATH |
[build]/output/lib |
Replace [build]
with your build directory and [source]
with
your source directory.
6.6.3. Have fun
Well that concludes this section on writing unit tests in QGIS. We hope you
will get into the habit of writing test to test new functionality and to check
for regressions. Some aspects of the test system (in particular the
CMakeLists.txt
parts) are still being worked on so that the testing framework
works in a truly platform independent way.