Map projections try to portray the surface of the earth or a portion of the earth on a flat piece of paper or computer screen. A coordinate reference system (CRS) then defines, with the help of coordinates, how the two-dimensional, projected map in your GIS is related to real places on the earth. The decision as to which map projection and coordinate reference system to use, depends on the regional extent of the area you want to work in, on the analysis you want to do and often on the availability of data.
Um método tradicional de representar a forma da terra é usar esferas. Há, no entanto, um problema com esta abordagem. Embora esferas preservem a maioria da forma da terra e ilustrem a configuração espacial de elementos de dimensão continental, são difíceis de carregar num bolso. São também apenas convenientes de usar em escalas extremamente pequenas (p. ex. 1:100 milhões).
A maioria dos dados de mapas temáticos utilizados em aplicações SIG têm uma escala consideravelmente maior. Conjuntos de dados SIG típicos têm escalas de 1:250.000 ou maiores, dependendo do nível de detalhe. Uma esfera com este tamanho seria difícil e dispendioso de produzir e ainda mais difícil de transportar. Consequentemente, os cartógrafos desenvolveram um conjunto de técnicas designadas por projeções cartográficas concebidas para representar, com precisão razoável, a terra esférica em duas dimensões.
Quando observada de perto a terra aparenta ser relativamente plana. Contudo quando a observamos do espaço, podemos ver que a terra é relativamente esférica. Mapas, como aqueles que veremos posteriormente no tópico dedicado à produção de mapas, são representações da realidade. São concebidos não apenas para representar entidades, mas também a sua forma e disposição espacial. Qualquer projeção cartográfica tem vantagens e desvantagens. A melhor projeção para um mapa depende da escala do mapa, e dos objetivos para os quais será usado. Por exemplo, uma projeção poderá ter distorções inaceitáveis se usada num mapa de todo o continente Africano, mas poderá ser uma excelente escolha para um mapa numa escala grande (detalhado) do seu país. As propriedades de uma projeção cartográfica podem também influenciar algumas características na concepção do mapa. Algumas projeções são indicadas para pequenas áreas, outras são indicadas para representar áreas com uma grande extensão Este-Oeste, e outras são mais apropriadas para representar áreas com uma grande extensão Norte-Sul.
The process of creating map projections can be visualised by positioning a light source inside a transparent globe on which opaque earth features are placed. Then project the feature outlines onto a two-dimensional flat piece of paper. Different ways of projecting can be produced by surrounding the globe in a cylindrical fashion, as a cone, or even as a flat surface. Each of these methods produces what is called a map projection family. Therefore, there is a family of planar projections, a family of cylindrical projections, and another called conical projections (see figure_projection_families)
Hoje, naturalmente, o processo de projetar uma terra esférica num papel plano é feito usando princípios matemáticos de geometria e trigonometria, reproduzindo-se a projeção física de luz através do globo.
Map projections are never absolutely accurate representations of the spherical earth. As a result of the map projection process, every map shows distortions of angular conformity, distance and area. A map projection may combine several of these characteristics, or may be a compromise that distorts all the properties of area, distance and angular conformity, within some acceptable limit. Examples of compromise projections are the Winkel Tripel projection and the Robinson projection (see figure_robinson_projection), which are often used for world maps.
É geralmente impossível preservar todas as características em simultâneo numa projeção cartográfica. Isto significa que quando queremos executar operações analíticas precisas necessitamos de usar uma projeção cartográfica que fornece as melhores características para as nossas análises. Por exemplo, se for necessário medir distâncias no nosso mapa, devemos usar uma projeção que garante uma elevada precisão nas distâncias.
Ao trabalhar com um globo, as principais direcções da rosa dos ventos (Norte, Este, Sul e Oeste) ocorrerão sempre a 90º umas das outras. Por outras palavras, Este ocorrerá sempre num ângulo de 90º com a direcção Norte. As propriedades angulares corretas podem ser preservadas numa projeção. Uma projeção que mantém ângulos e direções é designada de projeção conforme ou projeção ortomórfica.
Estas projeções são usadas quando a preservação das relações angulares é importante. São usadas geralmente para tarefas de navegação ou meteorologia. É importante relembrar que manter verdadeiros os ângulos num mapa é difícil para grandes áreas e deve ser apenas tentado para pequenas porções da terra. O tipo de projeções Conformes resulta em distorções de áreas, o que significa que se forem efetuadas medições de área no mapa, estas serão incorretas. Quanto maior a área menos precisas serão as medições de área. Exemplos são a projeção de Mercator (como ilustrado na figure_mercator_projection) e a projeção Cônica Conforme de Lambert. O U.S. Geological Survey usa uma projeção conforme para muitos dos seus mapas topográficos.
Se o seu objetivo ao projetar um mapa é medir distâncias com precisão, deve selecionar uma projeção que é concebida para preservar distâncias corretamente. Estas projeções, designadas projeções equidistantes, necessitam que a escala do mapa seja mantida constante. Um mapa é equidistante quando representa distâncias corretamente a partir do centro de projeção até qualquer outro local no mapa. Projeções Equidistantes mantêm distâncias precisas a partir do centro de projeção ou ao longo de certas linhas. Estas projeções são usadas para mapas de rádio ou sismologia, e para navegação. A Projeção Cilíndrica Equidistante de Plate Carree (ver figure_plate_caree_projection) e a projeção Equiretangular são dois bons exemplos de projeções equidistantes. A **projeção Equidistante Azimutal ** é a projeção usada no emblema das Nações Unidas (ver figure_azimuthal_equidistant_projection).
When a map portrays areas over the entire map, so that all mapped areas have the same proportional relationship to the areas on the Earth that they represent, the map is an equal area map. In practice, general reference and educational maps most often require the use of equal area projections. As the name implies, these maps are best used when calculations of area are the dominant calculations you will perform. If, for example, you are trying to analyse a particular area in your town to find out whether it is large enough for a new shopping mall, equal area projections are the best choice. On the one hand, the larger the area you are analysing, the more precise your area measures will be, if you use an equal area projection rather than another type. On the other hand, an equal area projection results in** distortions of angular conformity** when dealing with large areas. Small areas will be far less prone to having their angles distorted when you use an equal area projection. Alber’s equal area, Lambert’s equal area and Mollweide Equal Area Cylindrical projections (shown in figure_mollweide_equal_area_projection) are types of equal area projections that are often encountered in GIS work.
Tenha em atenção que as projeções cartográficas são um tópico muito complexo. Existem centenas de diferentes projeções disponíveis em todo o mundo, cada tentando retratar uma certa porção da superfície da terra o mais fielmente possível num pedaço plano de papel. Na realidade, a escolha de qual a projeção a usar será frequentemente estará já tomada. A maioria dos países têm as suas projeções mais comuns e quando informação é trocada, em geral segue-se a norma nacional.
Com a ajuda dos sistemas de referência de coordenadas (SRC) cada lugar na terra pode ser especificado por um conjunto de 3 números, chamados coordenadas. Em geral, os SRC podem ser divididos ente sistemas de coordenadas projetados (também designados por sistemas de coordenadas Cartesianas ou retangulares) e sistemas de coordenadas geográficas.
O uso de Sistemas de Coordenadas Geográficas é muito comum. Estes usam graus de latitude e longitude e por vezes um valor de altura para descrever uma localização na superfície da terra. O mais popular é chamado WGS 84.
Linhas de latitude são paralelas ao equador e dividem a terra em 180 seções igualmente espaçadas entre si deste o Norte ao Sul (ou do Sul ao Norte). A linha de referência para a latitude é o equador e cada hemisfério é dividido em noventa seções, cada representando um grau de latitude. No hemisfério norte, os graus de latitude são medidos de 0 no equador até 90 graus no pólo norte. No hemisfério sul, os graus de latitude são medidos de 0 no equador até 90 graus no pólo sul. Para simplificar a digitação de mapas, os graus de latitude no hemisfério sul são muitas vezes representados como valores negativos (0 a -90º). Sempre que esteja na superfície da terra, a distância entre linhas de latitude é a mesma (60 milhas náuticas). Ver figure_geographic_crs para uma ilustração.
Linhas de longitude, por outro lado, não são tão uniformes. Linhas de longitude são perpendiculares ao equador e convergem nos pólos. A linha de referência para a longitude (o meridiano principal) desenvolve-se a partir do pólo Norte até ao pólo Sul passando por Greenwich, Inglaterra. Linhas de longitude subsequentes são medidas de 0 a 180 graus Este ou Oeste em relação ao meridiano principal. Note que os valores a Oeste do meridiano principal são negativos para uso em aplicações de cartografia digital. Ver figure_geographic_crs para uma ilustração.
No equador, e apenas no equador, a distância representada por uma linha de longitude é igual à distância representada por um grau de latitude. Ao mover-se para os pólos, a distância entre linhas de longitude torna-se progressivamente menor, até que, na exata localização do pólo, todos os 360º de longitude são representados por um único ponto que pode tocar com o seu dedo (quererá provavelmente usar luvas). Usando o sistema de coordenadas geográfico, podemos ter uma grade de linhas dividindo a terra em quadrados que cobrem aproximadamente 12363,365 quilômetros quadrados até ao equador — um bom início, mas não muito útil para determinar a localização de algo num desses quadrados.
Para ser realmente útil, uma grade no mapa deve ser dividida em seções suficientemente pequenas para que possam ser usadas para descrever (com um nível de precisão aceitável) a localização de um ponto no mapa. Para isto, graus são divididos em minutos (') e segundos ("). Existem sessenta minutos num grau, e sessenta segundos num minuto (3600 segundos num grau). Assim, no equador, um segundo de latitude ou longitude = 30,87634 metros.
Um sistema bidimensional de coordenadas é frequentemente definido por dois eixos. Em ângulos retos entre si, formam o denominado plano XY (ver figure_projected_crs à esquerda). O eixo horizontal é normalmente marcado com X, e o eixo vertical é normalmente assinalado com Y. Num sistema tridimensional de coordenadas, outro eixo, normalmente designado por Z, é adicionado. É também posicionado em ângulos retos em relação aos eixos X e Y. O eixo Z fornece a terceira dimensão do espaço (ver figure_projected_crs à direita). Cada ponto que é expresso em coordenadas esféricas pode ser expresso como uma coordenada X Y Z.
Um sistema de coordenadas projetadas no hemisfério sul (a sul do equador) normalmente tem a sua origem no equador numa Longitude específica. Isto significa que os valores de Y aumentam para Sul e os valores de X aumentam para Oeste. No hemisfério norte (a norte do equador) a origem é também o equador numa Longitude específica. Contudo, agora os valores de Y aumentam para Norte e os valores de X aumentam para Este. Na seção seguinte, descreveremos um sistema de coordenadas projetadas, chamado Universal Transverso de Mercator (UTM) muito usado para a África do Sul.
O sistema de coordenadas Universal Transverso de Mercator (UTM) tem a sua origem no equador numa Longitude específica. Os valores de Y aumentam para Sul e os valores de X aumentam para Oeste. O CRS UTM é uma projeção cartográfica global. Isto significa que é usado comummente em todo o mundo. Mas como já referido na seção ‘precisão de projeções cartográficas’ acima, quanto maior a área (por exemplo, África do Sul) mais distorção da conformidade angular, distância e área ocorre. Para evitar demasiada distorção, o mundo é dividido em 60 zonas iguais, ou fusos, que têm todas 6 graus de largura em longitude de Este para Oeste. As zonas UTM são numeradas de 1 a 60, começando na linha internacional de data (zona 1 aos 180 graus Oeste de longitude) e progredindo para Este de volta à linha internacional de data (zona 60 aos 180 graus Este de longitude) tal como ilustrado na figure_utm_zones.
Como pode ver nas figure_utm_zones e figure_utm_for_sa, a África do Sul é coberta por quatro zonas UTM para minimizar distorções. As zonas são chamadas UTM 33S, UTM 34S, UTM 35S e UTM 36S. O S após a zona significa que as zonas UTM estão localizadas a sul do equador.
Imagine, por exemplo, que queremos definir um sistema de coordenadas bidimensional dentro da Área de Interesse (ADI) marcada com uma cruz vermelha na figure_utm_for_sa. Pode ver que a área está localizada dentro da zona UTM 35S. Isto significa que, para minimizar a distorção e obter resultados de análise precisos, devemos usar a zona UTM 35S como o sistema de referência de coordenadas.
The position of a coordinate in UTM south of the equator must be indicated with the zone number (35) and with its northing (y) value and easting (x) value in meters. The northing value is the distance of the position from the equator in meters. The easting value is the distance from the central meridian (longitude) of the used UTM zone. For UTM zone 35S it is 27 degrees East as shown in figure_utm_for_sa. Furthermore, because we are south of the equator and negative values are not allowed in the UTM coordinate reference system, we have to add a so called false northing value of 10,000,000 m to the northing (y) value and a false easting value of 500,000 m to the easting (x) value. This sounds difficult, so, we will do an example that shows you how to find the correct UTM 35S coordinate for the Area of Interest.
The place we are looking for is 3,550,000 meters south of the equator, so the northing (y) value gets a negative sign and is -3,550,000 m. According to the UTM definitions we have to add a false northing value of 10,000,000 m. This means the northing (y) value of our coordinate is 6,450,000 m (-3,550,000 m + 10,000,000 m).
First we have to find the central meridian (longitude) for the UTM zone 35S. As we can see in figure_utm_for_sa it is 27 degrees East. The place we are looking for is 85,000 meters West from the central meridian. Just like the northing value, the easting (x) value gets a negative sign, giving a result of -85,000 m. According to the UTM definitions we have to add a false easting value of 500,000 m. This means the easting (x) value of our coordinate is 415,000 m (-85,000 m + 500,000 m). Finally, we have to add the zone number to the easting value to get the correct value.
Como resultado, a coordenada para o nosso Ponto de Interesse, projetado na zona UTM 35S seria escrito como: 35 415.000 m E / 6.450.000 m N. Em alguns SIG, quando a zona UTM 35S é definida com a correta e as unidades escolhidas são metros, as coordenadas podem aparecer como simplesmente 415.000 6.450.000.
Como pode provavelmente imaginar, pode surgir uma situação onde os dados que quer usar num SIG estão projetados num sistema de coordenadas diferente. Por exemplo, poderá ter um tema vetorial com os limites da África do Sul projetados em UTM 35S e outro tema vectorial de pontos com informação sobre precipitação fornecido no sistema de coordenadas geográficas WGS 84. Num SIG estes dois temas vetoriais são mostrados em duas áreas totalmente diferentes na janela do mapa, porque têm diferentes projeções.
Para resolver este problema, muitos SIGs incluem uma funcionalidade chamada projeção on-the-fly. Isso significa que você pode definir uma certa projeção quando você iniciar o SIG e todas as camadas que você carregar em seguida, não importa o sistema de referência de coordenadas que eles possua, será exibido automaticamente na projeção que você definiu. Esta funcionalidade permite sobrepor camadas dentro da janela do mapa do seu SIG, mesmo que elas possam estar em diferentes sistemas de referência.
O tópico projeções do mapa é muito complexo e até profissionais que estudaram geografia, geodésica ou outra ciência relacionada com SIG, muitas vezes têm problemas com a definição correta de projeções cartográficas e sistemas de referência de coordenadas. Geralmente quando se trabalha com SIG, já temos dados para começar a trabalhar. Na maioria das vezes, estes dados estarão projetados num determinado SRC, e não terá de criar o novo SRC nem mesmo de re-projetar os dados de um SRC para outro. Dito isto, é sempre útil ter uma noção do que significam projeção cartográfica e SRC.
Resumindo o que abordamos na lista seguinte:
Projeções do mapa representam a superfície da terra num pedação de papel, ou tela de computador, bidimensional.
Existem projeções cartográficas globais, mas a maioria das projeções são criadas e optimizadas para áreas menores da superfície da terra.
Projeções cartográficas nunca são representações totalmente precisas da terra esférica. Mostram distorções da conformidade angular, de distâncias e de áreas. É impossível preservar todas estas características ao mesmo tempo numa projeção cartográfica.
UM Sistema de referência de coordenadas (SRC) define, com a ajuda de coordenadas, como o mapa bidimensional projetado se relaciona com locais reais na terra.
Há dois tipos diferentes de sistemas de referência de coordenadas: Sistemas de Coordenadas Geográficas e Sistemas de Coordenadas Projetadas.
A projeção Em Voo livre é uma funcionalidade em SIG que nos permite sobrepor camadas, ainda que estejam projetadas em diferentes sistemas de referencia de coordenadas.
Aqui estão algumas idéias para tentar com seus alunos:
Inicie QGIS e carregue duas camadas da mesma área, mas com diferentes projeções e deixe que seus alunos encontrem as coordenadas de diferentes lugares nos duas camadas. Pode mostrar que não é possível sobrepor as duas camadas. Depois defina o sistema de referência de coordenadas como Geográficas/WGS 84, dentro do diálogo Propriedades do Projeto e habilite a caixa de seleção Habilitar transformação do SRC on the fly. Carregue as duas camadas da mesma área e deixe que seus alunos como trabalha a projeção on the fly.
Pode abrir o diálogo Propriedades do Projeto , em QGIS e mostrar aos seus alunos os diferentes Sistemas de Referência de Coordenadas, de forma de ter uma idéia da complexidade deste tópico. Com a transformação ‘on the fly’ habilitada, podem-se selecionar diferentes SRC para mostrar a mesma camada em diferentes projeções.
If you don’t have a computer available, you can show your pupils the principles of the three map projection families. Get a globe and paper and demonstrate how cylindrical, conical and planar projections work in general. With the help of a transparency sheet you can draw a two-dimensional coordinate reference system showing X axes and Y axes. Then, let your pupils define coordinates (x and y values) for different places.
Livros:
Páginas Web:
A Guia do Usuário QGIS também tem mais informação detalhada acerca de como trabalhar com projeções cartográficas em QGIS.
Na seção que segue vamos ver mais de perto a Produção do Mapa.