QGIS Training Manual

QGIS Project

2024 年 03 月 03 日
目次

第1章 コースの紹介

1.1 序文 ... 1
1.1.1 なぜQGIS? ... 1
1.1.2 背景 .. 2
1.1.3 ライセンス .. 2
1.1.4 協賛の節 ... 3
1.1.5 作者 .. 3
1.1.6 個人の貢献者 ... 4
1.1.7 スポンサー .. 4
1.1.8 ソースファイルと問題報告 4
1.1.9 最新バージョン ... 4

1.2 演習について ... 4
1.2.1 このチュートリアルの使い方 5
1.2.2 階段的なコース目標 5
1.2.3 データ .. 6

第2章 Module: 基本地図の作成と検証

2.1 Lesson: インタフェースの概要 7
2.1.1 Try Yourself: 基礎 7
2.1.2 Try Yourself 1 ... 10
2.1.3 Try Yourself 2 ... 10
2.1.4 What’s Next? ... 11

2.2 Lesson: 最初のレイヤを追加する 11
2.2.1 Follow Along: 地図を準備する 12
2.2.2 Try Yourself ... 15
2.2.3 Follow Along: GeoPackage データベースからベクタデータを読み込む 16
2.2.4 Follow Along: ブラウザでSpatialLite データベースからベクタデータを読み込む ... 17
2.2.5 Try Yourself さらにベクタデータを読み込む 19
2.2.6 Follow Along: レイヤの順序を入れ替える 19
2.2.7 In Conclusion ... 20
2.2.8 What’s Next? ... 21

2.3 Lesson: 地図キャンバスでの画面操作 21
2.3.1 Follow Along: 基本の画面操作ツール 21
2.3.2 In Conclusion ... 25

2.4 Lesson: シンボロジー .. 25
2.4.1 Follow Along: 色を変更する 26
2.4.2 Try Yourself ... 27
2.4.3 Follow Along: シンボル構造を変更する 28
2.4.4 Try Yourself ... 29
2.4.5 Follow Along: 構尺に基づく表示 30
第3章 Module: ベクタデータを分類する

3.1 Lesson: ベクタ属性データ
3.1.1 Follow Along: レイヤ属性を表示する
3.1.2 Try Yourself ベクタデータ属性を探索する
3.1.3 In Conclusion
3.1.4 What's Next?

3.2 Lesson: ラベル
3.2.1 Follow Along: ラベルを使用する
3.2.2 Follow Along: ラベルオプションを変更する
3.2.3 Follow Along: レイヤシンボロジの代わりにラベルを使用する
3.2.4 Try Yourself ラベルのカスタマイズ
3.2.5 Follow Along: ラインにラベルを付ける
3.2.6 Follow Along: データ定義による設定
3.2.7 Try Yourself データ定義による設定の使用
3.2.8 ラベル付けのさらなる可能性
3.2.9 In Conclusion
3.2.10 What's Next?

3.3 Lesson: 分類
3.3.1 Follow Along: 名義データを分類する
3.3.2 Try Yourself その他の分類
3.3.3 Follow Along: 比率分類
3.3.4 Try Yourself 分類の紛れ込み
3.3.5 Follow Along: 規則に基づく分類
3.3.6 In Conclusion
3.3.7 What's Next?

第4章 Module: 地図レイアウトする

4.1 Lesson: 印刷レイアウトを使用する
4.1.1 Follow Along: レイアウトマネージャ
4.1.2 Follow Along: 基本地図の構図
4.1.3 Follow Along: タイトルを追加する
4.1.4 Follow Along: 凡例の追加
4.1.5 Follow Along: 凡例アイテムをカスタマイズする
4.1.6 Follow Along: 地図を書き出す
4.1.7	In Conclusion	123
4.2	Lesson: ダイナミック印刷レイアウトを作成する	123
4.2.1	Follow Along: 動的マップキャンバスの作成	123
4.2.2	Follow Along: 動的ヘッダを作成する	124
4.2.3	Follow Along: 動的ヘッダのラベルを作成する	125
4.2.4	Follow Along: 動的ヘッダに画像を追加する	127
4.2.5	Follow Along: 動的ヘッダのスケールバーを作成する	128
4.2.6	What’s Next?	129
4.3	課題 1	129
4.3.1	In Conclusion	130

第 5 章 Module: ベクタデータを作成する

5.1	Lesson: 新しいベクタデータセットを作成する	131
5.1.1	Follow Along: レイヤ作成ダイアログ	131
5.1.2	Follow Along: データソース	135
5.1.3	Try Yourself ポリゴンをデジタイズする	147
5.1.4	Follow Along: 頂点編集テーブルを使う	149
5.1.5	Try Yourself 線をデジタイズする	152
5.1.6	In Conclusion	155
5.1.7	What’s Next?	156
5.2	Lesson: 地物のトポロジー	156
5.2.1	Follow Along: スナップ	156
5.2.2	Follow Along: トポロジー地物を修正	158
5.2.3	Follow Along: ツール: 地物の簡素化	160
5.2.4	Try Yourself ツール: リングの追加	162
5.2.5	Try Yourself ツール: 部分の追加	163
5.2.6	Follow Along: ツール: 地物の変形	165
5.2.7	Try Yourself ツール: 地物の分割	167
5.2.8	Try Yourself ツール: 地物のマージ	169
5.2.9	In Conclusion	169
5.2.10	What’s Next?	170
5.3	Lesson: フォーム	170
5.3.1	Follow Along: QGIS のフォームデザイン機能の使用	170
5.3.2	Try Yourself フォームを使用して値を編集する	171
5.3.3	Follow Along: フォームのフィールドタイプを設定する	172
5.3.4	Try Yourself	174
5.3.5	Try Yourself テストデータの作成	176
5.3.6	Follow Along: 新しいフォームの作成	177
5.3.7	Follow Along: レイヤをフォームに関連付ける	179
5.3.8	In Conclusion	180
5.3.9	Further Reading	180
5.3.10	What’s Next?	180
5.4	Lesson: アクション	180
5.4.1	Follow Along: 画像のためのフィールドの追加	181
5.4.2	Follow Along: アクションの作成	183
5.4.3	Follow Along: インターネットを検索する	188
5.4.4	Follow Along: QGIS で直接 Web ページを開く	191
5.4.5 In Conclusion .. 193
5.4.6 What's Next? .. 193

第6章 Module: ベクタ解析 195

6.1 Lesson: データを再投影および変換する 195
 6.1.1 Follow Along: 投影法 195
 6.1.2 Follow Along: オンザフライ 再投影 196
 6.1.3 Follow Along: 他の CRS に設定したデータセットの保存 197
 6.1.4 Follow Along: 独自の投影法の作成 200
 6.1.5 In Conclusion .. 202
 6.1.6 Further Reading .. 202
 6.1.7 What's Next? ... 202

6.2 Lesson: ベクタ分析 203
 6.2.1 GIS プロセス ... 203
 6.2.2 問題 .. 203
 6.2.3 データ ... 203
 6.2.4 Follow Along: プロジェクトを開始してデータを取得する 204
 6.2.5 Try Yourself レイヤー CRS の変換 206
 6.2.6 Follow Along: 問題の分析:学校と道路からの距離 208
 6.2.7 Try Yourself 学校からの距離 215
 6.2.8 Follow Along: 重複エリア 218
 6.2.9 Follow Along: 建物を抽出する 221
 6.2.10 Try Yourself さらに建物をフィルタ 222
 6.2.11 Follow Along: 正しいサイズの建物の選択 225
 6.2.12 Try Yourself .. 227
 6.2.13 In Conclusion 227
 6.2.14 What’s Next? .. 228

6.3 Lesson: ネットワーク分析 228
 6.3.1 Follow Along: ツールとデータ 228
 6.3.2 最短経路を計算する（2地点間） 229
 6.3.3 Try Yourself 最適経路 231
 6.3.4 Follow Along: 高度なオプション 233
 6.3.5 速度制限のある最短パス 235
 6.3.6 サービスエリア（レイヤから） 238
 6.3.7 In Conclusion 240
 6.3.8 What’s Next? 240

6.4 Lesson: 空間統計 240
 6.4.1 Follow Along: テストデータセットの作成 241
 6.4.2 Follow Along: 基本統計 245
 6.4.3 Follow Along: 点間の距離についての統計を計算 248
 6.4.4 Follow Along: 最近傍解析（レイヤ内） 249
 6.4.5 Follow Along: 平均座標 251
 6.4.6 Follow Along: 画像ヒストグラム 252
 6.4.7 Follow Along: 空間的補間 255
 6.4.8 Try Yourself 補間方法の違い 255
 6.4.9 In Conclusion 256
 6.4.10 What’s Next? 256
<table>
<thead>
<tr>
<th>第7章</th>
<th>Module: ラスタ</th>
<th>257</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Lesson: ラスタデータで作業する</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>7.1.1 Follow Along: ラスタデータを読み込む</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>7.1.2 Follow Along: 仮想ラスタの作成</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>7.1.3 ラスタデータの変換</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>7.1.4 In Conclusion</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>7.1.5 What's Next?</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>7.2 Lesson: ラスタのシンボロジを変更する</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>7.2.1 Try Yourself</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>7.2.2 Follow Along: ラスタレイヤのシンボロジを変更する</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>7.2.3 Follow Along: 単バンドグレー</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>7.2.4 Follow Along: 単バンド疑似カラー</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>7.2.5 Follow Along: 透過性を変える</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>7.2.6 In Conclusion</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>7.2.7 参照</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>7.2.8 What's Next?</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>7.3 Lesson: 地形解析</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>7.3.1 Follow Along: 陰影図を計算する</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>7.3.2 Follow Along: 陰影図をオーバーレイとして使用する</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>7.3.3 Follow Along: 最適な地域を見つける</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>7.3.4 Follow Along: 傾斜の計算</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>7.3.5 Try Yourself 傾斜方位を計算する</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>7.3.6 Follow Along: 北向きの傾斜方位を見つける</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>7.3.7 Try Yourself その他の条件</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>7.3.8 Follow Along: ラスタ解析結果を組み合わせる</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>7.3.9 Follow Along: ラスタを簡素化する</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>7.3.10 Follow Along: ラスタの再分類</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>7.3.11 Follow Along: ラスタを問い合わせる</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>7.3.12 In Conclusion</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>7.3.13 What's Next?</td>
<td>295</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>第8章</th>
<th>Module: 分析の完了</th>
<th>297</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Lesson: ラスタからベクタへの変換</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>8.1.1 Follow Along: ラスタからベクタツール</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>8.1.2 Try Yourself</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>8.1.3 Follow Along: <code>guilabel:</code> ベクタのラスタ化 ツール</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>8.1.4 In Conclusion</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>8.1.5 What's Next?</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>8.2 Lesson: 分析を組み合わせる</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>8.2.1 Try Yourself</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>8.2.2 Try Yourself 結果の検査</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>8.2.3 Try Yourself 解析結果の改良</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>8.2.4 In Conclusion</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>8.2.5 What's Next?</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>8.3 課題</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>8.4 Lesson: 補足実習</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>8.4.1 問題文</td>
<td>308</td>
<td></td>
</tr>
</tbody>
</table>
第9章 Module: プラグイン

9.1 Lesson: プラグインのインストールと管理

9.1.1 Follow Along: プラグインの管理 323
9.1.2 Follow Along: 新しいプラグインのインストール 324
9.1.3 Follow Along: 追加プラグインリポジトリの設定 325
9.1.4 In Conclusion .. 327
9.1.5 What's Next? .. 327

9.2 Lesson: 便利な QGIS プラグイン

9.2.1 Follow Along: QuickMapServices プラグイン 328
9.2.2 Follow Along: QuickOSM プラグイン 330
9.2.3 Follow Along: QuickOSM クエリエンジン 331
9.2.4 Follow Along: DataPlotly プラグイン 333
9.2.5 In Conclusion .. 337
9.2.6 What's Next? .. 337

第10章 Module: オンラインリソース

10.1 Lesson: Web Mapping Services 339

10.1.1 Follow Along: WMS レイヤを読み込む 339
10.1.2 Try Yourself ... 349
10.1.3 Try Yourself ... 351
10.1.4 Try Yourself ... 352
10.1.5 In Conclusion .. 353
10.1.6 Further Reading .. 353
10.1.7 What's Next? ... 353
10.2 Lesson: Web Feature Services ... 354
 10.2.1 Follow Along: WFS レイヤを読み込む ... 354
 10.2.2 Follow Along: WFS レイヤをクエリする ... 358
 10.2.3 In Conclusion ... 360
 10.2.4 What's Next? .. 361

第 11 章 Module: QGIS サーバー ... 363
 11.1 Lesson: QGIS Server をインストールする .. 363
 11.1.1 Follow Along: パッケージからインストールする .. 363
 11.1.2 Follow Along: QGIS サーバー実行可能ファイル ... 364
 11.1.3 HTTP サーバー構築 .. 364
 11.1.4 Follow Along: 別の仮想ホストを作成 .. 364
 11.1.5 In Conclusion ... 366
 11.1.6 What's Next? .. 366
 11.2 Lesson: WMS サーバーを運用する .. 366
 11.2.1 ログ出力 ... 368
 11.2.2 GetMap リクエスト .. 370
 11.2.3 Try Yourself 画像とレイヤーのパラメーターを変更する 371
 11.2.4 Follow Along: フィルタ、不透明度、スタイルのパラメータを使用する 372
 11.2.5 Follow Along: レッドラインを使う ... 373
 11.2.6 GetPrint リクエスト ... 375
 11.2.7 In Conclusion ... 377
 11.2.8 What's Next? .. 377

第 12 章 Module: GRASS .. 379
 12.1 Lesson: GRASS のセットアップ .. 379
 12.1.1 Follow Along: 新しいGRASS セッションを始める 379
 12.1.2 Follow Along: 新しいGRASS プロジェクトを始める 382
 12.1.3 Follow Along: GRASS にベクタデータを読み込む 389
 12.1.4 Follow Along: GRASS にラスタデータを読み込む 394
 12.1.5 Try Yourself マップセットにレイヤを追加する .. 396
 12.1.6 既存のGRASS マップセットを開く ... 396
 12.1.7 In Conclusion .. 399
 12.1.8 What's Next? .. 399
 12.2 Lesson: GRASS ツール ... 399
 12.2.1 Follow Along: 傾斜方位地図を作る ... 399
 12.2.2 Follow Along: ラスタレイヤの基本的な統計情報を取得する 401
 12.2.3 Follow Along: Reclass ツール ... 403
 12.2.4 Try Yourself 自分の規則で再分類する .. 406
 12.2.5 Follow Along: Mapcalc ツール ... 407
 12.2.6 In Conclusion .. 410

第 13 章 Module: 学習評価 .. 411
 13.1 基図を作る .. 411
 13.1.1 ポイントレイヤを追加する .. 411
 13.1.2 ラインレイヤを追加する ... 412
 13.1.3 ポリゴンレイヤを追加する .. 413
第 14 章 Module: 林業への応用

14.1 Lesson: 林業モジュールの紹介
14.1.1 林業のサンプルデータ

14.2 Lesson: 地図をジオリファレンスする
14.2.1 地図をスキャンする
14.2.2 Follow Along: スキャンした地図をジオリファレンスする
14.2.3 In Conclusion
14.2.4 What’s Next?

14.3 Lesson: 林分をデジタイズする
14.3.1 Follow Along: 林分境界を抽出する
14.3.2 Try Yourself 緑色画素の画像をジオリファレンス
14.3.3 Follow Along: デジタイズを助けるポイントを作る
14.3.4 Follow Along: 林分をデジタイズする
14.3.5 Try Yourself 林分のデジタイズを完了する
14.3.6 Follow Along: 林分データを結合する
14.3.7 Try Yourself 面積と周囲の長さを追加する
14.3.8 In Conclusion
14.3.9 What’s Next?

14.4 Lesson: 林分を更新する
14.4.1 古い林分を現在の航空写真と比較する
14.4.2 CIR 画像の解釈
14.4.3 Try Yourself CIR 画像から林分をデジタイズする
14.4.4 Follow Along: 保全情報を林分を更新する
14.4.5 Try Yourself 流域への距離を林分を更新する
14.4.6 In Conclusion
14.4.7 What’s Next?

14.5 Lesson: 体系的なサンプリングの設計
14.5.1 森林の目録を作成する
14.5.2 Follow Along: 体系的サンプリングプロット設計を実装する
14.5.3 Follow Along: GPX 形式としてサンプルプロットを書き出す
14.5.4 In Conclusion
14.5.5 What’s Next?

14.6 Lesson: 地図帳ツールで詳細な地図を作成する
14.6.1 Follow Along: 印刷レイアウトを準備する
14.6.2 Follow Along: 背景地図を追加する
14.6.3 Try Yourself レイヤのシンボロジを変更する
14.6.4 Try Yourself 基本地図テンプレートを作成する
14.6.5 Follow Along: 印刷レイアウトにさらに要素を追加する
14.6.6 Follow Along: 地図帳カバレッジを作成する
14.6.7 Follow Along: 地図帳ツールを設定する
14.6.8 Follow Along: カバレッジレイヤを編集する
15.2.8	SQL でキーを作成する	511
15.2.9	SQL でインデックスを作成する	512
15.2.10	SQL でテーブルを削除する	513
15.2.11	pgAdmin III について一言	513
15.2.12	In Conclusion	514
15.2.13	What’s Next?	514
15.3	Lesson: モデルにデータを追加する	514
15.3.1	insert 文	514
15.3.2	制約に従ってデータの追加を順序付けする	515
15.3.3	Try Yourself	515
15.3.4	データを選択	516
15.3.5	データを更新	516
15.3.6	データを削除	517
15.3.7	Try Yourself	517
15.3.8	In Conclusion	517
15.3.9	What’s Next?	517
15.4	Lesson: 検索	518
15.4.1	結果を並べ替える	518
15.4.2	フィルタリング	519
15.4.3	結合	520
15.4.4	副選択	521
15.4.5	クエリの集約	522
15.4.6	In Conclusion	523
15.4.7	What’s Next?	523
15.5	Lesson: ビュー	523
15.5.1	ビューの作成	524
15.5.2	ビューの変更	524
15.5.3	ビューの削除	525
15.5.4	In Conclusion	525
15.5.5	What’s Next?	525
15.6	Lesson: ルール	526
15.6.1	ログに記録するルールを作る	526
15.6.2	In Conclusion	526
15.6.3	What’s Next?	526

第 16 章 Module: 空間データベースの概念と PostGIS

16.1 Lesson: PostGIS の設定

16.1.1	Ubuntu でのインストール	527
16.1.2	Windows でのインストール	528
16.1.3	その他のプラットフォームでのインストール	528
16.1.4	PostGIS を使うためにデータベースを設定する	528
16.1.5	インストールされた PostGIS 関数を見る	529
16.1.6	空間参照系	530
16.1.7	In Conclusion	531
16.1.8	What’s Next?	531

16.2 Lesson: 単純地物モデル

| 16.2.1 | OGC とは | 532 |
第16章 ジオデータベース

16.2.2 SFS モデルとは .. 532
16.2.3 ジオメトリフィールドをテーブルに追加する 533
16.2.4 ジオメトリタイプに基づく制約を追加する 533
16.2.5 Try Yourself ... 533
16.2.6 geometry_columns テーブルの設定 533
16.2.7 SQL を使用してテーブルにジオメトリレコードを追加する 534
16.2.8 In Conclusion .. 537
16.2.9 What’s Next? .. 537

16.3 Lesson: インポートとエクスポート 538
16.3.1 shp2pgsql .. 538
16.3.2 psql2shp .. 538
16.3.3 ogr2ogr .. 539
16.3.4 DB Manager .. 539
16.3.5 In Conclusion .. 539
16.3.6 What’s Next? .. 539

16.4 Lesson: 空間検索 .. 539
16.4.1 空間演算子 .. 539
16.4.2 空間索引 .. 540
16.4.3 Try Yourself ... 541
16.4.4 PostGIS 空間関数デモ 541
16.4.5 In Conclusion .. 549
16.4.6 What’s Next? .. 549

16.5 Lesson: ジオメトリの構成 549
16.5.1 ラインストリングの作成 549
16.5.2 Try Yourself ... 549
16.5.3 ポリゴンの作成 .. 550
16.5.4 練習:Cities を People にリンクする 551
16.5.5 スキーマに着目する 552
16.5.6 Try Yourself ... 553
16.5.7 サブオブジェクトへのアクセス 553
16.5.8 データプロセッシング 553
16.5.9 クリッピング ... 554
16.5.10 ジオメトリを他のジオメトリから構築する 555
16.5.11 ジオメトリクリーニング 557
16.5.12 テーブル間の差 .. 557
16.5.13 表領域 .. 558
16.5.14 In Conclusion .. 558

第17章 QGIS プロセッシングガイド 559
17.1 はじめに .. 559
17.2 始める前の重要な警告 560
17.3 プロセッシングフレームワークの準備をする 561
17.4 最初のアルゴリズムを実行する・ツールボックス 564
17.5 さらなるアルゴリズムとデータタイプ 567
17.6 CRS・再投影 ... 575
17.7 選択 .. 579
17.8 外部のアルゴリズムを実行する 581
<table>
<thead>
<tr>
<th>17.9</th>
<th>プロセシングログ</th>
<th>...</th>
<th>587</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.9.1</td>
<td>上級編</td>
<td></td>
<td>588</td>
</tr>
<tr>
<td>17.10</td>
<td>ラスタ計算機。データなし値</td>
<td></td>
<td>589</td>
</tr>
<tr>
<td>17.11</td>
<td>ベクター計算機</td>
<td></td>
<td>593</td>
</tr>
<tr>
<td>17.12</td>
<td>範囲を定義する</td>
<td></td>
<td>598</td>
</tr>
<tr>
<td>17.13</td>
<td>HTML 出力</td>
<td></td>
<td>602</td>
</tr>
<tr>
<td>17.14</td>
<td>最初の分析例</td>
<td></td>
<td>605</td>
</tr>
<tr>
<td>17.15</td>
<td>ラスタレイヤをクリップしてマージする</td>
<td></td>
<td>613</td>
</tr>
<tr>
<td>17.16</td>
<td>水文解析</td>
<td></td>
<td>623</td>
</tr>
<tr>
<td>17.17</td>
<td>モデルデザイナーから始める</td>
<td></td>
<td>636</td>
</tr>
<tr>
<td>17.18</td>
<td>より複雑なモデル</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>17.19</td>
<td>モデラでの数値計算</td>
<td></td>
<td>656</td>
</tr>
<tr>
<td>17.20</td>
<td>モデル内のモデル</td>
<td></td>
<td>660</td>
</tr>
<tr>
<td>17.21</td>
<td>モデルを作成するためにモデル専用ツールを使用する</td>
<td></td>
<td>662</td>
</tr>
<tr>
<td>17.22</td>
<td>補問</td>
<td></td>
<td>667</td>
</tr>
<tr>
<td>17.23</td>
<td>補問（続）</td>
<td></td>
<td>676</td>
</tr>
<tr>
<td>17.24</td>
<td>アルゴリズムの反復実行</td>
<td></td>
<td>684</td>
</tr>
<tr>
<td>17.25</td>
<td>アルゴリズムの反復実行（続）</td>
<td></td>
<td>689</td>
</tr>
<tr>
<td>17.26</td>
<td>バッチ処理インタフェイス</td>
<td></td>
<td>691</td>
</tr>
<tr>
<td>17.27</td>
<td>バッチプロセシング インタフェースのモデル</td>
<td></td>
<td>695</td>
</tr>
<tr>
<td>17.28</td>
<td>実行前後のスクリプトのフック</td>
<td></td>
<td>696</td>
</tr>
<tr>
<td>17.29</td>
<td>その他のプログラム</td>
<td></td>
<td>697</td>
</tr>
<tr>
<td></td>
<td>17.29.1 GRASS</td>
<td></td>
<td>698</td>
</tr>
<tr>
<td></td>
<td>17.29.2 R</td>
<td></td>
<td>698</td>
</tr>
<tr>
<td></td>
<td>17.29.3 他</td>
<td></td>
<td>698</td>
</tr>
<tr>
<td></td>
<td>17.29.4 バックエンドの間での比較</td>
<td></td>
<td>698</td>
</tr>
<tr>
<td>17.30</td>
<td>補問と等高線作成</td>
<td></td>
<td>699</td>
</tr>
<tr>
<td></td>
<td>17.30.1 補問</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>17.30.2 等高線</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>17.31</td>
<td>ベクターの単純化と平滑化</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>17.32</td>
<td>太陽光発電所を計画する</td>
<td></td>
<td>701</td>
</tr>
<tr>
<td>17.33</td>
<td>プロセシングで R スクリプトを使用する</td>
<td></td>
<td>702</td>
</tr>
<tr>
<td></td>
<td>17.33.1 スクリプトを追加する</td>
<td></td>
<td>702</td>
</tr>
<tr>
<td></td>
<td>17.33.2 プロットを作成する</td>
<td></td>
<td>703</td>
</tr>
<tr>
<td></td>
<td>17.33.3 ベクターを作成する</td>
<td></td>
<td>707</td>
</tr>
<tr>
<td></td>
<td>17.33.4 R からのテキスト・グラフ出力 - 文法</td>
<td></td>
<td>710</td>
</tr>
<tr>
<td>17.34</td>
<td>地滑りを予測する</td>
<td></td>
<td>710</td>
</tr>
</tbody>
</table>

第 18 章 Module: QGIS で空間データベースを使用する 713

18.1 Lesson: QGIS プラウザにおいてデータベースで作業する 713
 18.1.1 Follow Along: プラウザを使用して QGIS にデータベーステーブルを追加する 713
 18.1.2 Follow Along: レコードのフィルタセットをレイヤーとして追加する 715
 18.1.3 In Conclusion 717
 18.1.4 What’s Next? 717

18.2 Lesson: DB マネージャを使用して QGIS で空間データベースと連携する 717
 18.2.1 Follow Along: DB マネージャで PostGIS データベースを管理する 717
 18.2.2 Follow Along: 新しいテーブルを作成する 724
第1章 コースの紹介

1.1 序文

ようこそ当講座へ! QGIS の簡単で効率的な使い方をお伝えしていきます。GIS が初めての方には、使い始めるために必要なことをお伝えします。経験者の方には、QGIS が GIS プログラムに期待されるすべての機能、そしてそれ以上のものをどのように満たしているかをご覧いただきます。

1.1.1 なぜ QGIS ？

情報がますます空間的に認識されるようになり、一般的に使用される GIS 機能の一部または全部を実現するツールには事欠かなくなっています。なぜ、他の GIS ソフトウェアパッケージではなく、QGIS を使用する必要があるのでしょうか？

ここでは、その理由の一部をご紹介します:

・ランチのように無料です。 QGIS のインストールと使用には、全く費用がかかりません。初期費用も、月額費用もまったくありません。

・解放されたように自由です。 QGIS に追加機能が必要な場合、次のリリースに含まれることを期待するだけでなく、それ以上のことができます。機能の開発を支援することもできますし、プログラミングに慣れていれば自分で追加することもできます。

・常に開発が進められています。 誰でも新しい機能を追加したり、既存の機能を改良することができるので、QGIS は決して停滞することがありません。新しいツールの開発は、必要な限り迅速に行うことができます。

・豊富なヘルプとドキュメントがあります。 何か困ったことがあれば、豊富なドキュメント、先輩の QGIS ユーザー、あるいは開発者にも頼ることができます。

・クロスプラットフォームです。 QGIS は、macOS、Windows そして Linux にインストールできます。 QGIS を使いたくなる理由がわかったところで、これらの演習で使い方がわかるようになります。
1.1.2 背景

2008年に私たちは やさしいGIS入門、専門用語や新しい用語に煩わされることなく GISについて学びたい人のための完全にフリーのオープンソースのマニュアルを立ち上げました。南アフリカ政府が援助したこの教材は驚異的な成功を収め、世界中の人々がこの教材を使って大学の訓練コースを運営したり、GISを自習しているか、など、お便りをいただいています。『やさしい入門』はソフトウェアのチュートリアルではなく、GISについて学ぶ人のための一般的な教科書を目指しています（すべての例で QGIS を使用してはいがん）。QGISアドバンストの詳細な機能の概要を提供する QGIS マニュアルもあります。しかしこれはチュートリアルとしてというよりは、リファレンスガイドとして構成されています。私たちは Linfinity Consulting CC. で頻繁に訓練コースを実行しており、QGIS の重要な側面をトレーナー・訓練生形式で順次学習していくという、第三の材料が必要であることに気づき、それがこの作品を作るきっかけになりました。

このトレーンングマニュアルは、 QGIS、PostgreSQL、PostGISに関する5日間のコースを実施するために必要なすべての資料を提供することを目的としています。このコースは、初心者から中級者、上級者のすべてに適した内容で構成されており、テキスト全体に注釈付きの解答を含む多くの演習が用意されています。

1.1.3 ライセンス

Linfinity Consulting CC. による無料のQuantum GISトレーニングマニュアルは、 Linfinity による以前のバージョンに基づいており、Creative Commons Attribution 4.0 International の下でライセンスされています。このライセンスの範囲を超える許可は、下記で入手できるかもしれません。

私たちはこのQGISトレーニングマニュアルを自由なライセンスで公開しており、あなたはこの作品を自由にコピーしたり、修正したり、再配布したりすることができます。ライセンスの完全なコピーが、この文書の末尾にあります。簡単に出ると、使用ガイドラインは以下の通りです。

- この作品を、あなたの自身の作品として表現したり、この作品から著作者を表すテキストやクレジットを削除したりすることはできません。
- この作品を、提供されたときより制限された許諾条件で再頒布することはできません。
- あなたがこの作品に実質的な部分（少なくとも1つの完全なモジュール）を追加し、プロジェクトに反映することで貢献した場合、このドキュメントの著者リストの最後にあなたの名前を加えることができます（トップページに表示されます）。マイナーチェンジや校正によって貢献した場合は、下記の貢献者リストに、あなたを追加することができます。
- このドキュメントを全体的に翻訳した場合は、著者リストに「Translated by Joe Bloggs」という形で名前を追加することができます。
- モジュールまたはレッスンを資金提供された方は、提供したレッスンの先頭に謝辞を設くように要求することができます。例：
注解: このレッスンはMegaCorpが提供しました。

- このライセンスの下で何をしてよいのかがはっきりわからないという方は、office@linfiniti.comを通じて私たちに連絡してください。そうすれば、私たちはあなたがするつもりであることが許容されるかどうかについて助言いたします。

- この作品をhttps://www.lulu.comなどのセルフパブリッシングサイトで公開する場合、その利益をQGISプロジェクトに寄付していただくようお願いしています。

- 作者の表現された許可があるときを除いて、この作品を商業化してはいけません。明確には、商業化とは、営利目的で販売したり、商業的な二次的著作物を作成したりしてならないことを意味します（例えば、雑誌の記事として使うためにコンテンツを販売するなど）。ただし、すべての利益をQGISプロジェクトに寄付する場合は例外です。トレーニングコース自体が営利目的であっても、コースを実施するときに、教科書としてこの作品を使用できます（そして我々はそうすることをお勧めします）。言い換えれば、教科書としてこの作品を使ったトレーニングコースを実施して利益を得ることとは歓迎されますが、この本自体の販売で利益を得ることはできません - このようなすべての利益はQGISに還元されなければなりません。

1.1.4 協賛の節

この作品は、QGISでできるすべてのことを網羅したものでは決してなく、他の方が新しい資料を追加してギャップを埋めることをお勧めします。Linfiniti Consulting CCは、商業サービスとして追加資料を作成することも可能です。ただし、このような作品はすべてコアコンテンツの一部となり、同じライセンスのもとで公開しなければなりません。

1.1.5 作者

- Rüdiger Thiede - RudiはQGISの指導的な教材とPostGISの教材の一部を執筆しました。

- Tim Sutton (tim@kartoza.com) - Timはこのプロジェクトの監督と指導を行い、PostgreSQLとPostGISの部分を共同執筆しました。また、本マニュアルで使用しているカスタムsphinxテーマもTimが作成したものです。

- Horst Düster (horst.duester@kappasyss.ch) - Horstは、PostgreSQLとPostGISの部分を共同執筆

- Marcelle Sutton - Marcelleは、本作品の制作にあたり、校訂と編集のアドバイスを行いました。
1.1.6 個人的貢献者
あなたの名前をここに！

1.1.7 スポンサー
・ 東京大学

1.1.8 ソースファイルと問題報告

この文書のソースは GitHub の QGIS 文書リポジトリ で提供されています。Git のバージョン管理システムを使用する方法については、GitHub.com を参照。

私たちの努力にもかかわらず、このトレーニングの中で間違いを見つけたり情報を見逃したりしている可能性があります。それらは https://github.com/qgis/QGIS-Documentation/issues でご報告ください。

1.1.9 最新バージョン

このドキュメントの最新版は、QGIS ドキュメントウェブサイト（https://docs.qgis.org）の一部であるオンライン版にアクセスすれば、いつでも入手することができます。

注釈：ドキュメントウェブサイトには、トレーニングマニュアルやその他の QGIS ドキュメントのオンライン版と PDF 版の両方へのリンクがあります。

1.2 演習について

QGIS を使いたい理由がわかったところで、使い方を紹介します。

警告：このコースには GIS データセットを追加、削除、変更する指示があります。このためにトレーニングデータセットを用意しています。ここで説明する手法を自分のデータで使用する前に、常に適切なバックアップがあることを確認してください。
1.2.1 このチュートリアルの使い方

このように見えるテキストは、QGISのユーザーインターフェースで見ることができるものを指します。looks like thisと書かれたテキストは、メニューの案内をします。
この種のテキストは、コマンドのような入力できるものを指します。
This kind of text はパスまたはファイル名を指します。
This+That は 2 つのボタンからなるキーボードショートカットを指します。

1.2.2 段階的なコース目標

このコースは、さまざまなユーザの経験レベルに対応しています。自分がどのカテゴリーに属していると考えるかによって、コースの結果は異なります。各カテゴリーには次のカテゴリーに不可欠な情報が含まれているため、経験レベル以下のすべての演習を行うことが重要です。

基礎

このカテゴリーのコースでは、GISの理論的な知識やGISソフトウェアの操作に関する経験がほとんどないか、まったくないことを前提としています。
プログラムで実行するアクションの目的を説明するために、限られた理論的背景が提供されますが、重点は実行による学習にあります。
コースを完了すると、GIS の可能性をより良く把握し、QGISを通じてそれらの力を利用する方法がわかります。

中級

このカテゴリーでは、GIS ソフトウェアの日常的な使用に関する実用的な知識と経験があることを前提としています。
初心者レベルの手順に基づいて構築すると、慣れ親しんだ基礎が得られるだけでなく、QGIS が慣れている他のソフトウェアとは少し異なる動作をするケースを認識することができます。また、QGIS で分析機能を使用する方法も学習します。
コースを完了すると、日常の使用に通常必要なすべての機能に QGIS を使用できるようになります。

1.2. 演習について
このカテゴリーでは、GIS ソフトウェアの経験、空間データベースの知識と経験、リモートサーバ上のデータの使用、おそらく分析目的のスクリプトの記述、などを前提としています。

他の 2 つのレベルの指示に基づいて、QGIS インターフェイスが従うアプローチに慣れ、必要な基本機能にアクセスする方法を確実に理解できます。また、QGIS プラグインシステム、データベースアクセスなどを利用する方法も示されます。

コースを完了すれば、QGIS の日常的な操作とより高度な機能について十分に理解しているでしょう。

1.2.3 データ

このリソースに付属するサンプルデータは無料で入手でき、以下のリソースから入手することができます。

- OpenStreetMap の Streets and Places データセット (https://www.openstreetmap.org/)
- NGI (http://www.ngi.gov.za/) から 数地境界（都市部、農村部）、水域
- CGIAR-CGI による SRTM DEM (http://srtm.csi.cgiar.org/)

準備済のデータセットを トレーニングデータリポジトリ からダウンロードし、ファイルを展開してください。必要なデータはすべて exercise_data フォルダにあります。

もしあなたが講師で、より関連性の高いデータを使用したい場合は、付録の 練習データを準備する にローカルデータを作成する手順が記載されています。
第2章 Module: 基本地図の作成と探検

このモジュールでは、QGIS の機能性のさらなるデモンストレーションに基づいて、後で使用される基本的な地図を作成します。

2.1 Lesson: インタフェースの概要

QGIS のユーザーインターフェースを探って、インタフェースの基本的な構造を形成するメニューとツールバー、マップキャンパス、レイヤリストに慣れましょう。

このレッスンの目標: QGIS のユーザーインターフェースの基礎を理解すること。

2.1.1 Try Yourself: 基礎

上の図で確認できる要素は以下の通りです。

1. レイヤリスト/ブラウザパネル
2. ツールバー
3. マップキャンパス
4. ステータスバー
5. サイドツールバー
6. ロケータバー

レイヤリスト

レイヤリストでは、いつでも、利用可能なすべてのレイヤのリストを見ることができます。
（横にある矢印やプラス記号をクリックして）折りたたまれた項目を展開すると、そのレイヤの現在の外観についての追加情報が表示されます。
レイヤにカーソルを合わせると、レイヤ名、ジオメトリの種類、座標参照系、デバイス上の位置の完全なパスなどの基本情報が表示されます。
レイヤを右クリックすると、たくさんの追加オプションがあるメニューが表示されます。これらのオプションは、すぐにでも使用することになるので、一読しておくましょう。

注釈: ベクタレイヤは、道路、樹木のような一般的に特定の種類のオブジェクトのデータの集合体です。ベクタレイヤはポイント、ライン、ポリゴンのいずれかで構成されます。

ブラウザパネル

QGIS ブラウザは、データベースの中を簡単にナビゲートできる QGIS のパネルです。一般的なベクタファイル (ESRI シェーブファイルや MapInfo ファイルなど)、データベース (PostGIS、Oracle、Spatialite、GeoPackage や MS SQL Server など)、WMS/WFS 接続にアクセスすることができます。また、GRASS データの閲覧も可能です。

プロジェクトを保存している場合、ブラウザパネルでは、プロジェクトホーム項目の下にあるプロジェクトファイルと同じパネルに保存されているすべてのレイヤに素早くアクセスすることができます。
さらに、1つ以上のフォルダをお気に入りとして設定することができます。パスの下を検索し、フォルダが見つかったら、その上で右クリックし、お気に入りとして追加をクリックします。すると、お気に入りの項目にそのフォルダが表示されるはずです。

Tip: お気に入り項目に追加されたフォルダがとても長い名前を持っていることがあります：心配しないでください。パスの上で右クリックしてお気に入りの名前を変更...を選択して別の名前を設定してください。
ツールバー

最もよく使うツールのセットをツールバーにして、基本的なアクセスを可能にすることができます。例えば、プロジェクトツールバーでは、保存、読み込み、印刷、新しいプロジェクトの開始ができます。メニューのビューツールバーから、必要に応じてツールバーを追加・削除し、よく使うツールだけを表示するようにインターフェイスを簡単にカスタマイズすることができます。

ツールバーに表示されていない場合でも、すべてのツールはメニューからアクセス可能なままだです。例えば、プロジェクトツールバー（保存ボタンを含む）を削除しても、プロジェクトメニューをクリックし、保存をクリックすれば、マップを保存できます。

マップキャンバス

ここは、地図全体が表示され、レイヤがロードされる場所です。マップキャンバスでは、表示されているレイヤを操作できます。ズームイン/ズームアウト、地図移動、地物の選択、および次のセクションで詳しく説明する他の多くの操作を行うことができます。

ステータスバー

現在の地図に関する情報を表示します。また、地図の縮尺や地図の回転を調整したり、地図上のマウスカー ソルの座標を確認することができます。

サイドツールバー

デフォルトでは、サイドツールバーには、レイヤを読み込むためのボタンと、新しいレイヤを作成するためのすべてのボタンが含まれています。しかし、すべてのツールバーはどこでもあなたにとって快適な場所に移動させることができるでしょう。

ロケータバー

このバーから QGIS のほぼ全てのオブジェクトにアクセスすることができます：レイヤ、レイヤ機能、アルゴリズム、空間ブックマークなどです。QGIS ユーザマニュアルの locator_options セクションで全ての異なるオプションを確認することができます。

Tip: ショートカットキー Ctrl+K で、簡単にバーにアクセスできます。

2.1. Lesson: インタフェースの概要
2.1.2 Try Yourself 1

上の図を参照することなく、あなたの画面で上記の4つの要素を識別するようにしてください。それらの名前と機能を特定できるかどうか見てください。数日中にそれらを使用するにつれて、これらの要素に慣れてくるでしょう。

答え

インターフェイスのレイアウトを示す画像を参照し、画面要素の名前と機能を覚えているかどうか確認してください。

2.1.3 Try Yourself 2

画面上でこれらの各ツールを探してみてください。それらの目的は何ですか？

1.
2.
3.
4. レンダ
5.

注釈：これらのツールのいずれかが画面に表示されていない場合は、現在隠されているいくつかのツールバーを有効にしてみてください。また、画面上に十分なスペースがない場合は、ツールバーがそのツールの一部を隠すことで短縮されることがあることに注意してください。そのように折りたたまれたツールバーでは右矢印ボタンをダブルクリックすると非表示のツールを表示できます。ツールの上でしばらくの間マウスを保持すると、何らかのツールの名前のツールチップを表示できます。

答え

1. 名前をつけて保存
2. レイヤの領域にズーム
3. 地物選択を反転
4. レンダリング on/off
5. 線の長さを測る
2.1.4 What's Next?

QGIS インターフェースの基本を理解したところで、次のレッスンでは、いくつかの一般的なデータ型を読み込む方法を紹介します。

2.2 Lesson: 最初のレイヤを追加する

アプリケーションを起動し、その例と演習で使用する基本的な地図を作成します。

このレッスンの目標: 例の地図で始める

注釈: この練習を始める前にあなたのコンピュータに QGIS をインストールする必要があります。また、使用する sample data をダウンロードしておいてください。

デスクトップのショートカット、メニュー、アイテムなどから QGIS を起動します。この設定はインストール時の設定に依存します。

注釈: このコースのスクリーンショットは、Linux 上で動作する QGIS 3.4 で撮影されています。あなたのセットアップによっては、表示される画面が多少異なるかもしれません。しかし、どの OS でも同じボタンが使用可能で、指示も機能します。このコースを利用するには、QGIS 3.4（執筆時点の最新版）が必要です。

すぐはじめましょう！
2.2.1 Follow Along: 地図を準備する

1. QGIS を開き、新しい白紙の地図ができます。

2. データソースマネージャダイアログでは、データ型に応じて読み込むデータを選択することができます。ここではデータセットを読み込むために使います。データソースマネージャを開くボタンをクリックします。

アイコンが見つからないときは、ビューツールバー メニューで データソースマネージャツールバーが有効にされていることを確認してください。
3. protected_areas.shp ベクタデータセットを読み込みます:

1. ベクタタブをクリックします。
2. ファイルソースタイプを有効にします。
3. ベクタデータセットの隣にある...ボタンを押します。
4. 訓練ディレクトリにあるexercise_data/shapefile/protected_areas.shpファイルを選択します。
5. 開くをクリックします。元のダイアログにファイルパスが入力されています。
6. ここでも追加をクリックします。指定したデータが読み込まれます。レイヤパネル（左下）にprotected_areasアイテムが表示され、その地物がメインマップキャンバスに表示されているのが確認できます。
おめでとうございます！これで基本的な地図ができました。作業を保存するにはよいタイミングでしょう。

1. 名前を付けて保存 ボタンをクリックしてください。
2. 地図を exercise_data の隣にある solution フォルダの下に basic_map.qgz という名前で保存します。

2.2.2 Try Yourself

上記のステップを繰り返し、同じフォルダ(exercise_data/shapefile)から places.shp と rivers.shp レイヤを地図に追加してください。

答え

ダイアログのメインエリアに色の異なるたくさんのシェープが表示されているはずです。それぞれのシェープは、左側のパネルに表示されている色で識別できるレイヤに属しています（あなたのものは下の図2.1 の色とは異なるかもしれません）。
2.2.3 Follow Along: GeoPackage データベースからベクタデータを読み込む

データベースを使用すると、大量の関連データを1つのファイルに保存することができます。Libreoffice Base や MS Access などのデータベース管理システム (DBMS) にはすでに馴染みがあるかもしれませんが、GIS アプリケーションのデータベースを利用することができます。GIS に特化した DBMS (PostGIS など) は、空間データを扱う必要があるため、特別な機能を備えています。

GeoPackage オープンフォーマットは、GIS データ（レイヤ）を1つのファイルに格納するためのコンテナです。ESRI シェープファイルフォーマット（例 先ほど読み込んだ protected_areas.shp データセット）とは異なり、1つの GeoPackage ファイルには異なる座標参照系の様々なデータ（ベクタおよびラスタデータ）および空間情報のないテーブルを格納できます。これらの機能により、データを簡単に共有し、ファイルの重複を回避することができます。

GeoPackage からレイヤを読み込むには、まず、そのレイヤへの接続を作成する必要があります。

1. データソースマネージャを聞くボタンをクリックします。
2. 左側で GeoPackage タブをクリックします。
3. 新規ボタンをクリックし、前にダウンロードした exercise_data フォルダにある training_data.gpkg ファイルをブラウズします。
4. ファイルを選択し、Open を押してください。ファイルパスが Geopackage 接続リストに追加され、ドロップダウンメニューに表示されます。

これで、この GeoPackage から任意のレイヤを QGIS に追加する準備が整いました。

1. 接続ボタンをクリックします。ウィンドウの中央部分に、GeoPackage ファイルに含まれるすべてのレイヤのリストが表示されます。
2. roads レイヤを選択し、追加ボタンをクリックします。

![Data Source Manager | GeoPackage](image)

レイヤパネルに roads レイヤが追加され、マップキャンバスに地物が表示されます。

3. 閉じるをクリックします。

おめでとうございます。GeoPackage から最初のレイヤを読み込みました。

2.2.4 Follow Along: ブラウザで SpatiaLite データベースからベクタデータを読み込む

QGIS は他にも多くのデータベースフォーマットへのアクセスを提供しています。GeoPackage と同様に、SpatiaLite データベースフォーマットは SQLite ライブラリの拡張機能です。そして、SpatiaLite プロバイダからレイヤを追加することは、上記と同じルールに従います：接続を作成 --> 有効化 --> レイヤを追加。

これは SpatiaLite データをマップに追加する 1 つの方法ですが、データを追加するもう 1 つの強力な方法であるブラウザを調べてみましょう。

1. 🎨アイコンをクリックし、データソースマネージャウィンドウを開きます。

2. 🎨ブラウザタブをクリックします。

3. このタブには、コンピュータに接続されているすべてのストレージディスクと、左側のほとんどのタブのエントリが表示されます。これらにより、接続されているデータベースやフォルダに素早くアクセスすることができます。
例えば、GeoPackage エントリの横にあるドロップダウンのアイコンをクリックします。以前接続した training-data.gpkg ファイルが表示されます（展開されている場合はそのレイヤも表示されます）。

4. SpatiaLite エントリを右クリックし、新規接続... を選択します。

5. exercise_data フォルダに移動し、landuse.sqlite ファイルを選択し、開くをクリックします。SpatiaLite の下に landuse.sqlite というエントリが追加されていることに注意してください。

6. landuse.sqlite のエントリを展開します。

7. landuse レイヤをダブルクリックするか、選択してからマップキャンパスにドラッグ＆ドロップしてください。新しいレイヤがレイヤパネルに追加され、その地物がマップキャンパスに表示されます。

Tip: ビュー パネルでブラウザ パネルを有効にして、データを追加するのに使用します。データソースマネージャ ブラウザ タブは同じ機能を備えた便利なショートカットです。

注釈: プロジェクトを頻繁に保存することを忘れないでください。プロジェクトファイルにはデータ自体は含まれていませんが、どのレイヤを地図に読み込んだかは記憶されています。
2.2.5 Try Yourself さらにベクタデータを読み込む

上で説明した方法のどれかを使い、exercise_data フォルダから次のデータセットを地図に読み込んでください：

- buildings
- water

答え

あなたの地図には七つのレイヤがある答です。

- protected_areas
- places
- rivers
- roads
- landuse
- buildings (training_data.gpkg から取得)
- water (exercise_data/shapefile から取得)

2.2.6 Follow Along: レイヤの順序を入れ替える

レイヤリストにあるレイヤは、特定の順序で地図上に描かれます。リストの一番下にあるレイヤが最初に描かれ、そして一番上のレイヤは最後に描かれます。リストに表示される順を変更することで、それらが描かれる順序を変更できます。

注釈: レイヤ順序 パネルの下にある描画順序の制御 チェックボックスを使用して、この動作を変更することができます。しかし、この機能についてはまだ説明していません。

レイヤが地図にロードされた順序は、おそらくこの段階では論理的ではありません。他のレイヤがその上にあることで道路レイヤが完全に隠れている可能性があります。

たとえば、このレイヤ順では・・・
ビルや道路は、地名が含まれるポリゴンの下を通っているため、隠れてしまいます。

問題を解決するために:

1. レイヤリスト中でレイヤをクリックしてドラッグします。

2. こう見えるようにそれらの順番を入れ替えます:

地図は現在、土地利用領域の上に表示される道路や建物で、視覚的に便利にかかっていることがわかります。

2.2.7 In Conclusion

これで、いくつかの異なるソースから必要なレイヤをすべて追加し、基本的な地図を作成することができました！
2.2.8 What's Next?
データソースマネージャを開くボタンの基本的な機能は理解できたと思いますが、他の機能についてはどうでしょう？このインターフェイスはどのように機能するのでしょうか？先に進む前に、QGISのインターフェイスの基本的な操作について見てみましょう。これは次のレッスンのトピックです。

2.3 Lesson: 地図キャンパスでの画面操作
このセクションでは、マップキャンパス内の操作に使用される基本的なQGISナビゲーションツールに焦点を当てます。これらのツールは、異なる縮尺でレイヤを視覚的に探索することを可能にします。
このレッスンの目標：QGIS内のパンとズームツールの使用方法を学び、地図の縮尺について学ぶ。

2.3.1 Follow Along: 基本の画面操作ツール
マップキャンパスの操作方法を学ぶ前に、このチュートリアルで探索することができるいくつかのレイヤを追加してみましょう。
1. 新しい空白のプロジェクトを開き、地図を準備するで学んだ手順で、以前見たprotected_areas、roads、buildingsレイヤをプロジェクトに読み込みます。結果は図2.2のような表示になるはずです（色は関係ありません）:

2.3. Lesson: 地図キャンパスでの画面操作
まず、ツールの使い方を学びましょう。

1. ナビゲーションツールバーで、地図を移動ボタンが有効になっていることを確認します。
2. マウスをマップキャンバスの中央に移動させます。
3. 左クリックしたまま、マウスを任意の方向にドラッグすると、地図がパンされます。

次に、拡大して、インポートしたレイヤを詳しく見てみましょう。

1. ナビゲーションツールバーで、拡大ボタンをクリックします。
2. 建物や道路が密集している左上付近までマウスを移動します。
3. 左クリックしたままにしておきます。
4. マウスをドラッグすると、矩形が作成され、建物や道路の密集したエリアをカバーします（図 2.3）。

図 2.3: 拡大

5. 左クリックを離します。これで、矩形で選択した領域が含まれるように拡大されます。
6. 縮小するには、拡大ボタンを選択し、拡大したときと同じ操作を実行します。

Pan、拡大または縮小すると、QGIS はこれらのビュー履歴に保存します。これにより、前のビューに戻ることができます。

1. ナビゲーションツールバーで、前の領域へズームボタンをクリックすると、前のビューに移動します。

2. 次の表示領域にズームボタンをクリックすると、履歴を先に辿ることができます。

データを探索した後、すべてのレイヤーの範囲にビューをリセットする必要がある場合があります。縮小ツールを何度も使用する代わりに、QGIS はそのアクションを行うためのボタンを提供しています。

1. 全域表示ボタンをクリックします。

拡大および縮小すると、ステータスバーの縮尺値が変化することに注意してください。縮尺値は、地図の縮尺を表します。一般に、の右側の数字は、マップキャンバスに表示されている対象物が、実世界の実際の対象物よりも何倍小さいかを表します。
このフィールドを使用して、地図の縮尺を手動で設定することもできます。

1. ステータスバーの縮尺テキストフィールドをクリックします。

2. 50000 を入力し、Enter キーを押します。これにより、マップキャンパスの地物が、入力された縮尺を反映して再描画されます。

3. または、縮尺フィールドのオプション矢印をクリックすると、事前に設定された地図の縮尺が表示されます。

4. 1:5000 を選択します。これにより、マップキャンパスの地図の縮尺も更新されます。

これでも、マップキャンパスを操作するための基本的な方法がわかりました。マップキャンパスを操作する別の方法については、ユーザーマニュアルのズームとパンを参照してください。

2.3.2 In Conclusion

マップキャンパスの操作方法を理解することは、レイヤの探求と視覚的な検査を可能にするために重要です。これは、最初のデータ調査や、空間解析のアウトプットを検証するために行うことができます。

2.4 Lesson: シンボロジ

レイヤのシンボロジとは、地図上におけるその外観です。空間的な側面を持つデータを表現する他の方法に勝る GIS の基本的な強みは、GIS を使用すると、作業データの動的な視覚表現ができることです。

したがって、個々のレイヤのシンボロジに依存する地図の外観は非常に重要です。作成した地図のエンドユーザーや地図が何を表現するかが簡単にわかるようにする必要があります。同一に重要なこととして、データはそれで作業しながら探索できる必要があり、優れたシンボロジは大きな助けになります。

つまり、適切なシンボロジを持つことは、高級でもなくまたは単に素晴らしいことではありません。実際には、適切に GIS を使用して、地図や、人間が使用できる情報を生成するためにそれが不可欠です。
このレッスンの目標：ベクタレイヤに対して、望むとおりのシンボロジを作成できるようになる

2.4.1 Follow Along: 色を変更する

レイヤのシンボロジを変更するには、そのレイヤのレイヤのプロパティを表示します。landuseレイヤの色を変更するのを始めましょう。

1. レイヤリストからlanduseレイヤを右クリックします。
2. 表示されたメニューの中からプロパティ...メニュー項目を選択します。

注釈：デフォルトでは、レイヤリストでリスト上でダブルクリックすることで、レイヤのプロパティにアクセスできます。

Tip: レイヤパネルの上部にあるボタンをクリックすると、レイヤスタイリングパネルが表示されます。このパネルを使って、レイヤのいくつかのプロパティを変更することができます。デフォルトでは、変更はすぐに適用されます！

3. レイヤプロパティウィンドウで、シンボロジタブを選択します。
4. 色ラベルの横にあるカラー選択ボタンをクリックします。標準的なカラーダイアログが表示されます。

5. グレーを選択して、OKをクリックします。

6. レイヤプロパティウィンドウで再度OKをクリックし、色の変更がレイヤーに適用されたことを確認するでしょう。

2.4.2 Try Yourself

water レイヤの色を水色に変更しないでください。レイヤプロパティメニューではなく、レイヤスタイルパネルを使ってみてください。

Solution

- 色が期待通りに変化していることを確認します。
- 凡例でwaterレイヤを選択し、レイヤスタイルパネルを開くボタンをクリックするだけです。水レイヤに合った色に変更します。

一度に1つのレイヤのみで作業を行い、他のレイヤに気を取られたくない場合、レイヤリストでその名前の横にあるチェックボックスをクリックすることで、レイヤを非表示にすることができます。ボックスが空白の場合、そのレイヤは非表示になっています。

2.4. Lesson: シンボロジ
2.4.3 Follow Along: シンボル構造を変更する

これはこれまでのところ良いものですが、レイヤのシンボルには色だけでなく、もっと重要なことがあります。次に、異なる土地利用区域の間の線を削除して、地図の視覚的な乱雑さを減らしたいと思います。

1. **landuse** レイヤのレイヤプロパティウィンドウを開きます。

 シンボル タブの下に、以前と同じようなダイアログが表示されます。しかし今回は、単に色を素早く変更するだけではありません。

2. シンボルレイヤツリーで、塗りつぶしドロップダウンを展開し、シンプル塗りつぶしオプションを選択します。

3. ストロークスタイルのドロップダウンをクリックします。その時点では、短い線と実線という文字が表示されているはずです。

4. これをペンなしに変更します。

5. **OK** をクリックします。

今、**landuse** レイヤでは、エリアの間に何もラインがありません。
2.4.4 Try Yourself

- 暗い青の輪郭を持つように再び water レイヤのシンボロジを変更します。
- 水路の表示を明確に表現するため rivers レイヤのシンボロジを変更します。

:sup:`レイヤスタイルパネル`を開く`ボタンを使うと、すべての変更を即座に確認することができます。そのパネルでは、レイヤのシンボル化中に個々の変更を元に戻すこともできます。

答え

これで地図は次のようになります：

初級者レベルの方は、ここでストップしていただいて結構です。

- 上記の方法で、残りのすべてのレイヤの色とスタイルを変更します。
- オブジェクトの色は自然な色を使ってみてください。例えば、道路は赤や青でなく、グレーや黒でもいいのです。
- また、ポリゴンの 塗りつぶしスタイル や ストロークスタイル の設定も自由に変えてみてください。
2.4.5 Follow Along: 縮尺に基づく表示

時には、レイヤが与えられた縮尺に適していないとわかることもあります。例えば、すべての大陸のデータセットは、詳細さが低く、街路レベルではあまり正確ではないかもしれません。それが起こると、不適切な縮尺でデータセットを非表示できるようにしたりくくなります。

私たちの場合、小縮尺ではビューから建物を見えないようにすることにするかもしれません。このマップは、例えば...

・あまり便利ではありません。その縮尺で建物を区別するのは難しいです。
縮尺に基づくレンダリングを有効にするには:

1. **buildings** レイヤのプロパティダイアログを開きます。
2. レンダリングタブをアクティブにします。
3. 縮尺に応じた表示設定というラベルのチェックボックスをクリックして、縮尺に基づいたレンダリングを有効にします。
4. 最小値を``1:10000``に変更します。

5. **OK** をクリックします。

buildings レイヤがいつ現れたり消えるかに注目しながら、地図で拡大・縮小する効果をテストします。

注釈: インクリメントにズームインするために、マウスホイールを使用できます。あるいは、ウィンドウにズームするために、ズーム・ツールを使用してください:

![拡大・縮小アイコン](image)

2.4. **Lesson:** シンボロジ
2.4.6 Follow Along: シンボルレイヤを追加する

これでレイヤに対する単純なシンボロジを変更する方法はわかりましたので、次のステップは、より複雑なシンボロジを作成することです。QGISでは、シンボルレイヤを使用して、これを行うことができます。

1. （シンボルレイヤツリーのシンプル塗りつぶしをクリックして）landuseレイヤのシンボルプロパティパネルに戻ります。

この例では、現在のシンボルは何のアウトラインを持っていません（すなわち、それはペンなしの境界スタイルを使用しています）。

2. ツリーで塗りつぶし レベルを選択し、シンボルレイヤを追加 ボタンをクリックします。ダイアログは次のようなものに変わり、新しいシンボルレイヤが追加されます。
2.4. Lesson: シンボロジ

例えば色が多少違って見えるかもしれませんね、それはいずれ変わるということになります。

今、第2のシンボルレイヤがあります。ソリッドカラーなので、もちろん前の種類のシンボルは完全に隠れます。さらに、これは実線の境界スタイルを持っていますが、これは私たちには必要ありません。明らかに、このシンボルを変更する必要があります。

注釈：地図レイヤとシンボルレイヤを混同しないことが重要です。地図レイヤは地図にロードされているベクタ（またはラスタ）です。シンボルレイヤは、地図レイヤを表すために使用されるシンボルの一部です。このコースでは、たいていは地図レイヤを単にレイヤと言いますが、シンボルレイヤは、混乱を防ぐために、シンボルレイヤと呼びます。

選択した新しいシンボル塗りつぶしシンボルレイヤで:

1. 以前のように、境界スタイルを ペンなし へ設定します。
2. 塗りつぶしスタイルを ソリッド か ブラシなし 以外に変更します。例えば：
3. OK をクリックします。

これで、結果を確認し、必要に応じて微調整することができます。複数の追加のシンボルレイヤを加えて、そのようにレイヤのテクスチャのようなものを作成することもできます。

これは楽しい！しかし、おそらく、実際の地図に使用するためにあまりにも色が多すぎるでしょう…
2.4.7 Try Yourself

必要に応じて拡大することを思い出し、上記の方法を使用してシンプルだが邪魔にならないテクスチャをbuildings レイヤに作りなさい。

答え

buildings レイヤは好きなようにカスタマイズできますが、地図上で異なるレイヤを簡単に見分けられるようにする必要があることを忘れないでください。

こちらが例です：

2.4.8 Follow Along: シンボルレベルの順序

シンボルレイヤがレンダリングされるとき、それらは、異なる地図レイヤがレンダリングされる方法と同様の順列でレンダリングされます。これは、場合によっては、一つのシンボルに多くのシンボルレイヤを有することは予期しない結果を引き起こす可能性があることを意味します。

1. （上で説明したシンボルレイヤを追加する方法を使って）roads レイヤに余分なシンボルレイヤを与えます。

2. ベースラインはストローク幅を 1.5 にし、色は黒にします。

3. 新しい、一番上のレイヤの幅を 0.8 にし、色は白にします。

2.4. Lesson: シンポロジ
このようになることにお気づきでしょう。

さて、道路は道路らしいシンボロジになっていますが、各交差点で線が互いに重なっているのがわかります。これは私たちが望むところではありません！

こうならないように、シンボルレベルを並べ替えることにより、異なるシンボルレイヤがレンダリングされる順序を制御することができます。

シンボルレイヤの順番を変更するには：

1. シンボルレイヤツリーで一番上のラインレイヤを選択します。

2. ウィンドウの右下にある詳細設定・描画順序...をクリックします。
3. チェックを入れます。そして、対応するレベル番号を入力することで、各シンボルのレイヤ順序を設定することができます。0 は最下層です。
今回の場合は、このようにオプションを有効にするだけです。

これにより、太い黒線の境界の上に白線が描画されます。

4. OK を2回クリックし、地図に戻ります。

地図はこのように見えるでしょう：

終了したら、将来シンボルを再び変更するときに作業が失われないように、シンボル自体を保存することを忘れないでください。現在のシンボルスタイルは、レイヤプロパティダイアログの下部にあるスタイル
ルの保存... ボタンをクリックすることで保存することができます。ここでは、QGIS の QML スタイルファイルフォーマットを使用します。

スタイルは、solution/styles/better_roads.qml フォルダに保存します。以前に保存したスタイルは、スタイルの読み込み... ボタンをクリックすることで、いつでも読み込むことができます。スタイルを変更する前に、置き換えようとしている未保存のスタイルが失われることに留意してください。

2.4.9 Try Yourself

もう一度 roads レイヤの外観を変更します。

道路を狭く、黄色にし、薄いグレーの輪郭と真ん中細い黒の線を入れます。レイヤのレンダリング順序を詳細設定... 描画順序... ダイアログで変更する必要があることを忘れないでください。

答え

要求されたシンボルを作るには三つのシンボルレイヤが必要です。
最下層のシンボルレイヤは広く、単色のグレーな線です。その上に僅かに細い単色の黄色の線と最後に別の細い単色の黒線があります。

上記のようなシンボルレイヤで、思うような結果が得られない場合：

1. シンボルレベルが以下のようにになっていることを確認してください：

 ![Symbol Levels diagram]

2. これで、地図は次のようになります：
2.4.10 Try Yourself

シンボルレベルは、分類されたレイヤ（複数のシンボルを持つレイヤ）にも適用されます。分類についてはまだ説明していませんので、分類前の初步的なデータで作業します。

1. 新しいプロジェクトを作成し、roads データセットだけを追加します。

2. exercise_data/styles にあるスタイルファイル advanced_levels_demo.qml をレイヤに適用します。これは、レイヤプロパティ ダイアログの下部にあるスタイル ▶ スタイルを読み込む… のコンポックスから行うことができます。

3. Swellendam のエリアにズームします。

4. シンボルレイヤを使用して、レイヤの輪郭線は、以下の画像に従って互いに流入することを確認してください：

2.4. Lesson: シンボロジ
答え

1. シンボルレベルを次の値に調整します:

![Symbol Levels dialog]

<table>
<thead>
<tr>
<th></th>
<th>Layer 0</th>
<th>Layer 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Tertiary</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Unclassified</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

1. 異なる結果を得るために、異なる値で実験してください。

2. 次の課題に進む前に、元のマップをもう一度開いてください。
2.4.11 Follow Along: シンボルレイヤタイプ

塗りつぶしの色を設定したり、あらかじめ定義されたパターンを使用するだけでなく、完全に異なるシンボルレイヤタイプを使用することができます。今まで使っていたのはシンプル塗りつぶしタイプだけでした。より高度なシンボルレイヤタイプを使えば、シンボルをさらにカスタマイズすることができます。

ベクタの各種類（ポイント、ライン、ポリゴン）は、シンボルレイヤタイプの独自のセットを有しています。まず、ポイントのために利用可能なタイプを見ていきます。

ポイントシンボルレイヤタイプ

1. places 以外のレイヤのチェックを外します。
2. places レイヤのシンボルプロパティを変更します。

3. シンボルレイヤツリーでシンプルマーカー レイヤを選択し、シンボルレイヤタイプ ドロップダウンをクリックすると、さまざまなシンボルレイヤタイプにアクセスできます。
4. 利用できるさまざまなオプションを調べ、適切だと思ったスタイルのシンボルを選択してください。

5. 迷ったら、白の境界と淡いグリーンの塗りつぶし、大きさ 3.00、ストローク幅 0.5 の丸いシンプルマーカーを使いましょう。

ラインシンボルレイヤタイプ

ラインデータのために利用できるさまざまなオプションを表示するには：

1. roads レイヤの最上段のシンボルレイヤタイプをマーカーラインに変更します：
2. シンボルレイヤツリーで シンプルマーカー レイヤを選択します。このダイアログに合わせてシンボルのプロパティを変更します：
3. マーカー線レイヤを選択し、間隔を1.00に変更します：
4. スタイルを適用する前に、シンボルレベルが正しいことを（以前に使用した 詳細設定 → 描画順序 ダイアログ経由で）確認してください。

スタイルを適用したら、図上でその結果を見てみましょう。おわかりのように、これらのシンボルは道路と一緒に向きを変えるが、常にそれに沿って曲げないでください。これは、いくつかの目的には有用ですが、他の目的には有用ではありません。ご希望の場合は、前にした方法に戻って、問題のシンボルレイヤーを変更できます。

ポリゴンシンボルレイヤータイプ

ポリゴンデータのために利用できるさまざまなオプションを表示するには：

1. 他のレイヤと同様に、water レイヤのシンボルレイヤータイプを変更します。
2. リスト上の異なるオプションが何ができるかを調べます。
3. これらのうち、適した1つを選択します。
4. 迷ったときは、次のオプションを使用して、ポイントパターン塗りつぶしを使用します。

2.4. Lesson: シンボロジ
5. 通常のシンプル塗りつぶしで新しいシンボルレイヤを追加します。

6. それを暗青の境界を持つ水色にします。

7. 下に移動ボタンでポイントパターンシンボルレイヤの下に移動させます。
その結果、テクスチャを構成する個々のドットの大きさ、形状や距離を変えることができるという利点があり、水のレイヤのためのテクスチャシンボルを用いています。

2.4.12 Try Yourself

`protected_areas` レイヤに緑色の透明白塗りつぶし色を適用し、輪郭を以下のように変更します。
答え

以下は、シンボル構造の例です:

![QGIS Training Manual](image)

2.4. Lesson: シンボロジ
2.4.13 訓練方法: ジオメトリジェネレータシンボロジ

ジオメトリジェネレータシンボロジは、すべてのレイヤタイプ（ポイント、ライン、ポリゴン）で使用することができます。生成されるシンボルは、レイヤタイプに直接依存します。

非常に簡単に説明すると、ジオメトリジェネレータシンボロジでは、シンボロジ自体の中でいくつかの空間演算を実行することができます。例えば、ポイントレイヤを作成せずに、ポリゴンレイヤ上で重心の空間演算を実行することができます。

さらに、結果として得られるシンボルの外観を変更するためのすべてのスタイリングオプションがあります。試してみましょう！

1. water レイヤを選択します。
2. シンプル塗りつぶしをクリックし、シンボルレイヤタイプをジオメトリジェネレータに変更します。
3. 空間クエリを書き始める前に、出力のジオメトリタイプを選択する必要があります。この例では、各地物に重心を作成するため、ジオメトリタイプを ポイント/マルチポイント に変更します。

4. クエリパネルにクエリを書いてみましょう :

```
centroid($geometry)
```
5. OK をクリックすると、water レイヤがポイントレイヤとしてレンダリングされるのがわかります！レイヤシンボリズムの中で空間演算を実行したことになるのです、すごいでしょう？
ジオメトリジェネレータシンボロジでは、通常のシンボロジとは一線を画した表現が可能です。

Try Yourself

ジオメトリジェネレータは、単なるシンボルレベルの一つです。ジオメトリジェネレータの下に、別のシンプル塗りつぶしを追加してみてください。

ジオメトリジェネレータシンボロジのシンプルマーカーの外観も変ええてみてください。

最終的にはこのようになるはずです：

2.4. Lesson: シンボロジ
答え

1. 別のシンボルレベルを追加するには、ボタンをクリックします。

2. ボタンをクリックして、リストの一番下に新しいシンボルを移動します。

3. 水のポリゴンを塗りつぶすために良い色を選択します。

4. ジオメトリジェネレータシンボロジのマーカーをクリックし、好きなように円を別の形状に変更します。

5. より有用な結果を得るために、他のオプションも試してみてください。
2.4.14 Follow Along: カスタム SVG 塗りつぶしを作成する

注釈: この演習を行うには、無料のベクタ編集ソフトウェア Inkscape がインストールされている必要があります。

1. Inkscape プログラムを起動します。以下のようインターフェースが表示されます:

コートルのような、他のベクタ画像編集プログラムを使ったことがある方は、これを楽しみ易いと思うはずです。

まず、小さなテスクスに適したサイズにキャンバスを変更します。

2. ファイル - 文書のプロパティ メニューをクリックします。文書のプロパティ ダイアログが表示されます。

3. 単位を px に変更します。

4. 幅と高さを 100 に変更します。

5. 実行後はダイアログを閉じます。

6. ビュー - ズーム - ベージ メニューをクリックして、作業しているページを参照してください。

7. 円ツールを選択します。
8. 横円を描画するためにクリックして、ページ上でドラッグします。横円が円に変わるようにするには、描いている間Ctrlボタンを押し続けます。

9. 先ほどの円を右クリックし、その塗りとストロークオプションを開きます。このように、そのレンダリングを変更できます:
 1. 塗り色を何とか淡灰青に変更し。
 2. ストロークの塗りタブの中で境界に暗い色を割り当て,
 3. ストロークのスタイルタブの下で境界の太さを減らします。
10. 鉛筆ツールを使ってラインを引きます:

1. 一回クリックするとラインが始まります。Ctrlキーを押しながらだと、15度単位でスナップします。
2. 水平方向にポイントを移動し、クリックしてポイントを置きます。
3. クリックして、ラインの頂点にスナップし、垂直線をトレースしてクリックで終わります。
4. 二つの端の頂点を繋げます。
5. このようなシンボルで終わるように、円のストロークに合わせ、必要に応じて、それを周りに移動するには三角形のシンボルの色と幅を変更します。

2.4. Lesson: シンボロジ
11. 満足のゆくシンボルが得られたなら、コースのあるディレクトリの下の exercise_data/symbols に landuse_symbol として、SVG ファイルで保存してください。

QGIS では:

1. Landuse レイヤにレイヤのプロパティを開きます。

2. シンボロジタブで、シンボルレイヤタイプを以下に示す SVG 塗りつぶしに変更して、シンボル構造を変更します。

3. ... ボタンをクリックし、ファイルを選択... をクリックして、SVG 画像を選択します。

シンボルツリーに追加され、さまざまな特性（色、角度、効果、単位...）をカスタマイズできるようになりました。
ダイアログを有効にすると、土地利用 レイヤの地物がシンボルで覆われ、次の地図のような模様が表示されるはずです。模様が見えない場合は、地図キャンバスを拡大するか、レイヤのプロパティで模様の幅を大きく設定する必要があるかもしれません。
2.4.15 In Conclusion

異なるレイヤのためにシンボルを変更することで、ベクタファイルの集まりを読みやすい地図に変えてきました。何が起こっているか見ることができるだけでなく、それを見るのはうれしくもあります！

2.4.16 Further Reading

美しい地図の例

2.4.17 What's Next?

レイヤ全体のためのシンボルを変更することは便利ですが、それぞれのレイヤの中に含まれている情報は、まだこれらの地図を読んでいる誰かには利用できません。街路が何と呼ばれているか？ある領域がどの行政地域に属していますか？農場の相対的な面積は何ですか？この情報のすべてがまだ隠されています。次のレッスンでは、地図上にデータを表現する方法を説明します。

注釈：最近の忘れずに地図を保存しましたか？
第3章 Module: ベクタデータを分類する

ベクタデータを分類することで、その属性に応じ、地物（同一レイヤ内の異なるオブジェクト）に異なるシンボルを割り当てることができます。これは、地図を使う人が、様々な地物の属性を簡単に出表示することを可能にします。

3.1 Lesson: ベクタ属性データ

ベクタデータは、GIS の日常的な使用において間違いなく最も一般的な種類のデータです。ベクタモデルは、ポイント、ライン、ポリゴン（および3Dデータの場合はサーフェスとボリューム）を使用して地理的特徴の位置と形状を表し、その他のプロパティは属性として含まれます（QGIS ではなくテーブルとして表示されます）。

今までは、地図行った変更はどれも、表示されているオブジェクトに影響されませんでした。言い換えれば、すべての土地利用エリアは同じように見え、そしてすべての道路は同じように見えます。地図を見ている人、見えている道路については何もわかりませんでした。わかっているのは、その地域にその形状の道があるということだけです。

しかし、GIS の全体強みは、地図上に表示されるすべてのオブジェクトが属性も持っていることです。GISでの地図はただの絵ではありません。それらは場所内のオブジェクトだけでなく、それらのオブジェクトに関する情報も表しています。

このレッスンの目的： ベクタデータの構造について学び、オブジェクトの属性データについて探ります

3.1.1 Follow Along: レイヤ属性を表示する

作業しているデータは、オブジェクトが空間のどこにあるかを表すだけでなく、それらのオブジェクトが何であるかを語っていることも、知っておくことが重要です。

前の演習から、地図に protected_areas レイヤがロードされているはずです。ロードされていない場合は、ディレクトリ exercise_data/shapefile に protected_areas.shp という ESRI Shapefile 形式のデータセットがあります。

保護地域を表すポリゴンが空間データを構成していますが、属性テーブルを調べることで、保護地域についてより詳しく知ることができます。

1. レイヤ パネルで、protected_areas レイヤをクリックして選択します。

2. レイヤ メニューで、 属性テーブルを開くボタンをクリックします（トップにあるツールバーのボタンからもアクセスできます）。これにより、protected_areas レイヤの属性テーブルが表示された新しいウィンドウが開かれます。
行はレコードと呼ばれ、ポリゴンなど、キャンバスマップ中の地物に関連付けられています。列はフィールド（または属性）と呼ばれ、「name」や「id」など、列を説明するのに役立つ名前が付いています。セル内の値は属性値と呼ばれます。これらの定義はGISで一般的に使用されているため、よく理解しておくとよいでしょう。

protected_areas レイヤには2つの地物があり、マップキャンバスに表示されている2つのポリゴンで表現されています。

注釈：フィールドと属性値が何を表しているかを理解するには、属性値の意味を説明するドキュメント（またはメタデータ）を見つけける必要がある場合があります。これは通常、データセットの作成者から入手できます。

次に、属性テーブルのレコードが、マップキャンバス上に表示されるポリゴン地物にどのようにリンクされるかを見てみましょう。

1. QGISのメインウィンドウに戻ります。
2. 編集 → 選択メニューで、地物を選択ボタンをクリックします。
3. レイヤパネルでprotected_areasレイヤがまだ選択されていることを確認します。
4. マップキャンパスにマウスを移動し、2つのポリゴンのうち小さいほうを左クリックします。ポリゴンが黄色に変わり、選択されたことを示します。
5. 属性テーブルウィンドウに戻ると、レコード（行）がハイライトされているのが見えるはずです。これが、選択したポリゴンの属性値です。
また、属性テーブルを使用して地物を選択することもできます。

1. 属性テーブルウィンドウの左端にある、現在選択されていないレコードの行番号をクリックします。

2. QGISのメインウィンドウに戻り、マップキャンパスを見ます。2つのポリゴンのうち大きい方が黄色に着色されているのが見えるはずです。

3. この地物の選択を解除するには、属性テーブルウィンドウ行き、レイヤ内の全地物を選択解除ボタンをクリックします。

マップキャンパスに表示される地物が多数あり、属性テーブルからどの地物が選択されているかを確認するのが難しい場合があります。地物の場所を特定する別の方法は、地物をフラッシュツールを使用することです。

1. 属性テーブルで、フィールド full_idの属性値 r2855697を持つ行の任意のセルを右クリックします。

2. コンテキストメニューの地物をフラッシュをクリックし、マップキャンパスを見ます。

ポリゴンが赤く点滅するのが数回確認できるはずです。もし、見逃した場合は、もう一度試してみてください。
もう一つの便利なツールは地物にズームツールで、これは QGIS に興味のある地物にズームするように指示します。

1. 属性テーブルで、full_id フィールドの属性値 r2855697 を持つ行のセルを右クリックします。
2. コンテキストメニューで、地物にズームをクリックします。

マップキャンパスを見てください。ポリゴンはマップキャンパスの範囲を占めるようになりました。
ここで属性テーブルを開じてください。

3.1.2 Try Yourself ベクタデータ属性を探索する

1. rivers レイヤにはいくつのフィールドがありますか？
2. あなたのデータセットにある町の場所について少し教えてください。
3. places レイヤの属性テーブルを開いてみてください。ラベル形式で表現するのに一番有用なフィールドはどれでしょう？その理由は？

答え

・ rivers レイヤには9つのフィールドがあるはずです。

 1. レイヤパネルでそのレイヤを選択します。
 2. 右クリックして、属性テーブルを開くを選択するか、属性ツールバー（ビューツールバーメニューから有効にすることができます）の□ボタンを押します。
 3. 列の数を数えます。

より早いアプローチは、rivers レイヤをダブルクリックし、レイヤープロパティ・フィールドタブを開き、テーブルのフィールドの番号付きリストを表示することででしょう。
3.1.3 In Conclusion

これで使用しているデータ中に実際に何があるかを見るために属性テーブルを使用する方法がわかりましたね。どんなデータセットでも有用なのは気になり属性を持っている場合だけでしょう。どんな属性が必要か知っていれば、与えられたデータセットが使用できるかどうか、あるいは必要な属性データを持つ別のデータセットを探す必要があるか、すぐに判断できます。

3.1.4 What’s Next?

異なる属性は異なる目的のために有用です。それらのいくつかは、地図のユーザーが見るテキストとして直接表現できます。次のレッスンでこれを行う方法を学びます。

3.2 Lesson: ラベル

オブジェクトに関する情報を表示するためにラベルを地図に追加することができます。ベクタレイヤはそれに関連するラベルを持つことができます。ラベルの内容はレイヤの属性データに依存します。

このレッスンの目標: 役に立ち見栄えの良いラベルをレイヤに適用します。

3.2.1 Follow Along: ラベルを使用する

まず、ボタンが GUI に表示されていることを確認します:

1. ビューツールバー メニューに進みます
2. ラベルツールバーにチェックマークが付いていることを確認します。チェックマークがない場合は、ラベルツールバーをクリックし、アクティブにします。
3. レイヤパネルの places レイヤをクリックし、ハイライト表示させます。
4. ツールバーをクリックして、レイヤスタイルパネルの ラベルタブを開きます。
5. ラベルなしから 単一義 に切り替えます

属性のどのフィールドをラベルに使用するかを選択する必要があります。前のレッスンで、あなたは name フィールドがこの目的に最も適していると判断しました。
6. 値リストから name を選択します。

7. 適用 をクリックします。

今、地図にはこのようなラベルが表示されるはずです。
3.2.2 Follow Along: ラベルオプションを変更する

以前のレッスンで地図に選んだスタイルによっては、ラベルが適切にフォーマットされておらず、ポイントマークと重なっていたり、遠すぎたりしたのにお気づきかもしれません。

注釈: 上記では、ラベルツールバーのatieボタンを使って、レイヤスタイルパネルを開きました。シンボロジーと同じように、レイヤスタイルパネルとレイヤプロパティダイアログの両方で同じラベルオプションが利用できます。ここでは、レイヤプロパティダイアログを使用します。

1. placesレイヤをダブルクリックし、レイヤプロパティダイアログを開きます
2. ラベルタブを選びます
3. 左側のオプションリストでテキストが選択されていることを確認し、ここに示されているものと同じになるようにテキスト書式設定を更新します:
4. 適用 をクリックします。

そのフォントは、ユーザーにとってより大きく、より馴染みやすいかもしれませんが、その読みやすさは、その下にレンダリングされるレイヤーに依存していることに変わりはありません。これを解決するために バッファ オプションを見てみましょう。

5. 左側のオプションリストから バッファ を選びます

6. テキストバッファを描画 の隣のチェックボックスをチェックし、ここに示されているものと同じになるようにオプションを選びます:

3.2. Lesson: ラベル
7. 適用 をクリックします。

着色されたバッファまたは境界線が場所ラベルに追加されて地図上で見分けやすくなりました:
ポイントマーカーに相対的なラベルの配置に取りかわります。

8. 左側のオプションリストから配置 を選びます

9. ポイントの周り を選び、距離 の値を2.0 ミリメートルに変更します:

3.2. Lesson: ラベル
10. 適用 をクリックします。
ラベルはもはやポイントマーカーに重なっていません。

3.2.3 Follow Along: レイヤシンボロジの代わりにラベルを使用する

多くの場合、ポイントの位置はそれほど特定する必要はありません。例えば、places レイヤのポイントのほとんどは、町全体や郊外を指しており、そのような地物に関連する特定のポイントは、大きな縮尺ではそれほど特定のではありません。実際、あまりに具体的なポイントを与えると、地図を読んでいる人がしばしば混乱します。

例を挙げると: 例えば、世界地図上では欧州連合のために与えられた点はポーランドのどこかにあります。European Union のラベルの付いたポイントがポーランドにあるので、地図を読んでいる人には欧州連合の首都はポーランドにあるように見える場合があります。

ですから、この種の誤解を防ぐためにポイントシンボルを非アクティブ化してラベルに完全に置き換えるのがよい場合があります。
QGIS Training Manual

QGIS ではラベルが参照するポイントの直上にラベルの位置を変更することによってこれを行うことができます。

1. places レイヤのレイヤプロパティ ダイアログの ラベル タブを開きます
2. オプションリストから 配置 オプションを選択します
3. 点からのオフセット ボタンをクリックします

ポイントマーカーとの相対位置でラベルの位置を設定することのできる 象限 オプションが現れます。この場合、ラベルは点を中心に配置したいので中央の象限を選択します:

4. 通常通りレイヤの シンボリズム を編集し、マーカーの大きさを 0.0 にしてポイントシンボルを隠します:

3.2. Lesson: ラベル
5. 適用をクリックすると、このような結果が表示されます:

QGIS Training Manual
地図を縮小すると、大きな縮尺では重なりを避けるためにいくつかのラベルが消えているのがわかるでしょう。多くの点を持つデータセットを扱う場合、これが望ましい場合もありますが、この方法では有用な情報が失われてしまう場合もあります。このような場合を扱うもう一つの可能性があり、このレッスンの後の練習で取り上げます。とりあえず縮小して、ツールバーにあるボタンをクリックし、何が起こるか見えてみましょう。

3.2.4 Try Yourself ラベルのカスタマイズ

- ラベルとシンボルの設定をリセットして、ポイントマーカーとラベルオフセットを2.0ミリメートルにします。

答え

これで地図はマーカーポイントを表示し、ラベルは2mmずれているはずです。マーカーとラベルのスタイルは、両方が地図上ではっきり見えるようにする必要があります。
・地図の縮尺を1:100000に設定します。これは、ステータスバーの縮尺ボックスに入力することで行うことができます。この縮尺で見るように適したラベルに変更します。

答え

一つの解として、最終的にこのような結果が得られます：
この結果に到達するためには：

- フォントサイズ 10 を使用
- ポイントの周りの距離に 1.5 mm を使用
- マーカーサイズに 3.0 mm を使用
- さらに、この例ではこの文字でラップ処理オプションを使用しています：

3.2. Lesson: ラベル
• このフィールドに 空白 を入力し、 適用 をクリックすると同じ効果が得られます。この例では、地名の一部が非常に長いため、名前が何行にもなってしまい、使い勝手が悪くなっています。この設定は、あなたの地図にもっとふさわしいかもしれません。
3.2.5 Follow Along: ラインにラベルを付ける

これでラベルの作成がどのように動作するかがわかりましたが、まだ別の問題があります。ポイントとポリゴンにラベルを付けるのは簡単ですが、ラインはどうでしょうか？ポイントと同じようにラベルを付け場合、このようになります:

roads レイヤのラベルをわかりやすくするために、再フォーマットすることにします。
1. places レイヤを非表示にして、邪魔にならないようにします
2. places のラベルと同じように roads レイヤのラベルの 単一列 文字列のアクティブにします
3. フォントの 大きさ を 10 にして、より多くのラベルを表示できるようにします
4. Swellendam 町域を拡大します。
5. ラベル タブの 配置 タブで、次の設定を選択します
テキストのスタイリングにデフォルト値が使用されているため、ラベルが非常に読みにくいことが分かることと思います。テキストの色を濃い灰色か黒に、バッファの色を薄い黄色に更新してください。

地図は縮尺に応じてどのように見えます:
いくつかの道路名が複数回表示されますがいつも必要だとは限りません。これを防ぐには:

6. レイヤプロパティ ダイアログの ラベル タブで レンダリング オプション を選び、図のように 重複ラベル を除去するために接続する線を結合 を選びます。
7. OK をクリックします

もう1つの有用な機能はラベルを付けるには短すぎる地物にラベルが描画されないようにするものです。

8. 同じレンダリングパネルで、これより地物が小さい場合は省略の値を 5.00 mm に設定し、適用をクリックしたときの結果に注意してください。

別の配置の設定も試してみてください。前に見たように、この場合、水平オプションは良いアイデアではないので、代わりに線に沿って湾曲オプションを試してみましょう。

9. ラベルタブの配置パネルで線に沿って湾曲オプションを選びます。

これが結果です:
このように、以前は表示されていなかったラベルが非表示になっています。これは、曲がりくねった道路の線に沿わせながら、読みやすくするのが難しいからです。また、他のラベルは、道路と道路の間の空間に浮かんでいるのではなく、道路を追跡するため、より有用になります。どちらのオプションを使うかは、より有用なもの、より見栄えの良いものを選ぶことができます。

3.2.6 Follow Along: データ定義による設定

1. roads レイヤのラベルを無効にします
2. places レイヤのラベルを再び有効にします
3. ボタンで places の属性テーブルを開きます

それには各レコードの都市部のタイプを定義する観光深い places というフィールドがあります。このデータを使って、ラベルのスタイルに影響を与えることができます。

4. places ラベルパネルでテキストパネルに移動します

5. スタイルの下のイタリックテキストボタンの隣にあるボタンをクリックして、編集... を選び、式文字列ビルダーを開きます：

3.2. Lesson: ラベル
6. フィールドと値の下にある `place` をダブルクリックし、全ユニックをクリックします。これにより、このレイヤーの `place` フィールドのすべての固有値が一覧表示されます。テキストエディタで `=` を追加し、`town` をダブルクリックします。

または、次のようにテキストエディターで "place" = 'town' と直接入力することもできます。

7. OK を2回クリックします。
placeフィールドがtownと一致するすべての場所のラベルがイタリック体で表示されていることに注目してください。
3.2.7 Try Yourself データ定義による設定の使用

注: 私たちはいくつかの高度なラベル付け設定を示すために、ここで少し先にジャンプしています。高度なレベルでは以下のことが何を意味するか知っていることを想定しています。そうでなければこのセクションは跳ばし、必要な題材をカバーしてから戻って来て下さい。

1. place の属性テーブルを開く

2. ボタンをクリックして、編集モードにします

3. ボタンを使用して新しい列を追加します

4. このように構成します:

![Add Field](image)

5. これを使用して、異なるタイプの場所 (place フィールドのキー) ごとにカスタムフォントサイズを設定します

答え

1. 編集モードのまま、FONT_SIZE の値を好きなように設定します。この例では、町 (towns) は 16、郊外 (suburbs) は 14、地方 (localities) は 12、集落 (hamlets) は 10 を使用しています。

2. 変更を保存して編集モードを終了することを忘れないでください

3. places レイヤのテキストフォーマットオプションに戻り、フォントサイズデータ定義オーバーライドドロップダウンの属性フィールドで FONT_SIZE を選びます:
上記の値を使用した場合、結果はこのようなはずです。
3.2.8 ラベル付けのさらなる可能性

このコースですべてのオプションを網羅することはできませんが、ラベルタブには他にも多くの有用な機能があることを知っておいてください。スケーリベース・レンダリングの設定、レイヤ内のラベルのレンダリング優先度の変更、レイヤ属性を使ったあらゆるラベルオプションの設定などが可能です。また、ラベルの回転やXY位置などのプロパティを設定し（属性フィールドがある場合）、メインのレイヤーラベルオプションボタンに隣接するツールでこれらの属性を編集することも可能です。

(これらのツールは必要な属性フィールドが存在して、編集モードの場合にアクティブになります。)

ラベル付けのシステムの可能性をもっと探ってみて下さい。
3.2.9 In Conclusion

勤的なラベル作成のためにレイヤの属性を使用する方法を学びました。これによりあなたの地図の情報量を増やし、地図をスタイリッシュにすることができます！

3.2.10 What's Next?

属性によって地図に視覚的な違いを生じさせる方法がわかりました。オブジェクトそれ自体のシンボロジーを変更するのに属性を使用することはどうでしょうか？次のレッスンのトピックです！

3.3 Lesson: 分類

ラベルは、個々の地名などの情報を伝えるのに適していますが、何にでも使えるわけではない。例えば、それぞれの土地利用の領域が何に使われているのか知りたい人がいるとします。ラベルを使うと、こうなります:

![Map Image]

これでは地図のラベルが読みにくくなり、地図上に多数の異なる土地利用の領域がある場合は過剰にさえなります。

このレッスンの目標：効果的にベクタデータを分類する方法を学習します。
3.3.1 Follow Along: 名義データを分類する

1. landuse レイヤのレイヤプロパティダイアログを開きます
2. シンボロジタブをクリックします
3. 単一定義と言うドロップダウンをクリックし、それをカテゴリ値による定義に変更します

4. 新しいパネルで、値をlanduseに、カラーランプをRandom colorsに変更します
5. 分類ラベルの付いたボタンをクリックします
6. OK をクリックします

このように表示されるはずです:

![Map of landuse categories]

7. レイヤ パネルの landuse の横にある矢印（またはプラス記号）をクリックすると、分類の説明が表示されます:

3.3. Lesson: 分類
これで土地利用ポリゴンに色が付き、同じ土地利用をするエリアは同じ色になるように分類されました。

8. 必要であれば、レイヤ パネルまたは レイヤプロパティ ダイアログで該当するカラーブロックをダブルクリックして、各土地利用区域のシンボルを変更することができます。
空の分類が一つあることに注意してください：
この空の分類は、landuse 値が定義されていない、あるいは NULL 値を持つオブジェクトに色を付けるために使用されます。この空の分類は、NULL 値を持つ区域が地図上で表現されるようにするために有用です。空白または NULL 値をより明確に表現するために色を変更することもできます。

すべての苦労して積んだ変更を失わないように、今、地図を保存することを忘れないでください！

3.3.2 Try Yourself その他の分類

上記で得た知識を使って buildings レイヤを分類します。building フィールドに対して分類を設定し、Spectral カラーランプを使用します。

注釈：忘れずに、都市エリアを拡大して結果を確認してください。

3.3.3 Follow Along: 比率分類

分類には 4 つのタイプがあります：名義、順序、間隔、比率。

名義 分類では、対象を分類するカテゴリは名前ベースであり、順序はありません。例えば、町名、地区コードなど。名義データに使用する記号は、順序や大きさを意味するものであってはありません。

・ ポイントには、さまざまな形の記号を使うことができます。
・ポリゴンには、異なるタイプのハッチングや異なる色（明るい色と暗い色の混在を避ける）を使用することができます。

・ラインには、異なるダッシュパターン、異なる色（明るい色と暗い色の混在を避ける）、線に沿った異なる記号を使用することができます。

順序分類では、カテゴリーは一定の順序で並べられます。例えば、世界の都市は、世界貿易、旅行、文化などに対する重要性に応じてランク付けされます。順序データに使用する記号は、順序を意味するものでなければならないが、大きさを意味するものであってはなりません。

・ポイントには、明るい色から暗い色の記号を使うことができます。

・ポリゴンには、段階的な色（明るい色から暗い色）を使うことができます。

・ラインには、段階的な色（明るい色から暗い色）を使うことができます。

間隔分類では、数値は正、負、ゼロの値を持つ目盛りになっています。例：海拔の高さ/海抜の低さ、気温（摂氏）、区間データに使用する記号は、順序と大きさを意味するものでなければなりません。

・ポイントには、さまざまな大きさ（小さいものから大きいものまで）の記号を使うことができます。

・ポリゴンには、段階的な色（明るい色から暗い色）を使った、さまざまな大きさの図を追加することができます。

・ラインには、大さ（細いから太い）を使うことができます。

比率分類では、数値は正とゼロの値だけを持つスケールになっています。例：絶対零度（0度ケルビン）以上の温度、ある地点からの距離、ある通りの1ヶ月の平均交通流量など。比率データに用いる記号は、順序や大きさを意味するものでなければなりません。

・ポイントには、さまざまな大きさ（小さいものから大きいものまで）の記号を使うことができます。

・ポリゴンには、段階的な色（明るい色から暗い色）を使った、さまざまな大きさの図を追加することができます。

・ラインには、大さ（細いから太い）を使うことができます。

上記の例では、名義分類を使用して、landuse（土地利用）レイヤの各レコードを landuse 属性に基づいて色付けしました。今度は、比率分類を使って、レコードを面積で分類してみます。

レイヤを再分類するので、既存の分類は保存しないと失われます。現在の分類を保存するには:

1. レイヤのプロパティダイアログを開きます

2. スタイル ドロップダウン メニューの スタイルを保存... ボタンをクリックします。

3. 現在の名前を変更... を選び、land usage を入力し、OK を押します。

カテゴリーとその記号がレイヤのプロパティに保存されました。

4. スタイルドロップダウンメニューの 追加 () エントリをクリックし、ratio という名前の新しいスタイルを作成します。これで、新しい分類が保存されます。

5. レイヤプロパティ ダイアログを閉じます

土地利用区域を大きさで分類したいのですが、問題があります：大きさのフィールドがないので、作らなければならない。
1. landuse レイヤの属性テーブルを開きます。

2. トグル編集 ボタンをクリックして編集モードにします

3. 新規フィールド ボタンを使って、AREA という倍精度の新しい列を追加します。

4. OK をクリックします

新しいフィールドが追加されます（テーブルの右端; 見るには水平方向にスクロールする必要があるかもしれません）。しかし、現時点では、このフィールドには何も入力されておらず、たくさんの NULL 値があります。

この問題を解決するために、面積を計算する必要があります。

1. ボタンでフィールド計算機を開きます。

このようなダイアログが表示されます：

![Image]
2. 既存のフィールドを更新する をチェックします

3. フィールドのドロップダウンメニューから、AREA を選びます

4. 式 タブで、リスト内の ジオメトリ 関数グループを展開し、Sarea を見つけます

5. それをダブルクリックして、式 フィールドに表示させます
6. **OK** をクリックします

7. 属性テーブルの AREA フィールドまでスクロールすると、値が入力されていることがわかります（データを更新するために列のヘッダーをクリックする必要がある場合があります）。

注釈: これらの面積はプロジェクトの面積単位の設定に従いますので、平方メートルまたは平方度の単位を使用できます。

5. を押して編集内容を保存し、で編集モードを終了します

6. 属性テーブルを閉じます

これをデータが描かれたので、それをを使って土地利用レイヤをレンダリングしてみましょう。

1. landuse レイヤーのレイヤプロパティダイアログのシンボロジタブを開きます

2. 分類スタイルをカテゴリ値による定義から連続値による定義に変更します

3. 値を AREA に変更します。

4. カラーランプの下にあるカラーランプを新規作成 の オプションを選びます
5. 勾配グリッドを選択し（まだ選択されていない場合）、OK をクリックします。このように表示されます：
これを使用して小さな地域は色 1、大きな地域は色 2 で表示します。

6. 適切な色を選びます
 例では、結果は次のようになります。
7. **OK** をクリックします

8. カラーランプ タブの カラーランプを保存... を選択すると、カラーランプを保存することができます。
 カラーランプに適切な名前を選び、保存 をクリックします。これで、同じカラーランプを 全カラーランプ で簡単に選択できるようになります。

9. モード の下から 検定分類 (Quantile) を選びます。

10. 分類 をクリックします。

 これで、次のようなものができるになります:

3.3. Lesson: 分類
そのまま他のすべてを残します。

11. OK をクリックします:
3.3.4 Try Yourself 分類の絞り込み

- 理にかなった分類を得るまで モード と クラス の値を変更します。

答え

使用した設定は同じではないかもしれませんが、Classes = 6 と Mode = Natural Breaks (Jenks)（そしてもちろん同じ色を使用）では、地図は次のようにになります：

![地図](image.png)

3.3.5 Follow Along: 規則に基づく分類

分類のための複数の条件を組み合わせると便利ですが、残念ながら通常の分類では１つの属性だけを考慮に入れます。このときルールによる分類が有用になります。

このレッスンでは、Swellendam 市をその他の住宅地、そしてその他の種類の土地利用（面積に基づく）から簡単に識別できるように、landuse レイヤを表現してみます。

1. landuse レイヤの レイヤプロパティ ダイアログを開きます
2. シンボロジ タブに切り替えます
3. 分類スタイルを ルールによる定義 に切り替えます

QGIS はこのレイヤに現在実装されている分類を表すルールを自動的に表示します。例えば、上記の演習を終えた後、以下のように表示されるかもしれません：

3.3. Lesson: 分類
4. 全てのルールを選択するようクリックしドラッグします
5. 選択したルールを削除 ボタンを使って、既存のルールをすべて削除します
では、カスタムルールを追加してみましょう。
1. ルールを追加 ボタンをクリックします
2. Edit rule ダイアログが現れます
3. ラベルに Swellendam city を入力します
4. フィルタテキストエリアの隣にある ボタンをクリックして 式文字列ビルダ を開きます
5. 条件 "name" = 'Swellendam' を入力し検証します

6. ルールの編集 ダイアログに戻り、その地域での町の重要性を示すために濃いグレーブルーの色を割り当て、境界を削除します。
3.3. Lesson: 分類

7. **OK** を押します

8. 次のルールを追加するために上記のステップを繰り返します:

 1. *Other residential* ラベルは、条件 "landuse" = 'residential' AND "name" <> 'Swellendam'。淡いブルーグレーの塗りつぶしを選きます。

 2. *Big non residential areas* ラベルは、条件 "landuse" <> 'residential' AND "AREA" >= 605000。色は中緑色を選きます。

これらのフィルターは他他のものであり、地図上の地域を除外します（605000（平方メートル）より小さい非居住地域は、いずれのルールにも含まれません）。

3. 残りの地物は *Small non residential areas* というラベルの付いた新しいルールを使って捕えます。フィルター式の代わりに、もしくはをチェックします。このカテゴリーに適切な淡い緑
色を与えます。

ルールは次のようになります：

9. このシンボル体系を適用します
地図は次のようになります。
今、最も顕著な住宅地 Swellendam とその他の非住宅地をその大きさに応じた色の地図を持っています。

3.3.6 In Conclusion

シンボロジーにより、レイヤの属性を読みとりやすく表現できます。それは選択した任意の関連する属性を使用して、私たちだけでなく地図読者も地物の重要性を理解できます。直面している問題に応じて、それらを解決するために異なる分類技法を適用するでしょう。

3.3.7 What’s Next?

これで見栄えの良い地図になりましたが、どのようにしてそれを QGIS からプリントアウトできる形式に、または画像や PDF にしようとしていますか？それは、次のレッスンの話題です！
第4章 Module: 地図をレイアウトする

本モジュールでは、QGIS 印刷レイアウトを使用して希望する要素を全て含む高品質なマップの作製方法を学ぶ。

4.1 Lesson: 印刷レイアウトを使用する

さて、地図を手に入れたら、それを印刷したり、文書に書き出したりする必要があります。なぜなら、GIS 地図ファイルは画像ではないからです。GIS 地図ファイルは画像ではなく、GIS プログラムの状態を保存したもので、すべてのレイヤの参照、ラベル、色などが含まれています。そのため、同じデータや同じ GIS プログラム（QGIS など）を持っていない人にとっては、地図ファイルは役に立たないことになります。幸いなことに、QGIS は地図ファイルを誰でも読める形式にエクスポートすることができますし、プリンタを接続すれば地図をプリントアウトすることもできます。エクスポートも印刷も、印刷レイアウトで処理されます。

このレッスンの目標：QGIS 印刷レイアウトを使用して、必要な設定をすべて行った基本的な地図を作成すること。

4.1.1 Follow Along: レイアウトマネージャ

QGIS では、同じマップファイルを使って複数の地図を作成することができます。そのため、レイアウトマネージャと呼ばれるツールが用意されています。

1. プロジェクト → レイアウトマネージャ… メニューをクリックして、ツールを起動します。すると、空のレイアウトマネージャダイアログが表示されます。
2. テンプレートから新規作成の下にある空のレイアウトを選び、作成... ボタンを押します。
3. 新しいレイアウトに Swellendam という名前を付けて、OK をクリックします。
4. これで、印刷レイアウトウィンドウが表示されます:

また、この新しいレイアウトは プロジェクト ➤ 新規印刷レイアウト... メニューで作成することもできます。
どちらの方法をとったとしても、新規印刷レイアウトは、下の画像のように プロジェクト ➤ レイアウト ➤ メニューからアクセスできるようになりました。

第 4 章 Module: 地図をレイアウトする
4.1.2 Follow Along: 基本地図の構図

この例では、構図はすでに望んだ形になりました。あなたのものが同様であることを確認してください。

1. レイアウトウィンドウの中央でシートを右クリックし、コンテキストメニューからページのプロパティ... を選択します。

2. アイテムプロパティ タブの値が、以下のように設定されていることを確認します:
 - 大きさ: A4
 - 方向: 横

 今、ページレイアウトは望んでいたようになっていますが、このページはまだ空白です。これは明らかに地図を欠いている。その問題を修正しましょう！

3. 地図を追加 ボタンをクリックします。

 このツールを有効にすると、ページ上に地図を配置することができるようになります。

4. クリックして、空白のページにボックスをドラッグします。

 地図がページに表示されます。

5. クリックしてドラッグすることで地図を移動します。
6. 端にあるボックスをクリックしてドラッグすることで、サイズを変更できます。

注釈: 地図はもちろん全く違って見えてもよいです！これは、自身のプロジェクトが設定されている方法によって異なります。しかし、心配しないように！これらの命令は一般的なので、地図自体がどのように見えるかに関係なく、同じ動作をします。

7. 緑に沿って余白、および上辺に沿ってタイトル用に空白を残すようにしてください。

8. これらのボタンを使って（地図でなく！）ページ上で拡大、縮小します：

第 4 章 Module: 地図をレイアウトする
9. QGIS のメインウィンドウでマップをズームおよびパンします。また、アイテムのコンテンツを移動・ツールを使用してマップをパンすることができます。

拡大または縮小に応じて地図ビューは更新されます

10. 何らかの理由で地図ビューが正しく更新されない場合、ビューを更新 ボタンをクリックすることで強制的にマップを更新することができます。

地図の大きさと位置は、最終的なものでなくてもかまいません。もし満足できなければ、いつでも後戻って変更することができます。とりあえず、このマップに関する作業を確実に保存しておく必要があります。QGIS の印刷レイアウトはメインマップファイルの一部であるため、プロジェクトを保存する必要があります。

11. レイアウト プロジェクトを保存に移動します。これは、メインダイアログにある便利なショートカットです。

4.1.3 Follow Along: タイトルを追加する

さて、地図はページ上で見栄えがしますが、読者/ユーザーはまだ何が起こっているのか知らされていません。読者やユーザーには文脈が必要です。地図要素を追加することで、読者やユーザーに文脈を提供することができます。まず、タイトルを追加してみましょう。

1. ラベルを追加 ボタンをクリックします

2. 地図の上でページをクリックし、新規アイテムのプロパティダイアログで提案された値を受け入れると、地図の上にラベルが表示されます。

3. サイズを変更し、ページの上部中央に配置します。それは地図の大きさを変更したり移動するのと同じ方法で大きさを変更したり移動できます。

タイトルを移動すると、ページの中央にタイトルの配置を助けるガイドラインが現れることに気づくでしょう。

ただし、アクションツールバーには、タイトルを（ページではなく）マップに相対的に配置するためのツールもあります：

4. マップをクリックしてそれを行います

5. キーボードの Shift を押したまま、地図とラベルの両方が選択されるようにラベルをクリックしてください。

6. 選択を左寄せ、右寄せ、または中央寄せする ボタンを探して、その横のドロップダウン矢印をクリックし、位置決めオプションを表し、中央揃えをクリックします。
これで、ラベルの内容ではなくフレームが地図の中央に配置されました。ラベルの内容を中央に表示するには：

1. クリックしてラベルを選択します。
2. レイアウトウィンドウのサイドパネルにあるアイテムプロパティタブをクリックします。
3. ラベルの文字を“Swellendam”に変更します:
4. このインターフェイスは、外観セクションのフォントと配置のオプションを設定するために使用します。

1. 大きめの、しかし実用的なフォント選びます（この例では、サイズ 36 のデフォルトフォントを使用します）

2. 水平方向配置を、中央に設定します。

フォントの色も変更できますが、デフォルトのとおりに黒のままにしておくのがおそらく最善です。

5. デフォルトの設定では、タイトルのテキストボックスにフレームを追加しません。フレームを追加したい場合は、そうすることができます。

1. アイテムプロパティタブで、フレームオプションが表示されるまで、スクロールダウンします。

2. フレームチェックボックスをクリックしてフレームを有効にしてください。フレームの色や幅も変更できます。

この例ではフレームを有効にしていないので、これまでのところ私たちのページはこうなっています：

4.1. Lesson: 印刷レイアウトを使用する
せっかく整列させたのに、間違って動かしてしまわないように、アイテムを固定することができます:

1. ラベルと地図の両方を選択します
2. アクションツールバーの 選択アイテムを固定する ボタンをクリックします。

注釈: アクションツールバーの すべてのアイテムの固定を解除 ボタンをクリックすると、アイテムの編集が再び可能になります。

4.1.4 Follow Along: 凡例の追加

また、地図の読者は、地図上のさまざまな事柄が実際に何を意味しているのかを理解する必要があります。地名のように一目瞭然の場合もあれば、森の色のように推測が難しい場合もあります。では新しい凡例を追加してみましょう。

1. 凡例を追加 ボタンをクリックします
2. 凡例を配置するページの上でクリックし、新規アイテムのプロパティダイアログで提案された値を受け入れます。
3. レイアウトページに凡例が追加され、メインダイアログで設定されたレイヤシンボル体系が表示されます。
4. いつものように、アイテムをクリックして好きな場所に移動させることができます。
4.1.5 Follow Along: 凡例アイテムをカスタマイズする

凡例上のすべてが必要ではありませんので、いくつかの不要な項目を削除しましょう。

1. アイテムプロパティ タブの中に、凡例アイテム グループが表示されます。
2. 自動更新 ボックスをオフにすると、凡例の項目を直接変更できるようになります
3. buildings を持つエントリを選択します
4. ボタンをクリックして、それを凡例から削除します

また、アイテムの名前を変更できます。

1. 同じリストからレイヤを選択します。
2. アイテムのプロパティを編集 ボタンをクリックします。
3. レイヤの名前を Places, Roads and Streets, Surface Water, Rivers に変更します。

また、アイテムを並び替えることもできます:

4.1. Lesson: 印刷レイアウトを使用する
凡例はおそらく新しいレイヤ名によって変わることになるので、凡例または地図を移動したり大きさを変更したい場合があります。これがその結果です：
4.1.6 Follow Along: 地図を書き出す

注釈：しばしば作業を保存することを覚えていましたか？

最後に、地図をエクスポートする準備ができました。レイアウトウィンドウの左上隅にエクスポートボタンが見えます。

・ 印刷レイアウト：プリンタとのインタフェースを提供します。プリンタのオプションは、使用するプリンタのモデルによって異なるので、このトピックに関する詳細な情報は、プリンタのマニュアルや印刷に関する一般的なガイドを参照する方がよいでしょう。

そのほかのボタンは地図ページをファイルにエクスポートするのに使います。

・ 画像としてエクスポート：様々な一般的な画像フォーマットから選択することができます。これはおそらく最もシンプルなオプションですが、作成される画像は「死んで」おり、編集するのが困難です。

・ SVG としてエクスポート：もしあなたが地図を地図製作者に送るなら（その人は出版用に地図を編集したいかもしれません）、SVG としてエクスポートするのが一番よいでしょう。SVG は "Scalable Vector Graphic" の略で、Inkscape やその他のベクター画像編集ソフトウェアにインポートすることができます。

・ PDF としてエクスポート：クライアントに地図を送る必要がある場合、PDF を使うのが最も一般的です。なぜなら、PDF では印刷オプションを設定するのが簡単だからです。地図製作者の中には、このフォーマットをインポートしたり編集したりできるプログラムを持っていれば、PDF を好む人もいるでしょう。

ここでは PDF を使用します。

1. sup: PDF としてエクスポートボタンをクリックします。

2. 通常通り、保存場所とファイル名を選択します。以下のようなダイアログが表示されます。
3. これで安全にデフォルト値を使用することができますので、保存をクリックします。

QGISは地図のエクスポートを進め、終了すると同時に印刷レイアウトダイアログの上にメッセージを表示します。

4. メッセージ内のハイパーリンクをクリックし、PDFが保存されているフォルダをシステムのファイルマネージャで開きます。

5. 開いてみて、レイアウトがどのように見えるかを確認してください。

すべてOKですか？初めてのQGISマッププロジェクト完成おめでとうございます！

6. 何か不満がありますか？QGISのウィンドウに戻り、適切な修正を行って再度エクスポートしてください。

7. プロジェクトファイルを保存することを忘れないでください。
4.1.7 In Conclusion

これで、基本的な静的マップレイアウトを作成する方法はお分かりいただけたと思います。さらに一歩進んで、より多くのレイアウト項目を持つ、動的に適応するマップレイアウトを作成することができます。

4.2 Lesson: ダイナミック印刷レイアウトを作成する

基本的な地図レイアウトの作成方法を学んだので、さらに一歩進んで、地図の範囲やページのプロパティ（例えば、ページのサイズを変更したとき）に動的に適応する地図レイアウトを作成しましょう。また、作成日付も動的に適応します。

4.2.1 Follow Along: 動的マップキャンバスの作成

1. ESRI シェーブファイル形式のデータセット protected_areas.shp, places.shp, rivers.shp および water.shp をマップキャンバスに読み込み、そのプロバティを自分の良いように修正します。

2. すべてがあなたの好みに合わせてレンダリングされ、シンボル化されたら、プロジェクトツールバーの新規印刷レイアウトアイコンをクリックするかプロジェクトの新規印刷レイアウトを選択します。新しい印刷レイアウトのタイトルを選択するようプロンプトが表示されます。

3. ヘッダと南アフリカのスウェレンダム近くの地域の地図で構成される地図レイアウトを作成します。レイアウトのマージンは 7.5 mm で、ヘッダの高さは 36mm でなければなりません。

4. キャンバス上に main map という図面アイテムを作成し、レイアウトパネルに移動します。変数セクションまでスクロールして、レイアウトの部分を探します。ここでは、動的印刷レイアウト全体で使用することができるいくつかの変数を設定します。レイアウトパネルに移動して、変数セクションにスクロールダウンしてください。最終の変数がマージンを定義します。ポタンを押し、sw_layout_margin という名前を入力します。値を 7.5 に設定します。もう一度ボタンを押して、sw_layout_height_header という名前を入力します。値を 36 に設定します。

5. これで、マップキャンバスの位置とサイズを変数によって自動的に作成する準備が整いました。図面アイテムが選択されていることを確認して、アイテムプロパティパネルに移動し、スクロールダウンして位置とサイズセクションを開いてください。X のデータによって定義された上書きをクリックし、変数の項目から @sw_layout_margin を選択します。

6. Y のデータによって定義された上書きをクリックし、編集... を選択して数式を入力します:

 to_real(@sw_layout_margin) + to_real(@sw_layout_height_header)

7. 地図アイテムのサイズは、幅と高さの変数を使用して作成することができます。幅のデータによって定義された上書きをクリックし、編集... を再度選択します。数式を記入します:

 @layout_pagewidth - @sw_layout_margin * 2

高さのデータによって定義された上書きをクリックし、編集... を選択します。ここで数式を入力します:
8. また、メインキャンバスの地図範囲の座標を含むグリッドを作成します。再びアイテムプロパティに移動して、グリッドセクションを選択します。ボタンをクリックして、グリッドを挿入します。グリッドの修正をクリックして、QGISメインキャンバスで選択した地図の縮尺に従って、X, Yとオフセットに間隔を設定します。グリッドタイプクロスは、私たちの目的にとってもよく合っています。

4.2.2 Follow Along: 動的ヘッダを作成する

1. ボタンでヘッダを含む長方形を挿入します。アイテムパネルにheaderという名前を入力します。

2. 再びアイテムプロパティに移動し、位置とサイズセクションを開きます。データ定義によって定義された上書きを使用して、XとYにsw_layout_margin変数を選択します。幅は式で定義されるものをとします:

 @layout_pagewidth - @sw_layout_margin * 2

そして高さをsw_layout_height_header変数で指定します。

3. ここでは、アイテムを追加を使って、ヘッダーを分割するための1本の横線と2本の縦線を挿入します。1本の横線と2本の縦線を作成し、それそれぞれをHorizontal line,Vertical line 1, Vertical line 2という名前にします。

1. 横線:
 1. 変数sw_layout_marginをXにします
 2. Yの式に次を設定します:

 @sw_layout_margin + 8

3. 幅の式に次を設定します:

 @layout_pagewidth - @sw_layout_margin * 3 - 53.5

2. 最初の縦線:
 1. Xの式に次を設定します:

 @layout_pagewidth - @sw_layout_margin * 2 - 53.5

2. Yに変数sw_layout_marginを設定します

3. 高さは作ったヘッダと同じでなければならないので、高さには変数sw_layout_height_headerを設定します。

3. 2本目の縦線は、1本目の縦線の左側に配置されます。
1. X の式に次を設定します:

\[@\text{layout_pagewidth} - @\text{sw_layout_margin} \times 2 = 83.5 \]

2. Y に変数 `sw_layout_margin` を設定します

3. 高さはもう一本の縦線と同じでなければならないので、変数 `sw_layout_height_header` を高さに設定します。

以下の図は、動的レイアウトの構造を示しています。線によって作成された領域をいくつかの要素で埋めます。

4.2.3 Follow Along: 動的ヘッダのラベルを作成する

1. あなたの QGIS プロジェクトのタイトルを自動的に含めることができます。タイトルはプロジェクトプロパティで設定します。ラベルを追加 ボタンでラベルを挿入し、`project title (variable)` という名前を入力します。アイテムプロパティパネルのメインプロパティに式を入力します:

\[
[@\text{project_title}]\]

ラベルの位置を設定します。

1. X には次の式を使います:

\[@\text{sw_layout_margin} + 3 \]

2. Y には次の式を使います:
3. 幅 には次の式を使います:

@layout_pagewidth - @sw_layout_margin * 2 - 90

4. 高さ には 11.25 を入力します

外観 にあるフォントサイズに 16 pt を設定します。

2. 二つ目のラベルには、作成した地図の説明を入れます。ここでもラベルを挿入し、名前を map description とします。メインプロパティ に map description というテキストを入力します。
また、メインプロパティ には、次のように入力します:

printed on: [%format_date(now(),'dd.MM.yyyy')%]

ここでは、2 つの日付と時刻 関数 (now と format_date) を使用しました。

ラベルの位置を設定します。

1. X には次の式を使います:

@sw_layout_margin + 3

2. Y には次の式を使います:

@sw_layout_margin + 11.5

3. 3 つ目のラベルには、あなたの組織に関する情報を記載します。まず、アイテムプロパティ の変数メニューで、いくつかの変数を作成します。レイアウトメニューから ボタンをクリックして、o_department, o_name, o_address, o_postcode という名前を入力してください。2 行目には、あなたの組織に関する情報を入力してください。これらの変数は メインプロパティ セクションで使用します。

メインプロパティ で次を入力します:

[% @o_name %]
[% @o_department %]
[% @o_address %]
[% @o_postcode %]

ラベルの位置を設定します。

1. X には次の式を使います:

@layout_pagewidth - @sw_layout_margin - 49.5

2. Y には次の式を使います:

第 4 章 Module: 地図をレイアウトする
3. 幅を49.00にします
4. 高さには次の式を使います:

\[\text{@sw_layout_margin} + 15.5 \]

4.2.4 Follow Along: 動的ヘッダに画像を追加する

1. 圖像追加ボタンを使って、ラベル organisation information の上に画像を配置することができます。organisation logo という名前を入力した後、ロゴの位置とサイズを決定します:

1. \(X \) には次の式を使います:

\[\text{@layout_pagewidth} - \text{@sw_layout_margin} - 49.5 \]

2. \(Y \) には次の式を使います:

\[\text{@sw_layout_margin} + 3.5 \]

3. 幅を39.292にします

4.2. Lesson: ダイナミック印刷レイアウトを作成する
4. 高さを9.583にします
あなたの組織のロゴを入れるには、ロゴをホームディレクトリに保存し、メインプロパティのImage Sourceにパスを入力する必要があります。

2. 私たちのレイアウトにはまだ方位記号が必要です。これも方位記号を追加を使って挿入します。ここでは既定の方位記号を使用します。位置を定義します:
 1. Xには次の式を使います:

   ```latex
   \texttt{@layout_pagewidth} - \texttt{@sw_layout_margin} * 2 - 78
   ```
 2. Yには次の式を使います:

   ```latex
   \texttt{@sw_layout_margin} + 9
   ```
 3. 幅を21.027にします
 4. 高さを21.157にします

4.2.5 Follow Along: 動的ヘッダのスケールバーを作成する

1. ヘッダーにスケールバーを挿入するには、スケールバーを追加をクリックして、方位記号の上の矩形に配置します。メインプロパティの地図でMain Map (Map 1) を選択します。これは、QGISのメインキャンバスで選択した範囲に応じて縮尺が自動的に変更されることを意味します。スタイルは数値を選択します。これは、スケールバーのないシンプルなスケールを挿入することを意味します。このスケールにはまだ位置とサイズが必要です。
 1. Xには次の式を使います:

   ```latex
   \texttt{@layout_pagewidth} - \texttt{@sw_layout_margin} * 2 - 78
   ```
 2. Yには次の式を使います:

   ```latex
   \texttt{@sw_layout_margin} + 1
   ```
 3. 幅を25にします
 4. 高さを8にします
 5. 基準点を中央に置きます。

おめでとうございます。あなたは最初の動的な地図レイアウトを作成しました。レイアウトを見て、すべてが思い通りに見えるかどうかチェックしてみてください。動的な地図レイアウトは、ページプロパティを変更すると自動的に反応します。例えば、ページサイズをDIN A4からDIN A3に変更した場合、ビューを更新 ボタンをクリックすると、ページデザインが適応されます。
4.2.6 What's Next?

次のページでは、完成すべき課題が与えられます。これによって、これまでに学んだテクニックを実践できます。

4.3 課題 1

あなたの既存の地図プロジェクトを聞き、徹底的にそれを修正します。あなたが以前に修正したかったと思う小さな誤りや物事に気づいた場合は、ここでやります。

地図をカスタマイズしながら、自分自身に問い続けてください。この地図は、データに不慣れな人も読みやすく理解しやすいでしょうか？この地図をインターネットで、またはポスターで、または雑誌で見た場合、注意を惹かれるでしょうか？自分の地図でなかったとしたなら、この地図を読みたいでしょうか？

このコースを基本または中級レベルでやっている場合、より高度なセクションからのテクニックをよく読んでください。自分の地図で行いたいものがあったら、実装しようと試みてみてください。

このコースは、あなたに提示されている場合は、コースのプレゼンターが評価のために地図の最終版を、PDFにエクスポートして、提出するよう求めるかもしれません。自分でこのコースをやっている場合、同じ基準を使用して、ご自身の地図を評価することをお勧めします。地図は地図自体だけでなく、地図ページと要素の外観やレイアウトの全体的な外観と記号で評価されます。地図の外観を評価するための重点は、常に使いやすさになることを覚えておいてください。見た目が良いほど、一目で簡単に理解できるほど、良い地図です。

ハッピーカスタマイズ！
4.3.1 In Conclusion

最初の4つのモジュールでは、ベクタ地図を作成し、スタイルを付ける方法を教えてきました。次の4つのモジュールでは、完全なGIS分析にQGISを使用する方法を学びます。内容は、ベクタデータを作成および編集する；ベクタデータを分析する；ラスタデータを使用および分析する；ラスタとベクタの両方のデータソースを使用して、GISを使用して最初から最後まで問題を解決する。
第5章 Module: ベクタデータを作成する

既存のデータを使用して地図を作成することはまだ始まったばかりです。このモジュールでは、既存のベクタデータを変更して、まったく新しいデータセットを作成する方法を学びます。

5.1 Lesson: 新しいベクタデータセットを作成する

使用するデータはどこかから持ってこなければならない。最も一般的なアプリケーションでは、データがすでに存在しています。しかしプロジェクトがより特化し専門的になるほど、データが既に利用可能であるという可能性が低くなります。このような場合は、自身の新しいデータを作成する必要があります。このレッスンの目標：新しいベクタデータセットを作成します。

5.1.1 Follow Along: レイヤ作成ダイアログ

新しいベクタデータを追加するには、まずそれを追加するためのベクタデータセットが必要です。現在の場合は、既存のデータセットを編集するのではなく、完全に新しいデータを作成して始めましょう。それゆえ、まず自分自身の新しいデータセットを定義する必要があります。

1. QGISを開き新しい無地のプロジェクトを作ります。

2. メニューからレイヤ ＿レイヤを作成 ＿新しいシェープファイルレイヤを選択し、クリックします。
 新しいレイヤを定義するための 新規シェープファイルレイヤ ダイアログが表示されます。
3. ファイル名フィールドの ... をクリックします。保存ダイアログが現れます。

4. exercise_data ディレクトリに移動します。

5. 新しいレイヤを school_property.shp として保存します。

この段階で欲しいデータセットの種類を決定することが重要です。それぞれの異なるベクタレイヤタイプは、バックグラウンドで「別々に構築」されているので、一度レイヤを作成したらそのタイプは変更できません。

次の練習では、区域を表す新しい地物を作成します。このような地物には、ポリゴンデータセットを作成する必要があります。

6. ジオメトリタイプではドロップダウンメニューから ポリゴン を選びます：

132
これは、ダイアログの残りの部分には影響しませんが、それは、ベクタデータセットが作成されたときジオメトリの正しいタイプが使用されるようになります。

次のフィールドでは、座標参照系、または CRS、を指定します。CRS は数値座標と地球表面の位置とを関連付ける方法です。詳しくはユーザーズマニュアルの 投影法の利用方法 を参照してください。

この例では、プロジェクトに関連付けられた既定の CRS である WGS84 を使います。

次に、新規フィールドの下にグループ化されたフィールドのコレクションがあります。既定では、新しいレイヤは 1 つの属性、id フィールド（下のフィールドリストに表示されています）しか持ちません。しかし、作成したデータを有効に活用するためには、実際にこの新しいレイヤに作成する地物について、何か記述する必要があります。今のところ、name というフィールドをひとつ追加して、テキスト長を 80 文字に制限されたテキストデータを格納することで十分でしょう。

7. 以下の設定を再現し、フィールドリストに追加 ボタンをクリックします :

8. ダイアログが次のようになることを確認します。
9. OK をクリックします

新しいレイヤが レイヤ パネルに表示されるはずです。
5.1.2 Follow Along: データソース

新しいデータを作成するとき、それは明らかに地上に現実に存在するオブジェクトに関するものである必要があります。そのため、どこかから情報を取得する必要があります。

オブジェクトに関するデータを取得するにはさまざまな方法があります。たとえば、GPS を使用して現実の世界でのポイントをキャプチャし、それから QGIS にデータをインポートできます。あるいは、セオドライトを使用してポイントを調査し、新しい地物を作成するために、手動で座標を入力できます。あるいは、デジタル化プロセスを使用して、衛星画像や航空写真などのリモートセンシングデータからオブジェクトをトレースできます。

この例では、デジタイズのアプローチを使用します。サンプルラスタデータセットが提供されているので、必要に応じてそれらをインポートする必要があります。

1. データソースマネージャ ボタンをクリックします。
2. 左にある ラスタ を選びます。
3. ソース パネルにある ... ボタンをクリックします。
4. exercise_data/raster/ に移動します。
5. ファイル 3420C_2010_327_RGB_LATLNG.tif を選びます。
6. 開く をクリックしてダイアログウィンドウを閉じます。
7. 追加と閉じるをクリックします。画像が地図に読み込まれます。
8. 航空写真が表示されない場合は、新規レイヤを選択して右クリックし、コンテキストメニューからレイヤの領域にズームを選択してください。
9. *拡大* ボタンをクリックし、下の青くハイライトされている部分にズームインします：
これでこの三つの運動場をデジタイズする準備ができました。
デジタイズする前に、`school_property` レイヤを空中写真の上に移しましょう。

1. レイヤ ベーンにある `school_property` レイヤを選び、一番上にドラッグします。
デジタイズを開始するためには、編集モードに入ることがあります。GIS ソフトウェアでは一般的に、重要なデータを誤って編集したり削除することを防ぐために、これが必要とされます。編集モードは、レイヤごとに個別にオフまたはオフに切り替えられます。

school_property レイヤで編集モードに入ることは:

1. レイヤ パネルで school_property レイヤをクリックして選択します。

2. 編集モード切替 ボタンをクリックします。

このボタンを読むことができない場合は、デジタイズツールバーが有効になっているか確認してください。ビュー -> ツールバー -> デジタイジングメニュー エントリの横にチェックマークがあるはずです。

編集モードに入るとすぐに、いくつかのデジタイズツールが有効になっているのがわかります:

- ポリゴン地物を追加
- 頂点ツール

他の関連ボタンはまだ無効ですが、新しいデータに触れると有効になります。

レイヤ パネルの school_property レイヤに鉛筆のアイコンが表示され、編集モードになっていることを示していることに注意してください。

3. ポリゴン地物を追加 ボタンをクリックし、学校の運動場のデジタイズを始めます。

マウスカーソルが十字になったのがわかると思います。これにより、デジタイズする点をより正確に配置することができます。デジタイズツールを使っていても、マウスホイールを回して地図を拡大・縮小したり、マウスホイールを押してまま地図内をドラッグしてパンできることを覚えておいてください。

デジタイズしている第 1 の地物は athletics field です:

4. 運動場の線のどこかの点でクリックすることでデジタイズを開始します。

5. さらに線に沿ってクリックして点を置いてゆき、描画している図形が運動場を完全に覆うようにします。

5.1. Lesson: 新しいベクタデータセットを作成する
6. 最後の点を配置した後、右クリックしてポリゴンの描画を終了します。これで地物が確定し、属性
ダイアログが表示されます。

7. 値を以下のように埋めます:

```
school_property - Feature Attributes

id  1
name Athletics Field
```

第 5 章 Module: ベクタデータを作成する
8. OKをクリックすると、新しい地物が完成しました！

9. レイヤーパネルで school_property レイヤを選択します。

10. 右クリックしてコンテキストメニューから属性テーブルを開くを選択します。
表には、追加したばかりの地物が表示されます。編集モードでは、更新したいセルをダブルクリックすることで、属性データを更新することができます。
11. 属性テーブルを閉じます。

12. 作成したばかりの新しい地物を保存するには、ボタンをクリックします。

地物をデジタイズしているときに間違えた場合、作成が終わった後で常にそれを編集できることを覚えておいてください。間違えた場合は、前述のように地物を作成し終わるまで、デジタイズを継続します。その後：

1. ボタンをクリックします。

2. 移動したい頂点の上にマウスを置き、左クリックします。

3. 頂点の正しい位置にマウスを移動し、左クリックします。これにより、頂点が新しい位置に移動します。

5.1. Lesson: 新しいベクタデータセットを作成する
線分の移動も同じ要領で行えますが、線分の中点にカーソルを合わせる必要があります。

変更を取り消す場合は、元に戻すボタンか Ctrl+Z を押します。

4. レイヤ編集内容を保存ボタンをクリックして、変更内容を保存するのを忘れないようにしてください。

5. 編集が終わったら、編集モード切替ボタンをクリックして、編集モードから出ます。

5.1.3 Try Yourself ポリゴンをデジタイズする

学校自体と上のフィールドをデジタイズします。デジタイズを支援するためにこの画像を使用します：

5.1. Lesson: 新しいベクトルデータセットを作成する
それぞれの新しい地物は、一意なid値を持つ必要があることを覚えておきましょう！

注釈：レイヤーに地物を追加し終わったら、編集内容を保存して、編集モードを終了することを忘れないでください。

注釈：以前のレッスンで学んだ技法を使って、school_propertyの塗りつぶし、輪郭、ラベルの配置や形式の体裁を整えることができます。
5.1.4 Follow Along: 頂点編集テーブルを使う

地物を編集するもう一つの方法は、頂点編集 テーブルを使って各頂点の実際の座標値を手動で入力することです。

1. school_property レイヤの編集モードになっていることを確認してください。
2. まだアクティブになっていない場合は、頂点ツール ボタンをクリックします。
3. school_property レイヤに作成したポリゴン地物の上にマウスを移動し、右クリックします。すると、その地物が選択され、頂点エディタ ペインが表示されます。

<table>
<thead>
<tr>
<th>Vertex Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

注釈: このテーブルは、その地物の頂点の座標を含んでいます。この地物には7つの頂点がありますが、地図上で確認できるのは6つだけであることに注意してください。よく見ると、0行目と6行目が同じ座標であることに気づくでしょう。これらは地物ジオメトリの始点と終点であり、閉じたポリゴン地物を作成するために必要です。

4. 選択した地物のひとつまたは複数の頂点のうえでボックスをクリック＆ドラッグします。
選択された頂点の色が青に変わり、頂点の座標を含んでいる頂点エディタ テーブルの対応する行がハイライトされます。
5. 座標を更新するには、編集したいテーブルのセルを左クリックし、更新した値を入力します。この例では、行 4 の x 座標が 20.4450 から 20.4444 に更新されます。

5.1. Lesson: 新しいベクタデータセットを作成する
6. 更新した値を入力したら、エンターキーを押して変更を適用します。マップウィンドウで頂点が新しい位置に移動するのが確認できます。

7. 編集が終わったら、編集モード切り替えボタンをクリックして編集モードを解除し、編集内容を保存します。

5.1.5 Try Yourself 線をデジタイズする

ここでは、道路レイヤにまだ記されていない2つのルートをデジタル化します。一つは細道、もう一つは小道です。細道はレイルトン郊外の南端を走り、印を付けた道路を起点と終点としています。
小道はさらに少し南です:
1. 道路 レイヤがまだマップにない場合は、ダウンロードした訓練データの exercise_data フォルダに含まれる GeoPackage ファイル training-data.gpkg から roads レイヤを追加してください。やり方については Follow Along: GeoPackage データベースからベクタデータを読み込むを参照してください。

2. exercise_data ディレクトリに routes.shp という ESRI シェイブファイルのラインデータセットを新規に作成し、id と type という属性を設定します（上記の方法を参考にしてください）

3. routes レイヤで線集モードを有効にします。

4. ライン機能を使用しているので、縁の地物を追加ボタンをクリックし、ラインデジタイズモードを開始します。

5. 一度に１つずつ、routes レイヤにある細道と小道をデジタイズします。できるだけ正確にルートをたどるようにし、角やカーブに沿って点を追加します。

6. type 属性の値を path または track に設定します。
7. レイヤプロパティ ダイアログを使って、ルートにスタイルを追加します。細道と小道で異なるスタイルを自由に使ってください。

8. 編集内容を保存し、編集モードを切り替え ボタンを押して、編集モードをオフにします。

答え

シンボル体系は重要ではありませんが、結果は大体このようになるはずです：

5.1.6 In Conclusion

これで地物を作成する方法がわかりましたね！このコースではポイント地物の追加についてカバーしていませんが、より複雑な地物（ラインとポリゴン）で作業してきましたから実際に必要ありません。ポイントを置きたいところを 1 回クリックし、いつものように属性を与え、その後地物が作成されること以外、まったく同じ動作です。

デジタイズは GIS プログラムでは非常に一般的な活動ですので、方法を知ることは重要です。
5.1.7 What's Next?

GIS レイヤーの地物は、単なる画像ではなく、空間内のオブジェクトです。例えば、隣接するポリゴンは、互いの位置関係を知っています。これは、トポロジーと呼ばれています。次のレッスンでは、これがなぜ便利なのか、その例を見てみましょう。

5.2 Lesson: 地物のトポロジー

オーバーラップやギャップなどのエラーを最小限に抑えるため、トポロジーはベクタデータレイヤの有用な側面です。

たとえば、2つの地物が境界を共有し、トポロジーを使用してその境界を編集する場合、はじめの地物を編集し、そしてもう1つの地物を編集して、それらが合うように慎重に境界を描く必要はありません。それらの共有された境界を編集でき、両方の地物は同時に変化します。

このレッスンの目標: 例を用いてトポロジーを理解します。

5.2.1 Follow Along: スナップ

スナップはトポロジ編集を容易にします。これによりデジタイズ中にマウスカーソルを他のオブジェクトにスナップさせることが可能です。スナップオプションを設定するには:

1. メニュー項目 プロジェクト → スナップオプション... に移動します。

2. スナップオプション ダイアログを設定して、データ型 頂点、許容誤差 12 ピクセルで landuse レイヤをアクティブにします:

![スナップ設定ダイアログ](image)

3. 重なりを避ける欄のボックスがチェックされていることを確認します。

4. ダイアログを閉じます。

5. landuse レイヤを選択して、編集モードにします(✍)

6. ツールバーの 高度なデジタイズ が有効になっていることを確認します (ビュー → ツールバー の項目を参照)。
7. このエリアにズームします（必要に応じてレイヤとラベルを有効にします）：

8. この赤で示した新しい（架空の）区域をデジタイズします：

5.2. Lesson: 地物のトポロジ
9. プロンプトが表示されたら、OGC_FID に 999 を与えます。しかし、他の値は変更しなくても大丈夫です。

注意深くデジタイズしていて、カーソルを隣接する領域の頂点にスナップさせるようにすると、既存の隣接区域との間に隙間ができないことに気がつくはずです。

10. 高度なデジタイズツールバーの を元に戻すと やり直すツールに注目してください。

5.2.2 Follow Along: トポロジ的物を修正

トポロジ地物の更新が必要な場合があります。今回の調査区域では、ある区域が森林になったので、landuse レイヤを更新する必要があります。そこで、この区域の森林地物を拡大し、結合することにします。

森林区域を結合するために新しいポリゴンを作成するのではなく、頂点ツールを使って既存のポリゴンを編集して結合します。

1. 編集モードに入ります (まだアクティブになっていない場合)
2. 頂点ツールツールを選択します。
3. 森林の区域を選択し、頂点を選択し、隣接する頂点に移動して、2つの森林地物が出会うようにします。
4. 他の頂点をクリックし、所定の位置にスナップさせます。

トポロジとして正しい境界線はこのようになります：
続いて、頂点ツールを使って、さらにいくつかの区域を結合します。

また、ポリゴン地物を追加ツールを使用して、2つの森林ポリゴンの間のギャップを埋めることができます。重なりを避けるを有効にすると、頂点を一つ一つ追加する必要はありません。新しいポリゴンが既存のポリゴンに重なる場合、自動的に追加されいます。

例題のデータを使用する場合、次のような森林区域があるはずです:

あなたが結合した森林の区域がより多くても、より少なくても、違う区域であったとしても気にしないで下さい。

5.2.3 Follow Along: ツール: 地物の簡素化

同じレイヤで続けて、地物を簡素化ツールをテストしてみましょう:

1. それをクリックしてアクティブにします。

2. 頂点ツールまたは地物を追加ツールを使って結合した区域の一つをクリックします。このダイアログが表示されます:
3. 許容度を変えて何が起きるか見てみましょう。

これにより、頂点の数を減らすことができます。

4. OKをクリックします

5.2. Lesson: 地物のトポロジ
このツールの利点は、一般化するためのシンプルで直感的なインターフェイスを提供していることです。しかし、このツールはトポロジを台無しにしていることに注意してください。単純化されたポリゴンは、本来あるべき隣接するポリゴンとの境界を共有しないくなるのです。そのため、このツールは独立した地物に適しています。

次へ進む前に、最後の変更を元に戻すことでポリゴンを元の状態に戻します。

5.2.4 Try Yourself ツール: リングの追加

ツールを使用すると、ポリゴン地物に内部リングを追加（ポリゴンに穴を開ける）することができ、その穴はポリゴン内に完全に含まれている必要がありますが、境界に触れていなくても問題はありません。例えば、南アフリカの外周をデジタイズし、レゾートの穴を追加する必要がある場合、このツールを使用することになります。

このツールを使って実験してみると、スナップオプションがポリゴン内にリングを作るのは邪魔していることに気づくかもしれません。そのため、穴を開ける前にスナップをオフにすることをお勧めします。

1. スナップを有効にする ボタン（またはショートカット s）を使って landuse レイヤのスナップを無効化します。
2. リング追加 ツールを使ってポリゴンジオメトリの中央に穴を開けます。
3. ポリゴン追加 ツールを使っているかのように、対象の地物の上にポリゴンを描画します。
4. 右クリックすると穴が見えるようになります。
5. リング削除 ツールを使って、先ほど作成した穴を削除します。穴の内側をクリックすると、穴が削除されます。

答え

正確な形状は重要ではありませんが、このように地物の中央に穴が開いているはずです。
5.2.5

Try Yourself ツール: 部分の追加

ツールを使用すると、主地物に直接接続されていない新しい部分を地物に追加することができます。例えば、南アフリカ共和国本土の境界線をデジタル化したが、プリンスエドワード諸島をまだ追加していない場合、このツールを使用して作成します。

1. 部分を追加 ツールを使って、部分を追加したいポリゴンを選択します。

2. 部分を追加 ツールを使って、はみ出した部分を追加します。

3. 部分の削除 ツールを使って、今作成した部分を削除します。

注釈: 部分の内側をクリックして削除します。

答え

1. まず、Bontebok National Park を選択します:
2. 新しい部分を追加します:

3. 編集を元に戻してから、次のツールの演習を続けてください。
5.2.6 Follow Along: ツール: 地物の変形

ツールは、ポリゴン地物を拡張したり、その一部を（境界線に沿って）切り取るために使用します。

拡張:

1. 地物を選択ツールを使ってポリゴンを選択します。
2. ポリゴンの中を左クリックして、描画を開始します。
3. ポリゴンの外側に図形を描きます。最後の頂点はポリゴンの内側にしてください。
4. 右クリックして形状を完成させます:

これは次のような結果になります:

5.2. Lesson: 地物のトポロジ 165
部分を切り取る：

1. 地物を選択ツールを使ってポリゴンを選択します。

2. ポリゴンの外側をクリックします。

3. ポリゴンの内側に図形を描きます。最後の頂点はポリゴンの外に戻っている必要があります。

4. ポリゴンの外で右クリックします：
以上の結果:

5.2.7 Try Yourself ツール: 地物の分割

ツールは地物を変型ツールと似ていますが、2つの部分のどちらかを削除しない点が異なります。そのため、その両方を保持します。

このツールを使って、ポリゴンから角を分割してみます。

1. まず、landuse レイヤを選択し、スナップを再度有効にします。
2. 地物を分割ツールを選択し、頂点をクリックして線を描き始めます。
3. 境界線を引きます。
4. 分割したいポリゴンの「反対側」にある頂点をクリックし、右クリックで線を完成させます：

5.2. Lesson: 地物のトポロジ 167
5. この時点では、何も起こっていないように見えるかもしれませんが、しかし、landuse レイヤは境界線なしでレンダリングされるため、新しい分割線は表示されないことを覚えておいてください。

6. [地物を選択]ツールを使って、分割した部分を選択すると、新しい地物がハイライトされます。
5.2.8 Try Yourself ツール: 地物のマージ

ここで、先ほど分割した地物をポリゴンの残りの部分に再度結合します:

1. 選択した地物を結合
2. 選択地物の属性結合

ツールを使って實験してみましょう。

答え

- 選択地物を結合ツールを使って、まず結合したいポリゴンを両方とも選択します。
- 属性のソースとして、OGC_FID が 1 の機能を使用します（ダイアログでそのエントリーをクリックし、選択した地物から属性を取得するボタンをクリックします）。

別のデータセットを使用している場合、元のポリゴンの OGC_FID が 1 でない可能性が高くなります。そのような場合には、OGC_FID が指定されている地物を選択します。

選択地物の属性結合ツールを使用すると、ジオメトリを区別したまま、同じ属性を与えることができます。

5.2.9 In Conclusion

トポロジ編集はトポロジの観点からの正しさを維持しながら迅速かつ容易にオブジェクトの作成や変更ができる強力なツールです。
5.2.10 What's Next?

オブジェクトの形状を簡単にはじめって方法はわかりましたが、属性の追加にはまだ頭を悩ませているようですね！次は、フォームを使って、属性編集をよりシンプルに、より効果的に行う方法を紹介します。

5.3 Lesson: フォーム

デジタイズで新しいデータを追加する場合、その地物の属性を入力するダイアログが表示されます。ただし、このダイアログボックスは既定ではあまり見えた目がよくありません。これは特に大规模なデータセットを作成する場合や他の人にデジタイズを手伝って貰うときに既定のフォームではわかりにくい場合に、有用性の問題を引き起こす可能性があります。

幸いにも、QGISではレイヤに独自のカスタムダイアログを作成できます。このレッスンではその方法について説明します。

このレッスンの目標：レイヤのフォームを作成します。

5.3.1 Follow Along: QGISのフォームデザイン機能の使用

1. レイヤパネルでroadsレイヤを選ぶ
2. 前にやったように編集モードに入ります
3. roadsレイヤの属性テーブルを開きます
4. テーブルのどこかのセルで右クリックします。フォームを開くを含んだ短いメニューが現れます。
5. それをクリックして、QGISがこのレイヤのために生成するフォームを見てみましょう

明らかに、毎回属性テーブルで特定の街路を検索するのではなく、地図を見ながらこれを行うことができるといいですね。

1. レイヤパネルでroadsレイヤを選ぶ
2. 地物情報表示ツールを使って、地図上の任意の街路をクリックします。
3. 地物情報パネルが開き、フィールドの値やクリックした地物に関する一般的な情報をツリー表示で確認することができます。
4. パネル上部の地物情報表示の設定メニューから単一地物の場合、自動でフォームを開くチェックボックスをオンにします。
5. さて、地図内のどれかの街路をもう一度クリックします。前の地物情報ダイアログに沿って今おなじみのフォームが表示されます：
6. 単一地物の場合、自動でフォームを開くがチェックされている限り、識別ツールで1つの地物をクリックするたびに、そのフォームがポップアップ表示されます。

5.3.2 **Try Yourself** フォームを使用して値を編集する

編集モードの場合は、このフォームを使用して地物の属性を編集できます。

1. 編集モードをアクティブにします（まだアクティブになっていない場合）。
2. **地物情報表示**ツールを使って Swellendam を通る大通りをクリックします：
3. その highway の値を secondary に編集します

4. 編集モードを終了し、編集内容を保存します

5. 属性テーブルを開くと、属性テーブルの値が更新されたことがわかります。つまり、ソースデータも更新されています。

5.3.3 Follow Along: 形式のフィールドタイプを設定する

フォームを使用して編集するのはよいのですが、まだ何もかも手で入力しなければいけません。幸いにも、フォームには様々な方法でデータの編集ができる様々な種類の、いわゆるウィジェットを持ちます。

1. roads レイヤのプロパティ... を開きます

2. 属性 タブに切り替えます。次が表示されます:
3. 属性フォーム タブに切り替えます。このように表示されます:

4. oneway の行をクリックし、オプションのリストから ウィジェットタイプ として チェックボックス を選択します:
5. OK をクリックします

6. （もし roads レイヤが編集モードになっていなければ）編集モードに入ります

7. 一地物情報ツールをクリックします

8. 前に選んだのと同じ大通りをクリックします

これで one way 属性の隣に True（チェック済み）または False（チェックなし）を示すチェックボックスが表示されることがわかるでしょう。

5.3.4 Try Yourself

highway フィールドに、より適切なフォームウィジェットを設定します。

答え

道路がとることのできるタイプは明らかに限られており、TYPE について、このレイヤ属性テーブルを確認すると、それらはあらかじめ定義されていることが分かります。

1. ウィジェットを バリューマップ に設定し、レイヤから値を読み込む をクリックします。

2. ラベル ドロップダウンで roads を選択し、 値と説明オプションで highway を選択します。
3. OK を三回クリックします。

4. 編集モードがアクティブなときに、今、街路で Identify ツールを使用すると、表示されるダイアログは次のようになる箇です:

![Attributes - roads dialog](image)

<table>
<thead>
<tr>
<th>osm_id</th>
<th>238808188</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Voortrek Street</td>
</tr>
<tr>
<td>highway</td>
<td>secondary</td>
</tr>
<tr>
<td>waterway</td>
<td>NULL</td>
</tr>
<tr>
<td>aerialway</td>
<td>NULL</td>
</tr>
<tr>
<td>barrier</td>
<td>NULL</td>
</tr>
<tr>
<td>man_made</td>
<td>False</td>
</tr>
<tr>
<td>other_tags</td>
<td>"lanes"="\geq"2"</td>
</tr>
</tbody>
</table>

5.3. Lesson: フォーム
5.3.5 Try Yourself テストデータの作成

まったくのゼロから独自のカスタムフォームを設計することもできます。

1. 次の2つの属性を持つ test-data という名前の簡単なポイントレイヤを作成します:
 - name (text)
 - age (integer)

2. デジタイズツールを使用して新しいレイヤ上にいくつかのポイントを追加してテスト用データを作成します。新しいポイントをキャプチャするたびに QGIS の既定の属性フォームが表示されます。

注釈：以前の作業の時からスナップを有効にしたままの場合、スナップを無効にする必要があります。
5.3.6 Follow Along: 新しいフォームの作成

さて、属性データを取得するときに使う、独自のカスタムフォームを作成したいと思います。これを行うには、QT Designer をインストールする必要があります（フォームを作成する人だけが必要です）。

1. QT Designer を起動します。

2. 表示されるダイアログで新しいダイアログボックスを作成します。

3. 画面の左側（デフォルト）にあるウィジェットボックスで Line Edit アイテムを探します。

4. このアイテムをクリックしてフォームにドラッグします。フォーム上に新しい Line Edit が作成されます。

5. Line Edit 要素を選択すると、そのプロパティが画面の片側に沿って表示されます（デフォルトで右側）。

5.3. Lesson: フォーム
6. その名前を name にします。

7. 同じ方法で、新しい Spin Box を作成し、その名前を age に設定します。

8. 新しい人を追加するというテキストを太いフォントで書いたラベルを追加します（設定方法は、オブジェクトのプロパティを書いてください）。また、（ラベルを追加のではなく）ダイアログ自体のタイトルを設定することもできます。

9. Line Edit と Spin Box に、ラベルを追加します。

10. 自分の好きなように要素をアレンジしてください。

11. ダイアログの任意の場所をクリックします。

12. フォームレイアウトボタンを押します（デフォルトでは画面の上端に沿ったツールバーにあります）。これで、ダイアログが自動的にレイアウトされます。

13. ダイアログの最大サイズ（プロパティ）を 200（幅）× 150（高さ）に設定します。

14. このようなフォームになるはずです：
15. 新しいフォームを `exercise_data/forms/add_people.ui` という名前で保存します

16. 保存が完了したら、Qt Designer を終了します。

5.3.7 Follow Along: レイヤをフォームに関連付ける

1. QGIS に戻ります
2. 凡例で `test-data` レイヤをダブルクリックしてプロパティにアクセスします。
3. レイヤプロパティダイアログの Attributes Form タブをクリックします
4. 属性エディタレイアウトドロップダウンボックスで ui-ファイルを提供するを選択します。
5. 橋円形ボタンをクリックし、先ほど作成した add_people.ui ファイルを選択します：
6. レイヤプロパティダイアログで、OKをクリックします

7. 編集モードに入り、新しいポイントを取り込みます

8. そうするとカスタムダイアログが表示されます（QGISが通常作成するものの代わりに）。

9. 地物情報表示ツールを使ってポイントの一つをクリックした場合、識別結果ウィンドウで右クリックして、コンテキストメニューからView Feature Formを選択すると、フォームを表示することができるようになりました。

10. このレイヤの編集モードになっている場合、コンテキストメニューにはEdit Feature Formが表示され、最初のキャプチャ後でも新しいフォームで属性を調整することができるようになります。

5.3.8 In Conclusion

フォームを使用すればデータの編集や作成ももっと楽になります。ウィジェットの種類を編集するか全くのゼロから新しいフォームを作成することで、新しいデータをデジタイズをする人のエクスペリエンスをコントロールできます。それによって誤解や不必要なエラーを最小限に抑えることができます。

5.3.9 Further Reading

もし上記の上級編を完了し、Pythonの知識があれば、データ検証、オートコンプリートなどを含む高度な機能を可能にするPythonロジックによるカスタム機能フォームの作成についてのこのブログエントリーをチェックするとよいでしょう。

5.3.10 What’s Next?

地物フォームを開くことはQGISができる標準的な操作の1つです。一方で、自ら定義したカスタムアクションを実行させることもできます。これは次のレッスンのテーマです。

5.4 Lesson: アクション

前のレッスンで既定のアクションを見たので、今度は自分のアクションを定義してみましょう。

アクションとは、地物をクリックしたときに発生するものです。アクションは、例えば、オブジェクトに関する追加情報を取得するなど、地図に多くの機能を追加することができます。アクションを割り当てることで、地図にまったく新しい次元を追加することができます！

このレッスンの目標：カスタムアクションを追加する方法を学びます。

このレッスンでは、以前に作成したschool_propertyレイヤを使用します。サンプルデータには、あなたがデジタイズした3つの物件それぞれの写真が含まれています。これから作るのは、各物件とその画像に関連付けることです。そして、プロパティをクリックすると、その物件の画像が開かれるようなアクションを作成します。
5.4.1 Follow Along: 画像のためのフィールドの追加

school_property レイヤには、まだ画像と物件を関連付ける方法がありません。まず、この目的のためにフィールドを作成します。

1. レイヤプロパティダイアログを開きます。
2. 属性タブをクリックします。
3. 編集モードに切り替えます:

4. 新しい列を追加します:

5. 下記の値を入力します:
6. フィールドが作成されたら、属性フォームタブに移動して、imageフィールドを選択します。

7. ウィジェットタイプをアタッチメントに設定します:

8. レイヤプロパティダイアログでOKをクリックします。

9. 地物情報表示ツールを使用してschool_propertyレイヤにある3つの地物のいずれかをクリックし
まず。

編集モードのままなので、ダイアログがアクティブになり、次のように表示されるはずです：

![学校のギリシャ風のアイコン](image)

5.4.2 Follow Along: アクションの作成

1. `school_property`レイヤのアクションタブを開き、アクションを追加ボタンをクリックします。
2. 新規アクションを追加 ダイアログで、説明フィールドに Show Image という文字を入力します:
Next, what to do depends on the operating system. Please select the appropriate course based on your system.
・Windows
データ型ドロップダウンリストをクリックし、URLを開くを選択します。

・Ubuntu Linux
アクションの下で、Gnome Image Viewer 用に eog を記入するか、ImageMagick を使うために display を記入します。コマンドの後ろに空白をひとつ入れることを忘れないでください！

・macOS
1. データ型ドロップダウンリストをクリックし、Mac を選択します。
2. アクションの下に open を記入します。コマンドの後ろに空白をひとつ入れることを忘れないでください！

これで、コマンドを書き続けることができます。
あなたは画像を開きたい。そして QGIS は画像の場所を知っています。あとはアクションに画像がどこにあるかを知らせるだけです。
3. リストから image を選択します:
4. 插入 ボタンをクリックします。QGIS はアクションテキストフィールドに [% "image" %] という語句を追加します。
5. OK ボタンをクリックして 新規アクションを追加 ダイアログを閉じます

6. OK をクリックして、レイヤプロパティ ダイアログを閉じます

では新しいアクションを試してみましょう:

1. レイヤ パネルで school_property レイヤをクリックし、ハイライトさせます。

2. (属性ツールバー にある) ポタンを見つけます。

3. このボタンの右側にある下向き矢印をクリックします。このレイヤには、今のところ、作ったばかりのアクション１つだけが定義されています。

4. ボタン自体をクリックしてツールをアクティブにします。

5. このツールを使用して、3 つの地所のいずれかをクリックします。

その物件の画像が開くはずです。

5.4.3 Follow Along: インターネットを検索する

地図を見ていて、ある農場のある地域についてもっと知りたいとします。その地域について何も知らないあなたが、その地域についての一般的な情報を見つけたいと考えると、まず最初にその地域の名前を Google で検索するのではないでしょうか。そこで、QGIS に自動で検索させることにしましょう！

1. landuse レイヤーの属性テーブルを開きます。

Google の検索には、土地利用分野ごとに name フィールドを使用する予定です。

2. 属性テーブルを閉じます。

3. レイヤープロパティ の アクション に戻ります。

4. デフォルトアクションを作成 ボタンをクリックして、あらかじめ定義されたいくつかのアクションを追加します。

5. 下の 選択中のアクションを削除 ボタンを使って、短いタイトルが 検索ウェブ の URL を開く アクションを除く、すべてのアクションを削除します。

6. 残っているアクションをダブルクリックして編集します

7. 説明 を Google Search に変更し、短い名前 フィールドの内容を削除してください。

8. スコープ で キャンバス がチェックされていることを確かめてください。

次に何をすべきかはオペレーティングシステムによって異なりますので、次で適切なコースを選択して下さい。
5.4. Lesson: アクション

9. アクションフィールドに、https://www.google.com/search?q=と記述してください。これを書き込む前に、最初のコマンドの後にスペースを追加することを忘れないでください！

次に QGIS がブラウザに、クリックした地物の name の値を検索するように Google に指示するようにします。

10. name フィールドを選択します。

11. Insert ボタンをクリックします:
これが意味するところは、QGIS がブラウザを開いて、アドレス https://www.google.com/search?q=[%name%] に送信することです。[% "name" %] は、検索するフレーズとして name
フィールドの内容を使用するために QGIS に指示します。

12. まだの方は、上記で説明したようにすべて設定してください。
13. OK ボタンをクリックして 新規アクションを追加 ダイアログを閉じます
14. OK をクリックして、レイヤプロパティ ダイアログを閉じます

では新しいアクションをためします。

1. レイヤ パネルで landuse レイヤをアクティブにして、「地物アクションの実行」ボタンの右にある下矢印をクリックし、このレイヤに定義されている唯一のアクション (Google Search) を選択します。
2. 地図上に表示されている土地利用区域のどれかをクリックしてください。ブラウザが起動し、そのエリアの name 値として記録されている場所を Google で検索し始めます。

注釈: アクションがうまく動作しない場合は、すべてが正しく入力されたことをチェックしてください。タイプミスはこの種の作業でよくあることです!

5.4.4 Follow Along: QGIS で直接 Web ページを開く

上記では、外部ブラウザでウェブページを開く方法について見てきました。この方法には、エンドユーザーが自分のシステムでそのアクションを実行するために必要なソフトウェアを持っているかどうかという、未知の依存関係を追加してしまうという欠点があります。エンドユーザーがどの OS を使っているかわからない場合、同じ種類のアクションのための同じ種類の基本コマンドを持っていると限らないことは、ご覧のとおりです。OS のバージョンによっては、上記のブラウザを開くためのコマンドが全く動作しないこともあります。これは、どうしようもない問題かもしれないです。

しかし、QGIS は、信じられないほど強力で多用途な Qt ライブラリの上に乗っています。また、QGIS のアクションは、任意のトークン化された（つまり、フィールド属性の内容に基づいた変数情報を使用した）Python コマンドを使用することができます！

Python アクションを使用して Web ページを表示する方法を説明します。これは外部ブラウザでサイトを開くのと同じ一般的なアイデアですが、Qt QWebView クラス（webkit ベースの html ウィジェットです）を使ってポップアップウィンドウにコンテンツを表示するので、ユーザーのシステム上にブラウザは必要ありません。

今回は Wikipedia を使ってみましょう。つまり、要求された URL は次のようにになります:

https://wikipedia.org/wiki/SEARCH_PHRASE

レイヤアクションを作成するには:
1. レイヤプロパティ ダイアログを開いて アクション タブに移動します。
2. 次のアクションのプロパティを使って新しいアクションを設定します。

5.4. Lesson: アクション
Python

Wikipedia

地物、キャンバス

アクションテキスト:

```python
from qgis.Qt.QtCore import QUrl
from qgis.Qt.QtWebKitWidgets import QWebView

myWV = QWebView(None)
myWV.load(QUrl('https://wikipedia.org/wiki/%name%'))
myWV.show()
```

ここでは:

アクションが呼び出されると、[%name%] は実際の属性値に置き換えられます (以前と同様です)。
このコードでは、単に新しいQWebViewインスタンスを作成してそのURLを設定し、show()を呼び出してユーザーのデスクトップにウィンドウとして表示させるだけです。

また、この方法を使えば、ユーザーが特定の画像ビューアーをシステム上に持っていることを要求せずに、画像を表示することができます。

3. 先程作成したWikipediaアクションを使って、上記の方法でWikipediaのページを読み込んでみてください。

5.4.5 In Conclusion

アクションを使用すると、QGISで同じマップを表示するエンドユーザーにとって便利な追加機能をマップに付与することができます。Pythonだけでなく、あらゆるOSのシェルコマンドを使用できるため、組み込む機能は無限大です。

5.4.6 What's Next?

さて、あらゆる種類のベクトルデータの作成を行ったので、問題を解決するためにデータを分析する方法を学びます。それが次のモジュールのテーマです。
第6章 Module: ベクタ解析

これまでにいくつかの地物を編集したので、次はそれらを使って他に何ができるかを知る必要があります。属性を持つ地物を持つことはいいですが、すべてが実行されたとき、通常の GIS でない地図ではできないことが本当にはわかりません。

GIS の主な利点は以下です：GIS は質問に答えることができます。

次の3つのモジュールでは、GIS の機能を使って研究課題に答えるよう努めます。例えばあなたが不動産業者であり、Swellendam において次の基準を持っているお客様のために住宅を探しています:

1. Swellendam にある必要がある。
2. 学校前の距離が、合理的にアクセスできる距離（例えば 1km）である必要がある。
3. サイズが 100m 四方以上である必要がある。
4. 主要道路から 50m より近い。
5. レストランから 500m 以内にある。

次のいくつかのモジュールの中では、この新しい住宅開発に適した農地の物件を見つけるために、GIS 解析ツールの力を利用します。

6.1 Lesson: データを再投影および変換する

ここでももう一度、座標参照系 (CRS) の話をしましょう。以前にも少し触れたことがありますが、実用上どのような意味があるのかについては触れていませんでした。

このレッスンの目標: ベクターデータセットの再投影および変換をします。

6.1.1 Follow Along: 投影法

この時点で全てのデータと地図自体のある CRS は、WGS84 と呼ばれている。これは、データを表現するためのとても一般的な地理座標系 (GCS) です。しかし、これから見ていくように問題があります。

1. 現在の地図を保存してください
2. 次に、exercise_data/world/world.qgs 的下にある世界地図を開いてください
3. 拡大ツールを使って南アフリカを拡大表示します
4. 画面下の ステータスバー にある 縮尺フィールドにスケールを設定してみてください。南アフリカの上で、この値を 1:5 000 000（1 対 500 万）に設定してください。
5. 縮尺フィールドを見ながら、マップをパンします

スケールが変化していることに気づいたでしょうか？それは、画面の中心にある1:5 000 000でズームした1点から遠ざかっているからです。その点から離れたところでは、縮尺が異なります。

理由を理解するために、地球の球体を考えます。そこには北から南に複数の線が引かれています。これら
の経線は、赤道では遠く離れていますが、極で出会っています。

GCSでは、この球体で作業をしているのですが、画面は平らです。球体を平面で表現しようとすると、テ
ニスポールを切り開いて平らにしようとするのと同じような歪みが発生します。これは地図上では、経線
は極点（合流するはずの場所）でも同じように離れていることを意味します。つまり、地図上で赤道から
遠ざかるにつれて、見えるものの縮尺はどんどん大きくなっていくのです。このこととは、現実的には、地
図上に一定の縮尺が存在しないことを意味します！

この問題を解決するため、かわりに投影座標系（PCS）を使用してみましょう。PCSでは縮尺変更のため
の余裕を作り、それを修正する方法でデータを「投影」または変換します。そのため、一定の縮尺を維持
するために、PCSを使用するために私たちのデータを投影変換する必要があります。

6.1.2 Follow Along: オンザフライ再投影

デフォルトでは、QGISはデータを「オンザフライ」で再投影します。この意味は、データそのものが別の
CRSにある場合でも、QGISはそれを任意のCRSにように投影することができるということです。

QGISの右下にある現在のCRSボタンをクリックすることで、プロジェクトのCRSを変更することがで
きます。

1. 表示されたダイアログで、globalという単語をフィルタフィールドに入力します。その下のあら
かじめ定義されたCRSフィールドに、いくつかのCRSが表示されるはずです。

2. WGS 84 / NSIDC EASE-Grid 2.0 Global | EPSG:6933のエントリをクリックして選択し、OKをクリッ
クします。

南アフリカの形状が変化することに注意してください。すべて投影法の変更によって地球の見た目
としての形状が変わります。

3. 前と同様に、1:5 000 000の縮尺に拡大します。

4. 地図をパンニングします。

縮尺はそのままであることにお注意します！

「オンザフライ」再投影は異なるCRSのデータセットを組み合わせて使う際にも用いられます。

1. 南アフリカのデータのみを含む別のベクタレイヤを地図に追加します。これはexercise_data/world/
RSA.shpとして見つかります。

2. それを読み込みます。そのCRSを見る簡単な方法は、凡例のレイヤにマウスカーソルを置くことです。
それはEPSG:3410です。

何に気づきますか？

レイヤはcontinentsと異なるCRSを持つ場合でも、表示されます。
6.1.3 Follow Along: 他のCRSに設定したデータセットの保存

時には、既存のデータセットを別のCRSでエクスポートする必要があります。次のレッスンで説明するように、レイヤー上で距離計算をする必要がある場合、投影座標系でレイヤを持つことが常に良いことです。

「オンザフライ」再投影は、プロジェクトに関連するものであり、単一のレイヤに関連するものではないことに注意してください。つまり、レイヤを正しい位置で見たとしても、プロジェクトとは異なるCRSを持つことがあります。

レイヤを別のCRSでエクスポートすることが簡単にできます。

1. training_data.gpkgからbuildingsデータセットを追加します
2. レイヤパネルでbuildingsレイヤを右クリックします
3. 表示されたメニューからエクスポート ▶ 新規ファイルに地物を保存...を選択します。すると、名前をつけてベクタレイヤを保存...ダイアログが表示されます。
4. ファイル名フィールドの隣にあるブラウズボタンをクリックします
5. exercise_data/に移動して、新しいレイヤの名前をbuildings_reprojected.shpに指定します。
6. CRSの値を変更します。最近使用されたCRSのみがドロップダウンメニューに表示されます。ドロップダウンメニューの横にある、 Spinner CRSの選択ボタンをクリックします。
7. CRSの選択ダイアログが表示されます。そのFilterフィールドで34Sを検索します。
8. リストからWGS 84/UTM zone 34S | EPSG:32734を選択します。
Coordinate Reference System Selector

Select the coordinate reference system for the vector file. The data points will be transformed from the layer coordinate reference system.

Filter: 345

Recently used coordinate reference systems

<table>
<thead>
<tr>
<th>Coordinate Reference System</th>
<th>Authority ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS 84 / UTM zone 34S</td>
<td>EPSG:32734</td>
</tr>
</tbody>
</table>

Coordinate reference systems of the world

<table>
<thead>
<tr>
<th>Coordinate Reference System</th>
<th>Authority ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGRDC 2005 / UTM zone 34S</td>
<td>EPSG:4062</td>
</tr>
<tr>
<td>WGS 72 / UTM zone 34S</td>
<td>EPSG:32334</td>
</tr>
<tr>
<td>WGS 72BE / UTM zone 34S</td>
<td>EPSG:32534</td>
</tr>
<tr>
<td>WGS 84 / UTM zone 34S</td>
<td>EPSG:32734</td>
</tr>
</tbody>
</table>

Selected CRS: WGS 84 / UTM zone 34S

Extent: 18.00, -80.00, 24.00, 0.00
Proj4: +proj=utm +zone=34 +south +datum=WGS84 +units=m +no_defs

9. 他のオプションは変えずにおきます。名前を付けてベクタレイヤを保存... ダイアログは次のようになります:
10. OK をクリックします

これでレイヤの新旧の投影を比較すると、2 つの異なる CRS でありながら、重なっていることがわかります。

6.1. Lesson: データを再投影および変換する
6.1.4 **Follow Along: 独自の投影法の作成**

投影はデフォルトで QGIS に含まれるものだけよりも多くあります。自身の投影も作成できます。

1. 新しい地図を始めます
2. world/oceans.shp データセットを読み込みます
3. 設定 です カスタム投影法... を実行すると、このようなダイアログが表示されます。

![Custom Coordinate Reference System Definition](image)

4. CRS を追加 ボタンをクリックし、新しい投影法を作成します
5. 面白い投影法として Van der Grinten I というのがあります。その名前を 名前 フィールドに入力してください。

他のほとんどの投影がそうであるように、この投影は、長方形のものの代わりに円形フィールドに地球を表します。
6. 形式 で、 WKT (推奨) を選択します
7. パラメータ フィールドに次の文字列を追加します：

```
PROJCRS["unknown",
    BASEGEOGCRS["unknown",
        DATUM["unknown",
            ELLIPSOID["unknown",6371000,0,
                LENGTHUNIT["metre",1,]
                ]
                ]
                ]
```

(次のページに続く)
8. **OK** をクリックします

9. ステータスバーの右側にある現在の CRS ボタンをクリックし、プロジェクトの CRS を変更します

6.1. Lesson: データを再投影および変換する
10. 新しく定義した投影法を選択します（フィルタフィールドでその名前を探します）
11. この投影法を適用するため地図は再投影され、こうなります：

6.1.5 In Conclusion

異なる投影は、異なる目的のために有用です。正しい投影を選択することにより、地図上の地物が正確に表現されていることを確認できます。

6.1.6 Further Reading

このレッスンのAdvancedセクションの教材は、この記事から引用したものです。
Coordinate Reference Systemsに関する詳細な情報はこちらをご覧ください。

6.1.7 What’s Next?

次のレッスンでは、QGISの様々なベクトル解析ツールを使って、ベクトルデータを解析する方法を学びます。
6.2 Lesson: ベクタ分析

また、ベクタデータを解析することで、異なる地物が空間的にどのように相互作用しているかを明らかにすることができます。解析に関連する機能はたくさんあるので、ここではそのすべてを紹介することはありません。むしろ、問題を提起し、QGIS が提供するツールを使ってそれを解決してみることにします。

このレッスンの目標：質問を尋ね、分析ツールを使ってそれを解決すること。

6.2.1 GIS プロセス

その前に、問題を解決するためのプロセスの概要を簡単に説明しておくと便利でしょう。それは次のものです:

1. 問題の状態
2. データの入手
3. 問題の分析
4. 結果のプレゼン

6.2.2 問題

解決する問題を決定することから手順を開始しましょう。たとえば、不動産業者が以下の基準を持ってい る顧客のために Swellendam にある居住用の不動産を探しています:

1. それは Swellendam にあること
2. それは学校から車で行ける距離であること（たとえば 1km ）
3. 100 平方 m 以上の大きさであること
4. 主要な道路から 50m 以内であること
5. レストランの 500m 以内であること

6.2.3 データ

これらの質問に答えるために、以下のデータが必要になります:

1. その地域の住宅用の物件（建物）
2. 街の中と周辺の道路
3. 学校とレストランの位置
4. 建物の大きさ
これらのデータは OSM を通じて入手可能であり、このマニュアルを通じて使用したデータセットもこのレッスンに使用できることが分かるはずです。

他の地域のデータをダウンロードしたい場合は、Introduction Chapter にジャンプして、その方法を読んでください。

注釈: OSM のダウンロードは一貫したデータフィールドを持っていますが、範囲と詳細は多様になってきています。たとえば選択した領域にレストランについての情報が含まれていないとわかった場合は、別の地域を選択することが必要な場合があります。

6.2.4 Follow Along: プロジェクトを開始してデータを取得する

まず、作業するデータを読み込む必要があります。

1. 新しい QGIS プロジェクトを始めます

2. 必要であれば、背景地図を追加することができます。ブラウザを開き、XYZ Tiles メニューから OSM 背景地図をロードします。

3. training_data.gpkg Geopackage データベースには、この章で使用するほとんどのデータセットがあります:

 1. buildings
2. roads
3. restaurants
4. schools

それらを読み込み、さらに landuse.sqlite も読み込みます。

4. レイヤの範囲を拡大すると、Swellendam、南アフリカが表示されます。

先に進む前に、特定の道路タイプだけを扱うために、roads レイヤーをフィルタリングします。

OSM データセット中のいくつかの道路は unclassified, tracks, path, footway としてリストアップされています。これらの道路をデータセットから除外し、この操作に適した他の道路タイプに焦点を当てたいと思います。

さらに、OSM のデータはどこでも更新されると限らないので、"NULL" の値も除外する。

5. "roads" レイヤを右クリックし、フィルタ... を選択します。

6. ポップアップするダイアログで、これらの地物を次の式でフィルタリングします:

```
"highway" NOT IN ('footway', 'path', 'unclassified', 'track') AND "highway" IS NOT NULL
```

NOT と IN の 2 つの演算子を連接すると、highway フィールドにこれらの属性値を持つすべての地物を除外することができます。

IS NOT NULL と AND 演算子を組み合わせると、highway フィールドに値がない道路は除外されます。

roads レイヤの横にある アイコンに注目してください。このレイヤはフィルタが有効になっているので、プロジェクトで利用できない地物があることを思い出すのに役立ちます。

すべてのデータが入った地図は、次のように表示されます:
6.2.5 Try Yourself レイヤー CRS の変換

レイヤ内の距離を測定するつもりなので、レイヤの CRS を変更する必要があります。これを行うには、各レイヤを順番に選択し、新しい投影法で新しいレイヤに保存し、その新しいレイヤをマップにインポートする必要があります。例えば、各レイヤを ESRI シェープファイル形式のデータセットとしてエクスポートしたり、既存の GeoPackage ファイルにレイヤを追加したり、別の GeoPackage ファイルを作成し、そこに新たに再投影したレイヤで埋め尽くしたりすることが可能です。ここでは、後者の方法を紹介しますので、training_data.gpkg はきれいにいます。ご自分に合ったワークフローを自由に選択してください。

注釈：この例では、WGS 84 / UTM zone 34S CRS を使用していますが、あなたの地域に適した UTM CRS を使用する必要があります。

1. レイヤパネルで roads レイヤを右クリックします
2. エクスポート --> 新規ファイルに地物を保存... をクリックします
3. 名前をつけてベクトレイヤを保存ダイアログで、GeoPackage を形式として選択します
4. ... のファイル名をクリックし、新しいGeoPackage の名前を vector_analysis にします
5. レイヤ名を roads_34S に変更します
6. CRS を WGS 84 / UTM zone 34S に変更します
7. OK をクリックします:

これにより、新しい GeoPackage データベースが作成され、roads_34S レイヤが追加されます。

8. この作業を各レイヤに対して繰り返してください。vector_analysis.gpkg GeoPackage ファイルに元の名前の後に _34S を付けた新しいレイヤを作成します。

macOS では、ポップアップするダイアログで Replace ボタンを押して QGIS に既存の GeoPackage を上書きさせます。

注釈: 既存の GeoPackage にレイヤを保存する場合、同じ名前のレイヤが既に存在しなければ、QGIS
はそのレイヤを GeoPackage 内の既存のレイヤの隣に追加します。

9. プロジェクトから古いレイヤを削除する

10. すべてのレイヤの処理が完了したら、任意のレイヤを右クリックしてレイヤの領域にズームをクリックすると、地図が関心域にフォーカスされます。

さて、OSM データを UTM 投影に変換したので、計算を始められます。

6.2.6 Follow Along: 問題の分析: 学校と道路からの距離

QGIS では、任意のベクタオブジェクト間の距離を計算することができます。

1. roads_34S と buildings_34S のレイヤのみが表示されていることを確認します（作業中の地図を扱い易くするため）

2. プロセッシングツールボックスをクリックして、QGIS の解析のコアを開きます。基本的に、すべてのアルゴリズム（ベクタおよびラスタ分析）がこのツールボックスで利用可能です。

3. まずは Buffer アルゴリズムを使用して roads_34S の周囲の領域を計算します。このアルゴリズムはベクタジオメトリグループで見つけることができます。
6.2. Lesson: ベクタ分析

You can add more algorithms to the toolbox. enable additional providers. [close]
または、ツールボックスの上部にある検索メニューに バッファ と入力してください:

4. ダブルクリックしてアルゴリズムダイアログを開きます

5. 入力レイヤとして roads_34S を選択し、距離を 50 に設定し、残りのパラメータは既定値を使用します。
6. 既定の距離はメートル単位です。これは、入力データセットが、メートルを基本的な測定単位として使用する投影座標系そのためです。コンポボックスを使って、キロメートルやヤードなど、他の投影単位を選択することができます。

注釈: 地理座標系を持つレイヤにバッファを作成しようとすると、プロセッシングは警告を発し、メトリック座標系にレイヤーを再投影するよう提案します。

7. 既定で プロセッシング は一時的なレイヤを作成し、それらを レイヤ パネルに追加します。また、その結果を GeoPackage データベースに追加することもできます:

1. ... ボタンをクリックして、GeoPackage に保存... を選択します
2. 新しいレイヤの名前 roads_buffer_50m にします
3. これを vector_analysis.gpkg ファイルに保存します

6.2. Lesson: ベクタ分析
8. 実行をクリックし、次にバッファダイアログを閉じます

地図は次のようにになっているでしょう：
新しいレイヤがレイヤリストの一番上にある場合、おそらく地図の大部分が見えなくなりますが、これで地域内の道路から50m以内のすべての地域が表示されます。

パッファの中に、それぞれの道路に対応する明確な地域があることに注意してください。この問題を解消するために；

1. roads_buffer_50m レイヤのチェックを外し、結果を融合する を有効にしてパッファを作成し直します。

6.2. Lesson: ベクタ分析
2. 出力を `roads_buffer_50m_dissolved` という名前で保存します

3. 実行をクリックして、バッファダイアログを閉じます

レイヤをレイヤパネルに追加すると、次のような表示になります:
6.2.7 Try Yourself 学校からの距離

上記と同じアプローチを使用し、学校のためのバッファを作成します。

半径は 1 km とします。新しいレイヤーを vector_analysis.gpkg ファイルに
schools_buffer_1km_dissolved という名前で保存します。

答え

• バッファダイアログは次のように表示されます:
パッファ距離は1キロメートルです。

- *Segments to approximate* の値は20に設定されます。これはオプションですが、出力パッファがより滑らかになるため、推奨されています。これを:
これと比較してみましょう:
最初の画像は Segments to Approximate の値を 5 に設定したバッファ、2 番目は 20 に設定したバッファを示します。この例では、微妙な違いですが、高い値の方がバッファのエッジが滑らかになっていることがわかります。

6.2.8 Follow Along: 重複エリア

これで、道路から 50m 以内の地域と、1km 以内に学校がある地域（道路を通らない直行便）が特定できました。しかし、明らかに、この両方の条件を満たす地域だけが欲しいのです。そのためには、交差 (intersect) ツールを使用する必要があります。このツールは プロセシングツールボックス の ベクターオーバーレイ データベースで見つけることができます。

1. 2つのバッファレイヤを 入力レイヤ と オーバーレイレイヤ として使用し、vector_analysis.gpkg GeoPackage を 交差 (intersection) で、レイヤ名 road_schoolBuffers_intersect を選択します。

残りは提案のままにしておきます（既定）。
2. 実行をクリックします。

下の画像の青い領域が両方の距離基準を満たしたところです。
3. 2つのバッファレイヤを除去しそれらが重なる場所を示すものだけ残しても良いです。それがそもそも本当に知りたかったものですので：
6.2.9 Follow Along: 建物を抽出する

これで、ビルが重なるべき領域ができました。次に、その範囲にある建物を抽出したいですね。

1. プロセッシングツールボックスから、メニュー項目 ベクタ選択 ▶ 場所による抽出 を探します

2. 抽出する地物のあるレイヤ で buildings_34S を選択します。空間的関係で交差する (intersect) をチェックし、比較対象の地物のあるレイヤ でバッファの交差レイヤを選択します。vector_analysis.gpkg に保存し、レイヤの名前を well_located_houses にします。

3. 実行 をクリックしてダイアログを閉じます

4. おそらく、あまり変化がないように見えると思います。その場合は、well_located_houses レイヤをレイヤリストの一番上に移動し、拡大してください。
赤色の建物は私たちの基準に合致しているもの、緑色の建物は合致していないものです。

5. これで2つのレイヤーが分離され、レイヤリストから buildings_34S を削除することができます。

6.2.10 Try Yourself さらに建物をフィルタ

今、私たちの学校の1キロ内や道路の50メートル内のすべての建物を表示するレイヤーを持っています。今その選択を、レストランの500メートル内にある建物を表示するだけに削減する必要があります。

上で説明したプロセスを使って、houses_restaurants_500m という名前の新しいレイヤを作りなさい。このレイヤは well_located_houses レイヤをさらにフィルタリングして、レストランから500m以内にある住宅のみを表示します。

答え

新しい houses_restaurants_500m レイヤを作成するために、2つのステップを経ます:

1. まず、レストランの周囲500mにバッファを作り、地図にレイヤを追加します:
2. 次に、そのバッファ領域内の建物を抽出します；

6.2. Lesson: ベクタ分析
道路から50m、学校から1km、レストランから500mの範囲にある建物だけが地図に表示されるようになりました。
6.2.11 Follow Along: 正しいサイズの建物の選択

どの建物が適正規模（100 平方メートル以上）かを確認するためには、その大きさを計算する必要があります。

1. houses_restaurants_500m レイヤを選択し、メインツールバーのフィールド計算機を聞くボタンまたは属性テーブルウィンドウをクリックしてフィールド計算機を開きます

2. 新規フィールドを作成を選択し、出力する属性の名前を AREA に、フィールド型を小数点付き数値 (real) に、地物グループを選択して、$area を選択します。
新しいフィールド AREA には、各建物の面積 (平方メートル) が入ります。

3. OK をクリックします。属性テーブルの末尾に "AREA" フィールドが追加されました。

4. 編集を終了するには 編集モード切替 ボタンをクリックし、プロンプトが表示されたら編集を保存します。

5. レイヤプロパティの ソース タブで、プロバイダ地物フィルタ を "AREA >= 100" に設定します。
6. OK をクリックします。
これで地図には、開始条件に一致する 100 平方メートル以上の建物だけが表示されるようになりました。

6.2.12 Try Yourself

上記で学んだ方法で、解決策を新しいレイヤとして保存します。このファイルは同じ GeoPackage データベース内に solution という名前で保存されます。

6.2.13 In Conclusion

GIS の問題解決アプローチと QGIS のベクトル解析ツールを併用することで、複数の条件を持つ問題を迅速かつ容易に解決することができましたね。
6.2.14 What's Next?

次のレッスンでは、ある地点から別の地点までの道路に沿った最短距離の計算方法について見ていきます。

6.3 Lesson: ネットワーク分析

2点間の最短距離を計算することは、一般的なGISタスクです。このためのツールはプロセッシングツールボックスで見つけることができます。

このレッスンの目的 ネットワーク分析アルゴリズムを使うことを学びます。

6.3.1 Follow Along: ツールとデータ

すべてのネットワーク解析アルゴリズムはプロセッシング - > ネットワーク分析メニューにあります。利用可能なツールがたくさんあることがわかります：

プロジェクト exercise_data/network_analysis/network.qgz を開いてください。2つのレイヤーが含まれています：
network_points
network_lines

network_lines レイヤには、道路網を理解するために役立つスタイルがすでにあります。

最短経路ツールは、ネットワークの2点間の最短経路または最短経路を計算する方法を提供します:

- 地図上で選択された始点と終点
- 地図上で選択された始点と、ポイントレイヤから取得された終点
- ポイントレイヤから取得された始点と地図上で選択された終点

では始めましょう。

6.3.2 最短経路を計算する（2地点間）

ネットワーク解析 □ 最短経路（2地点間）を使うと、地図上の二つの手動で選択した地点間の最短距離を計算できます。

この例では、2地点間の最短（最速ではない）経路を計算します。

1. 最短経路（指定始点から指定終点）アルゴリズムを開きます
2. Network_lines をネットワークを表示ベクタレイヤに選択します
3. 計算するパスの種類に最短を使用します
 この2点を解析の起点と終点とします:

6.3. Lesson: ネットワーク分析
4. 始点 (x, y) の隣にある :glabel:... ボタンをクリックし、絵の中の Starting Point とタグ付けされている場所を選択します。正確に選択するために、スナップオプションを有効にしてください。クリックした地点の座標が追加されます。

5. 同じことをしますが、終点に Ending point というタグが付けられた場所を選びます。

6. 実行ボタンをクリックします：

7. 選択したポイント間の最短パスを表す新しいラインレイヤが作成されます。network_lines レイヤのチェックを外して、結果をよりよく確認します。
8. 出力レイヤの属性テーブルを開きます。始点と終点の座標とコストを表す3つのフィールドが含まれています。

最短を計算するパスの種類として選択したので、コストは2つの位置間の距離をレイヤ単位で表します。

この場合、選択された点間の最短の距離は約1000メートルです。

ツールの使い方がわかったので、他の場所も自由に試してください。

6.3.3 Try Yourself 最速径路

前の演習と同じデータを使用して、2点間の最速経路を計算してみます。

始点から終点までどのくらいの時間が必要ですか？

答え

1. ネットワーク解析 → 最短経路（指定始点から指定終点）を開き、ダイアログを以下のように埋めます：

6.3. Lesson: ネットワーク分析
2. 計算するバスの種類が最速であることを確認します。

3. 実行をクリックしてダイアログを閉じます。

4. 出力レイヤの属性テーブルを開きましょう。costフィールドには、2点間の移動時間が（時間単位で）表示されます。
6.3.4 Follow Along: 高度なオプション

ネットワーク解析ツールのいくつかのオプションを調べてみましょう。 前の演習 では、2 点間の 最速 のルートを計算しました。ご想像のとおり、時間は移動 速度 によって異なります。

これまでの演習と同じレイヤと開始点、終了点を使用します。

1. 最短経路（指定始点から指定終点）アルゴリズムを開きます
2. 入力レイヤ、開始点 (x, y)、終了点 (x, y) を先程と同じように埋めます
3. 計算するバスの種類 として “最速” を選択します
4. 詳細パラメータ メニューを開きます
5. デフォルトの速度 (km/h) をデフォルトの 50 から 4 に変更します
6. Click

7. After the algorithm is finished, close the dialog and open the output layer's attribute table.

234
cost フィールドには、選択した速度パラメータに応じた値が含まれます。cost フィールドを、端数のある時間から、より読みやすい分の値に変換できます。

8. アイコンをクリックしてフィールド計算機を開きます

9. 経路のコストを格納するために新しいフィールド minutes を追加します。

これだけです！これで、ネットワーク全体の速度が時速 4 キロの場合に、ある地点から別の地点まで何分かかるかがわかります。

6.3.5 速度制限のある最短パス

ネットワーク解析ツールボックスには他にも興味深いオプションがあります。次の地図を見てください：

6.3. Lesson: ネットワーク分析
各道路の制限速度を考慮した最速ルートを知りたい（ラベルは制限速度を km / h で表示しています）。制限速度を考慮しない最短経路はもちろん紫色の経路になります。しかし、その道路では制限速度 20 km / h ですが、緑色の道路では 100 km / h 出せます！

最初の練習でやったように、ネットワーク解析 □ 最短経路（ポイント間）を使用して、手動で始点と終点を選択します。

1. ネットワーク解析 □ 最短経路（指定始点から指定終点）アルゴリズムを開く
2. ネットワークを表示ベクタレイヤ パラメータに network_lines を指定します
3. 計算するバスの種類として ‘最速’ を選択します
4. 先ほどと同じように、開始点 (x, y) と 終了点 (x, y) を選択します
5. 詳細パラメータ メニューを開きます
6. 速度を示す属性（フィールド）パラメータとして speed フィールドを選択します。このオプションを使用すると、アルゴリズムは各道路の制限速度を考慮に入ります。
7. 実行 ボタンをクリックします

6.3. Lesson: ネットワーク分析
8. 結果を見やすくするために、network_lines レイヤを非表示にします

ご覧のとおり、最速ルートは最短ルートに対応していません。

6.3.6 サービスエリア（レイヤから）

ネットワーク解析 ① サービスエリア（始点レイヤ）アルゴリズムは次の質問に答えることができます：ポイントレイヤがあるとき、距離または時間の値が与えられると到達可能なすべてのエリアはどうなりますか？

注釈：ネットワーク解析 ① サービスエリア（始点レイヤ）は同じアルゴリズムですが、地図上のポイントを手動で選択できます。

250 メートルの距離が与えられたとき、network_points レイヤの各ポイントからどれだけそのネットワーク上を移動できるか知りたいとします。

1. network_points 以外のレイヤのチェックを外します
2. ネットワーク解析 ① サービスエリア（始点レイヤ）アルゴリズムを開きます
3. ネットワークを表すベクタレイヤに network_lines を選択します
4. 始点のあるベクタレイヤに network_points を選択します
5. 計算するバスの種類に最短を選択します
6. 求めたい旅行コストパラメータに 250 を入力します
7. 実行をクリックしてダイアログを閉じます

出力レイヤは、250メートルの距離を与えられてポイント地物から到達できる最大径路を表します。
すごいですね？

6.3.7 In Conclusion

これで、ネットワーク解析 アルゴリズムを使用して、最短と最速経路の問題を解決する方法がわかりました。

これで、ベクタレイヤデータに対して空間統計を実行する準備が整いました。さあ行きましょう！

6.3.8 What's Next?

次は、ベクタデータセットに空間統計アルゴリズムを実行する方法について説明します。

6.4 Lesson: 空間統計

注釈: Linfiniti と S Motala（ケープ半島工科大学）が開発したレッスン

空間統計を使用すると、特定のベクトルデータセットで何が起こっているかを分析して理解できます。QGISには統計分析のための多くの便利なツールが含まれています。

このレッスンの目標: プロセッシングツールボックス内でQGISの空間統計ツールを使用する方法を知ること。
6.4.1 Follow Along: テストデータセットの作成

ランダムな点群を作成し、作業用のデータセットを取得します。
そのためには、ポイントを作成する領域を定義するポリゴンデータセットが必要になります。
街路でカバーされるエリアを使用します。

1. 新しいプロジェクトを開始します

2. roads データセットと、exercise_data/raster/SRTM/ にある srtm_41_19（標高データ）を追加します。

注釈: SRTM DEM レイヤの CRS は、道路レイヤの CRS とは異なる場合があります。QGIS は両方のレイヤを単一の CRS で再投影しています。次の演習では、この違いは重要ではありませんが、自由に再投影してください（このモジュールの前半で示したように）。

3. プロセッシングツールボックスを開きます

4. ベクタジオメトリ □ 最小境界ジオメトリツールを使用して ジオメトリタイプとして 凸包 を選択し、すべての道路を囲むエリアを生成します:

以上のように、出力を指定しない場合、 プロセッシング は一時的なレイヤを作成します。レイヤをすぐに、または後の段階で保存するのはあなた次第です。
ランダム点群の作成

- ベクタ作成 レイヤ領域にランダム点群にあるツールを使って、この領域内最小距離 0.0 のランダムな点を 100 個作成します:

注釈：黄色の警告サインは、そのパラメータが距離に関係していることを示しています。境界ジオメトリ レイヤはある地理座標系にあり、アルゴリズムはこれに追い出されます。この例では、このパラメータを使用しないため、無視してかまいません。

必要に応じて、生成されたランダム点を凡例の一一番上に移動させると見やすくなります:
データのサンプリング

ラスタからサンプルデータセットを作成するには、ラスタ解析でサンプルラスター値アルゴリズムを使用する必要があります。このツールは、ポイントの位置でラスタをサンプリングし、ラスタ内のバンドの数に応じて、新しいフィールドにラスタ値を追加します。

1. Sample raster values アルゴリズムダイアログを開きます

2. サンプリングポイントを含むレイヤとして Random_points を選択し、値を取得するバンドとして SRTM ラスタを選択します。新しいフィールドのデフォルト名は rvalue_N です。ここでは、N はラスタバンドの番号です。必要なことに応じて、プレフィックスの名前を変更できます。
3. 実行を押します

これで、ラスタファイルからサンプリングされたデータをサンプリングした出力レイヤの属性テーブルで確認することができます。それらは、選択した名前の新しいフィールドに入ります。

サンプルレイヤはここに示すとおりです:
サンプルポイントは、赤いポイントがより高い高度になるように、「rvalue_1」フィールドを使用して分類されます。

このサンプルレイヤは、残りの統計演習で使用します。

6.4.2 Follow Along: 基本統計

さて、このレイヤに対して基本統計を取得しましょう。

1. 属性ツールバーにある ∑ 統計の要約を表示アイコンをクリックします。新しいパネルがポップアップします。

2. 表示されたダイアログで、サンプリングした出力レイヤをソースとして指定します。

3. フィールドコンポボックスで rvalue_1 フィールドを選択します。このフィールドは、統計情報を計算するフィールドです。

4. 算出された統計情報で統計量の出力パネルが自動的に更新されます。

6.4. Lesson: 空間統計
<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>100</td>
</tr>
<tr>
<td>Sum</td>
<td>14148</td>
</tr>
<tr>
<td>Mean</td>
<td>141.48</td>
</tr>
<tr>
<td>Median</td>
<td>122.5</td>
</tr>
<tr>
<td>St dev (pop)</td>
<td>89.4792</td>
</tr>
<tr>
<td>St dev (sample)</td>
<td>89.93</td>
</tr>
<tr>
<td>Minimum</td>
<td>18</td>
</tr>
<tr>
<td>Maximum</td>
<td>737</td>
</tr>
<tr>
<td>Range</td>
<td>719</td>
</tr>
<tr>
<td>Minority</td>
<td>18</td>
</tr>
<tr>
<td>Majority</td>
<td>120</td>
</tr>
<tr>
<td>Variety</td>
<td>78</td>
</tr>
<tr>
<td>Q1</td>
<td>97</td>
</tr>
<tr>
<td>Q3</td>
<td>163.5</td>
</tr>
<tr>
<td>IQR</td>
<td>66.5</td>
</tr>
<tr>
<td>Missing (null)</td>
<td>0</td>
</tr>
</tbody>
</table>

Selected features only

Statistics | Layers | Browser

Type to locate (Ctrl+K)
5. 終了したら 統計量の出力 パネルを閉じます

さまざまな統計が用意されています:

カウント
サンプル/値の個数

合計
値を足したもの。

平均
平均（アベレージ）値は、単純に値の合計値の個数で割ったものです。

中間値
すべての値を最小から最大に並べると、中央値（または、N が偶数の場合は 2 つの中央値の平均）が値の中央値になります。

標準偏差（母集団）
標準偏差。値が平均値の周りのどの程度近くに密集しているかの指標を与えます。標準偏差が小さいほど、値が平均値により近づく傾向があります。

最小値
値の最小値です。

最大値
値の最大値です。

範囲
最小および最大値間の差です。

第 1 四分位
データの第 1 四分位。

第 3 四分位
データの第 3 四分位

欠落 (NULL) 値
欠落値の個数。
6.4.3 Follow Along: 点間の距離についての統計を計算

1. 新しい一時的な点レイヤを作成します。
2. 編集モードに入り、他の点のどこかにある3点をデジタイズします。
 または、先ほどと同じランダム点群生成方法で、3点だけ指定します。
3. 新しいレイヤを distance_points という名前で、お好みのフォーマットで保存します。

2つのレイヤのポイント間の距離の統計を作成するには:

1. ベクタ解析 ▶ 距離行列ツールを開きます。
2. 入力レイヤとして distance_points を、ターゲットレイヤとして Sampled Points を選択します。
3. このように設定します:

 ![Distance Matrix dialog](image)

 - **Parameters**
 - **Input point layer**
 - Distance Points [EPSG:4326]
 - Selected features only
 - **Input unique ID field**
 - 123 id
 - **Target point layer**
 - Sampled Points [EPSG:4326]
 - Selected features only
 - **Target unique ID field**
 - 123 id
 - **Output matrix type**
 - Summary distance matrix (mean, std. dev., min, max)
 - **Use only the nearest (k) target points**
 - 4
 - **Distance matrix**
 - [Create temporary layer]
 - **Open output file after running algorithm**

4. 必要に応じて、出力レイヤをファイルとして保存するか、アルゴリズムを実行して後で一時出力レイヤを保存することができます。
5. 実行 をクリックすると、距離行列レイヤが生成されます。
6. 生成されたレイヤの属性テーブルを開きます。値は、distance_points 地物と SampledPoints レイヤ内の2つの最も近いポイントの間の距離を参照します：

![Distance matrix](image)
距離行列ツールはこれらのパラメータを使って、ターゲットレイヤの最も近いポイントを基準にした入力レイヤの各ポイントの距離統計を計算します。出力レイヤのフィールドには、入力レイヤのポイントの最近傍までの距離の平均、標準偏差、最小値、および最大値が含まれます。

6.4.4 Follow Along: 最近傍解析（レイヤ内）

ポイントレイヤの再近傍解析をするには:

1. ベクタ解析 ▶ 最近傍解析 を選びます。
2. 表示されたダイアログで ランダム点群出力 レイヤを選択し、 実行 をクリックします。
3. 結果は、プロセシング 結果ビューア パネルに表示されます。
4. 青いリンクをクリックすると、結果の html ページが表示されます:
6.4.5 Follow Along: 平均座標

データセットの平均座標を取得するために:

1. ベクタ解析で加重平均座標（重心の平均）を計算します。
2. 表示されたダイアログで、入力レイヤにランダム点群出力を指定し、オプションの選択はそのままにしておきます。
3. 実行をクリックします。

ランダムサンプルを作成する際に使用したポリゴンの中心座標と比較してみましょう。

1. ベクタジオメトリで重心を計算します。
2. 表示されたダイアログで、入力レイヤとしてBounding geometryを選択します。

ご覧のように、平均座標（ピンクの点）と調査地域の中心（緑の点）は必ずしも一致していません。

図心がレイヤーの重心（正方形の重心は正方形の中心）であり、平均座標はすべてのノード座標の平均を表します。
6.4.6 Follow Along: 画像ヒストグラム

データセットのヒストグラムは、その値の分布を示しています。QGIS でこれを示す最も簡単な方法は、画像ヒストグラムを使用することです。これは、任意の画像レイヤ（ラスタデータセット）のレイヤプロパティダイアログで利用できます。

1. レイヤ パネルで srtm_41_19 レイヤを右クリックします
2. プロパティ を選びます
3. ヒストグラム タブを選択します。グラフィックを生成するには、ヒストグラムの計算ポタンをクリックする必要がある場合があります。ラスタ値の度数分布を示すグラフが表示されます。
4. グラフは ブロットの保存 ボタンで画像としてエクスポートすることができます。

5. レイヤに関するより詳細な情報は、情報 タブで見ることができます(平均値と最大値は推定値であり、正確でない可能性があります)。

平均値は「332.8」(推定 324.3)、最大値は「1699」(推定 1548)！ヒストグラムを拡大できます。値が「0」のピクセルがたくさんあるため、ヒストグラムは垂直方向に圧縮されたように見えます。ズームインして「0」のピーク以外のすべてをカバーすると、詳細が表示されます。

6.4. Lesson: 空間統計
注釈：平均値と最大値が上記と同じではない場合は、最小値/最大値の計算が原因である可能性があります。シンボロジ タブを開き、最小/最大値設定メニューを展開します。最小/最大 を選択し、適用 をクリックします。

ヒストグラムは、値の分布を示すものであり、必ずしもすべての値がグラフ上に表示されるわけではないことに留意してください。
6.4.7 Follow Along: 空間的補間

データを推定したい標本点のコレクションがあるとしましょう。たとえば、前に作成した Sampled points データセットにアクセスでき、地形がどのように見えるかを知りたい場合があります。

1. まず、プロセシングツールボックス にある GDAL ラスタ解析 リグリッド（最近傍探索 IDW）ツールを起動します。
2. 入力レイヤ（点）に Sampled points を選びます
3. 重み付けの累乗 を 5.0 に設定します
4. 詳細パラメータで、内挿する Z 値の属性（フィールド）を rvalue_1 に設定します
5. 最後に実行をクリックし、処理が終了するまで待ちます
6. ダイアログを閉じます

これは、元のデータセット（左）とサンプルポイントから構築されたデータセット（右）の比較です。サンプルポイントの位置がランダムであるため、見た目が異なる場合があります。

ご覧のとおり、地形の詳細な印象を得るには、100 個のサンプルポイントでは十分ではありません。これは非常に一般的な考え方ですが、誤解を招く可能性もあります。

6.4.8 Try Yourself 補間方法の違い

1. 上記の手順を使用して、10000 個のランダムな点のセットを作成します

注釈: 点の個数が多い場合、処理に時間がかかることがあります。

2. これらの点を利用して、オリジナルの DEM をサンプリングします
3. このデータセットには Grid (IDW with nearest neighbor searching) ツールを使用します。
4. 累乗とスムージングをそれぞれ 5.0 と 2.0 に設定します。
結果（ランダムな点の位置に応じて）多かれ少なかれ、このようになります。

これは、サンプルポイントの密度が高いため、地形をより適切に表現できます。サンプルが大きいほど良い結果が得られることを忘れないでください。

6.4.9 In Conclusion

QGIS には、データセットの空間統計プロバティを分析するためのツールがいくつかあります。

6.4.10 What's Next?

ベクタ解析について説明しましたが、次はラスタで何ができるかを見てみましょう。これが次のモジュールで行うことです！
第7章 Module: ラスタ

以前デジタイズするためにラスタを使用しましたが、ラスタデータを直接使うこともできます。このモジュールでは、それを QGIS でどのように行うのかがわかります。

7.1 Lesson: ラスタデータで作業する

ラスタデータは、ベクタデータとは全く異なります。ベクタデータは、線や領域で結ばれていることもあ る、頂点で構成されるジオメトリを伴う別々の地物を持ちます。しかし、ラスタデータは画像と同じです。 実世界に存在するさまざまな物体の性質を表現していますが、それらは独立した物体として存在している わけではありません。異なる値を持つピクセルで表現されます。

このモジュールでは、既存の GIS 解析を補完するためにラスタデータを使用することになります。

このレッスンの目標: QGIS でラスタデータを扱う方法を習得する。

7.1.1 Follow Along: ラスタデータを読み込む

ラスタデータは、ベクタデータと同じ方法で読み込むことができますが、ブラウザ パネルを使うことをお 勧めします。

1. ブラウザ パネルを開いて、 exercise_data/raster フォルダを展開します。

2. このフォルダにあるすべてのデータを読み込みます:

 • 3320C_2010_314_RGB_LATLNG.tif
 • 3320D_2010_315_RGB_LATLNG.tif
 • 3420B_2010_328_RGB_LATLNG.tif
 • 3420C_2010_327_RGB_LATLNG.tif

以下のような地図が表示されるはずです:
以上、4 枚の航空写真で調査地域をカバーしました。

7.1.2 Follow Along: 仮想ラスタの作成

このように、ソリューションレイヤは4枚の画像是すべてにまたがっています。これはつまり、常に4枚のラスタを扱う必要があることを意味します。これは理想的ではありません。1つのファイルで作業できた方が良いでしょう。

幸いなことに、QGIS ではまっすぐにこれを行うことができます。実際に新しいラスタファイルを作成することなく、仮想ラスタを作成することができます。これはしばしばその機能を説明している、カタログと呼ばれます。これは実際の新しいラスタではありません。むしろ、既存の複数のラスタを簡単にアクセスできるようにするために1つのカタログ:1つのファイルに整理する方法です。

カタログを作成するには、プロセッシングツールボックスを使用します。

1. GDAL ラスタその他から仮想ラスタの構築アルゴリズムを起動します;
2. 表示されたダイアログで、Input layers パラメータの隣にある ... ボタンをクリックし、すべてのレイヤをチェックするかすべて選択 ボタンを使用します;
3. Place each input file into a separate band のチェックを外します。下のテキストフィールドに注目してください。このダイアログが実際に行われていることは、あなたのためにテキストを書いているのです。これは QGIS が実行することになる長いコマンドです。

注釈: そのテキストをコピーして OSGeo Shell (Windows ユーザ) または Terminal (Linux および OSX ユーザ) に貼り付けて、コマンドを実行することができることができます。また、それぞれの GDAL コマンドに対してスクリプトを作成することができます。これにより、手順に時間がかかっているときや、特定のタスクをスケジュールしたいときにとても便利です。コマンドのシンタックスに関するより詳しいヘルプを得るには、ヘルプ ボタンを使用します。

4. 最後に実行ボタンをクリックします。
注釈：これまでのモジュールでご存知のように、プロセシングはデフォルトで一時レイヤを作成します。ファイルを保存するには...ボタンをクリックします。

これでレイヤパネルから元の4つのラスタを削除して、出力された仮想カタログラスタだけを残すことができます。

7.1. Lesson: ラスタデータで作業する
7.1.3 ラスタデータの変換

上記の方法では、カタログを使用してデータセットを仮想的にマージし、それらを「その場で」再投影できます。しかし、もし長期間使用することになるデータを用意しているならば、マージされ再投影された新しいラスタを作成する方が効率的かもしれません。はじめに用意をするのに少し時間がかかりますが、そうしておけば地図でラスタを使う際のパフォーマンスが向上します。

ラスタを再投影する

GDAL ラスタ投影から再投影 (warp) を開いてください。

また、仮想ラスタ（カタログ）の再投影、マルチスレッド処理の有効化なども可能です。
7.1. Lesson: ラスタデータで作業する

Parameters

Input layer

- Virtual [EPSG:4326]

Source CRS [optional]

Target CRS [optional]

- Project CRS: EPSG:4326 - WGS 84

Resampling method to use

- Nearest Neighbour

Nodata value for output bands [optional]

- Not set

Output file resolution in target georeferenced units [optional]

- Not set

Advanced parameters

Reprojected

- [Save to temporary file]

Open output file after running algorithm

GDAL/OGR console call

```
gdalwarp -t_srs EPSG:4326 -r near -of GTiff /tmp/processing_E3t0r2/4d43521175294d8a8f7935de8c0d5ca3/OUTPUT.vrt /tmp/processing_E3t0r2/cf35f6625870499798aa2930475ab4b1/OUTPUT.tif
```
ラスタをマージする

新しいラスタレイヤを作成してディスクに保存する必要がある場合、マージアルゴリズムを使用することができます。

注釈：マージするラスタファイルの数や解像度によっては、新しく作成されるラスタファイルが非常に大きくなることがあります。代わりに仮想ラスタの作成セクションで説明したように、ラスタカタログを作成することを検討してください。

1. GDAL ラスタその他メニューから、結合 (gdal_merge) アルゴリズムをクリックします。
2. 仮想ラスタの作成で行ったように、...ボタンを使って結合するレイヤを選択します。
 また、入力に仮想ラスタを指定すると、そのラスタを構成する全てのラスタが処理されます。
3. GDAL ライブラリを知っていれば、詳細パラメータメニューを開いて、独自のオプションを追加することも可能です。
7.1.4 In Conclusion

QGIS では既存のプロジェクトにラスターデータを入れることが簡単です。

7.1.5 What’s Next?

次は航空画像ではないラスターデータを使用して、同様にラスターの場合にシンボル化はどのように有用であるかを見ていきます。

7.2 Lesson: ラスタのシンボロジを変更する

ラスタデータは航空写真ばかりではありません。ラスタデータには他にも様々なものがあり、その多くでは、それらをきちんと見るように、使えるように記号化することが必要です。

このレッスンの目標: ラスタレイヤのシンボロジを変更します。

7.2.1 Try Yourself

1. ブラウザ パネルを使用して、exercise_data/raster/SRTM/ にある srtm_41_19.tif をロードします。

2. レイヤパネルでこのレイヤを右クリックし、レイヤの領域にズームを選択し、このレイヤの範囲にズームします。

このデータセットは、デジタル標高モデル (DEM) です。地形の標高（高度）を表した図で、山や谷がどこにあるのかを確認することができます。

前節のデータセットでは各ビクセルに色情報が含まれていましたが、DEM では各ビクセルに標高の値が含まれています。

DEM を読み込むと、グレースケールで表示されていることがわかります。
QGIS は可視化のために画像のピクセル値に自動的に引き伸ばしをかけていますが、この仕組みについては、この先で詳しく説明します。

7.2.2 Follow Along: ラスタレイヤのシンボロジを変更する

ラスタシンボロジを変更するには、2 種類のオプションがあります:

1. レイヤツリーでレイヤを右クリックし、プロパティ オプションを選択して、レイヤプロパティダイアログを開きます。次に、シンボロジ タブに切り替えます

2. レイヤ パネルのすぐ上にある レイヤのスタイルパネルを開く ボタンをクリックします（ショートカット F7）。これにより、レイヤスタイルパネルが開き、そこで シンボロジ タブに切り替えることができます。

好みの方法を選んでください。
7.2.3 Follow Along: 単バンドグレー

ラスタファイルを読み込んだとき、それが前節のような写真画像でない場合、デフォルトのスタイルはグレースケールのグラデーションに設定されます。

このレンダラーの特徴を探ってみましょう。

デフォルトのグラデーションは黒から白に設定されており、低いピクセル値は黒、高いピクセル値は白に設定されている。
になるように設定されています。この設定を白から黒に反転させて、その結果を確認してみてください。

とても重要なもの コントラスト パラメータです。デフォルトでは最小最大範囲に引き伸ばすに設定されており、ビクセル値が最小値と最大値に引き伸ばされることを意味します。

強化した場合（左）としていない場合（右）の違いをください。

しかし、引き伸ばしに使用すべき最小値と最大値とは何でしょうか？現在 最小値 / 最大値 設定 の下にあるものです。最小値と最大値を計算し、それを引き伸ばしに使用する方法は多くあります。

1. ユーザー定義: 最小値 (Min) と最大値 (Max) を手入力します
2. 累積範囲: これは、極端に低い値や高い値がある場合に便利です。これは値の 2%（または選択した値）をカットします
3. 最小/最大: ラスタの最小値と最大値の実測値または推定値
4. 平均 +/- 標準偏差: 値は平均値と標準偏差で計算されます。

7.2.4 Follow Along: 単バンド疑似カラー

グレースケールは、ラスタレイヤのスタイルとして必ずしも優れているとは言えません。DEM をよりカラフルにしてみましょう。

- レンダリングタイプを 単バンド疑似カラー に変更します。読み込まれたデフォルトの色が気に入らない場合は、別のカラーランプを選択します
- 新しい色分類を生成するには 分類 ボタンをクリックします
- 自動的に生成されない場合は、OK ボタンをクリックして、この分類を DEM に適用します
このようにラスターが見えるでしょう。
これは DEM を見る面白い方法です。これで、ラスタの値が再び適切に表示され、低い部分の青から高い部分の赤へと変化しているのがわかると思います。

7.2.5 Follow Along: 透過性を変える

ラスタレイヤ全体の透過性を変えることで、ラスタ自体に覆われている他のレイヤを見ることができ、調査地域の把握がしやすくなることもあります。

ラスタ全体の透過性を変更するには、透過性 タブに切り替え、グローバルな不透明度のスライダーを使用して不透明度を下げます:
さらに興味深いのは、いくつかのピクセル値について透過性を変更することです。例えば、今回使用したラスタでは、角の部分に均質な色が見えます。これらのピクセルを透明に設定するには、透過性 タブにある カスタム透過オプション にアクセスします。

- 手動で値を追加 ボタンをクリックすると、値の範囲を追加して、その透過率を設定することができま

- 単独の値については、画面から値を追加 ボタンがより便利です

- 画面から値を追加 ボタンをクリックします。ダイアログが消え、地図と対話できるようになります。

- DEM の隅にある均質な色をクリックします

- 透過率テーブルがクリックした値で埋められるのがわかると思います:

7.2. Lesson: ラスタのシンボロジを変更する
• OK をクリックしてダイアログを閉じ、変更内容を確認します。

わかりましたか？隅は 100% 透過になりました。
7.2.6 In Conclusion

これらは、ラスタシンボロジを使い始めるための基本的な機能の一部です。このほかにも、パレット値やユニーク値を使ってレイヤを記号化したり、マルチスペクトル画像で異なるバンドを異なる色で表現したり、自動的な陰影起伏効果（DEM ラスタファイルでのみ有効）を作ったりと、QGIS では多くのオプションを利用することができます。

7.2.7 参照

SRTM データセットは http://srtm.csi.cgiar.org/から入手しました。

7.2.8 What's Next?

私たちはデータを適切に表示することができるようになりました。それではさらに、それを解析する方法を調べてみましょう。

7.3 Lesson: 地形解析

ある種のラスタからはそれが表す地形の洞察をより多く得ることができます。数値標高モデル（DEM）がこの点では特に有用です。このレッスンでは先ほどからの住宅開発案の調査地域についてより詳しく調べるのに地形解析ツールを使用します。

このレッスンの目標: 地形に関する詳細な情報を取得するために地形解析ツールを使用します。

7.3.1 Follow Along: 陰影図を計算する

前のレッスンで使用したのと同じ DEM レイヤを使用することにします。この章をゼロから始める場合は、ブラウザパネルを使用して、raster/SRTM/srtm_41_19.tif を読み込んでください。

DEM レイヤは、地形の標高を表示しますが、少し抽象的に見えることができます。DEM レイヤは、必要な地形の 3D 情報をすべて含んでいますが、3D オブジェクトのように見えません。地形の印象を良くするために、陰影図 を計算することができます。これは、光と影を使って地形をマッピングするラスタで、3D に見える画像を作成することができます。

ここでは、ラスタ 3D ラスタ地形解析メニューアにあるアルゴリズムを使用することにします。

1. 陰影図メニューやをクリックします

2. このアルゴリズムでは、光源の位置を指定することができます: 方位角 (azimuth) は 0（北）から 90（東）、180（南）、270（西）の値を持ち、:guilabel: 太陽高は光源の高さを 0 から 90 度までで指定します。

3. 以下の値を使用することにします:

 • β 係数に 1.0
4. 新しいフォルダ exercise_data/raster_analysis/ に hillshade という名前でファイルを保存します
5. 最後に実行をクリックします

hillshade と呼ばれる新しいレイヤが次のように表示されます:
きれいに3次元的に見えますが、これは改善できるでしょうか？ 陰影図はそれだけでは石膏模型のように見えます。どうにかしてそれを他のよりカラフルなラスタと一緒に使用できないでしょうか？もちろんできます。オーバーレイとして陰影図を使用します。

7.3.2 Follow Along: 陰影図をオーバーレイとして使用する

陰影図は一日のある時点の日光について非常に有用な情報を提供することができますが審美的な目的で使うこともできます。それを使えば地図をよりよく見せることができます。陰影図をほとんど透过させる設定がその鍵となります。

1. 元の srtm_41_19 レイヤのシンボルを、前の課題と同じように疑似カラー スキームを使用するように変更します
2. srtm_41_19 と hillshade レイヤ以外のすべてのレイヤを非表示にします
3. レイヤ パネルで srtm_41_19 をクリックして、hillshade レイヤの下にドラッグします
4. レイヤプロパティで透過性タブをクリックして、hillshade レイヤを透明に設定します
5. 全体の不透明度を 50% に設定します。

このような結果が得られます：

7.3. Lesson: 地形解析
6. レイヤ パネルで hillshade レイヤをオフにしたりオャンにしたりして、その違いを見てみましょう。

このように陰影図を使用すると景観の地形を誇張することが可能です。その効果があたたにとって十分な
強さだと思う場合には、hillshade レイヤの透明度を変更すればよいですが、もちろん、陰影起伏がよ
り明るくなるほど、その裏の色は薄暗くなります。ちょうど良いバランスを見つける必要があります。

終了したら、プロジェクトを保存することを忘れていください。

7.3.3 Follow Along: 最適な地域を見つける

前回、ベクタ解析のレッスンで取り上げた不動産業者の問題を思い出してください。ここでは、買い手が
建物を購入し、その敷地に小さなコテージを建てたいと考えているとします。南半球では、理想的な開発
用地には以下のようなエリアが必要であることが分かっています:

• 北向きである
• 傾斜が 5 度以下

• 傾斜が 2 度以下であれば、傾斜方向は問題になりません。

最適なエリアを探しましょう。
7.3.4 Follow Along: 傾斜の計算

傾斜は地形がどの程度急であるかを知らせます。例えば、そこの土地に家を建てたいのであれば、比較的平坦な土地が必要です。

傾斜を計算するには、プロセッシング · ラスタ地形解析 の傾斜 (slope) アルゴリズムを使用する必要があります。

1. アルゴリズムを開きます
2. Srtm_41_19 を DEM レイヤとして選択します
3. Z係数 を 1.0 に維持します
4. 出力を slope という名前のファイルとして、hillshade と同じフォルダに保存します
5. 実行 をクリックします

各ピクセルが対応する傾斜の値を持つ、地形の傾斜が表示されます。黒いピクセルは平坦な地形、白いピクセルは急な地形を表しています。

7.3. Lesson: 地形解析
7.3.5 Try Yourself 傾斜方位を計算する

傾斜方位 は、地形の傾斜が向いている磁針方向です。傾斜方位が 0 だと北向き、90 だと東向き、180 だと南向き、270 だと西向きの斜面であることを意味します。

この調査は南半球で行われているため、不動産物件は太陽光が残るように北向きの斜面に建てるのが理想的です。

プロセッシングラスタ地形解析の傾斜方位 (aspect) アルゴリズムを使用して、aspect レイヤをslopeと共に保存することができます。

答え
傾斜方位 (aspect) ダイアログをこのように設定します:

結果はこうなります:
7.3.6 Follow Along: 北向きの傾斜方位を見つける

今、ラスタは傾斜方位だけでなく傾斜も表示していますが、どこが理想的な条件を一度に満たしているのか知るすべはありません。どうやって解析すればいいのでしょうか？

その答えは ラスター計算機 です。

QGIS では、さまざまなラスター計算機が利用できます:

• ラスタ □ ラスター計算機

• プロセッシングの:
 - ラスタ解析 □ Raster calculator
 - GDAL □ ラスタその他 □ ラスター計算機
 - SAGA □ Raster Calculus □ Raster Calculator

各ツールは同じ結果を導いていますが、構文が若干異なったり、演算子の有無が異なったりすることがあります。
ここでは、プロセシングツールボックスのラスタ解析・Raster calculator を使用します

1. それをダブルクリックしてツールを開きます。
 - ダイアログの左上には、読み込んだすべてのラスタレイヤが name@N としてリストアップされます。name はレイヤの名前で N は番号です。
 - 右上の部分には、さまざまな算子が表示されています。ラスタが画像であると考えるのは少し待ってください。ラスタは数学で埋め尽くされた 2 次元の行列と考えるのが良いでしょう。

2. 北は 0（ゼロ）度なので、地形が北を向くためには、その傾斜方位が 270 度以上または 90 度以下である必要があります。したがって、式は次のようにになります:

 \[
 \text{aspect} @ 1 \leq 90 \text{ OR aspect} @ 1 \geq 270
 \]

3. 次に、セルサイズ、範囲、CRS などのラスタの詳細を設定する必要があります。これは手動で行うこともできますし、参照レイヤを選択することで自動的に設定することもできます。この最後のオプションは、Reference layer(s) バラメータの隣にある... ボタンをクリックすることで選択できます。

4. ダイアログでは、同じ像解像度のレイヤを取得したいので、aspect レイヤを選択します。

5. レイヤを aspect_north として保存します。

 ダイアログはこのようなになります:

6. 最後に実行をクリックします。
結果はこのようになります:

出力値は 0 または 1 です。どうということでしょうか？ラスターの各ピクセルに対して、書いた式は条件にマッチするかどうかを返します。したがって、最終的な結果は 偽 (0) と 真 (1) になります。

7.3.7 Try Yourself その他の条件

傾斜方位を行ったので、DEM から新規レイヤを作成します。

・ 最初のものは傾斜が 2 度以下の地域を特定します
・ 2 つ目も同様ですが、傾斜は 5 度以下であることが必要です。
・ それらを exercise_data/raster_analysis の下に slope_lte2.tif と slope_lte5.tif という名前で保存してください。

答え

・ Raster calculator のダイアログを設定します:
・ 次の式: slope@1 <= 2

7.3. Lesson: 地形解析 279
• slope レイヤを Reference layer(s) とします

• 5度のバージョンは、式とファイル名の2を5に置き換えてください。

結果はこうなります:

• 2度:
• 5 度:
7.3.8 Follow Along: ラスタ解析結果を組み合わせる

これで、DEM から 3 つのラスタレイヤを生成できました:

- `aspect_north`: 北向きの地形
- `slope_lte2`: 2 度以下の傾斜
- `slope_lte5`: 5 度以下の傾斜

この条件を満たす場合、画素値は 1 となります。それ以外の場所では 0 となります。したがって、これらのラスタを掛けて合わせると、すべてのピクセルの値が 1 となります（残りは 0 となります）。

条件を満たすものは:

- 傾斜が 5 度以下で、北向きの地形
- 傾斜が 2 度以下で、地形の向きは考慮しない。

ですから、傾斜が 5 度以下、かつ北向きの地形、または傾斜が 2 度以下の地形を探す必要があります。そのような地形は開発に適しているでしょう。
これらの抽出条件を満たすエリアを計算します:

1. 再び Raster calculator を開きます

2. この式を 式 で使用します:

\[(\text{aspect}_\text{north}@1 = 1 \text{ AND } \text{slope}_\text{lte}5@1 = 1) \text{ OR } \text{slope}_\text{lte}2@1 = 1\]

3. Reference layer(s) パラメータに aspect_north を設定します（他のレイヤを選択しても問題ありません - これらはすべて srtm_41_19 から計算されています）

4. 出力結果を exercise_data/raster_analysis/ の下に all_conditions.tif という名前で保存します

5. 実行 をクリックします

結果：

ヒント：これまでの手順は、次のコマンドを使用することで簡略化することができます:

\[((\text{aspect}@1 <= 90 \text{ OR } \text{aspect}@1 >= 270) \text{ AND } \text{slope}@1 <= 5) \text{ OR } \text{slope}@1 <= 2\]
7.3.9 Follow Along: ラスタを簡素化する

上の画像からわかるように、複合的な解析によって、条件を満たす非常に小さな領域がたくさんできています（白い部分）。しかし、これらは小さすぎても何とも構築できないため、解析にはあまり役に立ちません。このような小さくて使えない領域をすべて取り除いてしましょう。

1. ふるい（sieve）ツールを開きます（GDAL ラスタ解析 in プロセッシングツール）
2. 入力レイヤに all_conditions を、出力ファイルに all_conditions_sieve.tif（exercise_data/raster_analysis/ 以下）をセットします。
3. 閾値を 8（最小 8 连続ピクセル）に設定し、8 方向の連結関係をチェックする をチェックします。

処理が完了すると、新しいレイヤーが読み込まれます。
どうなっているのでしょうか？その答えは、新しいラスターファイルのメタデータにあります。

4. レイヤプロパティ ダイアログの 情報 タブでメタデータを表示します。STATISTICS_MINIMUM の値を見してください

7.3. Lesson: 地形解析
このラスタは、元となったラスタと同様に、値「1」と「0」のみを特徴とするはずですが、非常に大きな負の数も持っています。データを調査すると、この数値はヌル値として機能することがわかります。我々はフィルタリングされなかった部分のみを対象にしているので、このヌル値をゼロに設定しましょう。

5. ラスタ計算機を開き、次の式を組み立てます:

```plaintext
(all_conditions_sieve@1 <= 0) = 0
```

これは、すべての非負の値を維持し、負の数をゼロに設定し、値1を持つすべての領域をそのまま残します。

6. 出力結果を exercise_data/raster_analysis/ の下に all_conditions_simple.tif という名前で保存してください。

出力はこのようになります:
7.3.10 Follow Along: ラスタの再分類

ラスタ計算機*を使用して、ラスタレイヤの計算を行いました。もう一つ、既存のレイヤから情報を抽出するための強力なツールがあります。

話は aspect レイヤに戻ります。このレイヤは 0 から 360 の範囲の数値を持っていることが分かっています。このレイヤを傾斜方位に対応する不連続な值（1〜4）に"再分類"したいのです:

* 1 = 北 (0 から 45 及び 315 から 360)
* 2 = 東 (45 から 135)
* 3 = 南 (135 から 225)
* 4 = 西 (225 から 315)

この操作はラスタ計算機でも可能性がありますが、計算式が非常に大きくなってしまいます。

代替ツールとしては、プロセッシングツールボックス の ラスタ解析 にある 区分表（テーブル）で再分類ツールを使用します。

1. ツールを開きます

7.3. Lesson: 地形解析
2. ラスタレイヤとしてaspect を選びます

3. 再分類の区分表（テーブル）の...をクリックします。表のようなダイアログがポップアップ表示され、各区分の最小値、最大値、新しい値を選択することができます。

4. 行を追加ボタンをクリックし、行を5つ追加します。各行を下図のように記入し、OK をクリックします:

![Fixed table](image)

各クラスの間値を扱うためにアルゴリズムが用いる方法は、分類区分の境界上の扱いによって定義されます。

5. レイヤをreclassified.tif という名前で exercise_data/raster_analysis/フォルダに保存します
6. 実行をクリックします

元のaspectレイヤとreclassifiedレイヤを比較すると、大きな差はありません。しかし、凡例を見ると、値が1から4になっていることが分かります。

このレイヤをより良いスタイルに仕上げていきましょう。

1. レイヤスタイルパネルを開きます
2. 単バンドグレーの代わりに、カテゴリ値パレットを選びます

3. 分類ボタンをクリックして、自動的に値を取得し、ランダムな色を割り当てます:

出力は以下のようなになります（ランダムに生成されたため、異なる色を使用することも可能です）：
この再分類とレイヤに適用されたパレットスタイルにより、傾斜方位領域を即座に区別することができます。

7.3.11 Follow Along: ラスタを問い合わせる

ベクタレイヤとは異なり、ラスタレイヤは属性テーブルを持ちません。各ピクセルには1つまたは複数の数値が含まれます（シングルバンドまたはマルチバンドのラスタ）。

この演習で使用したすべてのラスタレイヤは、1つのバンドだけで構成されています。レイヤによって、ピクセルの値は標高、傾斜方位、傾斜の値を表すことがあります。

ラスタレイヤに問い合わせてピクセルの値を取得するにはどうすればよいのでしょうか？地物情報表示ボタンを使えばいいのです！

1. 属性ツールバーからツールを選択します。
2. `srtm_41_19` レイヤの任意の場所をクリックします。地物情報が表示され、クリックした場所のバンドの値が表示されます。

7.3. Lesson: 地形解析
3. パネル下部にあるビューメニューからテーブルを選択すると、地物情報パネルの出力を、現在のツリーモードからテーブルに変更することができます。

ラスター値を取得するために各ピクセルをクリックすることは、しばらくすると煩わしくなるかもしれません。この問題を解決するために、Value Tool プラグインを使うことができます。

1. プラグイン ⇒ プラグインの管理とインストール... を選びます
2. すべてタブで、検索ボックスにvalue tと入力します
3. Value Tool プラグインを選択し、インストールを押して、ダイアログを閉じるします。
新しいValue Toolパネルが表示されます。

Tip: パネルを閉じた場合は、ビュー -> パネル -> Value Toolで有効にするか、ツールバーのアイコンをクリックすることで再び開くことができます。

4. プラグインを使用するには、Enableチェックボックスをチェックし、レイヤパネルでsrtm_41_19レイヤがアクティブ（チェック済み）であることを確認します。

5. カーソルを地図上に移動させると、ピクセルの値が表示されます。
6. しかし、それだけではありません。Value Tool プラグインを使用すると、レイヤ パネルにあるアクティブなラスタレイヤをすべてクエリすることができます。aspect と slope レイヤを再度アクティブにして、地図上にマウスを移動します:
7.3.12 In Conclusion

DEM から様々な種類の分析結果を取り出す方法を見てきました。陰影起伏や傾斜、傾斜方位の計算をしました。またこれらの結果をさらに解析し結合するためにラスタ計算機の使用方法を見てきました。最後に、レイヤを再分類する方法と結果をクエリする方法を学びました。

7.3.13 What’s Next?

2つの分析結果が得られました：潜在的に適した小地所を示すベクター分析の結果と潜在的に適した地形を示すラスター分析の結果です。この問題の最終的な結果に到達するためにどのようにこれらを組み合わせるか？それが次のレッスンのトピックです。次のモジュールで始めます。
第8章 Module: 分析の完了

分析は2部あります：ベクターの部とラスターの部。このモジュールでは、それらを組み合わせる方法を説明します。分析を完了して最終結果を提示します。

8.1 Lesson: ラスタからベクタへの変換

ラスタ形式とベクタ形式の間で変換できることと、GISの問題を解決するときに、またこれら二つの地理データの形式に特有の様々な解析方法を使用するときに、ラスタとベクタデータの両方を利用できます。GISの問題を解決するためのデータソースと処理方法を検討する際に、より柔軟性が上がります。

ラスタとベクタの解析を組み合わせるには、データのタイプを一方からもう一方に変換する必要があります。前のレッスンのラスタ結果をベクタに変換してみましょう。

このレッスンの目標：解析を完了するためにラスタ結果をベクタにすること。

8.1.1 Follow Along: ラスタからベクタツール

最新のモジュールraster_analysis.qgsから地図を起動します。前の練習中にall_conditions_simple.tifが計算されているはずです。

- ラスタ cabbage 变換内のラスタのベクタ化 (polygonize) をクリックします。ツールのダイアログが表示されます。

- このように設定します:
フィールド名（ラスタの値を記述）を suitable に変更します。

レイヤを exercise_data/residential_development の下に all_terrain.shp として保存します。

これで、ラスタのすべての値を含むベクタファイルができましたが、興味があるのは適切な領域だけです。つまり、suitable の値が 1 であるポリゴンです。このレイヤーをより明確に可視化したい場合は、スタイルを変更することができます。

8.1.2 Try Yourself

ベクタ分析のモジュールに戻って参照ください。

- suitable の値が 1 であるポリゴンのみを含むベクタファイルを新規に作成します。
- 新しいファイルを exercise_data/residential_development/ の下に suitableTerrain.shp という名前で保存します。
1. レイヤパネルで all_terrain レイヤを右クリックして、プロパティ □ ソース タブを選択し、クエリビルダを起動します。

2. "suitable" = 1 というクエリを作ります。

3. OK をクリックすると、この条件を満たさないポリゴンがすべてフィルタリングされます。元のラスターの上に表示すると、領域が完全に重なっているはずです:

 ![Polygonize (Raster to Vector) dialog](image)

 Parameters Log

 Input layer
 □ all_conditions_simple [EPSG:32733] ...

 Band number
 □ Band 1 (Gray)

 Name of the field to create
 suitable

 □ Use 8-connectedness

 Advanced parameters
 Additional command-line parameters [optional]

 Vectorized
 ease_3.10/exercise_data/residential_development/all_terrain.shp ...

 □ Open output file after running algorithm

 GDAL/OGR console call

 0%

4. このレイヤを保存するには、レイヤパネルで all_terrain レイヤを右クリックして、Save As... を選び、指示に従って保存を続けます。

8.1. Lesson: ラスタからベクタへの変換
8.1.3 Follow Along: ベクタのラスタ化ツール

現在の問題では不要ですが、上記で実行した変換とは逆の変換について知っておくと便利です。前回で作成した suitable_terrain.shp ベクタファイルをラスタに変換します。

- ラスタ変換 ベクタのラスタ化（rasterize）をクリックしてツールを起動し、その後、下のスクリーンショットのようにそれを設定します:

 - 入力レイヤは all_terrain です。
 - フィールド名は suitable です。
 - 出力ラスタサイズ単位は ピクセル。
 - 幅と高さは、それぞれ 837 と 661。
 - all_terrain レイヤから 出力範囲を取得します。
8.1.4 In Conclusion

ラスタとベクトル形式の間で変換すると、データの適用可能性を広げることができ、データの劣化につながる必要はありません。

8.1.5 What’s Next?

今はベクトル形式で利用可能な地形解析の結果がありますので、どの建物を住宅開発のために検討すべきかの問題を解決するためにそれらを使用できます。

8.2 Lesson: 分析を組み合わせる

ベクトル化されたラスタ解析の結果を使うと、適当な地形の上の建物のみを選択することができます。
このレッスンの目標: 適当な小地所を選び出すためにベクトル化された地形の結果を使う。

8.2.1 Try Yourself

1. 現在の地図 (raster_analysis.qgs) を保存します。

2. 以前にベクトル解析中に作成した地図を開きます (ファイルを analysis.qgs として保存したはずです)。

3. レイヤ パネルで次のレイヤを有効にします:
 - hillshade,
 - solution (または buildings_over_100)

4. これらのレイヤに加え、以前作業したときに既に地図に読み込まれているはずです suitableTerrain.shpデータセットも追加します。

5. もし、レイヤが足りない場合は、exercise_data/residential_development/ にあるはずです。
6. 交差 (intersect) ソール（"menuselection: ベクタ → 空間演算ツール"）を使って、new_solution.shpという新しいベクタレイヤを作成し、suitableTerrain レイヤと交差する建物のみを格納します。

あなたは解として特定の建物を示すレイヤを持っているはずです。例えば:

![Map Image]

8.2.2 🎨 Try Yourself 結果の検査

new_solution レイヤの各建物を見て下さい。new_solution レイヤのシンポジオをアウトラインだけに変更して、それらを suitableTerrain レイヤと比較して下さい。建物のいくつかを見て何に気づきましたか？それらは suitableTerrain レイヤと交差しているからといってすべて適当ですか？その理由は？どれが不適当だと考えますか?

答え

new_solution レイヤの一部の建物が交差 (intersection) ソールによって「スライス」されていることに気づくかもしれません。これは、建物の一部のみ、つまりプロバティの一部のみが適切な地形にあることを示しています。したがって、これらの建物をデータセットから適切に削除できます。
8.2.3 Try Yourself 解析結果の改良

結果に含まれていた建物の中には本当には適していないものがありましたので分析結果を改良しましょう。

解析において完全に suitable_terrain レイヤ内にある建物のみが返されるようにしたいです。これはどのように達成しますか？1つまたは複数のベクトル解析ツールを使用し、建物のサイズが100m四方を超えていることを忘れないでください。

答え

現時点では、このような解析ができるはずです:

四方100mに渡って連続する円形の区域を考えてみましょう。
半径 100m 以上の場合、その大きさから（全方向から）100m を引くと、真ん中に一部が残ることになります。

したがって、既存の suitable terrain ベクタレイヤで 100 メートルの内部バッファを実行できます。バッファ関数の出力では、元のレイヤーに残っているものはすべて、100 メートル先の適切な地形がある領域を表します。
実際に試してみましょう:

1. :menuselection:`ベクタ → 空間演算ツール → バッファ (buffer)` でバッファダイアログを表示します。

2. 次のように設定します:

3. suitable_terrain レイヤを使用して、10 のセグメントと -100 のバッファ距離を設定します。（地図が投影型 CRS を使用しているため、距離は自動的にメートルで表示されます。）

4. 出力結果を exercise_data/residential_development/ に suitable_terrain_continuous100m.shp として保存してください。

5. 必要であれば、新しいレイヤを元の suitable_terrain レイヤの上に移動させます。
 結果はこのようになります:

8.2. Lesson: 分析を組み合わせる
6. ここで、場所による選択ツール（:menuselection:`ベクタ --> 調査ツール --> 場所による選択`）を使います。

7. 次のように設定します:

8. *new_solution* にある地物のうち、*suitableTerrainContinuous100m.shp* にある地物と交差するものを
選択します。
これがその結果です:

黄色い建物が選択されています。一部の建物は新しい suitable_terrain_continuous100m レイヤの外側にありますが、元の suite_terrain レイヤ内に十分に収まっているため、すべての要件を満たしています。

9. 選択部分を exercise_data/residential_development/ の下に final_answer.shp という名前で保存してください。

8.2.4 In Conclusion

これで当初の研究課題に答え、どの地所を開発するべきかに関する推奨の意見を（理由をもって、分析に支えられて）提示できます。

8.2.5 What’s Next?

次は2番目の研究課題の一部としてこれらの結果を提示します。
8.3 課題

印刷レイアウトを使用して、解析結果を表す新しい地図を作成します。次のレイヤを含めてください:

- places（ラベル付き）
- hillshade
- solution（または new_solution）
- roads と
- aerial_photos または DEM のいずれか。

それに付随する短い説明文を書いて下さい。適当な選択肢への推奨を説明するだけではなく、頭の購入とその後の開発を考えるのに使用された基準を文章に含めなさい。

8.4 Lesson: 補足実習

このレッスンでは、QGIS での完全な GIS 解析を通じて案内します。

注記: このレッスンは、Linfiniti Consulting（南アフリカ）と Siddique Motala（ケープペンシウシュラ工科大学）によって開発されました

8.4.1 問題文

あなたは、ケープ半島とその周辺で、珍しいフィンボス植物種に適した生息地を見つけるという任務を負っています。調査範囲は、北のメルクゴストランドと南のストランドの間のケープタウンとケープ半島をカバーしています。植物学者は、問題の種が好む次の条件を提供しました:

- 東向きの斜面で育ちます
- 15%から 60%の傾斜の斜面で育ちます
- 年間降水量 > 1000 mm の地域で育ちます
- 人里から 250m 以上離れた場所でのみ発見されます
- 発生する植生の区域は面積で 6000 ㎡以上

大学の学生として、あなたは土地の 4 つの異なる適地でその植物を探すことに同意しました。あなたは、住んでいるケープタウン大学に最も近い区域の中からこの 4 つの適地を選びたいと思います。GIS スキルを使って、どこを見に行くべきかを判断してください。
8.4.2 解決策の概要

この演習のデータは、exercise_data/more_analysisフォルダにあります。
ケープタウン大学に最も近い4つの適地を見つけます。

解決策には次のようなものがあります：

1. DEM ラスタレイヤを解析して、東向き斜面や正しい勾配を持つ斜面を探し出す
2. 降雨量ラスタレイヤを解析して、正しい降雨量の地域を見つける
3. ソーニングベクタレイヤを解析して、人里から離れた、適正な大きさの区域を探し出す

8.4.3 Follow Along: 地図を設定する

1. 画面の右下隅にある現在の CRS ボタンをクリックします。表示されるダイアログの CRS タブで、[フィルター]ツールを使用して「33S」を検索します。エントリ WGS 84 / UTM ゾーン 33S（EPSGコード 32733）を選択します。
2. OKをクリックします
3. プロジェクトファイルを保存するには、ツールバーのプロジェクト保存ボタンをクリックするか、アイテム - 名前を付けて保存...メニュー項目を使用します。

これをRasterpracという新しいディレクトリに保存します。これは、コンピュータのどこかに作成が必要があります。作成したレイヤもこのディレクトリに保存します。プロジェクトをyour_name_fynbos.qgsとして保存します。

8.4.4 地図へデータを読み込む

データを処理するためには、必要なレイヤ（街路名、ゾーン、雨量、DEM、地区）をマップキャンバスに読み込む必要があります。

ベクタについては...

1. データソースマネージャーツールバーのデータソースマネージャーを開くボタンをクリックし、表示されるダイアログのベクタタブを選ぶか、またはレイヤ - レイヤを追加...メニュー項目を使用します
2. ファイルが選択されていることを確認します
3. ...ボタンをクリックして、ベクタデータセットをブラウズします
4. 表示されたダイアログで、exercise_data/more_analysis/Streetsディレクトリを開いてください
5. ファイルStreet_Names_UTM33S.shpを選択します
6. 開くをクリックします。
ダイアログが閉じ、元のダイアログが表示されます。その際に、ベクタデータセットの隣のテキストフィールドにファイルを指定されます。これにより、正しいファイルが選択されていることを確認することができます。また、このフィールドにファイルパスを手動で入力することもできます。

7. 追加をクリックします。ベクタレイヤがマップに読み込まれます。色は自動的に割り当てられます。色は後で変更します。

8. レイヤの名前を Streets に変更します
 1. レイヤパネル（デフォルトでは、画面の左側に沿ったペイン）で、そのアイコンを右クリックします
 2. 表示されたダイアログでレイヤの名前変更をクリックして名前を変更し、完了したら Enterキーを押してください

9. ベクタの追加を繰り返しますが、今回は Zoning ディレクトリにある Generalised_Zoning_Dissolve_UTM33S.shp ファイル選びます。

10. その名前を Zoning に変更します。
11. ベクタレイヤ admin_boundaries/Western_Cape_UTM33S.shp も地図に読み込みます。
12. その名前を Districts に変更します。

ラスタについては...

1. データソースマネージャを開くボタンをクリックし、表示されたダイアログで ラスタ タブを有効にするか、レイヤのレイヤを追加 ラスタレイヤを追加... メニューアイテムを使います
2. ファイルが選択されていることを確認します
3. 該当するファイルに移動して選択し、開くをクリックします
4. 次の2つのラスタファイル、DEM/SRTM.tif と rainfall/reprojected/rainfall.tif のそれぞれについて、この操作を行います
5. SRTM ラスタを DEM に、降雨量ラスタを Rainfall 名前を変更します（頭文字は大文字）

8.4.5 レイヤ順序を変更する

レイヤパネルでレイヤをクリック、上下にドラッグして、地図上に表示される順序を変え、できるだけ多くのレイヤが見えるようにします。

これですべてのデータが読み込まれ、正しく表示されるようになったので、解析を開始することができます。最初にクリッピング操作を行うとよいでしょう。これは、どうせ使わない部分の値を計算するために処理能力を浪費しないためです。
8.4.6 正しい地区の検索

前述の調査区域の関係で、地区を以下のものに限定する必要があります:

- Bellville
- Cape
- Goodwood
- Kuils River
- Mitchells Plain
- Simon Town
- Wynberg

1. レイヤ パネルで Districts レイヤを右クリックします。
2. 表示されたメニューから、フィルタ... メニュー項目を選択します。クエリビルダ ダイアログが表示されます。
3. ここで、候補となる地区の名を選択するクエリを作成します:
 1. 属性 リストで NAME_2 フィールドをダブルクリックして、下の プロパバディティブのフィルタ式テキストフィールドに表示させます
 2. IN ボタンをクリックすると、SQL クエリに追加されます
 3. 始め丸括弧を入力します
 4. (現在は空の) 値 リストの下にあるすべて ボタンをクリックします。
 少しすると、選択されたフィールド (NAME_2) の値で 値 リストが構成されます。
 5. 値 リストの中の値 Bellville をダブルクリックして、SQL クエリに追加します。
 6. コンマを追加し、Cape 地区を追加するためにダブルクリックします
 7. 残りの地区についても、前のステップを繰り返してください
 8. 括弧を閉じます

最終的なクエリは次のようにになります（括弧内の地区の順序は重要ではありません）:

"NAME_2" in ('Bellville', 'Cape', 'Goodwood', 'Kuils River',
'Mitchells Plain', 'Simon Town', 'Wynberg')

注釈: また、OR 演算子も使うことができます。クエリは次のようにになります:

"NAME_2" = 'Bellville' OR "NAME_2" = 'Cape' OR
"NAME_2" = 'Goodwood' OR "NAME_2" = 'Kuils River' OR
"NAME_2" = 'Mitchells Plain' OR "NAME_2" = 'Simon Town' OR
"NAME_2" = 'Wynberg'
9. OK を二回クリックします。

地図に表示される地区は、上記のリストに記載されているものに限定されるようになりました。

8.4.7 ラスタのクリップ

関心領域を手に入れたので、この区域へラスタを切り抜くことができます。

1. メニュー ラスタ・抽出・マスクレイヤで切り抜く...を選択して、クリッピングダイアログを表示させます

2. 入力レイヤ ドロップダウンリストで、DEM レイヤを選びます

3. マスクレイヤ ドロップダウンリストから、Districts レイヤを選びます

4. スクロールダウンして、出力ファイル テキストフィールドに出力先を指定します。... ボタンをクリックして ファイル名に保存... を選びます

 1. Rasterprac ディレクトリに移動します
 2. ファイル名に DEM_clipped.tif を入力します
 3. 保存します

5. アルゴリズムの終了後に出力ファイルを開くがチェックされていることを確認します

6. 実行 をクリックします

 クリッピング操作が完了したら、クリッピング領域を再利用するためにマスクレイヤで切り抜くダイアログを開いたままにします

7. 入力レイヤ ドロップダウンリストから Rainfall ラスタレイヤを選択し、Rainfall_clipped.tif という名前で出力を保存します

8. 他のオプションは変更しないでください。すべてそのままにして、実行 をクリックします。

9. 2 回目のクリッピング操作が完了したら、マスクレイヤで切り抜くダイアログを閉じます

10. 地図を保存します

ラスタを描える

解析のためには、ラスタが同じ CRS を持ち、位置が揃っていることが必要です。

まず、雨量データの解像度を 30m（ピクセルサイズ）に変更します:

1. レイヤ パネルで、Rainfall_clipped がアクティブレイヤであることを確認します（つまり、クリッピングされることでハイライトされます）

2. ラスタ・投影法・再投影 (warp)... メニューをクリックし、再投影 (warp) ダイアログを開きます

3. リサンプリング法で、ドロップダウンメニューから バイリニア (bilinear) を選択します
4. 変換先 CSR の単位での解像度を 30 に設定します
5. 再投影したラスタファイルまでスクロールし、出力を rainfall/reprojected ディレクトリに Rainfall30.tif という名前で保存します。
6. アルゴリズムの終了後に出力ファイルを開くがチェックされていることを確認します
それでは DEM を位置合わせします:
1. レイヤパネルで、DEM_clipped をアクティブレイヤにします（つまり、クリックしてハイライトさせます)
2. ラスタ □ 投影法 □ 再投影 (warp)... メニューをクリックし、再投影 (warp) ダイアログを開きます
3. ラスタの CRS の下にあるドロップダウンメニューからプロジェクト CRS: EPSG:32733 - WGS 84 / UTM zone 33S を選択します
4. リサンプリング法で、ドロップダウンメニューからバイリニア (bilinear) を選択します
5. 変換先 CSR の単位での解像度を 30 に設定します
6. 出力ファイルの矩形範囲までスクロールダウンします。テキストボックスの右側のボタンを使って、レイヤから計算 □ Rainfall30 を選択します。
7. Reprojected までスクロールして、出力を DEM/reprojected ディレクトリに DEM30.tif という名前で保存します。
8. アルゴリズムの終了後に出力ファイルを開くがチェックされていることを確認します
何が起こっているのかを適切に確認するために、レイヤーのためのシンボルを変更する必要があります。

8.4.8 ベクタレイヤのシンボロジ変更する
1. レイヤパネルで、Streets レイヤを右クリックします
2. 表示されるメニューからプロパティを選択します
3. 表示されたダイアログでシンボロジタブに切り替えます
4. トップウィジェットにあるラインエントリをクリックします
5. 下のリストから記号を選択するか、新しい記号を設定します（色、透明度、...)
6. OK をクリックしてレイヤプロパティダイアログを閉じます。これで Streets レイヤのレンダリングが変更されます。
7. 同様の手順で、Zoning レイヤに適切な色を選びます
8.4.9 ラスタレイヤのシンボロジを変更する

ラスタレイヤのシンポロジはいくつか異なります。

1. ラスタレイヤ Rainfall30 のプロパティダイアログを開きます
2. シンボロジタブに切り替えます。このダイアログは、ベクタレイヤに使用されるバージョンと大きく異なっていることにお気づきでしょう。
3. 最小/最大値設定を展開します
4. ボタン 平均 +/- 標準偏差が選択されていることを確認します
5. 関連するボックスの値が 2.00 になっていることを確認します
6. コントラストに最小最大値に引き伸ばすと表示されていることを確認します
7. グラデーションは、白から黒に変更します
8. OKをクリックします

Rainfall30 ラスタが表示されている場合、色が変わり、各ピクセルの異なる輝度値を見ることができるはずです。

9. この作業を DEM30 レイヤーに対して繰り返します。ただし、引き伸ばしに使用する標準偏差は 4.00 に設定します

8.4.10 地図をクリーンアップします

1. オリジナルの Rainfall と DEM レイヤ、および Rainfall_clipped と DEM_clipped をレイヤパネルから削除します。

 ・ これらのレイヤ上で右クリックし、削除を選択します。

注釈：これは、記憶装置からデータを削除しません。地図から外すだけです。

2. 地図を保存します

3. レイヤパネル中のベクタレイヤを、横にあるボックスをオフにして非表示にできます。これによって地図のレンダリングが速くなり、時間の節約になります。

8.4.11 陰影図の作成

陰影図を作成するには、この目的のために書かれたアルゴリズムを使う必要があります。

1. レイヤパネルで、DEM30がアクティブレイヤであることを確認します（つまり、クリックしてハイライトにします）

2. メニューから ラスタ ribbon 解析 ribbon 陰影図(hillshade) を選択すると、陰影図(hillshade) ダイアログが表示されます
3. 陰影図 (hillshade) までスクロールし、Rasterprac ディレクトリに hillshade.tif として出力を保存します

4. アルゴリズムの終了後に出力ファイルを開くがチェックされていることを確認します

5. 実行 をクリックします

6. 処理が完了するのを待ちます。

新しい hillshade レイヤが レイヤ パネルに表示されました。

1. レイヤ パネルで hillshade レイヤーを右クリックして、プロパティ ウィンドウを開きます

2. 透過性 タブをクリックし、グローバルな不透明度 スライダを 20% に設定します

3. OK をクリックします

4. 透明な陰影図が切り取られた DEM の上に重なっているときの効果に注意してください。効果を確認するため、レイヤの順番を変えるか、Rainfall30 のレイヤをクリックしてオフにする必要があるかもしれません。

8.4.12 傾斜

1. ラスタ ⇨ 解析 ⇨ 傾斜 (slope) ... メニュー項目をクリックし、傾斜 (slope) アルゴリズムのダイアログを開きます

2. DEM30 を 入力レイヤ に選択します

3. 傾斜の単位は パーセント（デフォルトは度）をチェックします。傾斜は異なる単位（パーセントまたは度）で表現することができます。我々の基準では、対象の植物は 15% から 60% の勾配の斜面に生育するとされています。そこで、傾斜データがパーセントで表現されていることを確認する必要があります。

4. 出力のための適切なファイル名と場所を指定します

5. アルゴリズムの終了後に出力ファイルを開くがチェックされていることを確認します

6. 実行 をクリックします

傾斜画像が計算され、地図に追加されました。いつも通りグレースケールでレンダリングされています。もっとカラフルなシンドロジに変更します:

1. レイヤの プロパティ ダイアログを開きます（通常通り、レイヤの右クリックメニューから行います）

2. シンドロジ タブをクリックします

3. 単バンドグレー（レンダリングタイプ ドロップダウンメニュー）と書かれている箇所を 単バンド模様 変更します

4. 最小/最大値設定 の 平均 +/- 標準偏差 x に 2.0 を選びます

5. 適当な カラーランプ を選びます

6. 実行 をクリックします

8.4. Lesson: 補足実習
8.4.13 Try Yourself 傾斜方位

傾斜を計算するのと同じ方法で、ラスター隣接メニューから傾斜方位...を選択します。
定期的にプロジェクトを保存することを忘れないでください。

8.4.14 ラスターを再分類する

1. ラスター隣接計算機...を選択します
2. 出力レイヤーの場所として Rasterprac ディレクトリを指定し(…ボタンをクリックします)、slope15_60.tif というファイル名で保存します
3. 結果をプロジェクトに追加する のボックスが選択されていることを確認します。
 左側のパネルリストには、レイヤーパネルにあるすべてのラスタレイヤが表示されています。傾斜レイヤが slope という名前であれば、slope@1 という名前で表示されます。これは傾斜ラスタのバンド 1 であることを示しています。
4. 勾配が15度から60度の間である必要があります。
 インターフェイスのリスト項目ボタンを使って、次の式を組み立ててください:

 \[(\text{slope@1} > 15) \text{ AND } (\text{slope@1} < 60)\]

5. 適切な場所とファイル名で 出力レイヤー フィールドを設定してください。
6. 実行をクリックします。

次に、同じ方法で正しい傾斜方位（東向き：45度から135度の間）を求めます。
1. 次の式を組み立てます:

 \[(\text{aspect@1} > 45) \text{ AND } (\text{aspect@1} < 135)\]

出来上がったラスタで、東向きの斜面がすべて白くなっていたれば、うまくいったことがわかります（まるで朝日に照らされているかのように）。

同じ方法で正しい雨量（1000mm以上）を求めてください。次の式を使います:

Rainfall30@1 > 1000

3つの条件がそれぞれ別々のラスタになったので、それらを組み合わせて、どの区域がすべての条件を満たしているかを確認する必要があります。そのために、ラスタは互いに掛け合わせられます。このとき、値が1で重複しているピクセルはすべて1の値を保持します（つまり、その場所は条件を満たしています）。しかし、3つのラスタのうち、いずれかのピクセルが0の値を持つ場合（つまり、その場所は条件を満たしていない）。それは結果としては0となります。このようにして、結果には適切な基準をすべて満たす重複領域のみが含まれることになります。
8.4.15 ラスタを組み合わせる

1. ラスタ計算機を開きます（ラスタ [ラスタ計算機... ）
2. 次の式を組み立てます（レイヤの適切な名前を付けてください）:

 \[[\text{aspect45}_135] \cdot [\text{slope15}_60] \cdot [\text{rainfall}_1000]\]

3. 出力先を Rasterprac ディレクトリに設定します
4. 出力するラスタに aspect_slope_rainfall.tif という名前付けます
5. 結果をプロジェクトに追加するがチェックされていることを確認してください
6. 実行 をクリックします

新しいラスタでは、3つの条件をすべて満たした領域が適切に表示されるようになりました。
プロジェクトを保存してください。

次に満たすべき基準は、その地域が都市部から 250 m 離れていることです。この条件を満たすには、計算する地域が農村部の中にあり、その地域の端から 250 m 以上離れていることを確認する必要があります。

したがって、まずすべての農村地域を見つける必要があります。

8.4.16 農村地域を検索する

1. レイヤ パネル内のすべてのレイヤを非表示にします
2. Zoning ベクタレイヤの非表示を解除します
3. その上で右クリックして、 属性テーブルダイアログを表示します。ここでは、土地がさまざまな方法でゾーニングされていることに注意してください。私たちは、農村部を分離したいのです。属性テーブルを開じます。
4. Zoning レイヤを右クリックして フィルタ... を選択し、 クエリビルダ ダイアログを表示させます
5. 次のクエリを組み立てます:

 "Gen_Zoning" = 'Rural'

行き詰まったときは、先の説明を参照してください。
6. OK をクリックして、 クエリビルダ ダイアログを閉じます。クエリは 1 つの地物を返すはずです。

Zoning レイヤにある農村部のポリゴンが表示されるはずです。これらを保存する必要があります。

1. Zoning の右クリックメニューで、 エクスポート [新規ファイルに地物を保存... を選びます。
2. レイヤを Rasterprac ディレクトリの下に保存します
3. 出力ファイルを rural.shp と名付けます
4. OK をクリックします
5. プロジェクトを保存してください
ここで農村地域の端から250m内にある領域を除外する必要があります。これは以下に説明するように、負のバッファを作成することによって行います。

8.4.17 負のバッファを作成する

1. メニュー項目 ベクタ ▷ 空間演算ツール ▷ バッファ... をクリックします

2. 表示されたダイアログで、入力ベクタレイヤとして rural を選択します（選択した地物のみにチェックを入れません）

3. 距離に -250 を設定します。負の値は、内部バッファになることを意味します。ドロップダウンメニューで、単位がメートルであることを確認します。

4. 結果を融合する をチェックします

5. 出力レイヤでは、出力ファイルを Rasterprac ディレクトリに置き、その名前を rural_buffer.shp とします

6. 保存 をクリックします

7. 実行 をクリックし、処理が完了するのを待ちます

8. バッファダイアログを閉じます。

 rural_buffer レイヤと rural レイヤがどのように違いかを見て、バッファが正しく機能したことを確認してください。違いを観察するために、描画順序を変更する必要があるかもしれません。

9. rural レイヤを削除します

10. プロジェクトを保存してください

ここでは、rural_buffer のベクタレイヤと aspect_slope_rainfall のラスタを結合する必要があります。これらを結合するためには、どちらかのレイヤのデータ形式を変更する必要があります。今回の場合、面積を計算するにはベクタレイヤの方が便利なので、ラスタをベクトル化することにします。

8.4.18 ラスタをベクトル化する

1. メニュー項目 ラスタ ▷ 変換 ▷ ラスタのベクトル化 (polygonize)... をクリックします

2. aspect_slope_rainfall ラスタを入力レイヤとして選びます

3. 作成するフィールドの名前に suitable を設定します（デフォルトのフィールド名は DN - デジタル番号データです）

4. 出力を保存します。ベクトル化の下にあるファイルに保存を選択します。保存場所を Rasterprac に設定し、ファイル名を aspect_slope_rainfall_all.shp にします。

5. 結果をプロジェクトに追加するがチェックされていることを確認してください

6. 実行 をクリックします

7. 処理が完了したらダイアログを閉じます
ラスタのすべての領域がベクタ化されているので、suitable フィールドの値が 1 である領域のみを選択する必要があります。（デジタルナンバー）

1. 新しいベクタレイヤ用に クリップツール ダイアログを開きます（右クリック - フィルタ...）
2. 次のクエリを組み立てます:

 "suitable" = 1

3. OK をクリックします

4. クエリの完了（3 つの条件をすべて満たす、つまり値が 1 の領域だけが表示される）を確認したら、レイヤの右クリックメニューの エクスポート を新規ファイルに地物を保存... を使い、結果から新しいベクタファイルを作成します

5. ファイルを Rasterprac ディレクトリに保存します
6. ファイルは aspect_slope_rainfall_1.shp と名付けます
7. 地図から aspect_slope_rainfall_all レイヤを削除します
8. プロジェクトを保存します

あるアルゴリズムを使ってラスタをベクタ化する際、「無効なジオメトリ」と呼ばれるものが生成されることがあります。つまり、空のポリゴンや、間違いないポリゴンが存在し、将来的に解析が困難になる可能性があります。そこで、「ジオメトリの修復」とツールを使う必要があります。

8.4.19 ジオメトリを修復する

1. プロセッシングツールボックス で「ジオメトリの修復」を検索し、実行... します
2. 入力レイヤ には aspect_slope_rainfall_1 を選択します
3. 出力レイヤ で ファイルに保存... を選択し、出力を Rasterprac に、ファイル名を fixed_aspect_slope_rainfall.shp にして保存します。
4. 結果をプロジェクトに追加するがチェックされていることを確認してください
5. 実行 をクリックします
6. 処理が完了したらダイアログを閉じます

ラスタをベクトル化し、ジオメトリを修復したので、fixed_aspect_slope_rainfall レイヤと rural_buffer レイヤとの交点を見つけることによって、傾斜方位、勾配、雨量基準と田地からの距離基準を組み合わせることができるようになりました。

8.4. Lesson: 補足実習
8.4.20 ベクタの交点を求める

1. メニューのベクタ → 空間演算ツール → 交差 (intersect)… をクリックします
2. 表示されたダイアログで、rural_buffer レイヤを入力レイヤとし選択します
3. オーバーレイレイヤで、fixed_aspect_slope_rainfall レイヤを選択します
4. 交差 では、出力ファイルを Rasterprac ディレクトリに配置します
5. 出力ファイル名は rural_aspect_slope_rainfall.shp とします
6. 保存 をクリックします
7. 実行 をクリックし、処理が完了するのを待ちます
8. 交差 ダイアログを閉じます

重なっている部分だけが残っていることを確認し、交差が正しく行われたことを確認します
9. プロジェクトを保存してください

リストにある次の条件は、面積が 6000 ㎡以上であることです。このプロジェクトに適した大きさのエリアを特定するために、これからポリゴン面積を計算することになります。

8.4.21 各ポリゴンの面積を計算する

1. 新しいペクタレイヤの右クリックメニューを開く
2. 属性テーブルを開くを選択します
3. テーブルの左上にある 編集モード切替 ボタンをクリックするか、Ctrl+e を押します
4. テーブルの上部にあるツールバーの フィールド計算機を開く ボタンをクリックするか、Ctrl+i を押してください
5. 表示されたダイアログで、新規フィールドを作成がチェックされていることを確認し、出力する属性（フィールド）の名前を area に設定します。フィールド型は小数点付き数値 (real) である必要があります。精度を 1（小数点以下 1 桁）に設定します。
6. 式 エリアに次を入力します:

```
$area
```

これはフィールド計算機がペクタレイヤの各ポリゴンの面積を計算し、新しい整数列 (area という) に計算された値を入力することを意味します。

7. OK をクリックします
8. 同じことを id という別の新しいフィールドに対しても行います。フィールド計算機 に次を入力します:

```
$id
```

320
これは、各ポリゴンは識別目的のためのユニークな ID を持っていることを保証します。

9. 編集モード切替 をもう一度クリックし、編集を保存するように指示があれば保存します

8.4.22 与えられたサイズの面積を選択する

今この面積が知られています:

1. 6000 m²以上のポリゴンのみを選択するクエリを（いつも通りに）作成します。クエリは次のようになります:

   ```
   "area" > 6000
   ```

2. 選択範囲を Rasterprac ディレクトリに suitable_areas.shp という名前の新しいベクタレイヤとして保存します。

これで、希少なフィンボス植物の生息条件をすべて満たす適地が描かいました。この中から、ケープタウン大学に最も近い14つの地域を選びます。

8.4.23 ケープタウン大学のディザイナ

1. 以前と同様に Rasterprac ディレクトリに新しいベクタレイヤを作成します。ただし今回は ジオメトリタイプ として 点 (Point) を使用し、 university.shp という名前を付けます

2. 正しい CRS (プロジェクト CRS: EPSG:32733 – WGS 84 / UTM zone 33S) であることを確認してください

3. 新しいレイヤの作成を完了します（OK をクリックします）

4. 新しい university レイヤと Streets レイヤ以外のすべてのレイヤを非表示にします。

5. 背景図 (OSM) を追加します

 1. ブラウザ パネルから XYZ Tiles から OpenStreetMap に移動します

 2. OpenStreetMap のエントリを レイヤ パネルの一番下にドラッグ＆ドロップします

インターネットブラウザで、ケープタウン大学の所在地を調べてみてください。ケープタウンのユニークな地形を考えると、大学は非常にわかりやすい場所にあります。QGIS に戻る前に、大学の場所とその近くにあるものをここで見ておきましょう。

6. レイヤ パネルで Streets レイヤが有効になっていること、そして university レイヤがハイライトされていることを確認してください

7. メニューから ビュー から ツールバー を選択し、ジオメタジーツールバーが選択されていることを確認します。すると、黒線が描かれたツールバーアイコン (編集モード切替) が表示されているはずです。これは 編集モード切替 ボタンです。

8. 編集モード切替 ボタンをクリックすると、編集モードになります。これにより、ベクタレイヤを編集することができます
9. ポタンをクリックします。これは インポート ボタンの近くにあるはずです。

10. 地物を追加ツールをアクティブにし、ケープタウン大学の推定位置を左クリックします。

11. id を要求されたら、任意の整数を指定します。

12. OK をクリックします。

13. レイヤーの編集内容を保存 ボタンをクリックします。

14. 編集を中止するには 編集モード切替 ボタンをクリックします。

15. プロジェクトを保存してください。

8.4.24 ケープタウン大学から最寄りの場所を検索します。

1. プロセッシングツールボックスから、属性の最近接結合アルゴリズム（ベクター般 インタラクティブ）を選択し、実行します。

2. 入力レイヤ は university、第 2 の入力レイヤ は suitable_areas とします。

3. 適切な出力場所と名前を設定します（出力レイヤ）。

4. 近接地物の個数 を 4 に設定します。

5. 結果をプロジェクトに追加するがチェックされていることを確認してください。

6. 残りのパラメータはデフォルト値のままにします。

7. 実行 をクリックします。

出来上がったポイントレイヤには 4 つの地物が含まれ、それらはすべて大学の位置とその属性、さらに近くの適切な領域の属性（“id”を含む）とその位置までの距離を持っています。

1. 結合結果の属性テーブルを開きます。

2. 最も近い 4 つの適切な領域の id を記録し、属性テーブルを開じます。

3. suitable_areas グリッドの属性テーブルを開きます。

4. 大学に最も近い 4 つの地域を選択するクエリを作成します（id フィールドを使って選択します）。

これは、研究の質問への最終的な答えです。

提出物は、あなたの選んだ魅力的なラスタ（例えば、DEM や傾斜ラスタなど）の上に半透明の陰影図レイヤを含む、完全にラベル付けされたレイアウトを作成してください。また、大学名と suitable_areas レイヤを含み、大学に最も近い 4 つの適切なエリアをハイライトしてください。地図製作のベストプラクティスにしたがって、出力地図を作成してください。
第9章 Module: プラグイン

プラグインを使用すると、QGIS の機能的な提供を拡張することができます。このモジュールでは、プラグインを有効にして使用する方法をお見せします。

9.1 Lesson: プラグインのインストールと管理

プラグインを使い始めるにはそれらをどのようにダウンロードし、インストールし、有効化するのか知る必要があります。では、プラグインインストーラとプラグインマネージャの使い方を学びましょう。

このレッスンの目標: QGIS のプラグインシステムを理解して使います。

9.1.1 Follow Along: プラグインの管理

1. プラグインマネージャを開くには、メニュー プラグイン → プラグインの管理とインストール をクリックします。

2. 開かれたダイアログで プロセッシング プラグインを探しましょう。

3. このプラグインの横のボックスをクリックしてチェックを外し、それを無効にします。

4. 閉じる をクリックします。
5. メニューを見てみると、プロセッシングメニューがなくなっていることに気がつくと思います。これは、今まで使っていた多くの処理関数が消えてしまったことを意味します! 例えば、ベクタ→ ラスタメニューを見てください。これは、それがプロセッシングプラグインの一部であり、使用するにはプラグインを有効にする必要があるからです。

6. 再びプラグインマネージャを開き、Processingプラグインの横にあるチェックボックスをクリックして、再度有効化します。

7. ダイアログを閉じるします。Processingメニューと関数が再び利用可能になるはずです。

9.1.2 Follow Along: 新しいプラグインのインストール

有効化・無効化できるプラグインのリストは、現在インストールされているプラグインから引用されていません。新しいプラグインをインストールするには:

1. プラグインマネージャダイアログで未インストールオプションを選択します。インストール可能なプラグインがここにリストアップされます。このリストは、あなたの既存のシステム設定によって異なります。

![Plugins | Not installed (1069)](image)

Not installed plugins

Here you see the list of all plugins available in the repositories, but which are not yet installed.

You can change the sorting via the context menu (right click). A plugin can be downloaded and installed by clicking on its name, and then click the 'Install plugin' button.

2. プラグインを選択すると、そのプラグインに関する情報が表示されます
3. プラグイン情報パネルの下にある インストールボタンをクリックして、興味のあるプラグインをインストールしてください。

注釈: プラグインに何らかのエラーがある場合、無効タブにリストアップされます。この場合、プラグインの所有者に連絡して、問題を解決することができます。

9.1.3 Follow Along: 追加プラグインリポジトリの設定

利用可能なプラグインはどのプラグイン リポジトリ が設定されているかによって変わります。

QGIS のプラグインは、オンライン上のリポジトリに保存されています。デフォルトでは、公式リポジトリのみが有効です。つまり、そこで公開されているプラグインにのみアクセスすることができます。利用可能なツールの多様性を考えると、このリポジトリはあなたのニーズのほとんどを満たしてくれるはずです。

しかしデフォルトのものより多くのプラグインを試すこともできます。まずは追加リポジトリを設定します。それには:

1. プラグインマネージャ ダイアログの 設定 タブを開いてください
2. 新しいリポジトリを追加するには追加をクリックします。

3. 設定したい新しいリポジトリの名前と URL を入力します。有効化チェックボックスがチェックされていることを確認します。

4. 新しいプラグインリポジトリがプラグインリポジトリの一覧の中に表示されます
5. 開発の初期段階にあるプラグインも表示するには実験的プラグインを表示チェックボックスをチェックします。

6. ここで未インストールタブに戻ると、追加プラグインがインストールできることがわかります。

7. プラグインをインストールするには、リストでプラグインをクリックし、インストールボタンをクリックします。

9.1.4 In Conclusion

QGIS にプラグインをインストールするのは、簡単で効果的でしょう！

9.1.5 What's Next?

次に、例としていくつかの便利なプラグインを紹介します。

9.2 Lesson: 便利な QGIS プラグイン

プラグインをインストールして有効化・無効化することができるようになりました。それではいくつかの便利なプラグインの例を見て、これが実際にどのように役に立つか見ていきましょう。

このレッスンの目標: プラグインインターフェースに慣れ、いくつかの便利なプラグインを使ってみる。
9.2.1 Follow Along: QuickMapServices プラグイン

QuickMapServices プラグインは、QGIS プロジェクトにベースマップを追加するシンプルで使い勝手の良いプラグインです。様々なオプションや設定があるので、その機能の一歩をご紹介します。

1. 新しいマップを開き、training_data Geopackage から roads レイヤを追加します。

2. QuickMapServices プラグインをインストールしてください。

3. Web の QuickMapServices をクリックします。最初のメニューは、様々なマッププロバイダ（OSM、NASA）を利用可能なマップの一覧です。

4. エントリーをクリックすると、ベースマップがプロジェクトに読み込まれます。

いいですね！しかし、QMS の主な強みのひとつは、多くのデータプロバイダにアクセスできることです。それらを追加してみましょう。

1. Web の QuickMapServices の Settings をクリックします

2. More services タブに移動します。

3. このタブのメッセージをよく読んで、同意したら Get Contributed pack ボタンをクリックします。

4. 保存 をクリックします。

5. Web の QuickMapServices メニューを再度開くと、利用可能なプロバイダーが増えていることがわかります。
6. あなたのニーズに最も適したものを選択し、プロジェクトにデータを読み込みます！
また、現在利用可能なデータ・プロバイダーを検索することもできます。

1. **Web** の **QuickMapServices** の **Search QMS** をクリックして、プラグインの検索タブを開きます。プラグインのこのオプションは、利用可能なベースマップをマップキャンバスの現在の範囲や検索語によってフィルタリングすることができます。

2. **Filter by extent** をクリックすると、利用可能なサービスが 1 つ表示されるはずです。サービスが見つからない場合は、ズームアウトして世界（または現在地）をパンするか、キーワードで検索してください。

3. 返されたデータセットの横にある **Add** ボタンをクリックすると、それが読み込まれます。

4. ベースマップが読み込まれ、マップの背景ができます。

9.2. Lesson: 便利な QGIS プラグイン
9.2.2 Follow Along: QuickOSM プラグイン

QuickOSM プラグインは、驚くほどシンプルなインターフェースで、OpenStreetMap のデータをダウンロードすることができます。

1. 新しい空のプロジェクトを開始し、training_data GeoPackage から roads レイヤを追加します。

2. QuickOSM プラグインをインストールしてください。このプラグインは QGIS ソールバーに2つの新しいボタンを追加し、またそれには ベータ QuickOSM メニューからアクセスすることができます。

3. QuickOSM ダイアログを開きます。このプラグインには様々なタブがありますが、ここでは Quick Query のタブを使います。

4. 一般的な Key を選択して特定の機能をダウンロードすることもできますし、より具体的に Key と Value のペアを選択することも可能です。

Tip: もしあなたが Key と Value のシステムについてよく知らないのであれば、Help with key/value ボタンをクリックしてみてください。OpenStreetMap のこのコンセプトの完全な解説のウェブページが開きます。

5. Key メニューから railway を探し、Value を空にします。つまり、値を指定せずに全ての railway 機能をダウンロードすることになります。

6. 次のドロップダウンメニューで Layer Extent を選択し、roads を選択します。

7. Run query ボタンをクリックします。
数秒後、プラグインは OpenStreetMap で railway としてタグ付けされたすべての地物をダウンロードし、直接マップにロードします。

これだけです！すべてのレイヤは凡例に読み込まれ、マップキャンバスに表示されます。

警告：QuickOSM はデータをダウンロードする際に一時的なレイヤを作成します。恒久的に保存した場合は、レイヤの横にあるアイコンをクリックし、好みのオプションを選択します。または、QuickOSM の Advanced メニューを開き、Directory メニューでデータの保存先を選択することもできます。

9.2.3 Follow Along: QuickOSM クエリエンジン

QuickOSM プラグインからデータをダウンロードする一番早い方法は、Quick query タブを使い、いくつかの小さなパラメータを設定することです。しかし、もっと具体的なデータが必要な場合は？

あなたが OpenStreetMap のクエリマスターであれば、QuickOSM プラグインを個人のクエリにも使用できます。

QuickOSM は、Overpass の素晴らしいクエリエンジンとともに、驚くべきデータベースを備えており、あなたのニーズに合わせたデータをダウンロードすることができます。
例えば、Dolomites という特定の山岳地域に属する山頂をダウンロードしたいと思います。

このタスクは Quick query タブでは達成できません。もっと具体的に、自分でクエリを書く必要があります。これをやってみましょう。

1. 新しいプロジェクトを始めます。

2. QuickOSM プラグインを開き、Query タブをクリックします。

3. 次のコードをコピーして、クエリキャンバスに貼り付けます:

```xml
<osm-script output="json">
<!-- search the area of the Dolomites -->
<query type="area">
  <has-kv k="place" v="region"/>
  <has-kv k="region:type" v="mountain_area"/>
  <has-kv k="name:en" v="Dolomites"/>
</query>

<!-- get all peaks in the area -->
<query type="node">
  <area-query/>
  <has-kv k="natural" v="peak"/>
</query>

<!-- additionally, show the outline of the area -->
<query type="relation">
  <has-kv k="place" v="region"/>
  <has-kv k="region:type" v="mountain_area"/>
  <has-kv k="name:en" v="Dolomites"/>
</query>
</osm-script>
```

注釈: このクエリは xml に似た言語で書かれています。もし、Overpass QL に慣れているのであれば、この言語でクエリを記述することができます。

4. Run Query をクリックします:
QGIS Training Manual

山頂レイヤがダウンロードされ、QGIS に表示されます:

Overpass Query language を使うと、複雑なクエリを書くことができます。いくつかの例を見て、クエリ言語を探求してみてください。

9.2.4 Follow Along: DataPlotly プラグイン

DataPlotly プラグインは、plotly ライブラリにより、ベクタ属性データの D3 プロットを作成することができます。

1. 新しいプロジェクトを始めます
2. exercise_data/plugins フォルダから sample_points レイヤをロードします
3. プラグインをインストールするには、Follow Along: 新しいプラグインのインストール で説明されているガイドラインに従って、Data Plotly を検索してください

9.2. Lesson: 便利な QGIS プラグイン 333
4. ツールバーの新しいアイコンをクリックするか、Plugins ➔ Data Plotly メニューから、プラグインを開きます。

次の例では、sample_points レイヤの2つのフィールドの簡単な Scatter Plotを作成します。DataPlotly パネルでは、

1. レイヤフィルタで sample_points を選択し、X Field には cl を、Y Field には mg を設定します。

2. 色やマーカーの種類、透明度など、さまざまな設定を変更することができます。いくつかのパラメータを変更して、下のようなプロットを作成してみてください。
3. すべてのパラメータを設定したら、プロットを作成するために Create Plot ボタンをクリックします。

プロットは対話的です: つまり、プロットキャンバスのサイズ変更、移動、拡大・縮小のために上部のすべてのボタンを使うことができます。さらに、プロットの各要素は対話的です: プロット上で 1 つまたは複数の点をクリックまたは選択すると、対応する点がプロットキャンバスで選択されます。

プロットの右下にあるまたは ボタンをクリックすると、プロットを png 静止画像または html ファイルとして保存することができます。

もっとあります。同じページに異なる変数で異なるプロットタイプを表示する 2 つ（またはそれ以上）のプロットがあると便利なことがあります。これをやってみましょう！

1. プラグインパネルの左上隅にある ボタンをクリックして、メインのプロット設定タブに戻ります

2. Plot Type を Box Plot に変更します

3. group を Grouping Field に、 ph を Y Field に選択します

4. パネルの下部で、 Type of Plot を SinglePlot から SubPlots に変更し、デフォルトオプション Plot in Rows を選択したままにします。
5. プロットを作成するには、Create Plot ボタンをクリックします

これで散布図と箱ひげ図の両方が同じプロットページに表示されます。この状態でも、それぞれのプロット項目をクリックして、マップキャンバスの対応する地物を選択することができます。
Tip: それぞれのプロットはタブの中で利用できる独自のマニュアルページを持っています。すべてのプロットタイプを探って、利用可能な他のすべての設定を見てみてください。

9.2.5 In Conclusion

QGISではたくさんの便利なプラグインを利用することができます。ビルトインツールを用いてこれらのプラグインを管理すれば、新しいプラグインを見つけ、それらを最適に利用することができます。

9.2.6 What's Next?

次はリモートサーバーにホストされているレイヤーをリアルタイムで使う方法を見ていきます。
第10章 Module: オンラインリソース

地図のデータソースを検討する際に、あなたが使っているコンピュータ上に保存したデータに限定される必要はありません。インターネットに接続されている限り、ロードできるオンラインのデータソースがあります。

このモジュールでは、2種類のWebベースのGISサービスについて学習します: Web Mapping Services (WMS)とWeb Feature Services (WFS)。

10.1 Lesson: Web Mapping Services

Web Mapping Service (WMS)は、リモートサーバ上でホストされたサービスです。ウェブサイトと同じ様に、サーバーへ接続することでアクセスができます。QGISを使用すると、既存の地図に直接WMSをロードできます。

プラグインのレッスンから、例えばGoogleから新しいラスタ画像をロードできることを記憶しているでしょう。しかし、これは一度限りの処理です: 画像はダウンロードしたら変更されません。WMSは、地図上でパンや拡大すると自動的に表示が更新されるライブラリサービスであるところが異なります。

このレッスンの目標: WMSを使用して制限を知ること。

10.1.1 Follow Along: WMSレイヤを読み込む

この演習では、コースの開始時に作られた基本地図を使用するか、または単に新しい地図を開始し、その中にいくつかの既存のレイヤを読み込むことができます。この例では、新しい地図を使用して、元のplaces、landuseおよびprotected_areasレイヤをロードし、シンボルを調整しました:
1. 新しい地図にこれらのレイヤを読み込みます。またはこれらのレイヤを表示のみ行いオリジナルの地図を使用します。

2. WMS レイヤの追加を開始する前に、"オンザフライ" 投影を無効にします (プロジェクト ▶ サンプル ... ▶ 座標参照系 (CRS) タブで、CRS なし (または未知/非地球) をチェックします。これにより、レイヤが正しく重ならなくなることがありますが、後で修正しますので安心してください。

3. WMS レイヤを追加するには、ポタンをクリックしてデータソースマネージャ ダイアログを開き、WMS/WMTS タブを有効にしてください。
コースの冒頭で SpatiaLite または GeoPackage データベースに接続した方法を思い出してください。 landuse、buildings、および roads レイヤは、1つのデータベース内に格納されています。これらのレイヤを使用するには、まずそのデータベースに接続する必要があります。WMS を使用するレイヤは、リモートサーバー上にあることを除いて、同様です。

4. WMS への新しい接続を作成するには、新規ボタンをクリックしてください。

続けるには WMS アドレスが必要です。インターネットには利用できる無料の WMS サーバがいくつかあります。そのうちのひとつは terrestris、で OpenStreetMap データセットを使用しています。

5. この WMS を利用するには、このように、今表示しているダイアログで設定します。
・Name フィールドの値は terrestris にします。
・URL フィールドの値は https://ows.terrestris.de/osm/service にします。
6. OK をクリックします。リストされている新しい WMS サーバが表示されます。
7. 接続をクリックしてください。すると下のリストに、これらの新しいエントリがロードされるはずです:
これらはこの WMS サーバーにホストされているすべてのレイヤです。

8. OSM-WMS レイヤを一度クリックします。デフォルトで使われる座標参照系が表示され、データセットがサポートしている CRS の数が表示されます。
私たちの地図には「EPSG:4326 - WGS 84」は使わないので、ニーズに合うものを探しましょう。

1. CRS を選択 ボタンをクリックします。標準の座標参照系選択 ダイアログが表示され、データが公開されているすべての CRS が表示されます。

2. 私たちには 投影された CRS が必要なので、EPSG:3857 の WGS 84 / Pseudo-Mercator を選択してみましょう。一番上の フィルタウィジェットを使うことができます。
1. OK をクリックします。入力したものに関係した座標参照系が変わりました。

9. Add をクリックし、レイヤ名を使ってレイヤをプロジェクトに読み込みます（デフォルトは OpenStreetMap WMS - by terrestris）。

10. 自動的にしないときは データソースマネージャ ダイアログを閉じてください。

11. レイヤ パネルで、それをリストの最下部にクリック＆ドラッグします。

12. レイヤを全体的に表示するには、ズームアウトします。レイヤが正しく配置されていないことがわかります（アフリカの西に近い）。これは、「オンザフライ」投影が無効になっているためです。
13. その投影を再度有効にしましょう。ただし OpenStreetMap WMS レイヤーと同じ投影を使用すること。それは WGS 84/擬似メルカトル です。

1. プロジェクト → プロパティ... → CRS タブを開きます
2. Uncheck CRS なし（または未知/非地球）のチェックを外します
3. リストから WGS 84/擬似メルカトル を選択します。
4. OK をクリックします。

14. 次に、レイヤ パネルで自分のレイヤの一つを右クリックして、レイヤの領域にズームをクリックします。すると、Swellendam 領域が表示されるはずです。
WMS レイヤの街路と私たちの街路がどれほど重なっているかに注目してください。それは良い兆候です！

WMS の性質と限界

今までに、この WMS レイヤはその中に実際に多くの地物を持っていることに気づいたかもしれません。それは道路、河川、自然保護区、などなどがあります。しかも、それはベクターで構成されているように見えるにもかかわらず、ラスターのようですが、そのシンボルを変更できません。何故でしょうか？

これが WMS が動作する方法です：この地図は、紙面の通常の地図のように、画像として受け取っています。普段使うのは、QGIS が地図としてレンダリングする、ベクタレイヤです。しかし WMS を使うと、それらのベクタレイヤは WMS サーバー上にあり、地図としてレンダリングされ、画像としてその地図が送信されます。QGIS ではこの画像を表示できますが、すべてのことはサーバー上で処理されるため、そのシンボルは変更できません。

これはいくつかの利点を有しています。なぜならシンボルを心配する必要はありません。すでにできあがっていますし、的確に設計された WMS 上で見扱え良くなるはずです。

他方、気に入らなかったとしてもシンボルは変更できません。そして何かが WMS サーバー上で変更されると、それらは地図上でも同様に変更されます。ときどき代わりに Web 地物サービス (WFS) を使いたくなるのはこのためです。それは WMS スタイルの地図の一部としてではなく、別のベクタレイヤを与えます。

ただし、これは次のレッスンでカバーされます。まず、別の WMS レイヤーを追加しましょう。

10.1.2 Try Yourself

2. マップに World: Hillshading レイヤを読み込みます。
3. そのエンコーディングを JPEG に、そのタイルサイズオプションを 200 × 200 に設定して、読み込みを速くしたりするかもしれません。
4. マップはこのようになるはずです（レイヤーの順序を変えたり、透過率を適用する必要があるかもしれません）：
答え

1. データソースマネージャの WMS/WMTS タブに移動し、新しい接続エントリーを作成します

2. テキストボックスを使って、レイヤのリストをフィルタし、対応するレイヤを選択します

3. その CRS を他のマップと同じように EPSG:3857 - WGS 84 / Pseudo Mercator にチェック/変更することを忘れないでください。
4. レイヤが読み込まれた後、その Opacity 値を変更することができます（透過率 プロパティタブの下）。

10.1.3 Try Yourself

WMS を使用する難しさの一部は、良い（無料）サーバーを見つけることです。

・ 新しい WMS を directory.spatineo.com （またはオンラインの他の場所）で見つけしてください。それは、関連する料金や制限がなく、Swellendam の研究領域をカバーしている必要があります。

WMS を使用するために必要なことだけでその URL（と説明の好ましいいくつかの並べ替え）であることを忘れてください。

答え

Spatineo は、OGC データを検索できる多くの場所の一つです。テキストエリアに名前、キーワード、関心のある場所を入力し、検索結果が表示されるか確認してください。このレッスンでは、WMS のみを含むように結果をフィルタしたいと思われるかもしれません。

多くの WMS サーバーが常に利用可能ではないことにお気づきかもしれません。これは一時的な場合もあります。執筆時点で動作していた WMS サーバーの例は、https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities の MapServer Demonstration Server WMS です。これは料金を必要とせず、アクセス制限もなく、グローバルです。したがって、要
件を満たしています。しかし、これは単なる一例であることに留意してください。他にもたくさんの WMS サーバーがあります。

10.1.4 Try Yourself

- MapServer Demonstration Server から bluemarble レイヤーを追加してください。これは私たちの調査地域に適したデータセットでしょうか？

答え

1. 他の WMS レイヤをすべて非表示にして、バックグラウンドで不要にレンダリングされないようにします。

2. 前と同じ方法で、新しいサーバーとそのサーバー上でホストされている適切なレイヤを追加します:

3. Swellendam エリアを拡大すると、このデータセットの解像度が低いことに気づくでしょう:
そのため、今回の地図にはこのデータを使わない方がよいでしょう。Blue Marble のデータは、地球規模や国土規模での使用に適しています。

10.1.5 In Conclusion

WMS を使用して、既存の地図データのための背景として、非アクティブ地図を追加できます。

10.1.6 Further Reading

- Spatineo ディレクトリ
- OpenStreetMap.org list of WMS servers

10.1.7 What’s Next?

背景として動かない地図を追加しましたが、地物（例えば以前に追加した他のベクタレイヤなど）を追加することも可能だということがわかるとうれしいでしょう。リモートサーバから地物を追加することは、ウェブ地物サービス（WFS）を使用することにより可能です。それが次のレッスンのトピックです。
10.2 Lesson: Web Feature Services

Web Feature Service (WFS) はQGISで直接読み込める形式のGISデータをユーザーに提供します。編集できない地図のみを提供するWMSとは異なり、WFSでは地物それ自体へアクセスできます。

このレッスンの目標: WFSを使用してWMSとの違いを理解します。

10.2.1 Follow Along: WFSレイヤを読み込む

1. 新しい地図を開始します。これはデモ目的としており保存されません。

2. データソースマネージャを開くボタンをクリックします。

3. WFS / OGC API - 地物タブを有効にします。

4. 新規ボタンをクリックします。

5. 表示されたダイアログで、名前にnsidc.orgを、URLにhttps://nsidc.org/cgi-bin/atlas_south?version=1.1.0を入力します。

6. OKをクリックすると新しい接続がサーバーコネクションに表示されます。
7. 接続をクリックします。利用可能なレイヤのリストが表示されます:

8. レイヤリストの下にあるビュー領域に重なる地物のみをリクエストするオプションのチェックを外します。現在のマップキャンバスが、私たちの関心領域：南極大陸をカバーしていない可能性があるからです。

9. レイヤ antarctica_country_border を探します。上部にある Filter ボックスを使用できます。

10. レイヤをクリックして選択します:

11. レイヤ south_poles_wfs も検索して選択します。このとき Ctrl を押したままにする必要があるかもしれません。

10.2. Lesson: Web Feature Services
12. 追加 をクリックします。

レイヤを読み込むのにしばらく時間がかかるかもしれません。読み込みが完了すると、地図上に南極大陸の輪郭とその上にいくつかの地点が表示されます。

WMS のレイヤーとどう違うのでしょうか？

13. いずれかのレイヤを選択すると、地物選択ツールと属性テーブルツールが有効になることが確認できます。これらはベクタレイヤです。
14. `south_poles_wfs` レイヤを選択し、その属性テーブルを開いてください。このように表示されるはず
です:

![south_poles_wfs - Features Total: 1, Filtered: 1, Selected: 0](image)

ポインタは属性を持つのでシンボル体系を変更し、ラベルを付けることができます。例を示します:

![WMSレイヤとの違い](image)

WMS レイヤとの違い

Web Feature Service はレンダリングされた地図ではなくレイヤ自体を返します。データへの直接アクセスがで
できるので、シンボリの変更やデータを分析することができます。しかし、その代償として、送信さ
れるデータ量は格段に多くなります。レイヤが複雑な形を持つ場合や沢山の属性、多くの地物を持つ場
合に特に顕著になります。多くのレイヤをロードしている場合でも同様です。このため、WFS レイヤは一
般的には読み込みに非常に長い時間がかかります。
10.2.2 Follow Along: WFS レイヤをクエリする

WFS レイヤをロードした後にクエリすることは可能ですが、ロードする前にクエリする方が多くの場合に効率的です。そのようにして必要な地物だけを要求すればはるかに少ない帯域幅の使用で済むことになります。

たとえば、現在使用している WFS サーバーに countries (excluding Antarctica) というレイヤがあります。既に読み込まれている south_poles_wfs レイヤに対する南アフリカ共和国の位置を知りたいとしましょう（そしておそらく antarctica_country_border レイヤに対する位置も）。

これを行うには 2 つの方法があります。countries ... レイヤの全体をロードしてから、いつものようにクエリを作成することができますが、世界中の国のデータを送信してから南アフリカのデータだけを使用するのは少し帯域幅の無駄と思われます。あなたの接続によれば、このデータセットの読み込みに数分かかることがあります。

別の方法は、サーバーからレイヤを読み込む前にフィルタとしてクエリを作成することです。

1. データソースマネージャダイアログで WFS / OGC API - 地物 タブを有効にします
2. 先ほど使用したサーバーに接続すると、利用可能なレイヤのリストが表示されるはずです。
3. countries (excluding Antarctica) レイヤを探してダブルクリックします。レイヤ名は country_borders_excluding_antarctica です。レイヤを選択して、ダイアログの一番下にある クエリ作成 ボタンを押すこともできます。

![Server Connections](image)

4. 表示されたダイアログで、次のクエリ SELECT * FROM country_borders_excluding_antarctica WHERE "Countryeng" = 'South Africa' を SQL 文 ボックスに入力します。
5. **OK** を押します。

6. 使用された式はターゲットレイヤの SQL の値として表示されます:

7. 上記のようにレイヤを選択した状態で、**追加** をクリックします。そのレイヤから、Countryeng の値が South Africa である国だけが読み込まれます:

10.2. Lesson: Web Feature Services
country_borders_excluding_antarctica レイヤの様にある アイコンに気づきましたか？これには、読み込まれたレイヤはフィルタされており、プロジェクトにすべての地物が表示されていないことを示しています。

8. 実際にやる必要はありませんが、もし両方の方法を試してみたらフィルタする前にすべての国をロードする方法に比べてはるかに早いことがわかります！

WFS の有用性に関するノート

ニーズが非常に具体的である場合、必要とする地物を持っている WFS サーバーが見つかることは稀です。Web Feature Services が比較的まれである理由は、地物全体を表現するには大量のデータを送信する必要があるからです。それゆえに画像だけを送信する WMS ではなく WFS をホストすることは費用対効果が一番よくありません。

したがって、あなたが出会うであろう WFS の最も一般的なタイプはおそらくインターネット上でなく、ローカルネットワーク上か自分のコンピュータ上にあるでしょう。

10.2.3 In Conclusion

レイヤの属性とジオメトリに直接アクセスする必要がある場合には WFS レイヤは WMS レイヤより好ましいですが、ダウンロードされるデータの量（速度の問題そして容易に利用可能な公開 WFS サーバーの不足へとつながります）を考慮すると、必ずしも WMS の代わりに WFS が使用できるとは限りません。
10.2.4 What's Next?

次は、QGIS サーバーを使用して OGC サービスを提供する方法を説明します。
第11章 Module: QGISサーバー

Tudor Bărăscu によって投稿されたモジュール。

このモジュールでは、QGIS サーバーをインストールして使用する方法をカバーします。
QGIS サーバーについて更に学ぶには、QGIS-Server-manual を読んでください。

11.1 Lesson: QGIS Server をインストールする

このレッスンの目標: Debian Stretch に QGIS Server をインストールする方法を学ぶこと。ごくわずかな変更で、Ubuntu やその派生版のような Debian ベースのディストリビューションでもこのレッスンに従うことができます。

注釈: Ubuntu では、管理者権限が必要とするコマンドの前に sudo を付けて、通常のユーザーを使用することができます。Debian では、sudo を使用せずに、管理者 (root) として作業することができます。

11.1.1 Follow Along: パッケージからインストールする

このレッスンでは、ここにあるパッケージからインストールのみを行います。
QGIS Server を以下でインストールします:

```
apt install qgis-server --no-install-recommends --no-install-suggests

# if you want to install server plugins, also:
apt install python3-qgis
```

QGIS Server は、QGIS デスクトップ（付属の X サーバーと共に）が同じマシンにインストールされていない状態で、使用する必要があります。
11.1.2 Follow Along: QGIS サーバー実行可能ファイル

QGIS Server 実行可能ファイルは、qgis_mapserv.fcgi です。/usr/lib/cgi-bin/qgis_mapserv.fcgi のような何かを出力する find / -name 'qgis_mapserv.fcgi' を実行して、どこにインストールされたかを確認できます。

オプションとして、この時点でコマンドラインテストを行いたい場合は、/usr/lib/cgi-bin/qgis_mapserv.fcgi --version コマンドを実行すると、次のような出力が得られるはずです:

| QGIS 3.21.0-Master 'Master' (1c70935f1e) |
| QGIS code revision 1c70935f1e |
| Qt version 5.15.2 |
| Python version 3.9.5 |
| GDAL/OGR version 3.2.2 |
| PROJ version 7.2.1 |
| EPSG Registry database version v10.008 (2020-12-16) |
| GEOS version 3.9.0-CAPI-1.16.2 |
| SQLite version 3.34.1 |
| OS Ubuntu 21.04 |

WMS のリクエストの方法は後述します。

11.1.3 HTTP サーバー構築

インストールした QGIS Server にインターネットブラウザからアクセスするためには、HTTP サーバーを使用する必要があります。Apache HTTP サーバーのインストール方法は https://server セクションで詳しく説明しています。

注釈: (Linux デスクトップに含まれる) X Server を起動せずに QGIS Server をインストールした場合で、GetPrint コマンドを使いたいときは、仮の X サーバーをインストールして、QGIS Server にそれを使うように指示する必要があります。これは Xvfb installation process に従って行うことができます。

11.1.4 Follow Along: 別の仮想ホストを作成

QGIS Server を指す別の Apache の仮想ホストを作成してみましょう。好きな名前を選択できます (coco. bango, super.duper.training, example.com, など) が、単純化のために myhost を使用するつもりです。

- /etc/hosts に 127.0.0.1 x を追加して myhost という名前がローカルホストの IP を指すように次のコマンドで設定するか: sh -c "echo '127.0.0.1 myhost' >> /etc/hosts" または gedit /etc/hosts でファイルを手動で編集してください。
・ターミナルで `ping myhost` コマンドを実行することによって、`myhost` が localhost を指していることを確認できます。

```bash
qgis@qgis:$ ping myhost
PING myhost (127.0.0.1)  56(84)  bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.024 ms
64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 time=0.029 ms
```

・`curl` http://myhost/cgi-bin/qgis_mapserv.fcgi したり、Debian のポックスブラウザから URL にアクセスすることによって、`myhost` サイトから QGIS Server にアクセスできるかどうか試してみましょう。おそらく得られるのは：

```html
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>404 Not Found</title>
</head><body>
<h1>Not Found</h1>
<p>The requested URL /cgi-bin/qgis_mapserv.fcgi was not found on this server.</p>
<hr>
<address>Apache/2.4.25 (Debian) Server at myhost Port 80</address>
</body></html>
```

・Apache は `myhost` という名前のサーバーを指すリクエストに答えることになっていることを知りません。サーバー名を設定するのに一番簡単な方法は、/etc/apache2/sites-available ディレクトリに myhost.conf ファイルを作ることです。このファイルの内容は qgis.demo.conf と同じですが、ServerName 行は ServerName myhost にする必要があります。またこれは任意ですが、ログを保存する場所を変更することもできます。そうしないときは、2 つのパーセプトホストのログが共有されます。

・次に、a2ensite myhost.conf でパーセプトホストを有効にし、service apache2 reload で Apache サービスを再ロードしてみましょう。

・再度 http://myhost/cgi-bin/qgis_mapserv.fcgi URL にアクセスするために試してみると、すべてが今稼働していることに気づくでしょう！
11.1.5 In Conclusion

Debian ベースの Linux ディストリビューション上で、QGIS Server で Apache を設定する方法を、パッケージから異なる QGIS Server のバージョンをインストールする方法を学びました。

11.1.6 What's Next?

QGIS Server をインストールし、HTTP プロトコルでアクセスできるようになったので、提供できるサービスのいくつかにアクセスする方法を学ぶ必要があります。次のレッスンのテーマは、QGIS Server の WMS サービスにアクセスする方法を学ぶことです。

11.2 Lesson: WMS サーバーを運用する

この実演に使用されるデータは、ダウンロードした training data の qgis-server-tutorial-data のサブディレクトリにあります。便宜上、またパーソナルな問題を回避するために、これらのファイルは /home/qgis/projects ディレクトリに保存されていると想定します。したがって、次の手順をあなたのパスに適応させてください。

デモデータには、QGIS サーバーで提供されるように既に準備されている world.qgs という名前の QGIS プロジェクトが含まれています。独自のプロジェクトを使用したい場合や、プロジェクトの準備方法を知りたい場合は、Creatingwmsfromproject セクションを参照してください。

注釈: このモジュールは、オーディエンスがパラメーターとパラメーターの値を簡単に区別できるように URL を提示します。通常のフォーマットは次のとおりです。

```
...&field1=value1&field2=value2&field3=value3
```

このチュートリアルで使用するのは:

```
&field1=value1
&field2=value2
&field3=value3
```

それらを Mozilla Firefox に貼り付けると適切に機能しますが、Chrome のような他の Web ブラウザでは field:parameter のペアの間に不要なスペースを追加する可能性があります。したがって、この問題が発生した場合は、Firefox を使用するか、URL を変更して 1 行の形式にすることができます。

Web ブラウザまたは curl で WMS GetCapabilities リクエストを作成しましょう:

```
http://qgisplatform.demo/cgi-bin/qgis_mapserv.fcgi
?SERVICE=WMS
&VERSION=1.3.0
&REQUEST=GetCapabilities
&map=/home/qgis/projects/world.qgs
```
前のレッスンの Apache 設定では、QGIS_PROJECT_FILE 変数はデフォルトプロジェクトを /home/qgis/projects/world.qgs に設定します。しかし、上記のリクエストでは、map パラメーターを明示的に使用し、どのプロジェクトでも使用できることを示しました。上記の要求から map パラメーターを削除すると、QGIS サーバーは同じ応答を出力します。

WMS クライアントを GetCapabilities の URL に指すことで、クライアントは Web マップサーバーの情報のメタデータを持つ XML 文書を返します。例えば、レイヤーはどのレイヤーに対応していますか、地理的なカバレッジ、形式、WMS のバージョン等

QGIS は ogc-wms であるので、上記の GetCapabilities の URL を利用して新しい WMS サーバー接続を作成できます。 Lesson: Web Mapping Services または ogc-wms-servers セクションを参照してください。

QGIS プロジェクトに countries WMS レイヤーを追加すると、以下のような画像が得られます:

図 11.1: QGIS サーバーの国レイヤー WMS サービスを消費する QGIS デスクトップ

注釈: QGIS サーバーは world.qgs プロジェクトで定義されたレイヤーを提供します。QGIS でプロジェクト
クトを開くと、各国のレイヤーに複数のスタイルがあることがわかります。QGIS サーバーはこれも認識しており、要求に応じてスタイルを選択できます。上記の画像では classified_by_population スタイルが選択されています。

11.2.1 ログ出力

サーバーを設定するときは、ログは常に何が起こっているかを示す重要なものです。*.conf ファイル以下に以下のログを設定します：

- QGIS サーバーログ/logs/qgisserver.log
- qgisplatform.demo qgisplatform.demo.access.log にある Apache アクセスログ
- qgisplatform.demo qgisplatform.demo.error.log にある Apache エラーログ

ログファイルはテキストファイルなので、テキストエディタを使用してチェックできます。sudo tail -f/logs/qgisserver.log という端末で tail コマンドを使うこともできます。

これは、そのログファイルに書き込まれたものを端末に出力し続けます。次のように、ログファイルごとに 3 つの端末を開くこともできます。
図 11.2: tail コマンドを使って QGIS サーバーのログ出力を視覚化する

QGIS デスクトップを使用して QGIS サーバーの WMS サービスを使用すると、QGIS がアクセスログ内のサーバーに送信するすべての要求、QGIS サーバーログの QGIS サーバーのエラーなどが表示されます。

注釈:

・次のセクションのログを見ると、何が起きているのかをよりよく理解することができます。

・QGIS サーバーのログを見るなら Apache を再起動することで、動作の仕方についてのいくつかの追加情報を見つけることができます。

11.2. Lesson: WMS サーバーを運用する
11.2.2 GetMap リクエスト

countries レイヤーを表示するために、他の WMS クライアントと同様、QGIS デスクトップでも GetMap リクエストを使用しています。

簡単なリクエストは以下のようになります:

```
http://qgisplatform.demo/cgi-bin/qgis_mapserv.fcgi
?MAP=/home/qgis/projects/world.qgs
&SERVICE=WMS
&VERSION=1.3.0
&REQUEST=GetMap
&BBOX=-432786,4372992,3358959,7513746
&SRS=EPSG:3857
&WIDTH=665
&HEIGHT=551
&LAYERS=countries
&FORMAT=image/jpeg
```

上記の要求は次の画像を出力するはずです:

図: QGIS サーバーへの簡単な GetMap リクエスト
11.2.3 Try Yourself 画像とレイヤーのパラメーターを変更する

上記の要件に基づいて、countries レイヤーを別のものに置き換えましょう。

他にどのレイヤーがあるかを知るためには、QGIS の world.qgs プロジェクトを開き、その内容を見つけてください。ただし、WMS クライアントは QGIS プロジェクトへのアクセス権を持たず、機能文書の内容を参照するだけです。

また、QGIS プロジェクトに存在するいくつかのレイヤーが WMS サービスを提供する際に QGIS によって無視されるように構成オプションがあります。

したがって、QGIS デスクトップを GetCapabilities の URL に向けるとレイヤーリストを見ることができる、GetCapabilities XML レスポンスで他のレイヤー名を見つけることができます。

あなたが見つけて働くことができるレイヤー名の 1 つは countries_shapeburst です。他を見つけるかもしれないが、そのような小縮尺では見えないかもしれませんが、空白の画像をレスポンスとして得ることがあることをご承知おきください。
返された画像タイプを image/png に変更するなど、上からの他のパラメーターを使って遊ぶこともできます。

11.2.4 Follow Along: フィルタ、不透明度、スタイルのパラメータを使用する

別のレイヤー、いくつかの基本パラメーター、FILTER と OPACITIES を追加するが、標準の STYLES パラメーターも使用する別のリクエストを実行してみましょう。

```
http://qgisplatform.demo/cgi-bin/qgis_mapserf.fcgi
?MAP=/home/qgis/projects/world.qgs
&SERVICE=WMS
&VERSION=1.3.0
&REQUEST=GetMap
&BBOX=-432786,4372992,3358959,7513746
&SRS=EPSG:3857
&WIDTH=665
&HEIGHT=551
&FORMAT=image/jpeg
&LAYERs=countries,countries_shapeburst
&STYLES=classified_by_name,blue
&OPACITIES=255,30
&FILTER=countries:"name" IN ( 'Germany', 'Italy' )
```

上記の要求は次の画像を出力するはずです：
図 11.4: FILTER パラメーターと OPACITIES パラメーターを使用した GetMap 要求への応答

上の画像からわかるように、QGIS サーバーには、Germany と Italy のみを図レイヤーからレンダリングするように指示しました。

11.2.5 Follow Along: レッドラインを使う

redlining 機能と Basics セクションで詳しく説明されている SELECTION パラメータを利用した別の GetMap リクエストを実行してみましょう:

```
http://qgisplatform.demo/cgi-bin/qgis_mapserv.fcgi
?MAP=/home/qgis/projects/world.qgs
&SERVICE=WMS
&VERSION=1.3.0
&REQUEST=GetMap
&BBOX=-432786,4372992,3358959,7513746
&SRS=EPSG:3857
&WIDTH=665
```

(次のページに続く)
上記のリクエストを Web ブラウザに貼り付けると、次の画像が出力されます。

図 11.5: REDLINING 機能と SELECTION パラメーターによるリクエストへの応答
11.2.6 GetPrint リクエスト

QGIS サーバーの非常に優れた機能の 1 つは、QGIS デスクトップの印刷レイアウトを利用することです。wms_getprint セクションでそれについて学ぶことができます。

QGIS デスクトップで world.qgs プロジェクトを開くと、「人口分布」という名前の印刷レイアウトが見つかります。この驚くべき機能を例示する単純化された GetPrint リクエストは次のとおりです。

```
http://qgisplatform.demo/cgi-bin/qgis_mapserv.fcgi
?map=/home/qgis/projects/world.qgs
&SERVICE=WMS
&VERSION=1.3.0&
REQUEST=GetPrint
&FORMAT=pdf
&TRANSPARENT=true
&SRS=EPSG:3857
&DPI=300
&TEMPLATE=Population distribution
&map0:extent=-432786,4372992,3358959,7513746
&LAYERS=countries
```

図 11.6: 上記の GetPrint リクエストに起因する pdf を表示します。

当然、あなたの GetMap 、GetPrint などのリクエストを書くのは難しいです。

QGIS Web クライアント または QWC は、QGIS サーバーと連携してプロジェクトを Web 上に公開したり、QGIS サーバーリクエスト作成を手助けできる Web クライアントプロジェクトです、可能性についてのより良い理解を求めて。

このようにインストールできます：
・ユーザ qgis が cd/home/qgis でホームディレクトリに行きます。

・ここから QWC プロジェクトをダウンロードし、解凍します。

・ウェブラウザから http://qgisplatform.demo/QGIS-Web-Client-master/site/qgiswebclient.html?map=/home/qgis/projects/world.qgs にアクセスしてください。

これで、次の図のように地図を表示できるはずです。

![GIS-Browser - world](image)

図 11.7: world.qgs プロジェクトを使用する QGIS Web クライアント

QWC の [印刷] ボタンをクリックすると、対話的に GetPrint 要求を作成できます。また QWC の ? アイコンをクリックすると、利用可能なヘルプにアクセスして、QWC の可能性をよりよく知ることができます。
11.2.7 In Conclusion

QGIS サーバーを使って WMS サービスを提供する方法を学びました。

11.2.8 What's Next?

次に、有名な GRASS GIS のフロントエンドとして QGIS を使用する方法を見ていきます。
第12章 Module: GRASS

GRASS (Geographic Resources Analysis Support System 地理資源分析支援システム) は、幅広く便利な GIS 機能を持つオープンソース GIS として知られています。1984年に初めてリリースされ、それ以来、多くの改善や追加機能が見られました。QGISでは、パワフルなGISツールとしてGRASSを直接利用できます。

12.1 Lesson: GRASSのセットアップ

QGISでGRASSを使用するにはインターフェイスを少し異なる方法で考える必要があります。QGISで直接作業しているのではなくQGISを通じてGRASSで作業していることを覚えておいて下さい。したがって、GrassをサポートするQGIS Desktopがインストールされていることを確認してください。

 чувство Windowsで利用可能なGRASSでQGISセッションを開くには、「QGISデスクトップとGRASS」アイコンをクリックする必要があります。

このレッスンの目標：QGISでGRASSのプロジェクトを始めます。

12.1.1 Follow Along: 新しいGRASSセッションを始める

QGISからGRASSを起動するには、他のプラグインと同様に有効化する必要があります:

1. まず新しいQGISプロジェクトを開いてください。

2. プラグインマネージャでリストにあるGRASSを有効にします:
GRASS ツールバーと GRASS パネルが現れます:

図 12.1: GRASS ツールバー
GRASS パネルはアクティブではありませんが、それは GRASS を使う前に マップセット を作成する必要があるためです。GRASS は常にデータベース環境で動作するので、使うすべてのデータは GRASS データベースにインポートする必要があります。

GRASS データベースは一見とても複雑に見えますが、構造は単純です。知っておくべき最も重要なことは、データベースの上位レベルは Location だということです。各 Location には異なる マップセット が含まれます：すべての マップセット 中には、GRASS がデフォルトで作成する、PERMANENT マップセットがあります。各 マップセット には特定の構造でデータ（ラスタ、ベクタなど）が含まれますが、心配する必要はありません。GRASS がこれを処理してくれます。

これだけ覚えてください：Location はデータを含んでいる Mapset を含みます。詳細な情報はGRASS website をご覧ください。
図 12.3: GRASS データベース構造（GRASS ドキュメントより）

12.1.2 Follow Along：新しい GRASS プロジェクトを始める

1. プラグイン ▶ GRASS ▶ 新規 Mapset メニューをクリックします：

GRASS データベースの場所を選択するよう指示されます。
2. データベースを構成するためにそれを GRASS が使用するディレクトリとして設定します:

![New Mapset](image)

GRASS Database

Database directory `/home/matteo/exercise_data/grassdata`

GRASS data are stored in tree directory structure. The GRASS database is the top-level directory in this tree structure.

3. 次へ をクリックします。

GRASS では ロケーション を作成する必要があります。 ロケーション は作業しようとしている地理的領域（Grass Region ともいわれる）の最大範囲を定義します。
1. 新しいロケーションを SouthAfrica と呼びます：

2. 次へ をクリックします。

3. ここでは WGS 84 を使うので、その CRS を検索して選択してください：
4. 次へをクリックします。

5. ドロップダウンリストから South Africa の領域を選択して、設定をクリックします:
6. The GRASS region defines a workspace for raster modules. The default region is valid for one location. It is possible to set a different region in each mapset. It is possible to change the default location region later.

6. 次へ をクリックします。

7. マップセットを作成します。それがあなたがこれから作業するマップファイルです。
The GRASS mapset is a collection of maps used by one user. A user can read maps from all mapsets in the location but he can open for writing only his mapset (owned by user).
8. 完了をクリックします。

9. 成功ダイアログで OK をクリックします。

GRASS パネルがアクティブになり、すべての GRASS ツールを使用できるようになるのがわかります。
12.1.3 Follow Along: GRASS にベクタデータを読み込む

今はマップは空白であり、すべての GRASS ツールの使用を開始するには、データを GRASS データベース、特にマップセットに読み込む必要があります。GRASS マップセットに読み込まれていないレイヤでは GRASS ツールを使用できません。

GRASS のデータベースにデータを読み込むには、様々な方法があります。まずは最初の 1 つから始めましょう。

Follow Along: QGIS ブラウザを使ってデータ読み込む

セクション ブラウザパネルでは、QGIS にデータを読み込む最も簡単で早い方法はブラウザパネルであることがわかりました。

QGIS ブラウザは GRASS データを、実際の GRASS データとして認識します。それは、GRASS マップセットの横に GRASS アイコンが表示されることで確認できます。また、開いたマップセットの横には のアイコンが表示されます。

注釈: GRASS ロケーションの複製が通常のフォルダとして表示されます: GRASS マップセット データは、フォルダ内にあるものです。

フォルダ内のレイヤは ドラッグ & ドロップで簡単に GRASS マップセットに取り込むことができます。
それでは、roads レイヤを SouthAfrica ロケーションの grass_mapset マップセットにインポートしてみましょう。

ブラウザを開き、training_data.gpkg GeoPackage ファイルから roads レイヤを grass_mapset.Mapset に単純にドラッグしてください。
それでおしまい！マップセットを展開すると、インポートされた roads レイヤが表示されます。これで、インポートされたレイヤを他のすべてのレイヤと同様に QGIS に読み込むことができます。
Tip: レイヤーフェイスパネルからブラウザパネルのマップセットにレイヤーを読み込むこともできます。これにより、ワークフローが驚くほど高速になります！

Follow Along: GRASS パネルを使ってデータをロードする

ここでは、long メソッドを使用して、rivers.shp レイヤーと同じマップセットにロードします。

1. 通常どおりデータを QGIS に読み込みます。rivers.shp データセット（exercise_data/shapefile/フォルダにあります）を使用します

2. 読み込まれたすぐに、「GRASS Panel」の Filter ボックスをクリックし、「v.in.ogr.qgis」という用語を入力してベクタインポートツールを見つけます。

警告: 似たようなツールが 2 つあります: v.in.ogr.qgis と v.in.ogr.qgis.loc。探しているのは 1 つめです。

v はベクタ、in は GRASS データベースにデータをインポートする関数を意味します。ogr はベクタデータの読み込みに使用されるソフトウェア・ライブラリです。そして qgis は、そのツールが QGIS に既に読み込まれたベクタの中からベクタを探すことを意味します。

3. このツールを見つけたら、それをクリックしてツール自体を表示します。混乱を防ぐために、ロードされたレイヤー ボックスで rivers レイヤを選択し、g_rivers と入力して名前を付けます。
注釈：別のインポートオプションがアドバンストオプションで提供されています。データのインポートに使用するSQLクエリのWHERE句を追加する機能が含まれます。

4. 実行をクリックしてインポートを開始します。

5. それが終わったら出力を見るをクリックして新しくインポートされたGRASSレイヤを地図に表示します。

6. まずインポートツールを閉じて(出力を見るのすぐ右にある閉じるボタンをクリックします)、そしてGRASSツールウィンドウを閉じます。
7. 元の rivers レイヤを削除します。

今、QGIS の地図に表示されているのはインポートされた GRASS レイヤだけです。

12.1.4 Follow Along: GRASS にラスタデータを読み込む

ベクタレイヤをインポートしたのと同じ方法でラスタレイヤをインポートできます。

GRASS マップセットにレイヤ srtm_41_19_4326.tif をインポートします。

注釈: ラスタレイヤは既に正しい CRS、「WGS 84」にあります。レイヤが異なる CRS にある場合は、GRASS マップセットの同じ CRS に再投影する必要があります

1. QGIS で srtm_41_19_4326.tif レイヤを読み込みます
2. GRASS ツールダイアログを再度開きます。
3. モジュールリストタブをクリックします。
4. r.in.gdal.qgis を検索して、そのツールをダブルクリックし、ツールのダイアログを開きます。
5. 入力レイヤが srtm_41_19_4326.tif、出力が g_dem となるように設定します。
6. 実行 をクリックします。
7. 処理が完了したら 出力を見る をクリックします。
8. 現在のタブを閉じ、そしてダイアログボックスを閉じます。
9. これで元の srtm_41_19_4326.tif レイヤは削除しても問題ありません。

12.1.5 Try Yourself マップセットにレイヤを追加する

GRASS マップセットに、exercise_data/shapefile/ フォルダからベクタレイヤ water.shp と places.shp をインポートしてみてください。rivers の場合と同様に、混乱を避けるために、インポートしたレイヤの名前を g_water および g_places に変更します。

答え

レイヤ（ベクタとラスタの両方）を GRASS マップセットに追加するには、ブラウザにドラッグアンドドロップするか（Follow Along: QGIS ブラウザを使ってデータ読み込む参照）、ベクタに v.in.gdal.qgis をラスタレイヤに r.in.gdal.qgis を使用します。

12.1.6 既存の GRASS マップセットを開く

既に GRASS マップセットがある場合、別の QGIS セッションでそれを簡単に開くことができます。

GRASS マップセットを開く方法には複数の方法があります。そのいくつかを試してみましょう。

GRASS ツールウィンドウの Mapset を閉じる ボタンをクリックして、マップセットを閉じましょう。
Follow Along: GRASS プラグインを使う

1. 前節で見た プラグイン --> GRASS --> 新規 Mapset メニューの隣にある プラグイン --> GRASS --> Mapset を開く メニューをクリックします。

2. GRASS データベースフォルダを参照します。注意してください！GRASS マップセットのフォルダではなく、親フォルダを選択する必要があります。実際、GRASS はデータベースのすべての「ロケーション」と各「ロケーション」のすべての「マップセット」を読み取ります。

3. ロケーション SouthAfrica と、先ほど作成した Mapset grass_mapset を選択してください。

これで完了です。GRASS パネルがアクティブになり、マップセットが正しく開かれたことを意味します。

Follow Along: QGIS プラウザを使う

QGIS ブラウザを使って マップセット を開くと、さらに速く、簡単になります。

1. GRASS Tools ウィンドウの Mapset を閉じる ボタンをクリックして、マップセットを閉じます（開いている場合）。

2. QGIS ブラウザで GRASS データベースのフォルダをブラウズします。

3. マップセットを右クリックします（マップセットは GRASS アイコンが隣にあることを思い出してください）。いくつかのオプションがあるのでわかります。

4. Mapset を開く をクリックします。

12.1. Lesson: GRASS のセットアップ
これでマップセットが開き、使う準備ができました！

Tip: GRASS マップセット上で右クリックすると、様々な設定ができます。いろいろな設定を試して、便利なオプションを見せてみましょう。
12.1.7 In Conclusion

GRASS はデータを空間データベース構造に読み込むため、GRASS のデータ収集ワークフローは QGIS の方法とは多少異なります。しかし、フロントエンドとして QGIS を使用することによって GRASS のデータソースとして QGIS 内の既存レイヤを使用でき、GRASS マップセットのセットアップを簡単にすることができます。

12.1.8 What’s Next?

データは GRASS にインポートされました。GRASS の高度な分析操作を見ることができます。

12.2 Lesson: GRASS ツール

このレッスンでは、あなたに GRASS の機能についてのアイデアを与えるために選り抜きのツールを紹介します。

12.2.1 Follow Along: 傾斜方位地図を作る

1. GRASS ツール タブを開きます
2. grass_mapset マップセットから g_dem ラスタレイヤを読み込みます
3. r.aspect モジュールを モジュールリスト タブの フィルタ フィールドを使って探します
4. そのツールを 開いて次のように設定し、実行 ボタンをクリックします:
5. 処理が終了したら 出力を見る をクリックし、結果のレイヤをキャンバスに読み込みます。
g_aspect レイヤは grass_mapset マップセット内に格納されているので、キャンバスからレイヤを削除してもいつでも再読み込みすることができます。

12.2.2 Follow Along: ラタレイヤの基本的な統計情報を取得する

ラスタレイヤ g_dem の基本的な統計情報をいくつか知りたいと思います。

1. GRASS ツール タブを開きます
2. grass_mapset マップセットから g_dem ラスタレイヤを読み込みます
3. モジュールリスト タブのフィルタフィールドで r.info モジュールを検索してください
4. 次のようにツールを設定し、実行をクリックします:
5. 出力タブ内には、ファイルのパス、行数、列数など有用なラスタ情報が出力されているのがわかります。
12.2.3 Follow Along: Reclass ツール

ラスタレイヤの再分類は非常に価値ある作業です。私たちは g_dem レイヤから g_aspect レイヤを作成したところです。その値域は 0（北）から 90（東）、180（南）、270（西）を経て、最後に 360（再び北）までとなっています。g_aspect レイヤを再分類して、具体的な規則（北 = 1, 東 = 2, 南 = 3, 西 = 4）に従って、4つの **カテゴリ** だけを持つようにすることができます。

Grass 再分類ツールは、定義された規則を含む txt ファイルを受け取ります。規則の書き方は非常に簡単で、GRASS マニュアルに非常に詳しい説明があります。

Tip: GRASS の各ツールには、それぞれ「マニュアル」タブがあります。使用するツールの説明をよく読
んで、便利なパラメータを見逃さないようにしましょう。

1. g_aspect レイヤを読み込むか、作成していない場合は、Follow Along: 傾斜方位地図を作る セクションに戻りましょう。

2. r.reclass モジュールを モジュール ダブの フィルタ フィールドで検索して探します

3. ツールを開き、次図のように設定します。規則を含んでいるファイルは exercise_data/grass/フォルダに reclass_aspect.txt という名前であります。

4. 実行をクリックし、処理が終了するまで待ちます。
5. 出力を見るをクリックすると、再分類されたラスタがキャンパスに読み込まれます

新しいレイヤは、4つの値（1, 2, 3, 4）だけで構成され、管理も加工もしやすくなっています。
Tip: テキストエディタで reclass_aspect.txt を開き、規則を確認し、慣れるから始めてください。さらに、GRASS のマニュアルをよく読んでみてください：多くの異なる例が示されています。

12.2.4 Try Yourself 自分の規則で再分類する

`g_dem` レイヤを 3 つの新しいカテゴリーに再分類してみる：

- 0 から 1000、新しい値 = 1
- 1000 から 1400、新しい値 = 2
- 1400 から最大のラスタ値、新しい値 = 3

答え

ラスタの最大値を調べため `r.info` ツールを実行します：そのコンソールで最大値が 1699 であることが分かります。これで規則を書く準備ができました。

1. テキストエディタを開き、次の規則を加えます：

0 thru 1000	1
1000 thru 1400	2
1400 thru 1699	3

2. そのファイルを `my_rules.txt` ファイルとして保存し、テキストエディタを閉じます。
3. `r.reclass` ツールを実行します。`g_dem` レイヤを選び、先に保存した規則を入れたファイルを読み込みます。

4. 実行、次に出力を見るをクリックします。色を変えると最終的な結果は次図のようになります:

![QGIS Training Manual](image)

12.2.5 Follow Along: Mapcalc ツール

Mapcalc ツールは QGIS のラスタ計算機に似ています。1つまたは複数のラスタレイヤに対して数学的操作を実行することができ、最終結果は計算された値を持つ新しいレイヤとなります。

次のレッスンの目的は、`g_dem` ラスタレイヤから 1000 を超える値を抽出することです。

1. モジュールタブのフィルタフィールドで `r.mapcalc` モジュールを探してください。

2. ツールを起動します。

Mapcalc ダイアログでは、ラスタまたはラスタの集合に対して実行する一連の解析を構築することができます。次のためにこれらのツールを使用します:

![Mapcalc Tools](image)

順番に:

- 地図を追加：現在の GRASS マップセットからラスタファイルを追加する。
- 定数値を加算：関数で使う定数値、この例では 1000、を追加する
・演算子または関数を追加：入力と出力に繋がる演算子または関数。この例では演算子 greater equals than を追加する

・接続を追加：要素を接続する。このツールを使って、あるアイテムの赤い点から別のアイテムの赤い点までクリック＆ドラッグします。接続線に正しく接続されているドットは灰色に変わります。線や点が赤い場合は、正しく接続されていません！

・アイテムを選択：アイテムを選択し、選択したアイテムを移動します。

・選択したアイテムを削除：選択されたアイテムを現在の mapcalc シートから削除しますが、マップセットからは削除しません（既存のラスタの場合）

・開く：決められた操作で既存のファイルを開きます

・保存：すべての操作をファイルに保存します

・名前をつけて保存：すべての操作を新しいファイルとしてディスクに保存します。

3. これらのツールを使って、次のアルゴリズムを組み立てます：
4. 実行次に出力を見る をクリックすると、出力がマップに表示されます：

12.2. Lesson: GRASS ツール
これは地形が1000メートルより高い区域をすべて示しています。

Tip: GRASS Mapcalcツールバーの最後のボタンをクリックすると、作成した数式を保存し、別のQGISプロジェクトで読み込むこともできます。

12.2.6 In Conclusion

このレッスンでは、GRASSが提供する数多くのツールのほんの一部を紹介しました。自分でGRASSの機能を調べるにはGRASSツールダイアログを開き、モジュールリストをスクロールしてください。あるいは、より構造的なアプローチとして、ツールの種類ごとに整理されているモジュールツリー形成の下を見ることができます。
第13章 Module: 学習評価

このセクション用にはご自身のデータをお使いくださいます。必要のは

・ POI（ポイント名と複数のカテゴリ）のポイントベクタデータセット
・ 道路のラインベクタデータセット
・ 土地利用（土地の境界を使用）のポリゴンベクタデータセット
・ （航空写真のような）視覚的なスペクトル画像
・ DEM（お持ちでない場合は CGIAR-CSI からダウンロードできます）

13.1 基図を作る

データ解析を行う前に、解析結果に文脈を与える基図が必要です。

13.1.1 ポイントレイヤを追加する

・ ポイントレイヤを追加します。行っている課程のレベルに基づき、以下の該当するセクションに記載されているものだけ行います:

点に対して、場所名などのユニークな属性に応じてラベルを付けます。ラベルには小さいフォントを使用して目立たないようにします。情報は利用可能である必要があり、地図の主な地物であってはなりません。

・ ポイント自体はカテゴリに基づいて異なる色に分類します。例えば、カテゴリには「観光地」、「警察署」、「街中心」などがありますだろう。
セクションと同じことをします。

- 重要性によって、ポイントサイズを分類します：より重要な地物はより大きなポイントで。しかしながら、サイズは2.00 ポイントを超えないようにしてください。
- ポイント1つだけに位置づけられない地物については（例えば、地域/地方の名称、または大縮尺での町名）、ポイントは何も割り当ててください。

- レイヤをシンボル化するためにポイントシンボルは使用しないでください。代わりに、ポイントの中央にラベルを使用してください。ポイントシンボル自体にはサイズがありません。
- データで定義される設定を使用してラベルを意味のあるカテゴリーにスタイル付けします。
- 必要に応じて、属性データに適切な列を追加します。その際は架空のデータを作成しないこと - もしろ、フィールド計算機を使用し、データセット内の適切な既存の値に基づいて新しい列を投入します。

13.1.2 ラインレイヤを追加する

- 道路レイヤを追加して、そのシンボルを変更します。道路にラベルを付けないでください。

- 幅広い線の明るい色に道路シンボルを変更します。また、やや透明にします。

- 複数のシンボルレイヤを持つシンボルを作成します。結果のシンボルは実際の道路のように見えるはずです。これには単純な記号を使用できます。例えば、薄い白い実線が中央を走っている黒い線。より精巧なものにすることもできますが、結果として得られる地図が煩雑に見えるべきではありません。
- 地図を表示したい縮尺でデータセット中の道路の密度が高い場合には、道路のレイヤは2つ持っている必要があります：精巧な道路のような記号、およびより小さな縮尺での単純な記号。（適切な縮尺で切り替えるためには縮尺ベースの可視性を使用します。）。
- すべてのシンボルが複数のシンボルレイヤを持っている必要があります。それらを正しく表示するために記号を使用します。
13.1.3 ポリゴンレイヤを追加する

・土地利用レイヤを追加し、そのシンボルを変更します。

・土地利用に応じてレイヤを分類します。ソリッドカラーを使用してください。

・土地利用に応じてレイヤを分類します。適切な場合には、シンボルレイヤ、異なるシンボルタイプ等を組み込みます。しかしながら、結果が落ち着いた均一に見えるよう維持してください。これは背景の一部になることに留意してください！

・「都市」、「農村」、「自然保護区」、などの一般的なカテゴリーに土地利用を分類するために、規則に基づく分類を使用します

13.1.4 ラスタ背景を作成する

・DEM から陰影起伏を作成し、それを DEM 自体の分類されたバージョンのオーバーレイとして使用します。Relief プラグインも（プラグインのレッスン中で示すように）使用できるでしょう。
13.1.5 基図を完成させる

- 上記のリソースを使用して、レイヤのいくつかまたはすべてを使用して、基図を作成します。この地図は、すべての基本的なユーザーが方角を定めるために必要な情報を含むだけでなく、視覚的に統一されている/「単純」である必要があります。

13.2 データを分析する

- あなたは一定の基準を満たす土地を探しています。
- 自身の基準で決めることができますが、基準は文書化しておかなければならないません。
- これらの基準のためのいくつかのガイドラインがあります。
 - 対象となる土地は、土地利用の特定のタイプのものでなければなりません
 - それは道路から一定の距離内にあるか、あるいは道路が交差していなければなりません
 - それは、いくつかのポイントのカテゴリー、例えば病院などのように、から一定の距離内になければなりません

13.2.1

- 検索結果のラスタ・マップ分析を含めます。ラスタの少なくとも一つの派生プロパティ、その傾斜方向や傾きなど、を考えます。

13.3 最終的な地図

- 印刷レイアウトを使用して、分析結果を組み込んだ最終的な地図を作成します。
- 文書化基準に沿って文書にこの地図を含めます。地図が追加したレイヤーによってあまりにも視覚的に顕著になりすぎたら、必要以上と感じるレイヤーの選択を解除します。
- 地図には、タイトルと凡例を含める必要があります。
第14章 Module: 林業への応用

モジュール1から13では、QGISについて、およびQGISでどのように作業するかをすでにたくさん学びました。基本的なGISの林業への応用について学ぶことに関心がある方は、このモジュールを習うと、これまで学んできたことを応用する能力が身につきますし、また役立つ新しいツールをお見せします。

このモジュールの開発はEUにスポンサリングされました。

14.1 Lesson: 林業モジュールの紹介

林業への応用についてのこのモジュールを理解するには、このトレーニングマニュアルのモジュール1から11を通じて学んだ知識が必要です。この後のレッスンにある演習では、読者はすでにQGISでの基本的な操作の多くはできると仮定し、前に使用されていないツールだけが詳細に紹介されます。

にもかかわらず、QGISでの以前の経験を持っている方であればおそらく問題なく指示に従うことができるよう、モジュールはレッスンを通して基本的なレベルに従います。

このモジュールの追加のデータパッケージをダウンロードする必要があることに注意してください。

14.1.1 林業のサンプルデータ

注解：このモジュールで使われているサンプルデータは、トレーニングマニュアルデータセットの一部で、exercise_data\forestry\フォルダにあります。

林業関連のサンプルデータ（林業地図、森林データ）は、EVO-HAMK林業学校から提供されたものです。データセットは、レッスンのニーズに合わせて修正されています。

一般的なサンプルデータ（航空写真、LiDARデータ、基本地図）は、フィンランド国土調査所のオープンデータサービスから入手し、演習の目的に適合させたものです。そのオープンデータファイルダウンロードサービスは、こちらから英語でアクセスできます。
警告：トレーニングマニュアルの残りの部分については、このモジュールは、GIS データセットの追加、削除および変更の指示が含まれています。私たちは、「その目的のためにトレーニングデータセットを提供しています。ここに記載されている技法をあなたのデータに使用する前に、必ず適切にバックアップをとっていることを確認してください！

14.2 Lesson: 地図をジオリファレンスする

林業においてよくある作業は、森林地域についての情報の更新でしょう。ある地域についての前回の情報が何年も前のもので、アナログで（つまり紙で）集められていたり、デジタイズされたが残っているのはその目録データの紙版しかなかったり、といったことがあり得ます。

その情報を、例えば後の目録と比較するために、GIS で使用したいと思うことはよくあります。これは、GIS ソフトウェアを使って手元の情報をデジタイズする必要があることを意味します。しかしデジタイズを始める前に、紙の地図をスキャンしてジオリファレンスするという重要な最初のステップがあります。

このレッスンの目標：QGIS でジオリファレンスツールを使用する方法を学ぶ。

14.2.1 地図をスキャンする

最初にしなければならない仕事は、地図をスキャンすることです。地図が大きい場合は、分割してスキャンできますが、部分について前処理とジオリファレンスの作業を繰り返す必要があることに留意してください。ですから、可能な限り少ない分割で地図をスキャンします。

このマニュアルで提供されるものと異なる地図を使用する場合は、ご自分のスキャナを使い、300 DPIの解像度で地図を画像ファイルとしてスキャンしてください。地図が色付きの場合は、カラーで画像をスキャンし、後でそれらの色を使用して地図からの情報を別々のレイヤ（例えば、林分、等高線、道路...）に分離できるようにしておきます。

この演習では、以前にスキャンした地図を使用します。この地図はデータフォルダ exercise_data/forestry に rautjarvi_map.tif として格納されています

14.2.2 Follow Along: スキャンした地図をジオリファレンスする

1. QGIS を開き、プロジェクト Công プロパティ Công CRS で、プロジェクトの CRS を EPSG:3067 - ETRS89 / TM35FIN(E,N) に設定します。これは現在フィンランドで使用されている CRS です。
2. QGIS プロジェクトを `map_digitizing.qgs` として保存します。
QGIS のジオリファレンスツールである ジオリファレンサ を使用します。地図をジオリファレンスするには:
1. レイヤメニューで ジオリファレンサ... でジオリファレンスツールを開きます。
2. 地図画像ファイル、rautjarvi_map.tifをジオリファレンスする画像として追加します: ファイルラスタを開く。
3. OK をクリックします。

次に地図をジオリファレンスするための変換設定を定義する必要があります:
1. 設定 を変換を設定 を開きます。
2. 変換型を線形に、リサンプリング方法を最近傍に設定します。
3. 変換先 CRS オプションの隣にある CRS を選択ボタンを押し、EPSG:2392 - KKJ / Finland zone 2 CRS を選択します。これはこの地図が作られた 1994 年当時のフィンランドで使われていた CRSです。
4. 出力ファイルボックスの横にあるアイコンをクリックし、フォルダに移動して exercise_data\forestry\digitizing フォルダを作成し、ファイル名を rautjarvi_georef.tif にします。
5. 完了後にプロジェクトに読み込む をチェックします
6. 残りのパラメータはデフォルトのままにします。
7. OK をクリックします。
この地図にいくつかある、座標を示す十字線を使って画像をジオリファレンスします。QGIS で通常行うズームやパンのツールを使って、ジオリファレンス・ウィンドウに表示された画像を確認することができ
ます。
1. 地図の左下隅に拡大して、前述したように KKJ / Finland zone 2 CRS による X と Y の座標ペアを持つ十字線があることに注意してください。この点は地図のジオリファレンスに使用する最初の地上基準点（グランドコントロールポイント）として使用します。
2. 点を追加 ツールを選択し、（必要に応じてパンとズームして）十字線の交点をクリックします。
3. 地図座標の入力 ダイアログに、地図上に表示される座標（X: 2557000, Y: 6786000）と、その CRS (EPSG:2392 - KKJ / Finland zone 2) を記入します

14.2. Lesson: 地図をジオリファレンスする
4. OK をクリックします。
ジオリファレンスのための最初の座標の準備ができました。

5. 画像内の他の黒い十字線を探します。それらは北と東の方向にお互いに 1000 メートル離っています。これらの点の座標は、最初の点との関係で計算できるでしょう。

6. 画像を縮小して、他の十字線を見つけるまで右か上に移動し、何キロメートルも移動したか推定してください。地上基準点はお互いにできるだけ離すようにしてください。

7. 少なくともあと 3 つの地上基準点を、最初のものと同じ方法でデジタイズします。次のようなものが出来上がるはずです:

![Image of Georeferencer - rautjarvi_map.tif]

<table>
<thead>
<tr>
<th>on/off</th>
<th>id</th>
<th>srcX</th>
<th>srcY</th>
<th>dstX</th>
<th>dstY</th>
<th>dX[pixels]</th>
<th>dY[pixels]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>473.10</td>
<td>-4352.93</td>
<td>2557000.00</td>
<td>6786000.00</td>
<td>7.55</td>
<td>4.95</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>2838.78</td>
<td>-3185.77</td>
<td>2559000.00</td>
<td>6787000.00</td>
<td>5.58</td>
<td>-7.35</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
<td>2849.87</td>
<td>-825.55</td>
<td>2559000.00</td>
<td>6789000.00</td>
<td>-5.51</td>
<td>-6.66</td>
</tr>
<tr>
<td>x</td>
<td>3</td>
<td>488.49</td>
<td>-811.03</td>
<td>2557000.00</td>
<td>6789000.00</td>
<td>-7.73</td>
<td>8.45</td>
</tr>
</tbody>
</table>

Translation (2.55659e+06, 6.79222e+06) Scale (0.846165, 1.28642) Rotation: 0 Mea 3876, -5025
すでに3つのデジタイズした地上基準点では、ジオリファレンスエラーを点から出る赤い線として見ることでできます。ピクセル単位の誤差は、GCP テーブルで dX (ピクセル) と dY (ピクセル) 列にも見ることができます。ピクセル単位の誤差が10ピクセルより大きくなってはいけません。もしそうであれば、デジタイズした点と入力した座標を見直して、何が問題なのかを探す必要があります。上の画像を参考にするとよいでしょう。

基準点が決まったら、後で使用するために保存しておきます。

1. ファイル → 名前をつけて保存... に移動します。
2. フォルダ exercise_data\forestry\digitizing で、ファイルの名前を rautjarvi_map.tif. points にします。

最期に地図をジオリファレンスします:

1. ファイル → ジオリファレンスを開始 に進みます。
2. ジオリファレンスの設定を編集したときに、ファイル名を rautjarvi_georef.tif にしたことに注意してください。

これで QGIS プロジェクトにジオリファレンスされたラスタとして地図が表示されました。ラスタが少し回転しているように見えますが、これは単にデータが KKJ / Finland zone 2 で、プロジェクトが ETRS89 / TM35FIN(E,N) であるためです。

3. データが正しくジオリファレンスされているかどうかを確認するには、以下の方法があります

 1. exercise_data\forestry フォルダにある、rautjarvi_aerial.tif という名前の航空写真を開きます。
 2. あなたの地図とこの画像は良く合うはずです: 地図の透明度を50%に設定し、航空写真と比較してみてください。
4. QGIS プロジェクトへの変更を保存してください。次のレッスンはこの時点から続きます。
14.2.3 In Conclusion

これで紙地図をジオリファレンスし、QGIS で地図レイヤとして利用できるようになりました。

14.2.4 What’s Next?

次のレッスンでは、地図上の林分をポリゴンとしてデジタイズし、目録データを追加します。

14.3 Lesson: 林分をデジタイズする

ジオリファレンスされた地図を単純な背景画像として使うのでなければ、次のようなステップは、そこから要素をデジタイズすることです。それは Lesson: 新しいベクタデータセットを作成する で学校の運動場をデジタイズしてベクタデータを作成する演習ですでにっています。このレッスンでは、航空写真の代わりにジオリファレンスされた地図を使い、地図に緑色の線で表示されている林分境界線をデジタイズします。

このレッスンの目標：デジタイズ作業の助けになる技法を学び、林分をデジタイズし、最後にそれらに目録データを追加します。

14.3.1 Follow Along: 林分境界を抽出する

前のレッスンで保存した、map_digitizing.qgs プロジェクトを QGIS で開いてください。

地図をスキャンし、ジオリファレンスすれば、その画像をガイドとして見ながら直接デジタイズすることができます。デジタイズに使おうとしている画像が、例えば航空写真の場合には、それが最も適した方法でしょう。

ここでの場合のように、デジタイズに使用しているものが良い地図であれば、情報は要素の種類ごとに異なる色の線として明確に表示されているでしょう。これらの色は、GIMP のような画像処理ソフトウェアを使用すれば、個別の画像として比較的簡単に出すことができます。このような個別の画像はデジタイズの支援に使用できます。それは後の見ていきます。

最初のステップは、GIMP を使って林分だけ、つまりオリジナルのスキャン地図に見ることができる緑がかったすべての線、を含んだ画像を得ることです:

1. GIMP を開きます（まだインストールされていない場合は、インターネットからダウンロードするか、先生に頼んでください）。

2. 元の地図画像、exercise_data/forestry フォルダーにある rautjarvi_map.tif をファイル・を開くで開きます。林分が緑の線で表現されていることに注意してください（各ポリゴン内には林分の番号も緑で表示されています）。
3. これで林分の境界（緑がかったピクセル）を構成している画像内のピクセルを選択できます:

1. ツール 選択 カラーフィールドを選択 を開きます。

2. このツールをアクティブにした状態で、画像を拡大し（Ctrl + マウスホイール）、林分の線が、ラインを形成するピクセルを区別できるほど大きくするようにします。下の左の画像を見てください。

3. 線の中央でマウスカーソルをクリックアンドドラッグし、ツールによって収集された色と一致する画素が画像全体を通して選択されます。

4. マウスクリックを解除し、数秒待って。ツールによって収集された色と一致する画素が画像全体を通して選択されます。

5. 画像全体で緑がかったピクセルが選択されていることを確認するために縮小します。

6. 結果に満足できない場合は、クリックアンドドラッグ操作を繰り返します。

7. ピクセルの選択は、下の右の画像のようになるはずです。
4. 選択を完了したら、新しいレイヤとしてこの選択をコピーして別の画像ファイルとして保存する必要があります。

1. 選択したピクセルをコピー (Ctr+C) します。

2. そして、ピクセルを直接貼り付けると (Ctr+V) 、GIMP は貼り付けたピクセルを新しい一時的なレイヤとしてレイヤ - ブラシパネルにフローティング選択範囲（貼り付けられたレイヤー）として表示します。

3. その一時レイヤを右クリックして新しいレイヤーの生成 を選択します。

4. 貼り付けられたレイヤー のみが表示されるよう、元の画像レイヤの隣の「目」のアイコンをクリックしてそれを非表示にします:
5. 最後に ファイル □ エクスポート... を選択し、ファイル形式の選択（拡張子で判別）を TIFF 画像として、digitizing フォルダーを選択して rautjarvi_map_green.tif という名前を付けます。開かれた後、圧縮なしを選択します。

画像内の他の要素で同様の処理を行うことができます。例えば、道路を表す黒い線や地形等高線を表す茶色の線を抽出できるでしょう。しかし私たちにとっては林分で十分です。

14.3.2 Try Yourself 緑色画素の画像をジオリファレンス

前のレッスンで行ったように、この新しい画像は、データの残りの部分とともに使用できるようにするためにジオリファレンスする必要があります。

この画像は、ジオリファレンスツールに関する限り、基本的に元の地図画像と同じ画像であるため、地上基準点をデジタイズする必要はもうないことに注意してください。ここで、覚えておいていただきたいことがあります。

・ このイメージも勿論 KKJ / Finland zone2 CRS です。
・ 保存した地上基準点を使用する必要があります、ファイル □ GCP を読み込み。
・ 変換設定 を確認することを忘れていけください。
・ 出力ラスタの名前は digitizing フォルダーの rautjavi_green_georef.tif にします。

新しいラスタが元の地図と同じと合っていることを確認してください。
14.3.3 Follow Along: デジタイズを助けるポイントを作る

QGIS でのデジタイズツールが念頭にあると、デジタイズ中にこれらの点のピクセルにスナップできたら便利だろうとすでに考えかけていません。それはまさに次にしようとしていること、つまり、QGIS で利用可能なスナップツールを使ってこれらのピクセルからポイントを作成し、後で林分の境界線に沿ってデジタイズするために使います。

1. ラスター・変換・ポリゴン化 (ラスタからベクタ) ツールを使用して、緑の線をポリゴンにベクタ化してください。やり方を覚えていない場合は、Lesson: ラスタからベクタへの変換で確認できます。

2. digitizing フォルダーに rautjarvi_green_polygon.shp として保存します。

3. 拡大してポリゴンがどのように見えるかを見てください。このような物が見えるでしょう：

4. ポリゴンからポイントを得るための次の選択肢は、その重心を得ることです:

 1. ベクタ・ジオメトリツール・重心… を開きます。
2. 入力レイヤを rautjarvi_green_polygon（今作ったポリゴンレイヤ）に設定します
3. フォルダー digitizing の green_centroids.shp ファイルに 重心の出力を設定します
4. アルゴリズムの終了後に出力ファイルを開くをチェックします
5. 実行を押します。これでポリゴンの重心が新しいレイヤとして計算され、プロジェクトに追加されます。

5. これで、rautjarvi_green_polygon レイヤを TOC から削除することができます。
6. 重心レイヤのシンボリズマを次のように変えます：
 1. green_centroids のレイヤプロパティを開きます。
 2. シンボリズマタブに移動します。
 3. 大きさを 1.00 にし、地図単位を選びます
ポイント１つ１つを区別する必要はありません。それらはスナップツールが使用するためそこにある必要があるだけです。これらのポイントを使用することで、それらがない場合よりもずっと簡単に元の線をたどれるようになりました。

14.3.4 Follow Along: 林分をデジタイズする

これで実際のデジタイズ作業を開始する準備が整いました。ポリゴンタイプのベクタファイルの作成から始めますが、この演習では、関心域の一部をデジタイズしたシェープファイルがあります。主要道路（幅の広いピンクの線）と湖の間に残っている林分の半分のデジタイズを完了するだけです。
1. ファイルマネージャのブラウザで digitizing フォルダに移動します。
2. forest_stands.shp ベクトルファイルを地図へドラッグ＆ドロップします。
3. 新しいレイヤのシンボロジーを変えて、デジタイズしたポリゴンがよく見えるようにします。
1. 塗りつぶし色を緑にし、不透明度を50%に変えます。

2. シンプル塗りつぶしを選んでストローク幅を1.00 mmにします。

さて、過去のモジュールを思い出すると、スナップオプションの設定と有効化が必要です:

1. プロジェクト・スナップオプション...に移動します

2. スナップを有効にするを押し、詳細設定を選びます

3. green_centroidsとforest_standsレイヤをチェックします

4. 各レイヤの型を`guilabel:`頂点`にします

5. 各レイヤの許容範囲を10にします

6. 各レイヤの単位をピクセルにします

7. forest_standsレイヤの重なりを避けるをチェックします

8. トポロジ編集を押します

9. 詳細設定に従うを選びます

10. ポップアップを閉じます

このスナップ設定により、デジタイズ中に重心レイヤのポイントやデジタイズしたポリゴンの頂点に近づくと、そのポイントにピンの四角が表示されスナップされます。

11. 最後に、forest_standsとrautjarvi_georefを除くすべてのレイヤの可視性をオフにします。地図画像に透過性がなくなっていることを確認します。

デジタイズを始める前に知っておく重要なポイント:

- 境界のデジタイズではあまりに正確にしようとしないでください。
- 境界が直線である場合は、2つのノードだけでデジタイズしてください。一般的に、できるだけ少ないノードを使用してデジタイズしてください。
- 正確であることが必要と感じた場合のみ拡大して範囲を閉じてください。例えばいくつかの角や、ポリゴンを特定のノードで他のポリゴンと接続したいときは。
- デジタイズしながら、マウスの中ボタンを使用して拡大/縮小および地図を移動してください。
- 一度に1つのポリゴンをデジタイズしてください。
- 1つのポリゴンをデジタイズした後、地図から読める林分IDを書き込みます。
これでデジタイズを開始できます:

1. 林分番号 357 を地図ウィンドウに表示させます。
2. forest_stands レイヤを選択します。
3. 編集モード切り替え をクリックして編集を有効にします
4. ポリゴン地物を追加 ソールを選びます。
5. 林分 357 のデジタイジングを始め、ドットのいくつかを繋ぎます。スナップを示すピンクの十字に注目してください。

完了すると:
1. ポリゴンのデジタイジングを終わるには右クリックします。

2. フォームに林分 ID を入力します（この場合は 357）。

3. OK をクリックします。

ポリゴンのデジタイジングを終了してもフォームが表示されない場合は、設定 ▸ オプション ▸ デジタイズで、地物作成後に属性フォームをポップアップさせないがチェックされていることを確認してください。

デジタイズされたポリゴンは次のようになります:

次に、2 つ目のポリゴンとして、林分番号 358 をピックアップします。forest_stands レイヤの Avoid Overlap がチェックされていることを確認してください（上図参照）。このオプションは、ポリゴンが重ならないようにするものです。つまり、既存のポリゴンの上でデジタイズした場合、新しいポリゴンは既存
のポリゴンの境界線に合うようにトリミングされます。このオプションを使用すると、共通の境界線を自動的に取得することができます。

1. 林分 357 と共通する角の一つで林分 358 のデジタイズを始めてください。
2. 両林分で共通なもう一つの角まで、普通に進めます。
3. 最後に、共通の境界が交差されていないことを確認しながらポリゴン 357 内のいくつかのポイントをデジタイズします。下の左の画像を参照してください。
4. 右クリックして林分 358 の編集を終了します。
5. ID を 358 と入力してください。
6. OK をクリックします。新しいポリゴンは、下の画像にあるように、林分 357 と共通の境界を持っていきます。

既存のポリゴンと重なっていた部分は自動的に切り落とされ、意図した通りの共通の境界が残されています。

14.3.5 Try Yourself 林分のデジタイズを完了する

これで、2 つの林分ができました。そして、繰行する方法について良いアイデア。主要道路と湖によって制限されているすべての林分がデジタイズされるまで、自分でデジタイズを続けてください。

それは大変な作業のように見えるかもしれませんが、すぐに林分をデジタイズするのに慣れるでしょう。それは約 15 分かかります。

デジタイズ中に、ポリゴンを編集したり削除したノードを、分割またはマージする必要がある場合があります。 Lesson: 地物のトポロジ で必要なツールについて学びましたが、今がそれらを読み直す良い機会でしょう。
トポロジの編集を有効な場合、2つのポリゴンに共通のノードを移動すると、その共通の境界は、両方のポリゴンが同時に編集されるようになることを思い出してください。

結果は次のようになります:

14.3. Lesson: 林分をデジタイズする
14.3.6 Follow Along: 林分データを結合する

地図のために持っている森林目録データは、紙に書かれている可能性があります。その場合は、最初にテキストファイルやスプレッドシートにそのデータを記述する必要があります。この演習では、1994年目録（地図と同じ目録）からの情報は、カンマ区切りテキスト（CSV）ファイルとして準備ができています。

1. テキストエディタで exercise_data\forestry ディレクトリの rautjarvi_1994.csv ファイルを開き、イベントリデータファイルには ID という属性があり、林分の番号が書かれていることに注目します。これらの番号は、ポリゴンに入力した林分の ID と同じで、テキストファイルにリンクするために使うことができます。このイベントリデータのメタデータは、同じフォルダの rautjarvi_1994_legend.txt というファイルで見ることができます。

2. 次にこのファイルをプロジェクトに追加します:
 1. CSV テキストソールを使用します。これはレイヤーを追加 Supports CSV テキストレイヤーを追加...からアクセスできます。
 2. ダイアログで以下のように詳細を設定します:

3. 追加を押して、フォーマットされた :file:`csv` ファイルをプロジェクトに読み込みます。

3. は CSV ファイルのデータにデジタル化されたポリゴンをリンクさせるために、2 つのレイヤーの間に結合を作成します:
 1. forest_stands レイヤのレイヤプロパティを開きます。
 2. テーブル結合 タブに移動します。
 3. ダイアログボックスの下部にある 新規結合 (join) を追加 をクリックします。
4. 結合するレイヤに rautjarvi_1994.csv を選択します

5. 結合基準の属性に ID を設定します

6. ターゲット属性に ID を設定します

7. OK を2回クリックします。

テキストファイルのデータがベクタファイルとリンクしているはずです。何が起こったかを見るには、forest_stands レイヤを選択し、属性テーブルを開くを使ってください。目録データファイルのすべての属性が、デジタイズしたベクタレイヤにリンクされていることが確認できます。

フィールド名の先頭に rautjarvi_1994_ が付いていることがわかります。これを変更するには:

1. forest_stands レイヤのレイヤプロパティを開きます。

2. テーブル結合 タブに移動します。

3. 結合するレイヤ rautjarvi_1994 を選択します

4. 選択した結合を編集 ボタンをクリックして編集可能にします

5. 属性名の接頭辞の下の接頭辞を取り除きます

Add Vector join

<table>
<thead>
<tr>
<th>Join layer</th>
<th>rautjarvi_1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>Join field</td>
<td>123 ID</td>
</tr>
<tr>
<td>Target field</td>
<td>abc ID</td>
</tr>
<tr>
<td>Cache join layer in memory</td>
<td>Yes</td>
</tr>
<tr>
<td>Create attribute index on join field</td>
<td>No</td>
</tr>
<tr>
<td>Dynamic form</td>
<td>No</td>
</tr>
<tr>
<td>Editable join layer</td>
<td>No</td>
</tr>
<tr>
<td>Joined fields</td>
<td>Yes</td>
</tr>
<tr>
<td>Custom field name prefix</td>
<td></td>
</tr>
</tbody>
</table>
3. 形式 に ESRI Shapefile を設定します

4. ファイル名を forestry フォルダ下の forest_stands_1994.shp に設定します

5. 新しいファイルをプロジェクトのレイヤとして含めるには、保存されたファイルを地図に追加する をチェックします

14.3.7 Try Yourself 面積と周囲の長さを追加する

これらの林分に関連する情報を収集するために、林分の面積と周囲の長さを計算することができます。あなたは Lesson: 補足実習 で多角形の面積を計算しました。必要であれば、そのレッスンに戻り、林分の面積を計算してください。新しい属性に Area という名前を付け、計算された値がヘクタールであることを確認します。また、周囲の長さについても同じことができます。

これで forest_stands_1994 レイヤの準備が整い、利用可能なすべての情報を詰め込むことができました。プロジェクトを保存し、後で戻ってくる必要がある場合に備えて、現在の地図レイヤを保持します。
14.3.8 In Conclusion

これにはマウスを数回クリックする必要がありますが、これで古い登録データを QGIS で使用できるデジタル形式で手にいれました。

14.3.9 What's Next?

まったく新しいデータセットで異なる分析することで開始できますが、より最新のデータセットの分析を行うことにより興味があるのではないかか。次のレッスンのトピックは、現在の航空写真やデータセットにいくつかの関連情報の追加を使用した林分の作成になります。

14.4 Lesson: 林分を更新する

古い目録の地図から情報をデジタル化し、林分に対応する情報を追加したので、次のステップは、森林の現在の状態の目録を作成することでしょう。

航空写真に従って、新しい林分をデジタル化します。前回のレッスンと同様に航空赤外線写真 (CIR) を使用します。この種類の画像は、青色光の代わりに赤外光を記録したもので、植生域の調査に広く利用されています。

林分をデジタル化した後、このような保全条例により与えられた新たな制約などの情報を追加します。

このレッスンの目標：新しい林分の集合を CIR 航空写真からデジタル化し、他のデータセットから情報を追加します。

14.4.1 古い林分を現在の航空写真と比較する

フィンランド国土地理院はオープンデータ政策をとっており、航空写真、従来の地形図、DEM、LiDAR データなど、様々な地理データをダウンロードすることができます。このサービスは、ここから英語でアクセスマップです。この演習で使用した航空画像は、このサービスからダウンロードした 2 枚のオルソ CIR 画像 (M4134F_21062012 と M4143E_21062012) から作成したものです。

1. QGIS を開き、プロジェクトの CRS をプロジェクトプロパティ... CRS で、ETRS89 / ETRS-TM35FIN に設定します
2. CIR 画像 rautjarvi_aerial.tif をプロジェクトに追加する:
 1. ファイルメニューやのブラウザで exercise_dataorestry のフォルダに移動します
 2. rautjarvi_aerial.tif をプロジェクトにドラッグ＆ドロップします
3. QGIS プロジェクトを digitizing_2012.qgs として保存します

CIR の画像は 2012 年のものです。1994 年に造られた林分をほぼ 20 年後の状況と比較することができます。

1. 前のレッスンで作成した forest_stands_1994.shp レイヤを追加する:
 1. ファイルメニューやのブラウザで exercise_dataorestry のフォルダに移動します
2. プロジェクトにファイル forest_stands_1994.shp をドラッグ＆ドロップします

2. ポリゴンを透過して見えるようにレイヤのシンボロジを設定する:
 1. forest_stands_1994 を右クリックする
 2. プロパティ を選ぶ
 3. 🌳 シンボロジ タブに移動する
 4. 塗りつぶし色 を透明な塗りつぶしに設定する
 5. ストローク色 を紫に設定する
 6. ストローク幅 を 0.50 mm に設定する

3. 均質な森として解釈する可能性があるものに、古い林分がどのように從っているか（あるいは従っていないか）を確認してください。

4. ズームとパンしてください。古い林分でなお静止画に対応するものとしないものがあることに気づくでしょう。

20 年ほどが経過しており、また、様々な森林施業（伐採、間伐…)が行われたため、これは通常の状況です。また、1992 年当時にデジタイズしたときには林分が均質に見えていたが、時間が経過すると、いくつかの森は異なる形で成長した可能性もあります。あるいは当時の森林目録の優先順位が現在のそれとは異なっていた可能性もあります。

次は、この画像に対する新しい林分を古い林分を使用せずに作成します。その後、違いを見るためにそれらを比較できます。

14.4.2 CIR 画像の解釈

道路や湖によって制限される、古い調査でカバーされていた地域を、デジタイズしてみましょう。前の演習のようにすでに林分のほとんどが含まれているベクタファイルを使って始められるので、地域全体をデジタイズする必要はありません。

1. レイヤ 🌳 forest_stands_1994 を削除する

2. プロジェクトにファイル exercise_data\forestry\forest_stands_2012.shp を追加する

3. このレイヤのスタイルを、ポリゴンに塗りつぶしなして、境界が表示されるように設定します
 1. forest_stands_2012 レイヤのプロパティ ダイアログを開く
 2. 🌳 シンボロジ タブに移動する
 3. 塗りつぶし色 を透明な塗りつぶしに設定する
 4. ストローク色 を緑に設定する
 5. ストローク幅 を 0.50 mm に設定する
目録エリアの北側がまだ欠けていることがわかります。あなたの仕事は、この欠けている林分をデジタイズすることです。

始める前に、すでにデジタイズした林分および画像内の対応する森林を見直すことにいくらか時間を使ってください。林分境界がどのように決定されるかについて理解してみてください。林業の知識をいくらか持っている場合それが役立ちます。

考慮すべきいくつかの点:

14.4. Lesson: 林分を更新する
・どの林に落葉樹があり（フィンランドではほとんどがシラカバ林）、どの森に針葉樹があるのか（この地域ではマツやトウヒ）。CIR 画像では、通常、落葉樹は明るい赤色で、針葉樹は濃い緑色で表示されます。

・森林の樹齢は？樹冠の大きさは画像で確認できます。

・異なる林分の密度はどれくらいでしょう？最近間伐が行われた林分は、樹冠と樹冠の間に隙間があり、周囲の他の林分と容易に区別できるはずです。

・青みを帯びた地域は不毛の地形、道路や市街地、成長を開始していない作物などを示しています。

・林分を特定しようとする場合、画像を拡大し過ぎないでください。この画像は、1:3 000 から 1:5 000 の縮尺で十分です。下の画像（縮尺 1:4000）を見てください。

14.4.3 Try Yourself CIR 画像から林分をデジタイズする

林分をデジタイズするときは、樹種、林齢、林分密度…の観点から、可能な限り一で取得しようとすべきです。しかし、詳細すぎてはいけません。さもないと、小さなたくさんの林分を作ることになり、それまたく役に立たないでしょう。小さ過ぎず（少なくとも 0.5 ヘクタール）また大き過ぎない（せいぜい 3 ヘクタール）。林業の文脈において意味ある林分を取得しようとする必要があります。

これらの点を念頭に、不足している林分をデジタイズします。
1. スナップとトポジオプションを設定する:
 1. プロジェクト → スナップオプション... に移動します
 2. スナップを有効にする を押し、詳細設定 を選びます
 3. forest_stands_2012 レイヤをチェックします
 1. 型 を :guilabel:`頂点` に設定する
 2. 許容範囲 を 10 に設定する
 3. 単位 を ピクセル に設定する
 4. 重なりを避ける の下のボックスをチェックする
 5. トポジ編集 を押します
 6. 詳細設定に従う を選びます
 7. ボップアップを閉じます

2. レイヤリストの forest_stands_2012 レイヤを選ぶ

3. 編集モード切り替え をクリックして編集を有効にします

4. 前のレッスンと同じ技法を使ってデジタイズを始めます。唯一の違いは、スナップするポイントレイヤがないことです。このエリアでは約 14 の新しい林分が得られるはずです。デジタイズしている間、StandID フィールドを 901 から始まる数字で埋めます。

5. 作業が完了したら、レイヤは次のようにになります。
これが、CIR 画像から解釈された、2012 年のさまざまな森林を示すポリゴンの新しい集合ができあがりました。しかし、森林図録のデータがありません。そのため、森林を訪問し、各林分の森林属性を推定するために使用するサンプリングデータを入手する必要があります。その方法は次のレッスンで説明します。

この区域で考慮する必要のある自然保護規制に関する追加情報を加えることもできます。

14.4.4 Follow Along: 保全情報を林分を更新する

作業している区域には、森林計画を立てる際に考慮しなければならない保護規制がいくつかあります:

• エゾモンガ (Pteromys volans) の保護種の二箇所が同定されています。規定によれば、スポットの約 15 メートルの区域は手つかずのまま残さなければならない。

• この区域の小川沿いに生育している特別に注目すべき河畔林を保護しなければなりません。現地を視察したところ、小川の両側 20 メートルを保護しなければならないことが判明しました。

リスの指定区域に関する情報を含むベクタファイルと、北区域から湖に向かって流れるデジタイズした小川を含むベクタファイルがあります。
1. exercise_data\forestry\フォルダから、squirrel.shp と stream.shp ファイルをプロジェクトに追加する。

2. 属性テーブルを開くツールを使って squirrel レイヤを表示する

エゾモモンガと定義されている 2 つの指定区域があること、及び保護すべき区域がその指定区域から15 メートルの距離で示されていることがわかります。

保護する区域をより正確に区切りましょう。保護距離を使って、ポイント位置の周囲にパッファを作ります。

1. ベクタ □ 空間演算ツール □ パッファを開く。

2. 入力レイヤに squirrel を設定する

3. 距離に 15 メートルを設定する

4. 出力レイヤに exercise_data\forestry\squirrel_15m.shp を設定する

5. アルゴリズムの終了後に出力ファイルを開くをチェックする

6. 実行をクリックします

7. プロセスが完了したら 閉じる をクリックする

14.4. Lesson: 林分を更新する
Buffer
This algorithm computes a buffer area for all the features in an input layer, using a fixed or dynamic distance.

The segments parameter controls the number of line segments to use to approximate a quarter circle when creating rounded offsets.

The end cap style parameter controls how line endings are handled in the buffer.

The join style parameter specifies whether round, miter or beveled joins should be used when offsetting corners in a line.

The miter limit parameter is only applicable for miter join styles, and controls the maximum distance from the offset curve to use when creating a mitered join.
リスの指定区域を保護するために、新しい林分に新しい属性（列）を追加し、保護されなければならない指定区域についての情報を格納します。この情報は森林作業が計画された時にいつでも利用でき、現場チームは作業開始前に手をつけてはいけない場所に印をつけることができます。

リスに関する情報を林分に結合するには、属性の空間結合アルゴリズムを使うことができます。

1. ベクタ®データ管理ツール®属性の空間結合を開く。
2. 地物を結合するレイヤにforest_stands_2012を設定する
3. 空間的関係は交差するチェックする
4. 比較対象にsquirrel_15mを設定する
5. 結合型に最初に合致した地物の属性のみを取得（1対1結合）を設定する
6. 結合対象がなかった地物を破棄はチェックしないておく
7. 出力レイヤにexercise_data\forestry\stands_squirrel.shpを設定する
8. アルゴリズムの終了後に出力ファイルを開くをチェックする
9. 実行をクリックします
10. プロセスが完了したら、ダイアログを閉じることができます。

14.4. Lesson: 林分を更新する
これでエゾモンガの保護情報を表示する新しい林分レイヤ stands_squirrel.shp ができた。

1. stands_squirrel レイヤの属性テーブルを開く

2. テーブルヘッダの point_pr フィールドをクリックして、テーブルを並べ替える。
保護指定区域の情報を保持実現があることがわかります。林分データにあるこの情報によって、森
林管理者は保護に配慮する必要があることがわかります。そうすれば、森林管理者は squirrel データ
セットからその指定区域を取得し、その区域を訪問して指定区域の周辺に対応する緩衝地帯に印をつけ
、現場の作業者がリスの環境を乱さないようにすることができます。

14.4.5 Try Yourself 流域への距離で林分を更新する

保護されたリスの指定区域と同じアプローチで、林分に小川に関連する保護情報を更新することができま
す。いくつかのポイントがあります:

- パッファが小川の周辺 20 メートルであることを覚えておく
- すべての保護情報を同じベクタファイルにしたいので、stands_squirrel.shp をベースレイヤとし
て使用する。
- 出力の名前を forest_stands_2012_protect.shp とする

プロセスが完了したら、出力レイヤの属性テーブルを開き、小川に関連する河畔林の保護情報がすべて描っ
ていることを確認する。

結果に満足したら、QGIS プロジェクトを保存する。
14.4.6 In Conclusion

林分をデジタイズする CIR 画像をどのように解釈するかを見えてきました。もちろんより正確な林分を作るためにはいくらか練習がいるでしょうし、通常は土壌地図のような他の情報を使用すればより良い結果が得られるでしょうが、これでこの種の業務のための基礎はわかりました。そして、他のデータセットからの情報を追加することで、非常に簡単な作業となりました。

14.4.7 What's Next?

デジタイズした林分は将来的に森林施業を計画するために使用されるでしょうが、まだ森林に関する詳細な情報を取得する必要があります。次のレッスンでは、調査にだけのデジタイズされた森林面積をサンプリングプロットのセットを計画する方法を見て、森林のパラメーターの全体的な見積もりを取得します。

14.5 Lesson: 体系的なサンプリングの設計

林分を表すポリゴンの集合は既にデジタイズしましたが、まだ森林についての情報を持っていません。その目的のために、この森林区域全体の目録作成の調査を設計し、そのパラメーターを推定できます。このレッスンでは、サンプリングプロットの体系的なセットを作成します。

森林目録を計画し始めることは、目的、使用されるサンプルプロットの種類、目的を達成するために収集されるデータの種類を明確に定義することが重要です。それらは、個々の場合について森林管理目的のタイプに依存するでしょうし、誰か林業の知識を持つ人によって慎重に計画されなければなりません。このレッスンでは、体系的なサンプリングプロットの設計に基づいた論理的な目録を実装します。

このレッスンの目標：森林区域を調査するために体系的なサンプリングプロットの設計を作成します。

14.5.1 森林の目録を作成する

森林の目録を作成するには、それぞれ異なる目的や条件に合わせて、いくつかの方法があります。たとえば、森林の目録を作成する 1 つの非常に正確な方法は（桜樹だけを考慮する場合）、森林を訪問し、すべての木とその特徴のリストを作成することです。ご想像できるように、これはいくつかの小さな領域または一部の特殊な状況を除けば、一般的には適用できません。

森林について知る最も一般的な方法は、森林をサンプリングすることです。つまり、森林のさまざまな場所で計測を行い、その情報を森林全体に一般化することです。これらの計測は、多くの場合、簡単に計測できる小さな森林区域である サンプリングプロット で行われます。サンプリングプロットは、どんなサイズ（たとえば、50 m2 または 0.5 ha）や形式（たとえば、円形、長方形、可変サイズ）にもき、方法（たとえば、ランダム、体系的、線に沿って）もさまざまでです。サンプリングプロットのサイズ、形式、および場所は、通常、統計的、経済的、および実用的な考慮事項に従って決定されます。林業の知識がない方は このウィキペディアの記事 を読むことをお勧めします。
14.5.2 Follow Along: 体系的なサンプリングブロット設計を実装する

作業している森について管理者は、この森のためには体系的なサンプリング設計が最も適切であると判断し、またサンプルブロットとサンプリングラインとの間に 80 メートルの一定の距離が信頼性の高い結果が得られると判断しました（この場合では 68 ％の確率で平均誤差+/-5 ％）。これによってサンプルブロットは、成長および成熟林分の、この目録のための最も効果的な方法であると判断されているが、苗林分については 4 メートル固定的半径のブロットが使用されるでしょう。

実際には、後で野外チームによって使用されるポイントとしてサンプルブロットを表現する必要があるだけです:

1. 前のレッスンからの digitizing_2012.qgs プロジェクトを QGIS で開きます。
2. forest_stands_2012 以外のすべてのレイヤを削除します。
3. ここでプロジェクトを forest_inventory.qgs として保存してください

今、お互いに 80 メートル離れたポイントの長方形のグリッドを作成する必要があります:

1. ベクタ ☐ 調査ツール ☐: 規則的な点群 を開きます。
2. 作成範囲 フィールドの横にあるドロップダウンボタンを押して、レイヤから計算 メニューから、forest_stands_2012 を選択します。
3. 点の間隔/数 の設定に、80 メートル を入力します。
4. 点の間隔を使う ボックスをチェックすると、この値がポイント間の距離を表していることを示します。
5. 規則的点群 で、出力を forestry\sampling' フォルダの :file:`systematic_plots.shp` として保存します。
6. アルゴリズムの終了後に出力ファイルを開く をチェックします。
7. 実行 を押します。

注記: 提案された 規則的な点 は、選択されたポリゴン レイヤの範囲の左上隅から始まる体系的なポイントを作成します。この規則的な点にランダム性を追加したい場合は、0 から 80 (80 は点間の距離) の間でランダムに計算された数値を使用し、それからツールのダイアログで 隅からの初期嵌込み (LH 側) パラメータとして記述します。

このツールは、ポイントの長方形のグリッドを作成するために、林分レイヤの全体の範囲を使用していることに気づきます。しかし、お使いの森林区域の内側に実際にある点のみに間心があります（下の画像を参照）；
1. プロセシングツールボックスから GDAL -> ベクタ・ジオプロセシング -> マスクレイヤで切り抜くを開きます。

2. 入力レイヤに systematic_plots を選びます。

3. マスクレイヤに forest_stands_2012 をセットします。

4. 切り抜く（マスク）結果を forestry\sampling\フォルダに systematic_plots_clip.shp として保存します。

5. アルゴリズムの終了後に出力ファイルを開くをチェックします。

6. 実行を押します。

これで、野外チームが設計されたサンプルプロットの場所に移動するために使用するポイントができました。野外作業のためにより便利になるように、これらのポイントをさらに準備できます。少なくとも、ポイントのために意味のある名前を追加し、GPS デバイスで使用できる形式にエクスポートする必要はあるでしょう。

まずは、サンプルプロットの命名から始めましょう。森林区域の内側のプロットの 属性テーブルを確認すると、規則的点群ツールで自動的に生成されたデフォルトの id フィールドがあることがわかります。ポイントにラベルを付けて地図上で確認し、サンプルプロットの命名の一部としてこれらの番号を使用できるかどうかを検討します。

1. systematic_plots_clip レイヤのレイヤプロパティで id ラベルを開きます。

2. トップメニューを abc 単一定義に変えます。

3. 値項目で id 属性を選びます。
4. バンクタブを開き、テキストバンクを描画をチェックし、バンクの大きさを1にします。

5. OKをクリックします。

ここで地図上のラベルを見てください。ポイントが作成され、最初に西から東、それから北から南へと番号付けられていることがわかります。再び属性テーブルを見れば、テーブル内の順序もその番号に従っていることがわかります。異なる方法でサンプルブロックに名前付けする理由がない限り、名前を西東/南北様式で名前付けすることは論理的な順序に従っており、良いオプションです。

それによっても、idフィールドの数値はあまりよくありません。p_1, p_2...`のような命名が良いでしょう。`systematic_plots_clip`レイヤに新しい列を作成することができます:

1. systematic_plots_clipの属性テーブルに移動します。

2. 編集モードを有効にします。

3. フィールド計算を開啟します:

 1. 新規フィールドを作成をチェックします
 2. 出力する属性（フィールド）の名前にPlot_idと入力します
 3. フィールド型にテキスト(string)を設定します。

 4. 式フィールドに、この式concat('P_', @rownum)を書くか、コピーするか、構成します。関数リストの中的要素をダブルクリックすることもできることを思い出してください。concat関数は:guilabel:`文字列(String)`の下に、`@rownum`は:guilabel:`変数と値`グループの下にあります。

4. OKをクリックします。

5. 編集モードを無効にし、変更を保存します。

これで、あなたにとって意味のあるプロット名を持つ新しい列ができました。systematic_plots_clipレイヤで、ラベル付けに使用しているフィールドを新しいPlot_idフィールドに変更します。
14.5.3 Follow Along: GPX 形式としてサンプルブロットを書き出す

野外チームは、おそらく GPS デバイスを使用して、あなたが計画したサンプルブロットの位置を特定することになるでしょう。次のステップは、作成したポイントを GPS が読み取れる形式にエクスポートすることです。QGIS では、点と線のベクタデータを GPS eXchange Format (GPX) で保存することができます。これも、ほとんどの専門ソフトウェアで読むことができる標準の GPS データ形式です。データを保存する際に CRS を選択するのには注意が必要です:

1. systematic_plots_clip レイヤを右クリックし、エクスポート ▶ 新規ファイルに地物を保存... を選びます。

![Save Vector Layer as...]

2. 形式で GPS 交換フォーマット [GPX] を選択します。

3. 出力を forestry\sampling\ フォルダに plots_wgs84.gpx というファイル名で保存します。

4. CRS 中で選択された CRS を選択します。

5. EPSG:4326 - WGS 84 をブラウズします。

注釈: GPX 形式はこの CRS しか受け付けません。違うものを選ぶと、QGIS はエラーを返しませんが、空のファイルができます。

6. OK をクリックします。

7. 開いたダイアログで、waypoints レイヤだけを選びます（レイヤの残りは空です）。

目録サンプルブロットは、ほとんどの GPS ソフトウェアで管理できる標準形式になっています。野外チームは、サンプルブロットの位置をデバイスにアップロードできるようになりました。そのためには、各自のデバイスのソフトウェアと、保存した plots_wgs84.gpx ファイルを使用することになります。他の方
法としては、GPS Tools プラグインを使用することもできますが、その場合、特定の GPS デバイスで動作するようにツールを設定する必要があります。もしあなたが自分のデータで作業をしていて、このツールがどのように動作するかを確認したい場合は、QGIS ユーザーマニュアルの working_gps のセクションで情報を得ることができます。

ここで QGIS プロジェクトを保存します。

14.5.4 In Conclusion

森林目録に使用する体系的なサンプリングの設計を作成する方法を簡単に見たところです。サンプリング設計の他のタイプを作成するには、QGIS 内のさまざまなツールやスプレッドシートを使用したりスクリプトを書いてサンプルプロットの座標を計算することが入ってきますが、一般的な考え方は同じままになります。

14.5.5 What’s Next?

次のレッスンでは、野外チームが担当のサンプルプロットに到達するため使用している詳細地図を自動で作成するために、QGIS の地図帳機能をどう使用するかを見ていきましょう。

14.6 Lesson: 地図帳ツールで詳細な地図を作成する

体系的なサンプリングの設計が準備でき、野外チームがナビゲーションデバイスに GPS 座標をロードしました。彼らはまた、すべてのサンプルプロットで測定された情報を収集するための野外データフォームを持っています。野外チームは、すべてのサンプルプロットへ行く道が簡単に見つかるよう、いくつかの地上情報がサンプルプロットのより小さいサブセットや地図エリアに関する情報と一緒に見ることができる大量の詳細地図を要求してきました。地図帳ツールを使用することで、大量の地図を共通のフォーマットで自動的に作成できます。

このレッスンの目標：QGIS で地図帳ツールを使用して、野外目録作業を支援するための詳細な印刷可能な地図を作成することを学びます。

14.6.1 Follow Along: 印刷レイアウトを準備する

森林地域と私たちのサンプリングプロットの詳細な地図を自動化するには、まず野外作業のために有用と思われる要素をすべて入った地図テンプレートを作成する必要があります。もちろん、最も重要なのは、前に見てきたように、スタイルを適切に設定することですが、印刷された地図を完成する他の多くの要素を追加することも必要です。

1. 前回のレッスンで作成した QGIS プロジェクト forest_inventory.qgs を開いてください。少なくとも以下のレイヤがあるはずです：
 - forest_stands_2012 (透過率 50 %、緑色の塗りつぶし、濃い緑色の枠線)
 - systematic_plots_clip
2. プロジェクトを新しい名前 map_creation.qgs として保存します。

印刷可能な地図を作成するには、Layout Manager: を使うことを思い出してください:

1. Open プロジェクト のレイアウトマネージャ を開きます。

2. レイアウトマネージャ ダイアログで:
 1. テンプレートから新規作成 の下の 空のレイアウト の隣にある 作成... ボタンを押します
 2. 印刷レイアウトに forest_map という名前を付けます。
 3. OK を押します。新しい印刷レイアウトが作られ、空白の用紙が開きます。

3. 印刷レイアウトウィンドウで、プロパティが A4 紙にセットされていることを確認します:
 1. 紙の上で右クリックし、ページのプロパティ を選択します。レイアウトの右に ページプロパ
 ティ パネルが開きます。
 2. ページサイズ が A4 になっていることを確認します。
 3. 方向が横になっていることを確認します。

4. ページプロパティ パネルの隣にある レイアウト タブを開き、エクスポート解像度 を 300 dpi にセッ
 トします。

キャンバスグリッドを使用してさまざまな要素を配置すると、地図の作成が簡単になります。レイアウトグリッドの設定を確認します:

1. レイアウト タブで ガイドとグリッド を開きます。

2. グリッド間隔が 10 mm 、スナップ許容値が 5 px になっていることを確認します。

グリッドの使用を有効にする必要があります。

1. ビュー メニューを開きます。

2. グリッドを表示 をチェックします。

3. グリッドにスナップ をチェックします。

4. ガイドを使うオプションが既定でチェックされていることに気づくでしょう。これによってレイア
 ウト内で要素を動かす際にガイド線が現れるようになります。

5. これで、レイアウトへの要素の追加を開始できます。最初に地図要素を追加して、レイヤーのシンポ
 ルを変更すると地図キャンパスがどのように見えるかを確認できるようにします。

1. 地図を追加 ボタンをクリックします。

2. 地図がそれのほとんどを占めるようにキャンバス上でクリックして矩形にドラッグします。
マウスカーソルがキャンパスのグリッドにスナップされるに注意してください。他の要素を追加したときに、この機能を使用してください。より精度を高くしたい場合は、グリッド間隔設定を変更してください。何らかの理由でいくつかの点でグリッドにスナップしたくない場合は、常にビューメニュー中でいつでもそのチェックを切り替えできます。

14.6.2 Follow Along: 背景地図を追加する

レイアウトを見ていたままマップに戻ります。地図の内容ができるだけ明確になるようにいくつかの背景データを加えてスタイルをしましょう。

1. exercise_data\forestry\フォルダにある背景ラスタ basic_map.tif を追加します。

2. 入力を要求されたときは、このラスタに ETRS89/ETRS-TM35FIN CRS を選択してください。

ご覧のように背景地図にはすでにスタイルが付いています。このタイプの使用準備ができている地図作成ラスターは非常に一般的です。それは、ベクターデータから作成された標準形式でスタイルとラスタとして格納されていますので、いくつかのベクタレイヤにスタイル付けする手間や良い結果を得られているか心配する必要はありません。

3. 今、プロットの約 4 または 5 行を見ることができるようにサンプルプロットにズームします。

サンプルプロットの現在のスタイルは最良ではありません:
最後の練習では、この白いパッファは空中写真の上では OK でしたが、今は背景イメージがほとんど白くラベルがほぼ見えません。印刷レイアウトではどう見えるでしょう？確認してみましょう。

1. 印刷レイアウトウィンドウに移動します。
2. Select/Move item ボタンを使ってレイアウトにあるマップ要素を選択します。
3. アイテムプロバティ タブに移動します。
4. キャンパスの範囲に地図の範囲を合わせる をクリックします。
5. 要素をリフレッシュするときは 地図のプレビューの更新 をクリックします。

明らかにこれは十分ではありません；野外チームのためにプロット番号ができるだけはっきりと見えるようにしたいと思います。

14.6.3 Try Yourself レイヤのシンボロジを変更する

Module: 基本地図の作成と探検 ではシンボロジを、 Module: ベクタデータを分類する ではラベルを作業してきました。利用可能なオプションとツールのいくつかについて、記憶を呼び起こす必要があるときには、それらのモジュールに戻ってください。目標はプロットの位置と名前ができるかぎりはっきりと見えるように、しかし常に背景地図要素が見えるようにすることです。この画像からいくつかの指針を取りることができます:
後で forest_stands_2012 レイヤの緑色のスタイリングを使うことになります。これを維持したまま、林分の境界線だけを表示するビジュアライゼーションにするために:

1. forest_stands_2012 を右クリックして 複製 を選びます

2. forest_stands_2012 copy という名前の新しいレイヤが作成され、これを使って異なるスタイル、例えば、塗りなし、赤い線取り、を定義することができます。

今、林分にはの二つの異なる視覚化があり、詳細地図にどちらを表示するか決定できます。

3. 印刷レイアウトのウィンドウに頻繁に戻って、地図がどのように見えるかを確認します。詳細な地図を作成する目的では、森林地帯全体の縮尺（下の左の画像）ではなく、より大きな縮尺（下の右の画像）で視えるように見えるシンポロジを採っているのでしょうか。地図のズームやレイアウトを変更するときには、地図の preview の更新 とキャンパスの範囲に地図の範囲を合わせる を忘れずに使ってください。
14.6.4 **Try Yourself** 基本地図テンプレートを作成する

1. 満足のいくシンボロジができたら、印刷する地図にさらに情報を追加する準備が整いました。少なくとも次の要素を追加してください:
 - タイトル。
 - スケールバー。
 - 地図のグリッドフレーム。
 - グリッドの両側の座標。

2. **Module**: 地図をレイアウトする ですので同じレイアウトを作成しています。必要に応じて、そのモジュールに戻りましょう。参考にこのサンプル画像を見ることができます:

3. 地図を画像として書き出し、それを見てください。
 1. レイアウト 画像としてエクスポート...
 2. *JPG format*の例を使います。

これは、印刷されたときに、それがどのように見えるかです。
14.6.5 Follow Along: 印刷レイアウトにさらに要素を追加する

提案された地図テンプレート画像でおそらくお気づきのように、キャンパスの右側には余白がたくさんあります。他に何をそこに置けるか見てみましょう。この地図の目的に本来凡例は必要ありませんが、全体図といくつかのテキストボックスで、地図に価値を加えることができます。

全体図は、野外チームが、一般的な森林地域の詳細図を置くのに役立ちます。

1. タイトルテキストのすぐ下で、キャンパスに別の地図要素を追加します。
2. アイテムのプロパティタブで、全体図ドロップダウンを開きます。
3. 概要フレームを地図 Map 0 に設定してください。これは小さい地図上に大きい地図に表示された範囲を表す形の矩形を作成します。
4. フレームオプションをチェックし、色を黒に太さを 0.30 にします。

この全体図では本当に望んでいる森林地域の概観になっていないことに注意してください。やりたいことは、この地図が森林地域全体を表現し、それが背景地図と forest_stands_2012 レイヤだけを表示して、サンプルプロットを表示しないことです。そして、もうレイヤの可視性や順序を変更しても変更されないよう、そのビューをロックすることです。

1. 地図に戻りますが、印刷レイアウトは閉じてください。
2. forest_stands_2012 レイヤを右クリックし、レイヤの領域にズームをクリックします。
3. basic_map と forest_stands_2012 を除くすべてのレイヤを非アクティブ化します。
4. レイヤ パネルの 地図テーマを管理ツールを展開し、テーマを追加を選択します。
5. その名前を basic_overview にします。
6. 印刷レイアウトに戻ります。
7. 小さな地図を選択した状態で、キャンバスの範囲に地図の範囲を合わせる をクリックし、マップウィンドウに表示される範囲にその範囲を設定します。
8. 地図テーマに従う をチェックし、:guilabel:` メインプロパティ` で basic_overview を選択して、全体図のビューをロックします。

これで、全体図は期待通りのものになり、そのビューはもう変わることはないでしょう。しかし、当然ながら、詳細地図には林分境界線もサンプルプロットも表示されなくなりました。これを修正しましょう:

1. 再びマップウィンドウに移動し、表示したいレイヤ(systematic_plots_clip, forest_stands_2012 copy そして Basic_map) を選択します。
2. サンプルプロットの数ラインだけ見えるように再び拡大します。
3. 印刷レイアウト ウィンドウに戻ります。
4. レイアウトの大きい方の地図を選択します。
5. アイテムプロパティ の ビューを更新 と キャンバスの範囲に地図の範囲を合わせる をクリックします。

大きな地図だけが現在のマップビューを表示し、小さい全体図はそれをロックしたときと同じ表示を保っていることに注意してください。

全体図は、詳細地図に示されている範囲の陰影付の枠を表示していることにも注意してください。

14.6. Lesson: 地図帳ツールで詳細な地図を作成する
テンプレート地図はほぼ準備ができています。ここで2つのテキストボックスを地図の下に追加します、一方はテキスト「詳細地図ゾーン：」を、もう一方は「備考：」が入っています。それらが上の画像に見えるように配置してください。

また、全体図に方位記号を追加できます。

1. 方位記号を追加ツールを選びます。

2. 全体図の右上の角で矩形をクリックとドラッグします。

3. アイテムプロパティでSVGイメージをチェックします。

4. SVGブラウザSVGグループを閲覧して矢印の画像を探します。

5. 画像の回転の下にある地図と同期するをチェックし、Map(全体図)を選びます。

6. 矢印の画像のサイズを小さな地図上で良く見える大きさに変更します。

基本的な地図レイアウトの準備ができたので、[地図帳]ツールを使用して、必要と思われる数の詳細図をこの形式で生成します。

14.6.6 Follow Along: 地図帳カバレッジを作成する

地図帳カバレッジは、カバレッジ内のすべての地物に対して1枚の地図と、詳細地図を作成するために使う、ただのベクテリアです。次に何をするのかイメージできるように、森林地域のため詳細地図のフルセットをお見せします。

カバレッジは既存のレイヤでも良いのですが、通常はその特定の目的のために1つ作成する方が理にかなっています。森林地域を範囲にするポリゴンのグリッドを作成してみましょう。

1. QGISマップビューで、ベクタツールグループのグリッドを作成を開きます。
2. この画像に示すようにツールを設定します。

3. 出力を atlas_coverage.shp として保存します。

4. 新しいレイヤ atlas_coverage のスタイルをポリゴンが塗りつぶされないようにします。

新しいポリゴンは全体の森林地域をカバーしていて、それらは（各ポリゴンから作成された）各地図に何が含まれているかを教えてくれます。
14.6.7 Follow Along: 地図帳ツールを設定する

最後のステップは、地図帳ツールを設定することです:

1. 印刷レイアウトに戻ります。
2. 右側のパネルで 地図帳 タブに行きます。
3. 次のようにオプションを設定します。
これは、地図帳ツールに atlas_coverage 内部の地物（ポリゴン）をそれぞれの詳細地図の焦点として使うように指示します。レイヤ内の各地物に対して 1 つの地図を出力します。カバレッジレイヤを隠す は、出力地図にポリゴンを表示しないで示す地図帳に指示します。

もうひとつしておくことがあります。すべての出力地図に対してどの地図要素が更新されるかを地図帳ツールに伝える必要があります。もうお分かりだと思いますが、地物ごとに変更する地図は、サンプルブロットの詳細ビューを含むように準備したもの、つまりキャンバス内の大きい方の地図要素です。

1. 大きい方の地図要素（Map 0）を選択します。
2. アイテムプロパティ タブに移動します。
3. リストで、地図帳による制御をチェックします。
4. そして 地物周りの余白を 10% に設定します。ビューの範囲はポリゴンより 10% 大きくなり、詳細地図は 10% 重なることになります。

14.6. Lesson: 地図帳ツールで詳細な地図を作成する
QGIS Training Manual

今、地図がどのように見えるか確認するために地図帳地図のプレビューツールを使用できます。

1. ボタン を使用して、または地図帳ツールバーが表示されていない場合は地図帳 地図帳をプレビューを通じて、地図帳のプレビューを有効にします。

2. 作成される地図を移動するには、地図帳ツールバーまたは地図帳メニューの矢印を使用できます。その中には、面白くもない地域をカバーしているものもあることに注意してください。そんな無駄な地図は印刷せず、木を節約しましょう。

14.6.8 Follow Along: カバレッジレイヤを編集する

それらの地域のために関心のないポリゴンを削除するだけでなく、カバレッジレイヤの属性テーブルからコンテンツを生成するように、地図内のテキストテーブルもカスタマイズできます。

1. 地図ビューに戻ります。

2. atlas_coverage レイヤの編集を有効にします。

3. 下の画像に（黄色で）選択されたポリゴンを選択します。

4. 選択したポリゴンを削除します。
5. 編集を無効にして、編集内容を保存します。

印刷レイアウトに戻り、地図帳のレビューがレイヤに残したポリゴンだけを使うことが確認できます。

使用しているカバレッジレイヤは、まだ地図内のラベルの内容をカスタマイズするために使用できる有用な情報を持っていません。最初のステップはそれらを作成すること、たとえばポリゴン領域のゾーンコードや野外チームが考慮すべき備考を記載したフィールドを追加することができます。

1. atlas_coverage レイヤの 属性テーブル を開きます。
2. 編集を有効にします。
3. 計算機を使用して、以下の二つのフィールドを作成、入力します。
4. Zone という名前で 整数 (integer) 型のフィールドを作ります。
5. 式 ボックスに $rownum を書く / コピー / 組み立てます。
6. Remarks という名前の テキスト (string) 型で長さが 255 のフィールドを作ります。

14.6. Lesson: 地図帳ツールで詳細な地図を作成する
7. 式 ボックスに 'No remarks.' と書きます。これですべてのポリゴンに規定値を設定します。

森林管理者は、その区域を訪れる際に役立つような情報を持っているはずです。例えば、橋や沼地の存在、保護種の位置などです。atlas_coverage レイヤはまだ編集モードになっていると思うので、対応するポリゴンの Remarks フィールドに以下のテキストを追加します（編集するにはセルをダブルクリックします）:

- Zone 2: plot 19 の北に橋。P_13 と p_14 の間にエゾモモンガ。
- Zone 6: 湖の北にある沼の通過は難しい。
- Zone 7: p_94 の南東にエゾモモンガ。
- 編集を無効にして、編集内容を保存します。

ほぼ準備ができたので、次は図表ツールに、テキストラベルの一部に atlas_coverage レイヤの属性テーブルの情報を使用するよう指示する必要があります。

1. 印刷レイアウトに戻ります。
2. 詳細地図...というテキストラベルを選びます。
3. フォントの大きさを 12 にします。
4. ラベル内のテキストの末尾にカーソルを設定します。
5. アイテムプロパティタブで、メインプロパティの内側で式を挿入または編集をクリックしてください。
6. 関数リストからフィールドと値の下にあるフィールド Zone をダブルクリックします。
7. OK をクリックします。
8. アイテムプロパティにあるボックスの中のテキストが詳細地図ゾーン: [% "Zone" %] になっているでしょうか。その [% "Zone" %] が atlas_coverage レイヤの対応する地物の Zone フィールドの値に置き換わることに注意してください。
9. 異なる図表プレビュー地図を見て、ラベルの内容をテストします。
10. ゾーン情報を持つフィールドを使用して、Remarks: というテキストを持つラベルにも同じことをします。式を入力する前に改行を入れしておくとよいでしょう。ゾーン 2 のプレビューの結果は、下の画像で見ることができます：

470
11. 地図帳プレビューを使用して、すぐに作成されているであろうすべての地図を閲覧してお楽しみください！

14.6.9 Follow Along: 地図を印刷する

最後になりましたが、印刷や画像ファイルや PDF ファイルに地図をエクスポートします。地図帳 □ 地図帳を PDF として書き出し...や 地図帳 □ 地図帳を画像として書き出し... を使用できます。現在、SVG のエクスポート形式は正常に動作せず、貧しい結果が得られます。

現地事務所に印刷用に送付できるよう、単一の PDF として地図を印刷しましょう：

1. 右パネルの地図帳作成 タブに移動します。
2. 出力の下で可能ならば単一ファイルに書き出しをチェックします。これはすべての地図を1つのPDFファイルにまとめます。このオプションがチェックされていない場合はすべての地図に1つずつファイルが得られます。
3. レイアウト □ PDF として書き出し...を開啟します。
4. PDF ファイルを inventory_2012_maps.pdf として exercise_data\forestry\sampling\map_creation フォルダに保存します。
5. すべてが期待どおりに行ったことを確認するために PDF ファイルを開きます。
6. 同じように簡単にすべての地図に対して別々の画像を作成できます（単一ファイルの作成をオフにすることを忘れないでください）。作成されるであろう画像のサムネイルをここで見ることができます。
7. 印刷レイアウトで保存ボタンを押し、印刷レイアウトの変更をプロジェクトに保存します。これにより、プロジェクトファイルも保存されます。いつでもプロジェクトを開き、地図帳を実行したり編集したりすることができます。

また、作成したマップをレイアウトテンプレートとして forestry_atlas.qpt として exercise_data フォルダに保存することもできます。レイアウトテンプレートとして保存を使用します。このテンプレートは、他のプロジェクトで何度も使用することができるようになります。

8. 印刷レイアウトとプロジェクトを閉じます。

14.6.10 In Conclusion

別のプロットに移動するのを助けるために野外で使用される詳細地図を自動作成するのに使用できるテンプレート地図の作成にこぎつけました。お気づきのように、これは簡単な作業ではありませんが、他の地域についても同様の地図を作成する必要があるときに利益がもたらされ、先ほど保存したテンプレートを使用できます。

14.6.11 What’s Next?

次のレッスンでは、LIDAR データを使って DEM を作る方法、そしてそれを使ってデータと地図の見え方を高める方法を見てゆきます。

14.7 Lesson: 森林パラメーターを計算する

森林のパラメーターを推定することは、森林調査の目標です。前のレッスンからの例を続けて、野外で収集された調査情報を使い、最初に森林全体に対して、次に前にデジタイズした林分に対して、森林のパラメーターを計算しましょう。

このレッスンの目標：森林パラメーターを全般レベルと林分レベルで計算する。
14.7.1 Follow Along: 調査結果を追加する

野外チームは森林を訪れ、あなたが提供した情報の助けを借りて、すべてのサンプルブロットでの森林に関する情報を集めました。

多くの場合、情報は野外で紙の様式に収集され、その後でスプレッドシートに入力されます。サンプルブロットの情報は、QGISで簡単に開けるように .csv ファイルに凝縮されています。

目録の設計に関するレッスンで使用した QGIS プロジェクト（forest_inventory.qgs という名前をつけたものです）を続けます。

まず、QGIS プロジェクトにサンプルブロットの測定を追加します。

1. レイヤー・レイヤーを追加・CSV テキストレイヤーを追加…に移動します。
2. exercise_data/forestry/results/ にある systematic_inventory_results.csv というファイルをブラウズします。
3. ポイント座標 オプションがチェックされていることを確認します。
4. 座標を表すフィールドを X と Y に設定します。
5. OK をクリックします。
6. ブロップトが表示されたら、CRS として ETRS89 / ETRS-TM35FIN を選択します。
7. 新しいレイヤーの 属性テーブルを開いてデータを見てみましょう。

サンプルブロットの測定結果に含まれるデータの型は、exercise_data/forestry/results/ フォルダにあるテキストファイル legend_2012_inventorydata.txt で読み取ることができます。

先ほど追加した systematic_inventory_results レイヤーは、実際に .csv ファイル内のテキスト情報を仮想的に表現したものに過ぎません。続行する前に、目録結果を実際の空間データセットに変換してください。

1. systematic_inventory_results レイヤーを右クリックします。
2. exercise_data/forestry/results/ フォルダをブラウズします。
3. そのファイルに sample_plots_results.shp という名前をつけます。
4. 保存したファイルを地図に追加 をチェックします。
5. プロジェクトから systematic_inventory_results レイヤーを削除します。
14.7.2 Follow Along: 森林全体のパラメーター推定

目録作成結果から、1 ヘクタールあたりの体積や幹数などの興味深いパラメーターについて、この森林エリア全体の平均を計算することができます。系統的なサンプルブロットは同じ面積を表しているので、sample_plots_results レイヤからヘクタールあたりの体積と幹数の平均を直接計算することができます。

基本統計ツールを使用して、ベクタレイヤ内のフィールドの平均値を計算できます:

1. ベクタ ツール属性の基本統計量を開きます。
2. 入力レイヤとして sample_plots_results を選びます。
3. 統計量を計算する属性（フィールド）として Vol を選びます。
4. OK をクリックします。

森林の平均体積は 135.2 m3/ha です。

幹数の平均も同様に 2745 本/ha と計算できます。

14.7.3 Follow Along: 林分のパラメーターを推定する

以前にデジタイズした林分の推定値を算出するのに、同じ体系的サンプルブロットを利用できます。林分の一部はどんなサンプルブロットも取得しておりません。それらについては情報を得ることはできません。体系的な目録を計画するときに、野外チームがこの目的のためにいくつかの余分なサンプルブロットを測定するように、いくつかの余分なサンプルブロットを計画することでも得られました。あるいは後で野外チームを送って不足している林分の見積もりを取得することで林分の調査を完了することもできたかもしれません。それでも、計画されたブロットを使用するだけで林分のかなりの数の情報が得られるでしょう。

必要なのは林分の中にあるサンプルブロットの平均値を取得することです。それらの相対的な位置に基づいて情報を結合したいときは、空間的結合を行います:

1. ベクタ データ管理 ツールの空間結合ツールを開きます。
2. ターゲットベクタレイヤにforest_stands_2012を設定します。結果が欲しいレイヤ。

3. sample_plots_resultsを結合するベクタレイヤに設定します。推定値を計算したいレイヤ。

4. 交差する地物を集計をチェックします。

5. 平均だけ計算するようチェックしてください。

6. 結果をforest_stands_2012_results.shpとしてexercise_data/forestry/resultsフォルダーに保存します。

7. 最後にすべてのレコードを保管...を選択し、どの林分が情報を取得していないか、後で内容を確認できるようにします。

8. OKをクリックします。

9. プロンプトが表示されたら、プロジェクトに新しいレイヤを追加し受け入れます。

10. 位置によって属性を結合ツールを閉じます。

*forest_stands_2012_results*の属性テーブルを開き、得られた結果を確認してください。多くの林分がNULLを計算値として持っていることに注意してください。それらはサンプルプロットがないのです。これらをすべて選択し、マップに表示すると、小規模な林分となります。

14.7. Lesson: 森林パラメーターを計算する
先ほどと同様にして森林全体の平均を計算しましょう。ただし、今回は林分の平均を計算のベースとして使用します。先ほど、各サンプルプロットが 80x80 m の理論上の林分を表していたことを思い出してください。それぞれの林分の面積を個別に考慮する必要があります。そうすることで、例えば体積を m3/ha で表したパラメータの平均値が、林分の総体積に変換されるのです。

最初に林分に対する面積を計算し、それからそれらの各々に対する合計体積および合計数を計算する必要があります。

1. 属性テーブル 中で統計を有効にします。
2. フィールド計算機を開きます。
3. area という新しいフィールドを作成します。
4. フィールド型に小数点付き数値 (real) を設定します。
5. 精度に 2 を設定します。
6. 式ボックスに、$area / 10000$ を入力します。これは林分の面積を ha で計算します。
7. OK をクリックします。

ここですべての林分について推定される体積合計および幹数合計を持つフィールドを計算します:

1. そのフィールドを s_vol と s_stem とします。
2. フィールドは整数でもよいし、実数も使用できます。
3. 体積合計と幹数合計にそれぞれ式 "area" * "MEANVol" と "area" * "MEANStems" を使います。
4. 終了したら、編集内容を保存します。
5. 編集を無効にします。

以前の状況では、すべてのサンプルブロックによって表される面積が同じだったので、サンプルブロックの平均値を計算すれば十分でした。今は見積もりを計算するためには、林分の体積または幹数の合計を必要な情報を含む林分の面積の合計で割る必要があります。

1. forest_stands_2012_results レイヤの属性テーブルで情報を持っている全ての林分を選択します。
2. ベクタツールで属性の基本統計量を開きます。
3. 入力レイヤに forest_stands_2012_results を選択します。
4. 統計量を計算する属性に area を設定する。
5. 選択した地物のみをチェックする
6. OK をクリックします。
ここで見えるように、林分面積の合計は 66.04 ha です。抜けている林分の面積が 7 ha に過ぎないように注意してください。

同じ方法で これらの林分の体積の合計が 8908 m³/ha、幹数の合計が 179594 stems であることが計算できます。

サンプルブロットから、下記の平均推定値を与えることを使用して林分からの情報を使用して、代わりに直接：

* 184.9 m³/ha と
* 2719 stems/ha

QGIS プロジェクト forest_inventory.qgs を保存します。
14.7.4 In Conclusion

自分の体系的なサンプルブロックからの情報を使用して、最初は森林の特性を考慮することなしで、そして後林分への空撮画像の解釈を使用して、森林全体に対して森林の推定値を計算できました。また特定の林分に関するいくつかの重要な情報を得ましたが、これは今後森林の管理を計画するために使用できるとでしょう。

14.7.5 What's Next?

次のレッスンでは、まずレーザー測量データセットから陰影起伏の背景を作成します。これはたった今計算した森林の結果で地図プレゼンテーションを準備するために使用するでしょう。

14.8 Lesson: レーザー測量データからのDEM

さまざまな背景画像を使用することで、地図の外観を改善できます。基本地図も以前に使用してきた空撮画像も使用できますが、地形の陰影起伏ラスターが見栄えを良くする状況もあるでしょう。

LAStoolsを使用してレーザー測量データセットからDEMを抽出し、その後、地図のプレゼンテーションで使用する陰影起伏ラスターを作成します。

このレッスンの目標：LAStoolsをインストールし、レーザー測量データと陰影起伏ラスターからDEMを計算します。

14.8.1 Follow Along: LAStoolsをインストールする

LiDARのデータをQGISで管理するには、プロセッシングフレームワークとLAStoolsが提供するアルゴリズムが必要です。

レーザー測量点群からデジタル標高モデル(DEM)を取得して、プレゼンテーション目的のために、視覚的により直感的な陰影起伏ラスターを作成できます。最初に、プロセッシングフレームワークの設定を、LAStoolsで動作するように適切に設定する必要があります。

- QGISをすでに開始している場合は閉じます。
- 古いライダープラグインは、フォルダC:/Program Files/QGISValmiera/apps/qgis/python/plugins/processing/内のシステムにデフォルトでインストールされる可能性があります。
- 名前lidarのフォルダがある場合、それを削除します。これは、QGIS 2.2および2.4の一部のインストールのために有効です。
QGIS Training Manual

- exercise_data\forestry\lidar フォルダーに移動し、QGIS_2_2_toolbox.zip ファイルを見つけて、それを開き、lidar フォルダーに展開して今削除したものを置き換えます。

- 異なる QGIS のバージョンを使っている場合は、このチュートリアルにおけるインストールの説明が見つかります。

次に、LAStools をコンピュータにインストールする必要があります。最新の lastools バージョンをここから入手し、lastools.zip ファイルの内容をシステム内のフォルダ、例えば C:\lastools\ に展開します。 file:lastools フォルダのパスには、スペースや特殊文字は使用できません。

注記: lastools フォルダ内部の LICENSE.txt ファイルをお読みください。LAStools の一部はオープンソースであり、他は、クローズドソースであり、ほとんどの商用および政府の使用にはライセンスが必要です。教育と評価の目的のためには、必要なら Lasteools を使用してテストできます。

今ブログインと実際のアルゴリズムはお手元のコンピュータにインストールされ、使用する準備がほぼできていますので、それらの使用を開始するために処理フレームワークを設定することが必要であるだけです。

- QGIS で新しいプロジェクトを開きます。
- プロジェクトの CRS を ETRS89 / ETRS-TM35FIN に設定してください。
- プロジェクトを forest_lidar.qgs として保存します。

QGIS で LAStools を設定するには:

第 14 章 Module: 林業への応用
QGIS Training Manual

- プロセッシング Ｕオプションと構成に行きます。
- 処理オプションダイアログで、プロバイダーに、その後 LiDAR データのためのツールに行きます。
 Activate をチェックします。
- LAStools フォルダについて C:\lastools\（または LAStools を展開したフォルダ）を設定します。

14.8.2 Follow Along: LAStools と DEM の計算

いくつかの SAGA アルゴリズムを実行するために、Lesson: 空間統計中のプロセッシングツールボックスはすでに使用してきました。ここでは LAStools プログラムを実行するためにそれを使用しようとしています。

- プロセッシング Ｕツールボックス を開きます。
- 一番下にあるドロップダウンメニューで、高度なインターフェイス を選択します。
- レーザー測量データ カテゴリのツールが表示されるはずです。

14.8. Lesson: レーザー測量データからの DEM 481
・利用可能なツールが見えるようにそれを展開し、さらに LASTools カテゴリを展開します（アルゴリズムの数は変化する場合があります）。

・lasview アルゴリズムが見つかるまで下にスクロールし、見つかったらダブルクリックして開きます。

・入力 LAS/LAZ ファイルで exercise_data\forestry\lidar\ を探し、rautjarvi_lidar.laz ファイルを選択します。

・実行をクリックします。

今、ほんの少し LAS と LAZ ビューア ダイアログウィンドウ内に LiDAR データを見ることができます。
このピューア内ではいろいろなことができますが、今はピューアをクリックおよびドラッグして LiDAR 点群にパンし、それがどのように見えるかを確認できます。

注釈: LAStools がどのように動くのか詳細を知りたいときは、C:\lastools\bin\フォルダーにある各ツールに関する README テキストファイルを読むことができます。

- 準備ができたら、ピューアを閉じます。

LAStools と DEM の作成は 2 段階で行うことができます。第 1 は点群を 基準 と 非基準 点に分類すること、次は 基準 点のみ使用して DEM を計算すること。
 - 処理ツールボックスに戻ります。
 - 検索...ボックス注意して、lasground と書いてください。
 - ダブルクリックして lasground ツールを開き、この画像のように設定します:

14.8. Lesson: レーザー測量データからの DEM
出力ファイルが rautjarvi_lidar.laz があるのとと同じフォルダーに rautjarvi_lidar_1.las という名前で保存されます。
それを確認したい場合は、lasview で聞くことができます。
茶色の点は地上に分類された点で、灰色の点はそれ以外の点です。地上の点だけを表示するには g という文字を、分類されていない点だけを表示するには u という文字をクリックします。kbd:α の文字をクリックすると、すべてのポイントを再び見ることができます。その他のコマンドについては lasview_README.txt ファイルを参照してください。もし興味があれば、LiDAR ポイントの手動編集に関する チュートリアルもご覧ください。このチュートリアルでは、ビューアでのさまざまな操作を紹介しています。

- 再びビューアを閉じます。
- プロセッシングツールボックスで las2dem を検索します。
- las2dem ツールを開き、この画像に示すように設定します。
結果 DEM は、出力ラスターファイルという一般的な名前で地図に追加されます。

注釈: lasground と las2dem ツールはライセンスが必要です。ライセンス・ファイルに示されるように、unilicense のツールを使用できますが、画像結果にはっきりわかる対角線が出ます。

14.8.3 Follow Along: 地形陰影起伏を作成する

可視化の目的には DEM から生成される陰影起伏がより良い地形の可視化:

- ラスター 地形分析 陰影 を開きます。
- 出力レイヤには、exercise_data\forestry\lidar\ を選択し hillshade.tif というファイル名にします。
・デフォルトの設定でパラメーターの残りの部分を残します。

・プロンプトが表示されたら ETRS89 / ETRS-TM35FIN を CRS として選択します。

陰影起亜ラスター結果に残っている対角線にかかわらず、明らかに地元の正確な起伏を見ることができますが、森に揺れている異なる土壌の排水も見ることができます。
14.8.4 In Conclusion

LiDAR データを使用して DEM を取得すると、特に森林地帯では、それほど労力をかけずに良い結果が得られます。また、LiDAR で取得した DEM や、SRTM 9m 解像度 DEM のような他のソースを使用することもできます。いずれにせよ、地図プレゼンテーションで使用する陰影起伏ラスターを作成するために、それらを使用することができます。

14.8.5 What’s Next?

次の、そしてこのモジュールの最後のステップの、レッスンでは、陰影起伏ラスターと森林目録の結果を使用して、結果の地図のプレゼンテーションを作成します。
14.9 Lesson: 地図プレゼンテーション

以前のレッスンでは、GIS プロジェクトとして古い森林調査をインポートし、それを現在の状況に更新し、森林調査を設計し、フィールドワークの地図を作成し、フィールド測定から森林のパラメーターを算出しました。

GIS プロジェクトの結果で地図を作成することはしばしば重要です。森林調査の結果を提示する地図によって、特定の数字を見なくても、結果が何であるか誰にでも一目でわかりやすくなるでしょう。

このレッスンの目標：調査結果を提示する地図を、陰影起伏ラスターを背景に使用して作成します。

14.9.1 Follow Along: 地図データを準備する

パラメーターの計算のレッスンからの QGIS プロジェクトを開きます、forest_inventory.qgs。少なくとも以下のレイヤーを保管してください：

- forest_stands_2012_results.
- basic_map.
- rautjarvi_aerial.
- lakes (それを持っていない場合は、exercise_data\forestry\フォルダからそれを追加します)。

林分の平均体積を地図上に表示することになります。forest_stands_2012_results レイヤの属性テーブルを開くと、情報がない林分の NULL 値が表示されます。これらの林分もシンボロジに取り込んでいる NULL 値を例えば -999 に変更する必要があります。負の数は、そのポリゴンにはデータが存在しないことを意味することになります。

forest_stands_2012_results レイヤに対して：

- 属性テーブルを開き編集を可能にします。
- NULL 値を持つポリゴンを選択します。
- 選択された地物だけに対して、計算機を使用して MEANVol フィールドの値を -999 に更新します。
- 編集を無効にし、変更を保存します。

今、保存されたスタイルをこのレイヤーに使用できます。

- シンボロジ タブに移動します。
- スタイル ▶ スタイルを読み込む...
- exercise_data\forestry\results\フォルダから forest_stands_2012_results.qml を選択します。
- OK をクリックします。
地図は次のようになります。
14.9.2 Try Yourself さまざまなブレンドモードを試す

ロードしたスタイル:
これはレイヤブレンディングモードにHard lightモードを使用しています。異なるモードは、下層と上層のレイヤーを組み合わせて異なるフィルタを適用することに注意してください。この場合、陰影起伏ラスタと林分が使用されています。これらのモードについては、User Guideで説明されています。

異なるモードで試してみて、地図の違いを見てください。それから、より好きな方を最終的な地図として選択してください。

14.9.3 Try Yourself レイアウトテンプレートを使って地図の結果を作る

結果を提示するには、あらかじめ用意されたテンプレートを使います。テンプレート forest_map.qpt はexercise_data\forestry\results\フォルダにあります。プロジェクト - レイアウトマネージャ... ダイアログを使用して読み込みます。
印刷レイアウトを開き、最終的なマップを編集して納得のいく仕上がりにします。

使用している地図テンプレートは、これと同じ地図を提供します。
RAUTJÄRVI FOREST
- INVENTORY RESULTS 2012 -

![Map of RAUTJÄRVI FOREST with stand results]

Stand Results

<table>
<thead>
<tr>
<th>Stand Volume (m³/ha)</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>No data</td>
<td>Brown</td>
</tr>
<tr>
<td>0 - 15</td>
<td>Light Green</td>
</tr>
<tr>
<td>15 - 25</td>
<td>Green</td>
</tr>
<tr>
<td>25 - 50</td>
<td>Dark Green</td>
</tr>
<tr>
<td>50 - 100</td>
<td>Light Blue</td>
</tr>
<tr>
<td>100 - 150</td>
<td>Blue</td>
</tr>
<tr>
<td>150 - 300</td>
<td>Greenish Blue</td>
</tr>
</tbody>
</table>

Results for the whole forest area

- **Using Systematic Sample plots**
 - Total area: 72.9
 - Total volume (m³): 9856
 - Average volume (m³/ha): 135.2

- **Using Stand Sample Plots Averages**
 - Total area: 72.9
 - Total volume (m³): 13479
 - Average volume (m³/ha): 184.9

将来の参照のため QGIS プロジェクトを保存します。
14.9.4 In Conclusion

このモジュールを通して、基本的な森林調査を計画し、QGIS で提示する方法を見てきました。アクセスできるさまざまなツールでさらに多くの森林の分析が可能ですが、このマニュアルがご自身が必要とする結果を達成する方法を探るための良い出発点になればと思います。
第15章 Module: PostgreSQLでのデータベース概念

リレーショナルデータベースはGISシステムの重要な部分です。リレーショナルデータベース管理システム（RDBMS）の概念について学び、データを格納するための新しいデータベースを作成するためにPostgreSQLを使用してだけでなく、他の一般的なRDBMSの機能について学習します。

15.1 Lesson: データベースの概要

PostgreSQLのを使用する前に、一般的なデータベース理論をさらうことによって私たちの根拠を確認してみましょう。サンプルコードはどれも入力する必要はありません。それは説明目的のためだけにあります。

このレッスンの目標：基本的なデータベースの概念を理解します。

15.1.1 データベースとは何ですか？

データベースは、典型的にはデジタル形式の、1つ以上の用途のための組織化されたデータの集合からなる。-ウィキペディア

データベース管理システム（DBMS）は、データベースを操作し、ストレージ、アクセス、セキュリティ、バックアップなどの機能を提供するソフトウェアで構成されています。-ウィキペディア

15.1.2 テーブル

リレーショナルデータベースとフラットファイルデータベースにおいてテーブルは、（名前で識別される）縦の列と横の行のモデルを使って構成されたデータ要素（値）の集合です。テーブルの列の数は指定されますが、行の数は任意です。各行は、特定の列の部分集合に現れる候補キーとして識別された値によって識別されます。-ウィキペディア

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tim</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Horst</td>
<td>88</td>
</tr>
</tbody>
</table>

(2 rows)

SQLデータベースではテーブルは関係としても知られています。
15.1.3 列/フィールド

列とは、特定の単純型のデータ値の集合であり、テーブルの各行に対して1つずつ存在します。列は、行を構成するための構造を提供します。フィールドという用語はしばしば列と互換的に使われますが、1つの行と1つの列の交点に存在するひとつの項目を指すときは、フィールド（またはフィールド値）を使う方が正しいと考える人も多い。-ウィキペディア

列:

<table>
<thead>
<tr>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim</td>
</tr>
<tr>
<td>Horst</td>
</tr>
</tbody>
</table>

フィールド:

| Horst |

15.1.4 レコード

レコードは、テーブル行に格納されている情報です。各レコードには、テーブル内の各列のフィールドがあります。

| 2 | Horst | 88 |

15.1.5 データ型

データ型は、列に格納できる情報の種類を制限します。* - ティムとホルスト*

データ型には多くの種類があります。最も一般的なものに焦点を当ててみましょう:

- String - 自由形式のテキストデータを格納します
- Integer - 整数を格納します
- Real - 小数を保存します
- Date - 誰も忘れないよう、ホルストの誕生日を格納します
- Boolean - 単純な真/偽の値を格納します

フィールドに何も保存しないようにデータベースに指示することができます。フィールドに何もない場合、フィールドの中身は"null" 値と呼ばれ:

```sql
insert into person (age) values (40);
select * from person;
```
結果:

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tim</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Horst</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>40 <- null for name</td>
</tr>
</tbody>
</table>

使えるデータ型には更に多くがあります - PostgreSQL マニュアルを確認してください

15.1.6 住所データベースをモデル化

データベースが構築されるかを確認するために、単純なケーススタディを使ってみましょう。住所のデータベースを作成したいとします。

Try Yourself

簡単な住所を構成し、そしてデータベースに格納される、プロパティを書き出します。

答え

私たちの理論上の住所テーブルの場合、次のようなプロパティを保存しておくとよいでしょう:

| House Number | Street Name | Suburb Name | City Name | Postcode | Country |

住所オブジェクトを表すテーブルを作成するとき、これらのプロパティのそれぞれを表す列を作成し、SQL に準拠したできるだけ短い名前を付けます:

| house_number | street_name | suburb | city | postcode | country |

15.1. Lesson: データベースの概要
住所の構造

住所を記述するプロパティは列です。列に格納される情報のタイプは、そのデータ型です。次のセクションでは、概念的な住所テーブルを分析して、それをより良くする方法を見てみましょう。

15.1.7 データベース理論

データベースを作成するプロセスには、現実世界のモデルを作成することが含まれます。現実世界の概念を取り入れ、エンティティとしてデータベースに表現します。

15.1.8 正規化

データベースの主なアイデアの1つは、データの重複/冗長性を避けることです。データベースから冗長性を除去するプロセスを正規化といいます。

正規化は、データベース構造が論理的な照会に適しており、挿入、更新、および削除の異常（データの整合性が失われる可能性がある）などの望ましくない特性がないことを確実にする体系的な方法です。ウィキペディア

正規「形」には様々な種類があります。

簡単な例を見てみましょう:

Table "public.people"

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>integer</td>
<td>not null default</td>
</tr>
<tr>
<td>name</td>
<td>character varying</td>
<td></td>
</tr>
<tr>
<td>address</td>
<td>character varying</td>
<td>not null</td>
</tr>
<tr>
<td>phone_no</td>
<td>character varying</td>
<td></td>
</tr>
</tbody>
</table>

Indexes:
"people_pkey" PRIMARY KEY, btree (id)

```
select * from people;
```

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>address</th>
<th>phone_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tim Sutton</td>
<td>3 Buirski Plein, Swellendam</td>
<td>071 123 123</td>
</tr>
<tr>
<td>2</td>
<td>Horst Duester</td>
<td>4 Avenue du Roix, Geneva</td>
<td>072 121 122</td>
</tr>
</tbody>
</table>

(2 rows)
友達が同じ名前の通りや都市に多いとしましょう。このデータが複製されるたびに、領域が消費されます。さらに悪いことに、都市の名称が変わった場合は、データベースを更新するために多くの作業が必要になります。

15.1.9 Try Yourself

重複を低減し、データ構造を正規化するために、上記の理論 people テーブルを再設計します。
データベースの正規化についてはここに読み物があります

答え
people テーブルの大きな問題は、ある人の住所全体を含んだ単一のアドレスフィールドです。このレッスンで前に学んだ理論的な address テーブルについて考えると、住所は多くの異なるプロパティで構成されていることがわかります。これらのプロパティをすべて 1 つのフィールドに格納すると、データの更新や問い合わせが非常に困難になります。したがって、住所フィールドをさまざまなプロパティに分割する必要があります。そうすると、次のような構造を持つテーブルができま

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>house_no</th>
<th>street_name</th>
<th>city</th>
<th>phone_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tim Sutton</td>
<td>3</td>
<td>Buirski Plein</td>
<td>Swellendam</td>
<td>071 123 123</td>
</tr>
<tr>
<td>2</td>
<td>Horst Duester</td>
<td>4</td>
<td>Avenue du Roix</td>
<td>Geneva</td>
<td>072 121 122</td>
</tr>
</tbody>
</table>

次のセクションでは、データベースの構造をさらに改善するために、この例で使用することができる外部キー関係について学びます。

15.1.10 索引

データベース索引は、データベース表のデータ検索操作の速度を向上させるデータ構造です。 -ウィキペディア

たとえば教科書を読んで、ある概念の説明を探しているが、その教科書には索引がなかったとします。表紙から読み始め、必要な情報が見つかるまで、全本体を通して作業を進めなければなりません。教科書の裏にある索引は、関連情報を持つページに素早くジャンプするのに役立ちます。

create index person_name_idx on people (name);

名前の検索が高速になります:

Table "public.people"

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>integer</td>
<td>not null default</td>
</tr>
</tbody>
</table>

(次のページに続く)
15.1.11 シーケンス

シーケンスは、一意の番号ジェネレータです。通常、テーブル内の列の一意の識別子を作成するために使用されます。

この例では、ID はシーケンスで、その数はレコードがテーブルに追加されるたびに 1 つ増えます:

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>address</th>
<th>phone_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tim Sutton</td>
<td>3 Buirski Plein, Swellendam</td>
<td>071 123 123</td>
</tr>
<tr>
<td>2</td>
<td>Horst Duster</td>
<td>4 Avenue du Roix, Geneva</td>
<td>072 121 122</td>
</tr>
</tbody>
</table>

(2 rows)

15.1.12 エンティティ・リレーションシップ図の作成

正規化されたデータベースでは、通常、多くのリレーション（テーブル）があります。エンティティ・リレーションシップ図（ER 図）は、そのリレーションの間の論理依存関係を設計するために使用されます。レッスン前半の正規化されていない people テーブルを考えてみましょう:

```sql
select * from people;
```

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>address</th>
<th>phone_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tim Sutton</td>
<td>3 Buirski Plein, Swellendam</td>
<td>071 123 123</td>
</tr>
<tr>
<td>2</td>
<td>Horst Duster</td>
<td>4 Avenue du Roix, Geneva</td>
<td>072 121 122</td>
</tr>
</tbody>
</table>

(2 rows)

ちょっとした作業で 2 つのテーブルに分割でき、同じ通りに住むために通りの名前を繰り返す必要がなくなります:

```sql
select * from streets;
```

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
</tr>
</thead>
</table>

(次のページに続く)
1 | Plein Street
(1 row)

および:

```sql
select * from people;
```

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>house_no</th>
<th>street_id</th>
<th>phone_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horst Duster</td>
<td>4</td>
<td>1</td>
<td>072 121 122</td>
</tr>
</tbody>
</table>

(1 row)

その後、「キー」`streets.id` と `people.streets_id` を使用して 2 つのテーブルをリンクできます。

この 2 つのテーブルのための ER 図を描く場合は、次のようにになります。

![ER 図](image)

ER 図は、関係「一対多」を表現する助けになります。この場合、矢印記号は、1 つの通りに対して住んでいる人々は何人もいることがあると示しています。

試してください

この `people` モデルにはまだいくつかの正規化の問題があります - さらに正規化して、ER 図を用いて自分の考えを示すことができるかどうか確認してみてください。

答え

`people` テーブルは今このように見えます:

```sql
id   name       house_no street_id phone_no
------------------------------------------------
1    Horst Duster 4          1          072 121 122
```

`street_id` 列は、オブジェクトと、`streets` テーブルにある関係した通りオブジェクトの間の「一対多」の関係を表しています。

テーブルをさらに正規化する方法のひとつは、名前フィールドを `first_name` と `last_name` に分割することです:
また町か市の名称と国で別々のテーブルを作り、『一对多』関係で people テーブルとリンクすることもできます:

<table>
<thead>
<tr>
<th>id</th>
<th>first_name</th>
<th>last_name</th>
<th>house_no</th>
<th>street_id</th>
<th>phone_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horst</td>
<td>Duster</td>
<td>4</td>
<td>1</td>
<td>072 121 122</td>
</tr>
</tbody>
</table>

これを表す ER 図は次のようになるでしょう:

```
15.1.13 制約、主キーと外部キー

リレーション内のデータがモデルのデータの格納方法と一致するために、データベースの制約が使用されます。たとえば、郵便番号の制約により、数字が 1000 と 9999 の間に入ることが保証されます。

主キーは、レコードを一意にする 1 つ以上のフィールドの値です。通常、主キーは id というシーケンスです。

外部キーは、他のテーブルの主キーを使用して）別のテーブルに一意のレコードを参照するために使用されます。

ER 図では、テーブル間の結合は、通常、主キーにリンクする外部キーに基づいています。
ここでの people の例を見てもみると、テーブルの定義によれば、street 列は streets テーブルの主キーを参照する外部キーです:

Table "public.people"

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>integer</td>
<td>not null default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nextval('people_id_seq':regclass)</td>
</tr>
<tr>
<td>name</td>
<td>character varying(50)</td>
<td></td>
</tr>
<tr>
<td>house_no</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>street_id</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>phone_no</td>
<td>character varying</td>
<td></td>
</tr>
</tbody>
</table>

Indexes:
"people_pkey" PRIMARY KEY, btree (id)

Foreign-key constraints:
"people_street_id_fkey" FOREIGN KEY (street_id) REFERENCES streets(id)

15.1.14 トランザクション

データベース内のデータを追加、変更、または削除するときは、何か問題が生じた場合にデータベースを良好な状態に保つことが常に重要です。ほとんどのデータベースは、トランザクションサポートと呼ばれる機能を提供します。トランザクションを使用すると、データベースへの変更が計画通りに実行されなかった場合に戻ることができるロールバック位置を作成できます。

会計システムを持っているというシナリオを取ります。1 つの口座から資金を転送し、他にそれらを追加する必要があります。一連のステップは次のように進むでしょう。

・Joe から R20 を削除
・Anne を R20 に追加

処理の間に何か問題（例えば停電）が発生した場合、トランザクションはロールバックされます。

15.1.15 In Conclusion

データベースを使用すると、簡単なコードの構造を使用して構造化された方法でデータを管理できます。

15.1. Lesson: データベースの概要
15.1.16 What's Next?

ここでデータベースが理論的にどのように動作するか見ていましたので、カバーしてきた理論を実装する新しいデータベースを作成してみましょう。

15.2 Lesson: データモデルの実装

すべての理論をカバーしたところで新しいデータベースを作ってみましょう。このデータベースは後に続くレッスンの実習で使います。
このレッスンの目標：必要なソフトウェアをインストールしてサンプルデータベースの実装に使用します。

15.2.1 PostgreSQL のインストール

注釈：お使いのオペレーティングシステムに対応した PostgreSQL のパッケージとインストール方法は、https://www.postgresql.org/download/ でご覧いただけます。なお、このドキュメントでは、ユーザーが Ubuntu で QGIS を実行していることを想定しています。

Ubuntu で:

```
sudo apt install postgresql-9.1
```

このようなメッセージを取得するはずです:

```
[sudo] password for qgis:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
postgresql-client-9.1 postgresql-client-common postgresql-common
Suggested packages:
oidentd ident-server postgresql-doc-9.1
The following NEW packages will be installed:
postgresql-9.1 postgresql-client-9.1 postgresql-client-common postgresql-common
0 upgraded, 4 newly installed, 0 to remove and 5 not upgraded.
Need to get 5,012kB of archives.
After this operation, 19.0MB of additional disk space will be used.
Do you want to continue [Y/n]?
```

Y と Enter キーを押し、ダウンロードとインストールが完了するまで待ちます。
15.2.2 ヘルプ

PostgreSQL にはとても良い オンライン ドキュメントがあります。

15.2.3 データベースユーザーの作成

Ubuntu で:

インストールが完了したらこのコマンドを実行して postgres ユーザーになり、新しいデータベースユーザーを作成します:

```
sudo su - postgres
```

入力を求められたら通常のログインパスワードを入力します (sudo 権限を持っている必要があります)。

では、postgres ユーザーでの bash プロンプトでデータベースユーザーを作成します。ユーザー名は unix ログイン名と一致させて下さい。そうするとログインする時に postgres が自動的に認証するのでいろいろと楽になります:

```
createuser -d -E -i -l -P -r -s qgis
```

入力を求められたらパスワードを入力します。ログインパスワードとは異なるパスワードを使用するべきです。

これらのオプションはどういう意味ですか?

```
-d, --createdb role can create new databases
-E, --encrypted encrypt stored password
-i, --inherit role inherits privileges of roles it is a member of (default)
-l, --login role can login (default)
-P, --pwprompt assign a password to new role
-r, --createrole role can create new roles
-s, --superuser role will be superuser
```

今、入力することにより、postgres ユーザーの bash シェル環境を残す必要があります:

```
exit
```

15.2.4 新しいアカウントの確認

```
psql -l
```

このように返されるはずです:
15.2.5 データベースの作成

createdb コマンドは新しいデータベースを作成するのに使います。これは bash シェルプロンプトから実行しましょう:

```
createdb address -O qgis
```

このコマンドを使用して新しいデータベースの存在を確認できます:

```
psql -l
```

このように返されるはずです:

<table>
<thead>
<tr>
<th>Name</th>
<th>Owner</th>
<th>Encoding</th>
<th>Collation</th>
<th>Ctype</th>
<th>Access privileges</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>qgis</td>
<td>UTF8</td>
<td>en_ZA.utf8</td>
<td>en_ZA.utf8</td>
<td></td>
</tr>
<tr>
<td>postgres</td>
<td>postgres</td>
<td>UTF8</td>
<td>en_ZA.utf8</td>
<td>en_ZA.utf8</td>
<td></td>
</tr>
<tr>
<td>template0</td>
<td>postgres</td>
<td>UTF8</td>
<td>en_ZA.utf8</td>
<td>en_ZA.utf8</td>
<td>=c/postgres: postgres=CTc/ →postgres</td>
</tr>
<tr>
<td>template1</td>
<td>postgres</td>
<td>UTF8</td>
<td>en_ZA.utf8</td>
<td>en_ZA.utf8</td>
<td>=c/postgres: postgres=CTc/ →postgres</td>
</tr>
<tr>
<td>(4 rows)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q を入力して終了します。

15.2.6 データベースのシェルセッションの開始

このようにして簡単にデータベースに接続することができます:

```
psql address
```

```
psql データベースシェルを終了するには:
```

```
\q
```

シェルのヘルプを見るには:
SQL コマンドのヘルプを見るには:
```
\help
```
特定のコマンドのヘルプを表示するには（例）:
```
\help create table
```
Psql cheat sheet も参照してください。

15.2.7 SQL でテーブルを作る

いくつかのテーブルを作ってみましょう！ガイドとして ER 図を使用します。まず、address（住所）データベースに接続します:
```
psql address
```
streets（街路）テーブルを作成します:
```
create table streets (id serial not null primary key, name varchar(50));
```
serial と varchar はデータ型です。serial は新しいレコードのそれぞれに id を自動的に設定するために PostgreSQL に整数連番（自動付番）を開始させます。varchar(50) は PostgreSQL に長さ 50 文字の文字列フィールドを作成させます。

コマンドが；で終わっていることに気づきましたか。すべての SQL コマンドはこのように終わるものでなければなりません。Enter キーを押すと psql は次のように報告します:
```
NOTICE: CREATE TABLE will create implicit sequence "streets_id_seq"
for serial column "streets.id"
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index
"streets_pkey" for table "streets"
CREATE TABLE
```
streets.id を使用する主キー streets_pkey を持つテーブルが正しく作成されました。

注: ; を入力せずに Enter キーを押すと address-# のようなプロンプトが表示されます。PG はさらに入力を期待しています。コマンドを実行するには；を入力して下さい。

テーブルのスキーマを表示するにはこうします:
```
\d streets
```
このように表示されるはずです:

15.2. Lesson: データモデルの実装 509
Table "public.streets"

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>integer</td>
<td>not null default</td>
</tr>
<tr>
<td>name</td>
<td>character varying(50)</td>
<td>nextval('streets_id_seq'::regclass)</td>
</tr>
</tbody>
</table>

Indexes:
- "streets_pkey" PRIMARY KEY, btree (id)

テーブルの内容を表示するにはこうします:

```
select * from streets;
```

このように表示されるはずです:

```
<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(0 rows)</td>
<td></td>
</tr>
</tbody>
</table>
```

ご覧のようにテーブルは現在空です。

Try Yourself

上記のアプローチを使用して people（人々）というテーブルを作成します:

電話番号、自宅住所、名前などのフィールドを追加します。上記と同じデータ型の ID 列も作ったが確認して下さい。

答え

正しい people テーブルを作る SQL は次の通り:

```
create table people (id serial not null primary key,
 name varchar(50),
 house_no int not null,
 street_id int not null,
 phone_no varchar null);
```

テーブルのスキーマ（people を入力）は次のようなものです:

Table "public.people"

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>integer</td>
<td>not null default</td>
</tr>
</tbody>
</table>

(次のページに続く)
説明のために、あえて fkey 制約を省略しています。

15.2.8 SQL でキーを作成する

上記のソリューションの問題はデータベースが people と streets に論理的な関係があることを知らないことです。この関係を表現するには、streets テーブルの主キーを指す外部キーを定義する必要があります。

これを行うには 2 つの方法があります:

- テーブル作成後にキーを追加する
- テーブル作成時にキーを定義する

テーブルは既に作成されているので最初の方法を探ります:

```sql
alter table people
add constraint people_streets_fk foreign key (street_id) references streets(id);
```

people テーブルの street_id フィールドは streets テーブルの有効な街路 id と一致しなければならないことを指示します。

より一般的には制約の作成はテーブルの作成時に行います:

```sql
create table people (id serial not null primary key,
 name varchar(50),
 house_no int not null,
 street_id int references streets(id) not null,
 phone_no varchar null);
\d people
```

制約を追加した後、テーブルのスキーマはこのようになります:
Table "public.people"

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>integer</td>
<td>not null default nextval('people_id_seq'::regclass)</td>
</tr>
<tr>
<td>name</td>
<td>character varying(50)</td>
<td></td>
</tr>
<tr>
<td>house_no</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>street_id</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>phone_no</td>
<td>character varying</td>
<td></td>
</tr>
</tbody>
</table>

Indexes:
"people_pkey" PRIMARY KEY, btree (id)

Foreign-key constraints:
"people_streets_fk" FOREIGN KEY (id) REFERENCES streets(id)

15.2.9 SQL でインデックスを作成する

人の名前をすばやく検索できるようにするには people（人々）テーブルの name（名前）列にインデックスを作成します:

```
create index people_name_idx on people(name);
\d people
```

その結果:

Table "public.people"

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>integer</td>
<td>not null default nextval('people_id_seq'::regclass)</td>
</tr>
<tr>
<td>name</td>
<td>character varying(50)</td>
<td></td>
</tr>
<tr>
<td>house_no</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>street_id</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>phone_no</td>
<td>character varying</td>
<td></td>
</tr>
</tbody>
</table>

Indexes:
"people_pkey" PRIMARY KEY, btree (id)
"people_name_idx" btree (name)  <-- new index added!

Foreign-key constraints:
"people_streets_fk" FOREIGN KEY (id) REFERENCES streets(id)
15.2.10 SQL でテーブルを削除する

テーブルを取り除きたい場合は drop コマンドを使用します:

```
drop table streets;
```

現在の例では、上記のコマンドは機能しません。なぜダメなのでしょう？

答え

この場合、DROP コマンドが機能しないのは、people テーブルが streets テーブルに対して外部キー制約を持っているためです。つまり、streets テーブルをドロップ（または削除）すると、存在しない*streets* データへの参照が people テーブルに残ってしまうのです。

CASCADE コマンドを使用することで、streets テーブルを「強制的に」削除することは可能ですが、この場合、streets テーブルと関係がある people やその他のテーブルも削除されます。注意して使用してください！

people テーブルに同じ drop table コマンドを使う場合は正しく削除されるでしょう:

```
drop table people;
```

注釈：実際にそのコマンドを入力して people テーブルを削除した場合は、再度作成して下さい。次の演習で必要になります。

15.2.11 pgAdmin III について一言

データベースについて学ぶために非常に有効な方法なので psql プロンプトから SQL コマンドを入力していまします。しかし、より早くより簡単に行う方法があります。pgAdmin III をインストールすると GUI 上のクリック操作でテーブルの create, drop, alter 等を行うことができます。

Ubuntu ではこのようにインストールします:

```
sudo apt install pgadmin3
```

pgAdmin III は別のモジュールで詳しく取り上げます。
15.2.12 In Conclusion

新しいデータベースを完全にゼロから作成する方法を見てきました。

15.2.13 What's Next?

次はDBMSを使用して新しいデータを追加する方法を学びます。

15.3 Lesson: モデルにデータを追加する

作成したモデルは、今、含まれることを意図されるデータが入る必要があります。
このレッスンの目標：データベースモデルに新しいデータを挿入する方法を学習します。

15.3.1 insert 文

どのようにテーブルにデータを追加しますか？SQLのINSERT文は、このための機能を提供します:

```sql
insert into streets (name) values ('High street');
```

注意すべきいくつかの事:

- テーブル名(streets(街路))の後に、配置したい列の名前を列挙します（この場合はname（名前）列のみ）。
- valuesキーワードの後にフィールドの値のリストを置きます。
- 文字列は単一引用符で囲む必要があります。
- id列には値を挿入していないことに注意してください。それはシーケンスであり、自動生成されるためです。
- idを手動で設定すると、データベースの整合性に深刻な問題を引き起こす可能性があります。

成功した場合INSERT 0 1と表示されるはずです。
テーブル内のすべてのデータを選択して、挿入アクションの結果を見ることができます:

```sql
select * from streets;
```

結果:

```
select * from streets;
 id | name

 1 | High street
(1 row)
```
Try Yourself

INSERT コマンドを使用して streets テーブルに新しい道路を追加してください。

答え

使うべき SQL コマンドはこのようなものです（街路の名称はあなたが選んだもので置き換えることができます）：

```sql
insert into streets (name) values ('Low Road');
```

15.3.2 制約に従ってデータの追加を順序付けする

15.3.3 Try Yourself

人物オブジェクトを以下の詳細を持つ people テーブルに追加してみましょう：

<table>
<thead>
<tr>
<th>Name</th>
<th>House Number</th>
<th>Street</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe Smith</td>
<td>55</td>
<td>Main Street</td>
<td>072 882 33 21</td>
</tr>
</tbody>
</table>

注釈：この例では、文字列ではなく整数として電話番号を定義したことを思い出してください。

この時点では、streets 表にあるメインストリートのレコードを最初に作成せずにこれを実行しようとすると、エラーレポートが出ているはずです。

以下のことに気づいたはずです：

- その名前を使用して街路を追加できません
- 最初に街路テーブルに街路レコードを作成しないため、街路 id を使用して街路を追加できません

2 つのテーブルが主キー/外部キーのペアを介して結合していることに注意してください。これは、有効な人は有効な対応する街路レコードも存在していなければ作成できないことを意味します。

上記の知識を使用して、データベースに新しい人を追加します。

答え

正しい SQL 文は次のとおりです：
insert into streets (name) values ('Main Road');
insert into people (name, house_no, street_id, phone_no)
values ('Joe Smith', 55, 2, '072 882 33 21');

(先ほどと同じように select 文を使って)もう一度街路テーブルを見てみると、Main Road のエントリの id が 2 であることがわかるでしょう。

そのため、上記のように单に数字の 2 を入力することができます。上のエントリで Main Road が完全に書き込まれていなくても、データベースはそれを street_id の値 2 と関連付けることができるのです。

すでに新しい街路オブジェクトを追加している場合、その新しい Main Road は 2 ではなく *3* の id を持っており、特に気にしないことが重要です。

15.3.4 データを選択

レコードを選択するための構文はすでに示しました。さらにいくつかの例を見てみましょう:

```
select name from streets;
```

```
select * from streets;
```

```
select * from streets where name='Main Road';
```

後のセッションでは、データを選択してフィルタリングする方法について詳細に見て行きます。

15.3.5 データを更新

何か既存のデータに変更を加えたい場合は？例えば、街路名が変更されます:

```
update streets set name='New Main Road' where name='Main Road';
```

このような update 文はきわめて慎重に使用してください - WHERE 句に複数のレコードが一致した場合、それらはすべて更新されます！

よりよい解決策は、テーブルの主キーを使用して変更するレコードを参照することです:

```
update streets set name='New Main Road' where id=2;
```

それは UPDATE 1 を返す必要があります。

注釈: WHERE 文の基準では大文字と小文字が区別されます。Main Road は Main road と同じではありません。
### 15.3.6 データを削除

テーブルからオブジェクトを削除するために、DELETE コマンドを使用してください:

```sql
DELETE from people where name = 'Joe Smith';
```

今度は人々のテーブルを見てみましょう:

```sql
address=# select * from people;
```

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>house_no</th>
<th>street_id</th>
<th>phone_no</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 15.3.7 Try Yourself

学んだスキルを使用して、データベースに新しい友達を何人か追加してください:

```sql
name | house_no | street_id | phone_no
-------------+----------+-----------+---------
Joe Bloggs | 3 | 2 | 072 887 23 45
Jane Smith | 55 | 3 | 072 837 33 35
Roger Jones | 33 | 1 | 072 832 31 38
Sally Norman | 83 | 1 | 072 932 31 32
```

### 15.3.8 In Conclusion

以前に作成した既存のモデルに新しいデータを追加する方法がわかりましたね。データの新しい種類を追加したい場合は、そのデータを格納する新しいモデルを変更かつ/または作成したいこともありますを忘れないでください。

### 15.3.9 What's Next?

データを追加してしまったので、クエリを使用してさまざまな方法でこのデータにアクセスする方法を学びましょう。
15.4 Lesson: 検索

SELECT ... コマンドを書くとき、これは一般的にはクエリと言われますが、情報のデータベースに問い合わせしています。

このレッスンの目的：有用な情報を返すクエリを作成する方法を学習します。

注釈：前のレッスンでそうしなかった場合は、以下の人々オブジェクトを people テーブルに追加します。外部キー制約に関連した何らかのエラーを受け取る場合は、まず街のテーブルに「主要道路」オブジェクト追加が必要があります

```sql
insert into people (name, house_no, street_id, phone_no)
values ('Joe Bloggs', 3, 2, '072 887 23 45');
insert into people (name, house_no, street_id, phone_no)
values ('Jane Smith', 55, 3, '072 837 33 35');
insert into people (name, house_no, street_id, phone_no)
values ('Roger Jones', 33, 1, '072 832 31 38');
insert into people (name, house_no, street_id, phone_no)
values ('Sally Norman', 83, 1, '072 932 31 32');
```

15.4.1 結果を並べ替える

自分の家の番号順に並べられた人々のリストを検索してみましょう:

```sql
select name, house_no from people order by house_no;
```

結果:

<table>
<thead>
<tr>
<th>name</th>
<th>house_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe Bloggs</td>
<td>3</td>
</tr>
<tr>
<td>Roger Jones</td>
<td>33</td>
</tr>
<tr>
<td>Jane Smith</td>
<td>55</td>
</tr>
<tr>
<td>Sally Norman</td>
<td>83</td>
</tr>
</tbody>
</table>

(4 rows)

結果の並べ替えは複数の列の値によってもできます:

```sql
select name, house_no from people order by name, house_no;
```

結果:

<table>
<thead>
<tr>
<th>name</th>
<th>house_no</th>
</tr>
</thead>
</table>

(次のページに続く)
15.4.2 フィルタリング

だいたいはデータベース内のすべてのレコード一つ一つを見たいとは思わないでしょう。特に何千ものレコードがあり、1つか2つを見たいだけの場合は。

これは house_no が 50 未満であるオブジェクトのみを返す数値フィルタの例です:

```
select name, house_no from people where house_no < 50;
```

<table>
<thead>
<tr>
<th>name</th>
<th>house_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe Bloggs</td>
<td>3</td>
</tr>
<tr>
<td>Roger Jones</td>
<td>33</td>
</tr>
</tbody>
</table>

フィルタ（WHERE 句を使用して定義される）はソート（ORDER BY 句を使用して定義される）と組み合わせることができます:

```
select name, house_no from people where house_no < 50 order by house_no;
```

<table>
<thead>
<tr>
<th>name</th>
<th>house_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe Bloggs</td>
<td>3</td>
</tr>
<tr>
<td>Roger Jones</td>
<td>33</td>
</tr>
</tbody>
</table>

テキストデータに基づいてもフィルタできます:

```
select name, house_no from people where name like '%s%';
```

<table>
<thead>
<tr>
<th>name</th>
<th>house_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe Bloggs</td>
<td>3</td>
</tr>
<tr>
<td>Roger Jones</td>
<td>33</td>
</tr>
</tbody>
</table>

ここでは、LIKE 句を使用し、s を持つすべての名前を見つけます。このクエリは大文字小文字が区別されることに気づくでしょう、だから Sally Norman エントリは返されていません。

15.4. Lesson: 検索
大文字小文字関係なく文字列を検索したい場合は、ILIKE 句を使用すれば大文字小文字を無視した検索ができます。

```sql
select name, house_no from people where name ilike '%r%';
```

<table>
<thead>
<tr>
<th>name</th>
<th>house_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roger Jones</td>
<td>33</td>
</tr>
<tr>
<td>Sally Norman</td>
<td>83</td>
</tr>
</tbody>
</table>

(2 rows)

そのクエリは、r か R を自分の名前に持つ people オブジェクトすべてを返します。

### 15.4.3 結合

ID の代わりに人の詳細とその通りの名前を確認したい場合は、そのためには、単一のクエリで 2 つのテーブルを結合する必要があります。例を見てみましょう:

```sql
select people.name, house_no, streets.name
from people, streets
where people.street_id=streets.id;
```

注釈: 結合によって、情報が由来する 2 つのテーブルを、この場合は people と streets ですが、常に宣言することになります。また、どの 2 つのキー（外部キーと主キー）が一致しなければならないかを指定する必要があります。それを指定しない場合は、people と streets のすべての可能な組み合わせの一覧が得られますが、誰が実際にその通りに住んでいるか知るすべはありません！

正しい出力はこのように見えるでしょう:

<table>
<thead>
<tr>
<th>name</th>
<th>house_no</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe Bloggs</td>
<td>3</td>
<td>Low Street</td>
</tr>
<tr>
<td>Roger Jones</td>
<td>33</td>
<td>High street</td>
</tr>
<tr>
<td>Sally Norman</td>
<td>83</td>
<td>High street</td>
</tr>
<tr>
<td>Jane Smith</td>
<td>55</td>
<td>Main Road</td>
</tr>
</tbody>
</table>

(4 rows)

結合については、後でより複雑なクエリを作成するときに再訪します。それらは二つ以上のテーブルからの情報を組合わせるための簡単な方法を提供すると覚えておいてください。
15.4.4 副選択

副選択は外部キー関係を介して連結されている別のテーブルからのデータに基づいて一つのテーブルからオブジェクトを選択できます。この場合は特定の街路に住む人々を見つけたいです。

まず、データをわずかに微調整しましょう:

```sql
insert into streets (name) values('QGIS Road');
insert into streets (name) values('OGR Corner');
insert into streets (name) values('Goodle Square');
update people set street_id = 2 where id=2;
update people set street_id = 3 where id=3;
```

それらの変更の後でデータを簡単に見てみましょう：前のセクションのクエリを再利用できます:

```sql
select people.name, house_no, streets.name
from people,streets
where people.street_id=streets.id;
```

結果:

<table>
<thead>
<tr>
<th>name</th>
<th>house_no</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roger Jones</td>
<td>33</td>
<td>High street</td>
</tr>
<tr>
<td>Sally Norman</td>
<td>83</td>
<td>High street</td>
</tr>
<tr>
<td>Jane Smith</td>
<td>55</td>
<td>Main Road</td>
</tr>
<tr>
<td>Joe Bloggs</td>
<td>3</td>
<td>Low Street</td>
</tr>
</tbody>
</table>
(4 rows)

それでは、このデータの副選択を表示してみましょう。street_id 番号 1 に住む人だけを表示したい:

```sql
select people.name
from people,
(select *
 from streets
 where id=1
) as streets_subset
where people.street_id = streets_subset.id;
```

結果:

<table>
<thead>
<tr>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roger Jones</td>
</tr>
<tr>
<td>Sally Norman</td>
</tr>
</tbody>
</table>
(2 rows)
これは非常に単純な例でありこの小さなデータセットでは不要ですが、大規模かつ複雑なデータセットを照会する際に有用かつ重要な事例選択をする方法を示しています。

15.4.5 クエリの集約

データベースの強力な機能の一つは、そのテーブル内のデータを要約する能力です。これらの要約は集計クエリと呼ばれ、これは、peopleオブジェクトがpeopleテーブルに何人いるかを教えてくれる例です:

```sql
select count(*) from people;
```

結果:

```
count

 4
(1 row)
```

人数を街路名で要約したい場合は、こうすることができます:

```sql
select count(name), street_id
from people
group by street_id;
```

結果:

```
count | street_id
-------+-----------
 2 | 1
 1 | 3
 1 | 2
(3 rows)
```

注釈: ORDER BY句を使用しなかったため、検索結果の順序はここに示したものとは一致しない場合があります。
Try Yourself

通りの名前で人を要約し、street_ids の代わりに実際の通りの名前を表示してください。

答え

使うべき正しい SQL 文はこちらです:

```sql
select count(people.name), streets.name
from people, streets
where people.street_id=streets.id
group by streets.name;
```

結果:

<table>
<thead>
<tr>
<th>count</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low Street</td>
</tr>
<tr>
<td>2</td>
<td>High street</td>
</tr>
<tr>
<td>1</td>
<td>Main Road</td>
</tr>
</tbody>
</table>
(3 rows)

フィールド名の前にテーブル名を付けていることに気づきでしょうか（people.name や street.name など）。これは、フィールド名があいまいな場合（つまり、データベース内のすべてのテーブルで一意でない場合）に使う必要があります。

15.4.6 In Conclusion

クエリを使用して、データベース内の有用な情報を抽出できるような形でデータを返す方法を見てきました。

15.4.7 What's Next?

次は今書いたクエリからビューを作成する方法について説明します。

15.5 Lesson: ビュー

クエリを記述するときはそれを考案するのに多くの時間と労力が必要です。ビューを使えば SQL クエリの定義を再利用可能な「仮想テーブル」に保存できます。

このレッスンの目標：クエリをビューとして保存します。

15.5. Lesson: ビュー
15.5.1 ビューの作成

ビューはテーブルのように扱うことができますが、そのデータはクエリから供給されます。上記に基づいて単純なビューを作りましょう:

```sql
create view roads_count_v as
 select count(people.name), streets.name
 from people, streets
 where people.street_id=streets.id
 group by people.street_id, streets.name;
```

はじめの `create view roads_count_v as` の部分だけが異なります。そのビューからデータを選択できます:

```sql
select * from roads_count_v;
```

結果:

<table>
<thead>
<tr>
<th>count</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Road</td>
</tr>
<tr>
<td>2</td>
<td>High street</td>
</tr>
<tr>
<td>1</td>
<td>Low Street</td>
</tr>
</tbody>
</table>

(3 rows)

15.5.2 ビューの変更

ビューは固定されておらず、「実データ」を持ちません。つまりデータベースの中のデータに影響を与えることなく簡単に変更できます:

```sql
CREATE OR REPLACE VIEW roads_count_v AS
 SELECT count(people.name), streets.name
 FROM people, streets
 WHERE people.street_id=streets.id
 GROUP BY people.street_id, streets.name
 ORDER BY streets.name;
```

(また、この例はすべての SQL キーワードには大文字を使用する最良慣行を示しています。)

`ORDER BY` 句を追加したのでビューの行はきれいに並べ替えられています:

```sql
select * from roads_count_v;
```

<table>
<thead>
<tr>
<th>count</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>High street</td>
</tr>
<tr>
<td>1</td>
<td>Low Street</td>
</tr>
</tbody>
</table>

(次のページに続く)
15.5.3 ビューの削除
不要になったビューは次のように削除できます:

```sql
drop view roads_count_v;
```

15.5.4 In Conclusion
ビューを用いてクエリを保存し、テーブルであるかのようにその結果へアクセスできます。

15.5.5 What's Next?
データを変更する時に、変更がデータベースの中の他の場所へ影響を及ぼすのが望ましい場合があります。次のレッスンではこの方法を紹介します。

15.6 Lesson: ルール
ルールは"クエリ木"に書き換えることができます。一つの一般的な使用法は、更新可能なビューなど、ビューを実装することです。Wikipediaより
このレッスンの目標: データベースの新しいルールを作成する方法を学習する。

15.6.1 ログに記録するルールを作る
people テーブルにある phone_no の変更すべてを people_log テーブルにログとして記録したいとします。そこで新しいテーブルを設定します:

```sql
create table people_log (name text, time timestamp default NOW());
```

次のステップでは、people テーブル内の phone_no の変更すべてを people_log テーブルにログとして記録するルールを作成:

```sql
create rule people_log as on update to people
where NEW.phone_no <> OLD.phone_no
do insert into people_log values (OLD.name);
```

ルールが正しく機能することを確認するには、電話番号を変更してみましょう:

15.6 Lesson: ルール
update people set phone_no = '082 555 1234' where id = 2;

people テーブルが正しく更新されたことを確認してください:

```
select * from people where id=2;
```

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>house_no</th>
<th>street_id</th>
<th>phone_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Joe Bloggs</td>
<td>3</td>
<td>2</td>
<td>082 555 1234</td>
</tr>
</tbody>
</table>

(1 row)

今、作成したルールによって、people_log テーブルは次のようになります:

```
select * from people_log;
```

<table>
<thead>
<tr>
<th>name</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe Bloggs</td>
<td>2014-01-11 14:15:11.953141</td>
</tr>
</tbody>
</table>

(1 row)

注釈: time フィールドの値は、現在の日付と時刻に依存します。

### 15.6.2 In Conclusion

ルールを使用すると、データベースの他の部分の変更を反映するために、自動的にデータベース内でデータを追加または変更できます。

### 15.6.3 What’s Next?

次のセクションは、これらのデータベースの概念を使い、GIS データに適用した PostGIS を使用する、空間データベースを紹介します.
第16章  Module: 空間データベースの概念とPostGIS

空間データベースを使用すると、データベース内にレコードのジオメトリを保存できるだけでなく、これらのジオメトリを使用してレコードをクエリおよび取得するための機能を提供できます。このモジュールでは、PostgreSQLの拡張機能であるPostGISを使用して、空間データベースのセットアップ方法、データベースへのデータのインポート方法、およびPostGISが提供する地理機能の利用方法を学習します。

このセクションで作業している間、BostonGISユーザーグループから入手できるPostGIS チートシートのコピーを保持することをお勧めします。もう1つの便利なリソースは、オンラインPostGISドキュメントです。

また、Boundlessが作成したPostGISと空間データベースに関するいくつかの広範なチュートリアルが、PostGISウェブサイトで公開されています。

- Introduction to PostGIS（PostGIS入門）
- PostGIS Database Tips and Tricks（PostGISデータベースのヒントとコツ）

PostGIS In Actionも参照。

16.1 Lesson: PostGISの設定

PostGISの関数を設定することで、PostgreSQLの中から空間関数にアクセス可能になります。

このレッスンの目的: 空間関数をインストールし、それらの効果を簡単にデモする。

注釈: この演習では、PostGISバージョン2.1以降を使用することを想定しています。古いバージョンでは、インストールとデータベース設定が異なりますが、このモジュールの残りの部分はそのまま使用できます。インストールとデータベース設定のヘルプについては、お使いのプラットフォームのドキュメントを参照してください。
16.1.1 Ubuntu でのインストール

PostGIS は apt から簡単にインストールできます。

```bash
$ sudo apt install postgresql
$ sudo apt install postgis
```

本当に簡単です...

注解: インストールされる正確なバージョンは、使用している Ubuntu のバージョンと、設定したリポジトリに依存します。インストール後、psql や他のツールで select PostGIS_full_version(); クエリを発行して、バージョンを確認することができます。

特定のバージョン（例えば、PostgreSQL バージョン 13 と PostGIS 3）をインストールする場合は、以下のコマンドを使用します。

```bash
$ sudo apt install wget ca-certificates
$ sudo lsb_release -a
$ wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add -
$ sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/ `lsb_release -cs`-pgdg main" >> /etc/apt/sources.list.d/pgdg.list'
$ sudo apt-get update
$ sudo apt install postgis postgresql-13-postgis-3
```

16.1.2 Windows でのインストール

Windows でのインストールは、バイナリパッケージから通常の Windows のインストールダイアログを使って行うことができます。

まず、ダウンロードページにアクセスします。次に、このガイドに従ってください。

Windows でのインストールに関する詳しい情報は、PostGIS ウェブサイトに掲載されています。

16.1.3 その他のプラットフォームへのインストール

PostGIS ウェブサイトのダウンロードには、macOS を含む他のプラットフォームや他の Linux ディストリビューションへのインストールについての情報があります
16.1.4 PostGIS を使うためにデータベースを設定する

一度 PostGIS がインストールされると、拡張機能を使用するようにデータベースを設定する必要がありま
す。PostGIS のバージョン 2.0 をインストールしている場合、これが前の演習からアドレスデータベースを
使用して psql で次のコマンドを発行するのと同じくらい簡単です。

$ psql -d address -c "CREATE EXTENSION postgis;"

注釈: バージョンによっては、データベースを空間的に有効にする方法について、https://postgis.net/docs/
postgis_administration.html#create_spatial_db で多くの説明を見つけることができるでしょう。

16.1.5 インストールされた PostGIS 関数を見る

PostGIS は、空間データを扱えるように PostgreSQL のコア機能を拡張する、データベース機能の集まりと考えることがで
きます。「扱える」とは、格納、検索、クエリおよび操作を意味します。これを行うために、
多数の機能が、データベースにインストールされています。

私たちの PostgreSQL の address 住所 データベースは PostGIS のおかげで地理空間的に有効になりました。
次のセクションではこれについてもっと深く掘り下げていきますが、ここでちょっと味見しましょう。テ
キストからポイントを作成したいとしましょう。最初に、psql コマンドを使ってポイントに関連する関数
を見つけます。address 住所 データベースにまだ接続していない場合は、今すぐ実行してください。次に、

\df *point*

これが探しているコマンドです; st_pointfromtext。リストをページ送りするには、下矢印を使用し、Q
を押して psql シェルに戻ります。

次のコマンドを実行してみてください:

select st_pointfromtext('POINT(1 1)');

結果は:

```
st_pointfromtext

0101008F03F03F00000000000000000000000000F03F
(1 row)
```

注目すべき 3 点:

- POINT(1 1). を使って、ポイントの位置を 1,1 (EPSG:4326 を想定) と定義しました。
- SQL 文を実行しましたが、どのテーブル上でもなく、SQL プロンプトから入力されたデータでした。
- 結果の行はあまり意味がありません。
得られた行は、「よく知られているバイナリ」（WKB）と呼ばれる OGC フォーマットです。私たちは、次のセクションで詳細にこのフォーマットを説明します。

結果をテキストとして表示するために、テキストを返す場合を対象として関数リストをすばやくスキャンできます。

```sql
\df *text
```

私たちが探しているクエリは st_astext です。以下のクエリと組み合わせてみましょう。

```sql
select st_astext(st_pointfromtext('POINT(1 1)'));
```

結果は

```sql
st_astext

POINT(1 1)
(1 row)
```

ここでは、文字列 POINT(1,1) を入力し、st_pointfromtext() を使用してポインタに変える st_astext() で人間が読める形式に戻します。これは元の文字列を返しました。

実際に PostGIS の使い方の詳細に入る前の最後の例は

```sql
select st_astext(st_buffer(st_pointfromtext('POINT(1 1)'),1.0));
```

それは何をしましたか？それは私たちのポイントを中心に 1 度のバッファを作成し、テキストとして結果を返しました。

### 16.1.6 空間参照系

PostGIS の機能だけでなく、この拡張は欧州石油調査グループ（EPSG）によって定義された空間参照システム（SRS）の定義のコレクションを含んでいます。これらは、座標参照系（CRS）変換などの操作中に使用されます。

通常のデータベーステーブルに格納されているので、データベース中のこれらの SRS の定義を調べることができます。

まず、psql プロンプトで次のコマンドを入力して、テーブルのスキーマを見てみましょう。

```sql
\d spatial_ref_sys
```

結果はこうなります

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>srid</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>auth_name</td>
<td>character varying(256)</td>
<td></td>
</tr>
</tbody>
</table>

（次のページに続く）
このテーブルを表示および操作するために、（入門セクションから学んだように）標準の SQL クエリを使用できます。何をしているのか分からなければ、任意のレコードを更新または削除するのは良いアイデアではありません。

興味のある SRID は、EPSG：4326 - WGS 84 構円体を使用した地理/経度緯度参照系です。それを見てみましょう：

```sql
SELECT * FROM spatial_ref_sys WHERE srid=4326;
```

結果は：

<table>
<thead>
<tr>
<th>srid</th>
<th>EPSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>4326</td>
<td></td>
</tr>
</tbody>
</table>

srtext はよく知られているテキスト（WKT）での投影の定義です（シェーブファイルのコレクションにある.prj ファイルからこれを認識してもよい）。

16.1.7 In Conclusion

今 PostGIS の機能は PostgreSQL のコピーにインストールされています。これにより PostGIS のさまざまな空間関数を使用できるでしょう。

16.1.8 What's Next?

次はデータベースにおける空間地物の表現方法について学習しましょう。
16.2 Lesson: 単純地物モデル

データベースの中にどのように地物を保存し、表現できるでしょうか？このレッスンではOGCによって定義されている単純地物モデルを見ていきます。

このレッスンの目標：SFS モデルとは何か、それをどうやって使うかを学習します。

16.2.1 OGC とは

Open Geospatial Consortium (OGC) は、1994年に発足した国際的な自発的合意基準団体です。OGCでは、世界中の370以上の企業、政府、非営利組織そして研究機関が協力し、地理空間コンテンツとサービス、GISデータの解析と交換のための標準の開発と実装を行っています。 - Wikipedia

16.2.2 SFS モデルとは

SQL用単純地物(SFS)モデルとはデータベースに地理空間データを格納する非トポロジ的方法で、データへのアクセス、操作、構築のための関数を定義しています。

このモデルは地理空間データをポイント、ラインストリング及びポリゴン型（そしてそれらの集合）で定義しています。

詳細は、OGC Simple Feature for SQL標準を見てください。
16.2.3 ジオメトリフィールドをテーブルに追加する

people（人）テーブルにポイントフィールドを追加しましょう:

```
alter table people add column the_geom geometry;
```

16.2.4 ジオメトリタイプに基づく制約を追加する

ジオメトリフィールドタイプは、フィールドのジオメトリのタイプを暗黙に指定していないことに気づくでしょう。そのために制約が必要です:

```
alter table people
add constraint people_geom_point_chk
check (st_geometrytype(the_geom) = 'ST_Point':text
 OR the_geom IS NULL);
```

これはポイントジオメトリまたはnull値だけを受け入れる制約をテーブルに追加します。

16.2.5 Try Yourself

cities（都市）という新しいテーブルを作成して、それに適切な列を追加します。それはポリゴン（市の境界）を格納するジオメトリフィールドを含めて、ジオメトリをポリゴンに制限する制約を追加して下さい。

解答

```
create table cities (id serial not null primary key,
 name varchar(50),
 the_geom geometry not null);
alter table cities
add constraint cities_geom_point_chk
check (st_geometrytype(the_geom) = 'ST_Polygon':text);
```

16.2.6 geometry_columns テーブルの設定

この時点で、geometry_columns テーブルにエントリを追加する必要があります:

```
insert into geometry_columns values
('"','public','people','the_geom',2,4326,'POINT');
```
なぜでしょう? geometry_columns はデータベースの中のどのテーブルがジオメトリデータを持っているかをアプリケーションが識別するために使われます。

注釈：上記の INSERT 文でエラーが発生した場合は、まずこのクエリを実行してください:

```sql
select * from geometry_columns;
```

列 f_table_name に値 people が含まれている場合、このテーブルは既に登録されており、それ以上何もする必要はありません。

値「2」は次元の数を示します。この場合、X と Y の 2 つです。

値 4326 は私たちが使っている投影法を指しています。WGS 84 は数字 4326 で参照されます（EPSG に関する以前の解説を参照して下さい）。

**Try Yourself**

新しい cities レイヤのための適切なエントリを geometry_columns に追加して下さい

解答

```sql
insert into geometry_columns values
 ('', 'public', 'cities', 'the_geom', 2, 4326, 'POLYGON');
```

16.2.7 SQL を使用してテーブルにジオメトリレコードを追加する

テーブルが地理的に有効になったので、そこにジオメトリを格納することができます:

```sql
insert into people (name, house_no, street_id, phone_no, the_geom)
values ('Fault Towers',
 34,
 3,
 '072 812 31 28',
 'SRID=4326;POINT(33 -33)');
```

注釈：上記の新しいエントリには使用する投影法 (SRID) を指定する必要があります。これはプレーンテキストを用いて新しいポイントのジオメトリを入力すると正しい投影法の情報が自動的に付加されないためです。新しいポイントはデータセットと同じ SRID を使用する必要がありますのでそれを指定しなければいけません。
もしグラフィカルなインターフェイスを使用していれば、たとえば、各ポイントの投影法は自動で指定されます。つまり以前行ったようにデータセットに投影法を指定しておけば、すべてのポイントに対して正しい投影法を指定しなくてもよいのです。

ではQGISを開いてpeopleテーブルを表示します。そしてデータベースでレコードの編集/追加/削除を試し、選択クエリを実行してデータがどのように変更されたかを見ます。

QGISでPostGISレイヤを読み込むにはレイヤー → PostGISレイヤを追加 メニューオプションまたは次のツールバー・ボタンを使用します:

ダイアログが表示されます:

新規ボタンをクリックしてこのダイアログを開きます:

16.2. Lesson: 単純地物モデル 535
新しい接続を定義します。例えば:

Name: myPG  
Service:  
Host: localhost  
Port: 5432  
Database: address  
User:  
Password:  

QGIS が address データベースを見つけたかどうか、そしてユーザー名とパスワードが正しいことを確認するには、接続テストをクリックします。正しく動作したらユーザー名の保存とパスワード保存の横にあるチェックボックスをチェックします。そして OK ボタンをクリックしてこの接続を作成します。
PostGIS レイヤを追加 ダイアログに戻り 接続をクリックし、いつものようにプロジェクトにレイヤを追加します。

Try Yourself

人の名前と街路の名前、位置 (the_geom 列) をプレーンテキストとして表示するクエリを作成して下さい。

解答

```sql
select people.name,
 streets.name as street_name,
 st_astext(people.the_geom) as geometry
from streets, people
where people.street_id = streets.id;
```

結果:

<table>
<thead>
<tr>
<th>name</th>
<th>street_name</th>
<th>geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roger Jones</td>
<td>High street</td>
<td></td>
</tr>
<tr>
<td>Sally Norman</td>
<td>High street</td>
<td></td>
</tr>
<tr>
<td>Jane Smith</td>
<td>Main Road</td>
<td></td>
</tr>
<tr>
<td>Joe Bloggs</td>
<td>Low Street</td>
<td></td>
</tr>
<tr>
<td>Fault Towers</td>
<td>Main Road</td>
<td>POINT(33 -33)</td>
</tr>
</tbody>
</table>
(5 rows)

ご覧のとおり、この制約により、データベースに null を追加できます。

16.2.8 In Conclusion

空間オブジェクトをデータベースに追加して GIS ソフトウェアで表示する方法を見てきました。

16.2.9 What’s Next?

次はデータベースへデータをインポートする方法、およびデータベースからデータをエクスポートする方法を見ていきます。
16.3 Lesson: インポートとエクスポート

もちろん、データを出し入れする簡単な方法がなないデータベースはあまり役に立たないでしょう。幸い、PostGIS にデータを簡単に出し入れできるようにするツールはたくさんあります。

16.3.1 shp2pgsql

shp2pgsql は、ESRI シェープファイルをデータベースにインポートするためのコマンドラインツールです。Unix では、以下のコマンドで新しい PostGIS テーブルをインポートすることができます。

```
shp2pgsql -s <SRID> -c -D -I <path to shapefile> <schema>.<table> | \n psql -d <databasename> -h <hostname> -U <username>
```

Windows では、2 ステップでインポート処理を実行します。

```sh
shp2pgsql -s <SRID> -c -D -I <path to shapefile> <schema>.<table> > import.sql
psql psql -d <databasename> -h <hostname> -U <username> -f import.sql
```

次のようなエラーが発生することがあります：

```
ERROR: operator class "gist_geometry_ops" does not exist for access method "gist"
```

これは、インポートするデータの空間インデックスをその場で作成することに関する既知の問題です。このエラーを回避するには、-I パラメータを除外してください。この場合、空間インデックスは直接作成されないので、データをインポートした後にデータベースで作成する必要があります。（空間インデックスの作成については、次のレッスンで説明します）。

16.3.2 psql2shp

pgsql2shp は、PostGIS のテーブル、ビュー、または SQL の select クエリをエクスポートするためのコマンドラインツールです。Unix では次のように実行します。

```
pgsql2shp -f <path to new shapefile> -g <geometry column name> \n -h <hostname> -U <username> <databasename> <table | view>
```

クエリを使用してデータをエクスポートするには：

```
pgsql2shp -f <path to new shapefile> -g <geometry column name> \n -h <hostname> -U <username> "<query>"
```
16.3.3 ogr2ogr

ogr2ogr は、postgis から多くのデータフォーマットにデータを変換するための非常に強力なツールです。PostGIS から GML にテーブルをエクスポートするには、このコマンドを使用します:

ogr2ogr -f GML export.gml PG:'dbname=<databasename> user=<username> host=<hostname>' <Name of PostGIS-Table>

16.3.4 DB Manager

データベースメニュー内の DB マネージャという別のオプションに気づいているかもしれません。これは PostGIS を含む空間データベースと対話する統一的なインターフェイスを持つ新しいツールです。このツールもインポートしたデータベースから他のフォーマットにエクスポートできます。次のモジュールは主にこのツールを使うことを念頭に置いているので、ここで簡単にそれを説明します。

16.3.5 In Conclusion

データベースとの間でデータをインポート及エクスポートは、多様な方法で行うことができます。異なるデータソースを使用する場合は特に、この機能（またはこの機能に似た機能）を使用します。

16.3.6 What's Next?

次に、私たちが以前に作成したデータを参照する方法を見ていきます。

16.4 Lesson: 空間検索

地理空間情報のクエリは、その他のデータベースのクエリと変わりなく、同じように利用できます。PostGIS をインストールすることでデータベースのクエリの機能が追加されます。

このレッスンの目的：空間関数が、空間関数でない一般の関数と同様に導入できることを明らかにする。

16.4.1 空間演算子

ある地点 (X,Y) から距離が 2 度内の地点を特定したい場合以下の操作ができます

```
select *
from people
where st_distance(the_geom, 'SRID=4326;POINT(33 -34)') < 2;
```

結果:
注釈：上記の the_geom 値はこのページ上では当サイトのスペースを残すため削除されました。人が読める座標を確認したい場合、上記の「WKT としてポイントを表示」セクションと類似の操作で確認できます。

上述のクエリが 2 度という空間内にある地点をすべて返すということはどうやって判るでしょうか？なぜ 2 メートル、あるいはその他の単位ではないのでしょうか？

答え

レイヤが使用している CRS は WGS 84 であるため、このクエリで使用されている単位は度です。これは地理 CRS で、単位は度であることを意味します。UTM 図法のような投影 CRS は、単位がメートルです。

クエリを書くときには、レイヤの CRS がどの単位にあるのかを知る必要があることを忘れないでください。そうすることで、期待通りの結果を返すクエリを書くことができるようになります。

16.4.2 空間索引

空間索引も定義できます。空間索引来使用すると、空間クエリをより迅速に作成できます。ジオメトリ列に空間索引を作成するには、次のようにします。

```sql
CREATE INDEX people_geo_idx
ON people
USING gist
(the_geom);
```

結果:

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>integer</td>
<td>not null default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nextval('people_id_seq'::regclass)</td>
</tr>
<tr>
<td>name</td>
<td>character varying(50)</td>
<td>not null</td>
</tr>
<tr>
<td>house_no</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>street_id</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>phone_no</td>
<td>character varying</td>
<td></td>
</tr>
<tr>
<td>the_geom</td>
<td>geometry</td>
<td></td>
</tr>
</tbody>
</table>

（次のページに続く）
Indexes:
"people_pkey" PRIMARY KEY, btree (id)
"people_geo_idx" gist (the_geom) <-- new spatial key added
"people_name_idx" btree (name)

Check constraints:
"people_geom_point_chk" CHECK (st_geometrytype(the_geom) = 'ST_Point'::text OR the_geom IS NULL)

Foreign-key constraints:
"people_street_id_fkey" FOREIGN KEY (street_id) REFERENCES streets(id)

16.4.3 Try Yourself
都市のテーブルを、そのジオメトリ列が空間索引付けされるように変更します。

答え

CREATE INDEX cities_geo_idx
ON cities
USING gist (the_geom);

16.4.4 PostGIS 空間関数デモ
PostGIS の空間関数のデモを行うため、いくつかの（架空の）データを含む新しいデータベースを作成します。
まず、新しいデータベースを作成します（まず psql シェルを終了します）。

createdb postgis_demo

Postgis 拡張機能をインストールすることを忘れないでください：

psql -d postgis_demo -c "CREATE EXTENSION postgis;"

次に、exercise_data/postgis/ ディレクトリにあるデータをインポートします。手順については前のレッスンを参照してください。ただし、新しいデータベースへの新しい PostGIS 接続を作成する必要があることに注意してください。端末または DB マネージャからインポートできます。ファイルを次のデータベーステーブルにインポートします。

* points.shp を building に
* lines.shp を road に
* polygons.shp を region に
一つのレイヤを PostGIS を追加 ダイアログでこれらの 3 つのデータベースレイヤを QGIS にロードします。それらの属性テーブルを開くと、id フィールドと PostGIS のインポートによって作成された gid フィールドの両方があることに注意。

テーブルはインポートされていますので、データを照会するための PostGIS を使用できます。端末（コマンドライン）に戻って以下を実行することにより psql のプロンプトを入力してください:

```sql
psql postgis_demo
```

QGIS でそれらを開き、結果を見ることができるように、それらからのビューを作成することによってこれらの select 文の一部をデモします。

場所による選択

クワズール地域のすべての建物を手に入れよう:

```sql
SELECT a.id, a.name, st_astext(a.the_geom) as point
FROM building a, region b
WHERE st_within(a.the_geom, b.the_geom)
AND b.name = 'KwaZulu';
```

結果:

```
<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>point</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>York</td>
<td>POINT(1622345.23785063 6940490.65844485)</td>
</tr>
<tr>
<td>33</td>
<td>York</td>
<td>POINT(1622495.65620524 6940403.87862489)</td>
</tr>
<tr>
<td>35</td>
<td>York</td>
<td>POINT(1622403.09106394 6940212.96302097)</td>
</tr>
<tr>
<td>36</td>
<td>York</td>
<td>POINT(1622287.38463732 6940357.59605424)</td>
</tr>
<tr>
<td>40</td>
<td>York</td>
<td>POINT(1621888.19746548 6940508.01440885)</td>
</tr>
</tbody>
</table>
```

または、そこからビューを作成する場合は、次のようにします。

```sql
CREATE VIEW vw_select_location AS
SELECT a.gid, a.name, a.the_geom
FROM building a, region b
WHERE st_within(a.the_geom, b.the_geom)
AND b.name = 'KwaZulu';
```

レイヤとしてビューを追加し、QGIS で表示：

第 16 章 Module: 空間データベースの概念と PostGIS
近傍の選択

北海道地域に隣接する地域のすべての名前のリストを表示する:

```sql
SELECT b.name
FROM region a, region b
WHERE st_touches(a.the_geom, b.the_geom)
AND a.name = 'Hokkaido';
```

結果:

<table>
<thead>
<tr>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missouri</td>
</tr>
<tr>
<td>Saskatchewan</td>
</tr>
<tr>
<td>Wales</td>
</tr>
</tbody>
</table>

(3 rows)

ビューとして:

```sql
CREATE VIEW vw_regions_adjoining_hokkaido AS
SELECT b.gid, b.name, b.the_geom
FROM region a, region b
WHERE st_touches(a.the_geom, b.the_geom)
AND a.name = 'Hokkaido';
```

QGIS では:

16.4. Lesson: 空間検索
不足している地域（クイーンズランド州）に注意してください。これはトポロジエラーが原因である可能性があります。このようなアーティファクトによって、データの潜在的な問題を警告できます。データが持つ異常に巻き込まれることなくこの謎を解決するために、代わりにバッファ交差を使用できます：

```sql
CREATE VIEW vw_hokkaido_buffer AS
 SELECT gid, ST_BUFFER(the_geom, 100) as the_geom
 FROM region
 WHERE name = 'Hokkaido';
```

北海道の周囲に100mのバッファを作成します。
暗いエリアがバッファです:
バッファを使用して選択：

```sql
CREATE VIEW vw_hokkaido_buffer_select AS
 SELECT b.gid, b.name, b.the_geom
 FROM
 (SELECT * FROM vw_hokkaido_buffer
) a,
 region b
 WHERE ST_INTERSECTS(a.the_geom, b.the_geom)
 AND b.name != 'Hokkaido';
```

このクエリでは、元のバッファ・ビューは、他のテーブルがされるように使用されます。これは別名 a を与えられ、その幾何形状フィールド region テーブル（別名 b）a.the_geom が、それと交差するすべての多角形を選択するために使用されます。しかし北海道自体はこの select 文から除外されます。必要なので北海道自体ではなく、それに隣接する領域だけなので。

QGIS では:
パッファを作成する追加のステップを行うことなしに、指定された距離内のすべてのオブジェクトを選択することもできます:

```
CREATE VIEW vw_hokkaido_distance_select AS
SELECT b.gid, b.name, b.the_geom
FROM region a, region b
 WHERE ST_DISTANCE (a.the_geom, b.the_geom) < 100
 AND a.name = 'Hokkaido'
 AND b.name != 'Hokkaido';
```

これは、中間パッファステップを必要とせずに、同じ結果を達成します:
一意の値を選択する

クイーンズランド州のすべての建物に固有の町名のリストを表示します:

```sql
SELECT DISTINCT a.name
FROM building a, region b
WHERE st_within(a.the_geom, b.the_geom)
AND b.name = 'Queensland';
```

結果:

```
name

Beijing
Berlin
Atlanta
(3 rows)
```
その他の事例

CREATE VIEW vw_shortestline AS
SELECT b.gid AS gid,
       ST_ASTEXT(ST_SHORTESTLINE(a.the_geom, b.the_geom)) AS text,
       ST_SHORTESTLINE(a.the_geom, b.the_geom) AS the_geom
FROM road a, building b
WHERE a.id=5 AND b.id=22;

CREATE VIEW vw_longestline AS
SELECT b.gid AS gid,
       ST_ASTEXT(ST_LONGESTLINE(a.the_geom, b.the_geom)) AS text,
       ST_LONGESTLINE(a.the_geom, b.the_geom) AS the_geom
FROM road a, building b
WHERE a.id=5 AND b.id=22;

CREATE VIEW vw_road_centroid AS
SELECT a.gid AS gid, ST_CENTROID(a.the_geom) AS the_geom
FROM road a
WHERE a.id = 1;

CREATE VIEW vw_region_centroid AS
SELECT a.gid AS gid, ST_CENTROID(a.the_geom) AS the_geom
FROM region a
WHERE a.name = 'Saskatchewan';

SELECT ST_PERIMETER(a.the_geom)
FROM region a
WHERE a.name='Queensland';

SELECT ST_AREA(a.the_geom)
FROM region a
WHERE a.name='Queensland';

CREATE VIEW vw_simplify AS
SELECT gid, ST_Simplify(the_geom, 20) AS the_geom
FROM road;

CREATE VIEW vw_simplify_more AS
SELECT gid, ST_Simplify(the_geom, 50) AS the_geom
FROM road;

CREATE VIEW vw_convex_hull AS
SELECT ROW_NUMBER() over (order by a.name) as id,
16.4.5 In Conclusion

PostGIS からの新しいデータベース機能を使用して、空間オブジェクトをクエリする方法を見てきました。

16.4.6 What's Next?

次は、より複雑な幾何形状の構造と、それらを PostGIS を使用して作成する方法を調査するつもりです。

16.5 Lesson: ジオメトリの構成

このセクションでは単純なジオメトリが SQL 内でどのように構成されるかを少し掘り下げます。実際には、複雑なジオメトリをデジタル化ツールを使用して作るには、QGIS のような GIS を使用するでしょう。しかし、それらがどのように形作られているかを知ることは、クエリを書いたりデータベースがどのように作られているかを理解するのに役立ちます。

このレッスンの目的 PostgreSQL/PostGIS で空間要素を直接作成する方法をよく理解する。

16.5.1 ラインストリングの作成

address データベースに戻って、他に一致する street テーブルを取得してみましょう。すなわち、ジオメトリ、インデックスと GEOMETRY_COLUMNS テーブル中のエントリに制約を持ちます。

16.5.2 Try Yourself

・ タイプ ST_LineString のジオメトリ列を持つように street テーブルを修正します。
・ ジオメトリ列のテーブルに伴う更新を行うことを忘れないでください！
・ また、ラインストリングでないか null であるようなジオメトリが追加されることを防ぐための制約を追加します。
・ 新しいジオメトリ列に空間インデックスを作成します。

答え
次に、street テーブルにラインストリングを挿入しましょう。この場合、既存の street レコードを更新します。

```
update streets
set the_geom = 'SRID=4326;LINESTRING(20 -33, 21 -34, 24 -33)'
where streets.id=2;
```

結果を QGIS で確認してみます。'レイヤ' パネルの streets レイヤを右クリックし、'レイヤの領域にズームする'を選択する必要があるかもしれません。

いくつかは QGIS から、いくつかはコマンドラインから street のエントリをもう少し追加します。

### 16.5.3 ポリゴンの作成

ポリゴンの作成も簡単です。覚えておくべきことの 1 つは、ポリゴンには少なくとも 4 つの頂点があり、最後と最初のものが同じ場所にあることです。

```
insert into cities (name, the_geom)
values ('Tokyo', 'SRID=4326;POLYGON((10 -10, 5 -32, 30 -27, 10 -10))');
```

注釈：ポリゴンは、その座標リストの周りに二重括弧を必要とします。これにより、複数の連結していない領域を持つ複雑なポリゴンを追加できるようになります。例えば

```
insert into cities (name, the_geom)
values ('Tokyo Outer Wards',
 'SRID=4326;POLYGON((20 10, 20 20, 35 20, 20 10),
 (-10 -30, -5 0, -15 -15, -10 -30))');
```

この手順に従った場合、QGIS に cities データセットをロードし、属性テーブルを開き、新しいエントリを選択することで、何をしたか確認できます。二つの新しいポリゴンが 1 つのポリゴンのように振る舞うかに注意してください。
16.5.4 練習: Cities を People にリンクする

この演習では次のことを行う必要があります。

- people テーブルからすべてのデータを削除します。
- cities テーブルの主キーを参照する people への外部キー列を追加します。
- QGIS を使っていくつかの cities をキャプチャします。
- SQL を使って、それぞれが関連した street と city を持った、新しい people レコードをいくつか挿入してください。

更新された people のスキーマは、次のようにになります:

```sql
\d people

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td></td>
<td></td>
<td>default nextval('people_id_seq':::regclass)</td>
</tr>
<tr>
<td>name</td>
<td>character varying(50)</td>
<td></td>
</tr>
<tr>
<td>house_no</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>street_id</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>phone_no</td>
<td>character varying</td>
<td></td>
</tr>
<tr>
<td>the_geom</td>
<td>geometry</td>
<td></td>
</tr>
<tr>
<td>city_id</td>
<td>integer</td>
<td>not null</td>
</tr>
</tbody>
</table>

Indexes:
- "people_pkey" PRIMARY KEY, btree (id)
- "people_name_idx" btree (name)

Check constraints:
- "people_geom_point_chk" CHECK (st_geometrytype(the_geom) = 'ST_Point':::text OR the_geom IS NULL)

Foreign-key constraints:
- "people_city_id_fkey" FOREIGN KEY (city_id) REFERENCES cities(id)
- "people_street_id_fkey" FOREIGN KEY (street_id) REFERENCES streets(id)
```

答え

delete from people;
alter table people add column city_id int not null references cities(id);

(QGIS で cities をキャプチャする)

```sql
insert into people (name,house_no, street_id, phone_no, city_id, the_geom)
values ('Faulty Towers',
 34, ...
```

(次のページに続く)
次のエラーメッセージが出た場合:

```
ERROR: insert or update on table "people" violates foreign key constraint "people_city_id_fkey"
DETAIL: Key (city_id)=(1) is not present in table "cities".
```

これは、cities テーブルのポリゴンを作成する実験中に、そのうちのいくつかを削除してやり直したことを意味します。cities テーブルのエントリーを確認して、存在する id を使ってみてください。

16.5.5 スキーマに着目する

スキーマはこのように見えるべきです:
16.5.6 Try Yourself

その都市のすべてのアドレスの最小凸包を計算し、その領域の周りのパッファを計算することにより、都市の境界線を作成します。

16.5.7 サブオブジェクトへのアクセス

SFS-モデルの機能を使用すると、SFS ジオメトリのサブオブジェクトにアクセスするためのさまざまなオプションを持っています。テーブル myPolygonTable 内のすべてのポリゴンジオメトリの最初の頂点を選択したいときは、このような方法でこれを実行する必要があります：

• ポリゴン境界をラインストリングに変換する：

```sql
select st_boundary(geometry) from myPolygonTable;
```

• 結果のラインストリングの最初の頂点を選択します。

```sql
select st_startpoint(myGeometry)
from (select st_boundary(geometry) as myGeometry
 from myPolygonTable) as foo;
```

16.5.8 データプロセシング

PostGIS では、すべての OGC SFS/MM 標準準拠関数をサポートしています。これらの関数はすべて ST_ で始まります。
16.5.9 クリッピング

データのサブパートをクリップするには、ST_INTERSECT() 関数を使用します。空のジオメトリを避けるには、次のようにします。

```sql
where not st_isempty(st_intersection(a.the_geom, b.the_geom))
```

```sql
select st_intersection(a.the_geom, b.the_geom), b.*
from clip as a, road_lines as b
where not st_isempty(st_intersection(st_setsrid(a.the_geom, 32734),
 b.the_geom));
```
16.5.10 ジオメトリを他のジオメトリから構築する

与えられたポイントテーブルから、ラインストリングを生成します。ポイントの順序は、その id によって定義されます。別の並べ方は、GPS 受信機でウェイポイントをキャプチャするときに得るような、タイムスタンプになりうるかもしれません。
'points' という新しいポイントレイヤからラインストリングを作成するには、次のコマンドを実行します:

```sql
select ST_LineFromMultiPoint(st_collect(the_geom)), 1 as id
from (
 select the_geom
 from points
 order by id
) as foo;
```

どのように機能するかを新しいレイヤを作らずに確認するために、'people' レイヤにこのコマンドを実行することもできます。もちろん、これを行うことに現実世界の意味はほとんどないでしょう。
16.5.11 ジオメトリクリーニング

このトピックについてはこのブログエントリにもっと情報があります。

16.5.12 テーブル間の差

同じ構造を持つ2つのテーブルの差を検出するには、PostgreSQLキーワードEXCEPTを使用します。

```sql
select * from table_a
except
select * from table_b;
```

結果として、table_aからtable_bに格納されていないすべてのレコードが得られるでしょう。
16.5.13 表領域

Postgres がディスク上にデータを格納する場所を定義するには、表領域を作成します。

```
CREATE TABLESPACE homespace LOCATION '/home/pg';
```

データベースを作成するときは、例えばどの表領域を使用するか指定できます:

```
createdb --tablespace=homespace t4a
```

16.5.14 In Conclusion

PostGIS の文を使用して、より複雑なジオメトリを作成する方法を学びました。これは GIS のフロントエンドを通じて地理対応データベースを操作するときは、暗黙知を向上させることができほとんどであることに留意してください。これらのステートメントを実際に手動で入力する必要は普通はありませんが、その構造について一般的な知識を持っておくと、GIS を使用するときに、特にそうでなければ不可解と思うであろうエラーが発生したときに、役に立ちます。
第17章 QGIS プロセッシングガイド

このモジュールは Victor Olaya 氏と Paolo Cavallini による貢献です。

内容:

17.1 はじめに

このガイドでは、QGIS プロセッシングフレームワークの使用方法について説明します。このガイドでは、プロセッシングフレームワークまたはそれに依存するアプリケーションに関する以前の知識は想定していません。また、QGIS の基本的な知識を前提としています。スクリプトに関する章では、Python とおそらく QGIS Python API の基本的な知識を持っていることを想定しています。

このガイドは自習用に設計されたプロセッシングワークショップを実行するためのものです。このガイドの例は、QGIS 3.4 を使用しています。それ以外のバージョンでは動作しない、または利用できない可能性があります。

このガイドは、徐々に複雑になっていく小さな演習のセットで構成されています。もし、あなたがプロセッシングフレームワークを使ったことがないのであれば、一番最初から始めてください。もし、ある程度の経験があるのであれば、自由にレッスンを飛ばしてください。各章は多かれ少なかれ独立しており、各章のタイトルや冒頭の短い紹介文にあるように、それぞれ新しい概念や新しい要素を導入しています。そのため、特定のトピックを扱っているレッスンを見つけるのは簡単です。

すべてのフレームワークコンポーネントとその使用法についてのより体系的な説明については、ユーザーマニュアルの対応する章を確認することが推奨されます。このガイドと一緒にサポートテキストを使用してください。

このガイドのすべての演習は、トレーニングマニュアルで使用され、セクション データ で参照されるものと同じフリーデータセットを使用します。ダウンロードする ZIP ファイルには、このガイドの各レッスンに対応するいくつかのフォルダが含まれています。それぞれのフォルダには、QGIS のプロジェクトファイルがあります。それを開くだけで、レッスンを始めることができます。

楽しんでください!
17.2 始める前の重要な警告

ワードプロセッサのマニュアルが小説や詩を書く方法を教えてくれないように、CAD チュートリアルが建物の梁のサイズを計算する方法を示してくれないように、このガイドでは空間分析を教えません。代わりに、空間分析を行うための強力なツールである QGIS プロセッシングフレームワークを使う方法を説明します。その種の分析を理解するために必要な概念を学ぶかどうかはあなた次第です。試してみたくなるかもしれませんが、それならば、フレームワークとそのアルゴリズムを使っても何にもなりません。

例を挙げてより明確にこれをお見せしましょう。

点の集合および各点で与えられた変数値の値を与えられると、それらから クリギング ジオアルゴリズムを使用してラスタレイヤを計算できます。そのモジュールの [パラメーター] ダイアログボックスは、以下のようなものです。

それは複雑に見えます、よね？

このマニュアルを読むことによって、そのモジュールの使い方や、バッチ処理で実行して数百のポイントレイヤから一度にラスタレイヤを作成する方法、入力レイヤでいくつかのポイントが選択された場合は何
が起こるか、などを知ることができます。しかし、パラメータそのものは説明されていません。地理統計学の知識を持つ熟練した分析者であれば、これらのパラメータを理解するのに何の問題もないでしょう。もしあなたがそうではなく、シル、レンジ、またはナゲットという概念に駄目がなければ、クリギングモジュールを使うべきではありません。さらに言えば、クリギングモジュールを使うには、空間自分相関やセミバリアグラムといった、おそらく聞いたことがない、十分に勉強していない概念について学ぶ必要があるの、使う準備ができているとは言い難いからです。まずは勉強して理解してからQGISに戻って実に実行し、分析を行うべきでしょう。これを無視すると、間違った結果や貧弱な（そしてほとんどの場合役に立たない）分析が行われることになります。

すべてのアルゴリズムがクリギングのように複雑ではありません（しかし、さらに複雑なものですもあります！）が、ほとんどそれらのすべてにおいて、それらが基づいている基本的な分の考え方を理解することが必要とされます。その知識がなければ、それらを使用しても大した結果は出ない可能性が高いでしょう。

空間分析の良い基盤を持たずジオアルゴリズムを使用するのは、文法や構文については何も知らずに、そして文法について何の知識もなしに小説を書こうとするようなものです。結果は得られるかもしれないが、まったく価値がない可能性があります。このガイドを読んだ後であればもう空間解析を行って健全な結果を得る能力があると恐らくも考え込んでください。空間分析を勉強する必要があります。

ここに、空間データ分析についての詳細を学ぶために読むことができる良い参考文献があります。

地理空間分析（第3版）: 原則、テクニックやソフトウェアツールの総合ガイド マイケル・ジョン・デ・スミス、マイケル・F・グッドチャイルド、ポール・A・ロングリー

それはここでオンラインで入手できます

### 17.3 プロセッシングフレームワークの準備をする

プロセッシングフレームワークを使う前に環境設定を行います。設定項目は多くないので簡単です。

後ほど、利用可能なアルゴリズムのリストを拡張するために使用される外部アプリケーションを構成する方法を示しますが、今はこのフレームワークだけの作業しようとしています。

プロセッシングフレームワークはコアQGISプラグインです。それはQGISに含まれているため、システムに既にインストールされています。このプラグインが有効な場合、メニューに「プロセッシング」というメニューが表示されます。ここすべてのフレームワークコンポーネントを利用できます。

<table>
<thead>
<tr>
<th>Processing</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toolbox</td>
<td>Ctrl+Alt+T</td>
</tr>
<tr>
<td>Graphical Modeler...</td>
<td>Ctrl+Alt+M</td>
</tr>
<tr>
<td>History...</td>
<td>Ctrl+Alt+H</td>
</tr>
<tr>
<td>Results Viewer</td>
<td>Ctrl+Alt+R</td>
</tr>
<tr>
<td>Edit Features In-Place</td>
<td></td>
</tr>
</tbody>
</table>

メニューを見つければならない場合、プラグインマネージャでそれを有効にすることで、プラグインを使用可能にする必要があります。

17.3. プロセッシングフレームワークの準備をする
作業するのに使用する主な要素は、ツールボックスです。対応するメニュー項目をクリックすると、QGISウィンドウの右側にドッキングされ、ツールボックスが表示されます。
ツールボックスには、利用可能なすべてのアルゴリズムのリストが含まれ、プロバイダと呼ばれるグループに分けられています。プロバイダは、設定・オプション・プロセッシングで有効（無効）にできます。このダイアログについては、このマニュアルの後半で説明します。

デフォルトでは、サードパーティ製のアプリケーションに依存しないプロバイダーだけ（つまり、実行されるのに QGIS 要素を必要とするだけのもの）が有効です。外部アプリケーションを必要とするアルゴリズムには、追加の設定が必要になる場合があります。プロバイダの設定は、このマニュアルの後の章で説明されています。

ここまで来ればジオアルゴリズムを使う準備は整っています。他に何も設定する必要はありません。すでに次のレッスンで行う最初のアルゴリズムを実行できます。
17.4 最初のアルゴリズムを実行する・ツールボックス

注釈：このレッスンでは、最初のアルゴリズムを実行し、それから、最初の結果を取得します。

すでに述べたように、プロセシングフレームワークは他のアプリケーションのアルゴリズムを実行できますが、外部ソフトウェアの実行を必要としないネイティブのアルゴリズムも含んでいます。プロセシングフレームワークの探索を始めるため、ネイティブのアルゴリズムのひとつを実行します。特に、ポリゴンの集合の重心を計算するつもりです。

まず、このレッスンに対応する QGIS プロジェクト (first_alg) を開きます。これには、2 つのポリゴンを持つだけの単一のレイヤが含まれています

ツールボックスの上部にあるテキストボックスに移動します。これは検索ボックスです。テキストを入力すると、アルゴリズムのリストがフィルタリングされ、入力されたテキストを含むものだけが表示されます。検索に一致するアルゴリズムがアクティブではないプロバイダに属する場合、追加のラベルがツールボックスの下部に表示されます。

centroids と入力すると次のように見えるはずです。
検索ボックスは、お探しのアルゴリズムを見つけるのにとても実用的な方法です。ダイアログの下部に追加のラベルが表示され、検索に一致するがアクティブではないプロバイダに属するアルゴリズムがあることが示されます。そのラベルのリンクをクリックすると、アルゴリズムのリストには、これらの非アクティブプロバイダの結果も表示されます。これらは、明るいグレーで表示されます。各非アクティブプロバイダをアクティブにするリンクも表示されます。他のプロバイダをアクティブにする方法については、後で説明します。

アルゴリズムを実行するには、ツールボックスでその名前をダブルクリックする必要があるだけです。ポリゴン重心アルゴリズムをダブルクリックすると、次のダイアログが表示されます。
アルゴリズムはすべて同様のインターフェイスを持っていて、基本的に記入しなければならない入力パラメーターと、どこに保存するか選択する必要がある出力が含まれています。この場合は、持っている唯一の入力はポリゴンでのベクタレイヤです。

入力として ボリゴン レイヤを選択します。アルゴリズムは、重心レイヤである単一の出力を有しています。ファイルパスを入力するか、一時的なファイル名に保存：データ出力が保存されている定義するための2つのオプションがあります。

保存先を設定してかつ一時ファイルに結果を保存しないようにしたい場合には、出力の形式は、ファイル名の拡張子によって定義されます。形式を選択するには、単に対応するファイルの拡張子を選択します（または、直接ファイルパスを入力している場合は、代わりにそれを追加します）。入力したファイルパスの拡張子は、サポートされているもののいずれかと一致しない場合は、デフォルトの拡張子（通常はテーブルに対して.dbf、ラスタレイヤに対して.tif ベクタレイヤに対して.shp）がファイルパスに追加され、その拡張子に対応するファイル形式がレイヤまたはテーブルを保存するために使用されます。

このガイドの全ての演習では、後で使うために保存する必要が無いので、結果は一時ファイルに保存しています。恒久的な場所に保存しても構いません。

警告：一時ファイルは QGIS を閉じると削除されます。出力が一時的な出力として保存されるプロジェクトを作成する場合、後でプロジェクトを開こうすると、出力ファイルが存在しないので、QGIS は、文句を言うでしょう。

アルゴリズムダイアログを設定し終えたら 実行 を押してアルゴリズムを実行します。
次のような出力が得られます。

出力は入力と同じ CRS を有しています。ジオアルゴリズムでは、全ての入力レイヤが同じ CRS を共有し、何度も再投影を行わないことを前提とします。いくつかの特別なアルゴリズム（例えば、再投影のアルゴリズム）の場合を除き、出力も同じ CRS を持つます。これについてはすぐに詳しく説明します。

さまざまなファイル形式を使用（例えば、拡張子として shp と geojson を使用）してそれを保存し、自分自身を試してみてください。また、レイヤーが作成された後 QGIS にロードしたくない場合は、出力パスボックスの下に発見されるチェックボックスをオフにできます。

### 17.5 さらなるアルゴリズムとデータタイプ

注釈: このレッスンでは、さらに 3 つのアルゴリズムを実行し、他の入力タイプを使用する方法を学習し、自動的に指定したフォルダに保存されるように出力を設定します。

このレッスンのためには、テーブルとポリゴンレイヤが必要になります。テーブル内の座標に基づいてポイントレイヤを作成し、各ポリゴン内のポイントの数をカウントしていきます。このレッスンに対応する QGIS プロジェクト (second_alg) を開くと、X と Y 座標を持つテーブルがありますが、ポリゴンレイヤは何も見つかりません。心配しないで、これからプロセッシング・ジオアルゴリズムを使用して作成していきます。

まずやることは、テーブルからポイントレイヤ アルゴリズムを使用して、テーブル内の座標からポイントレイヤを作成することです。これで、検索ボックスを使用する方法を知っているので、それを見つけることは難しいことではありません。それを実行し、その次のダイアログを取得し、それをダブル・クリックしてください。

17.5. さらなるアルゴリズムとデータタイプ 567
このアルゴリズムは、前のレッスンのように、ただ1つの出力を生成し、それは3つの入力を持っています。

- テーブル: 地図を保持テーブル。ここでレッスンのデータからテーブルを選択する必要があります。
- XとYのフィールド: これら2つのパラメーターは、最初のものにリンクされています。対応するセレクタは、選択されたテーブルで利用可能なこれらのフィールドの名前が表示されます。XパラメーターにXCOORDフィールド、YパラメーターのためのYCOORDフィールドを選択します。
- CRS: このアルゴリズムでは入力レイヤを何もとらないので、それに基づいてCRSを出力レイヤへ割り当てることはできません。代わりに、テーブルの座標で使用されているCRSを手動で選択するように求められます。左側のボタンをクリックしてQGIS CRSセレクタを開き、出力CRSとしてEPSG:4326を選択してください。テーブル内の座標がそのCRSなので、このCRSを使用しています。

ダイアログは次のようにになります。

ここで実行ボタンを押して、次のレイヤを得ます（新たに作成されたポイント周辺に地図を再入力するためフルズームする必要があるかもしれませんが）：

QGIS Training Manual

このアルゴリズムは、前のレッスンのように、ただ1つの出力を生成し、それは3つの入力を持っています。

- テーブル：座標を持つテーブル。ここでレッスンのデータからテーブルを選択する必要があります。
- XとYのフィールド：これら2つのパラメーターは、最初のものにリンクされています。対応するセレクタは、選択されたテーブルで利用可能なこれらのフィールドの名前が表示されます。XパラメーターにXCOORDフィールド、YパラメーターのためのYCOORDフィールドを選択します。
- CRS：このアルゴリズムでは入力レイヤを何もとらないので、それに基づいてCRSを出力レイヤへ割り当てることはできません。代わりに、テーブルの座標で使用されているCRSを手動で選択するように求められます。左側のボタンをクリックしてQGIS CRSセレクタを開き、出力CRSとしてEPSG:4326を選択してください。テーブル内の座標がそのCRSなので、このCRSを使用しています。

ダイアログは次のようにになります。

ここで実行ボタンを押して、次のレイヤを得ます（新たに作成されたポイント周辺に地図を再入力するためフルズームする必要があるかもしれませんが）：

QGIS Training Manual

このアルゴリズムは、前のレッスンのように、ただ1つの出力を生成し、それは3つの入力を持っています。

- テーブル：座標を持つテーブル。ここでレッスンのデータからテーブルを選択する必要があります。
- XとYのフィールド：これら2つのパラメーターは、最初のものにリンクされています。対応するセレクタは、選択されたテーブルで利用可能なこれらのフィールドの名前が表示されます。XパラメーターにXCOORDフィールド、YパラメーターのためのYCOORDフィールドを選択します。
- CRS：このアルゴリズムでは入力レイヤを何もとらないので、それに基づいてCRSを出力レイヤへ割り当てることはできません。代わりに、テーブルの座標で使用されているCRSを手動で選択するように求められます。左側のボタンをクリックしてQGIS CRSセレクタを開き、出力CRSとしてEPSG:4326を選択してください。テーブル内の座標がそのCRSなので、このCRSを使用しています。

ダイアログは次のようにになります。

ここで実行ボタンを押して、次のレイヤを得ます（新たに作成されたポイント周辺に地図を再入力するためフルズームする必要があるかもしれませんが）：

QGIS Training Manual

このアルゴリズムは、前のレッスンのように、ただ1つの出力を生成し、それは3つの入力を持っています。

- テーブル：座標を持つテーブル。ここでレッスンのデータからテーブルを選択する必要があります。
- XとYのフィールド：これら2つのパラメーターは、最初のものにリンクされています。対応するセレクタは、選択されたテーブルで利用可能なこれらのフィールドの名前が表示されます。XパラメーターにXCOORDフィールド、YパラメーターのためのYCOORDフィールドを選択します。
- CRS：このアルゴリズムでは入力レイヤを何もとらないので、それに基づいてCRSを出力レイヤへ割り当てることはできません。代わりに、テーブルの座標で使用されているCRSを手動で選択するように求められます。左側のボタンをクリックしてQGIS CRSセレクタを開き、出力CRSとしてEPSG:4326を選択してください。テーブル内の座標がそのCRSなので、このCRSを使用しています。

ダイアログは次のようにになります。

ここで実行ボタンを押して、次のレイヤを得ます（新たに作成されたポイント周辺に地図を再入力するためフルズームする必要があるかもしれませんが）：
必要なものはポリゴンレイヤです。次のパラメーターダイアログボックスを持つグリッドを作成アルゴリズムを使用して、ポリゴンの規則的なグリッドを作成していきます。
警告：オプションは、QGISの最近のバージョンでは単純です。XとYのための最小値と最大値を入力する必要があるだけです（推奨値：-5.696226, -5.695122, 40.24742, 40.248171）

グリッドを作成するために必要な入力はすべて数値です。右側の図のようなダイアログボックスに取得するには、対応するボックスに直接入力するか、右側のボタンをクリック：数値を入力する必要がある場合、次の2つのオプションがありません。
ダイアログには簡単な計算機が含まれているので、11 * 34.7 + 4.6 のような式を入力でき、その結果が計算され、パラメーターダイアログに対応するテキストボックスに入ります。また、それには使用できる定数が含まれており、他のレイヤーからの値が入力できます。

この場合、入力ポイントレイヤーの範囲をカバーするグリッドを作成したいので、これらはアルゴリズムがグリッドを作成するのに要するパラメーターであるので、グリッドとその幅と高さの中心座標を計算するためにその座標を使用する必要があります。数学の少しで、計算機ダイアログと入力ポイントレイヤーからの定数を使用して自分でやってみましょう。

タイプフィールドに長方形（ポリゴン）を選択します。

最後のアルゴリズムの場合のように、私たちがここに CRS を入力する必要があります。私たちは前に行ったように、ターゲット CRS として 4326：EPSG を選択します。

最後には、このようなダイアログのパラメーターを持っているはずです：
（幅と高さ上の一点の間隔を追加すると良い：水間隔：0.0001、垂直間隔：0.0001、幅：0.001004、高さ：0.000651、中心X : -5.695674、中心Y: 40.2477955) X中心の場合は少しトリッキーであり、参照：-5.696126 + ((-5.69522+ 5.696126) / 2）
実行を押すと目盛レイヤが得られるでしょう。
最後のステップは、その目盛の各長方形の中の点を数えることです。ポリゴンでポイントをカウントアルゴリズムを使用します。

これで探していた結果が得られました。
このレッスンを終える前に、データを永続的に保存したい場合の簡単なヒントを紹介します。すべての出力ファイルを指定したフォルダに保存したい場合は、フォルダ名を毎回入力する必要はありません。代わりに、プロセッシングメニューに移動し、オプションと設定項目を選択します。これは、設定ダイアログを開きます。

一般設定 グループで見つかる 出力フォルダ エントリで、保存先フォルダへのパスを入力します。
これでアルゴリズムを実行するときに、完全パスではなくファイル名を使うだけでよくなりました。例えば上の設定において、先ほどのアルゴリズムの出力パスとして graticule.shp を入力すると、結果は D:\processing_output\graticule.shp に保存されます。それでも結果を別のフォルダに保存したい場合は、完全パスを入力することもできます。

グリッドを作成 アルゴリズムを異なるグリッドサイズで、またグリッドの異なる種類で自分で試してみてください。

### 17.6 CRS・再投影

注釈: この課題で、私たちはプロセッシングがどのように CRS を使うかを説明します。私たちはまた、再投影というとても便利なアルゴリズムについて見てみます。

CRS は QGIS プロセッシングのユーザーにとって大いなる混乱の源です。そこで、新しいレイヤを作成するときにジオアルゴリズムがそれをどのように扱うかについて、いくつかの一般的なルールを紹介します。

- 入力レイヤが複数存在する場合は、最初のレイヤの CRS が使用されます。これは全ての入力レイヤの CRS である（それらは同じである必要があるため）と想定されます。CRS が一致していないレイヤを使う場合は、QGIS がそれを警告します。入力レイヤの CRS はパラメータダイアログ中にその名前と一緒に表示されていることに注意してください。
入力レイヤがない場合、アルゴリズムに特定の CRS フィールドが含まれていなければ、プロジェクトの CRS を使用します（前回の graticule アルゴリズムのレッスンで起こったように）

このレッスンに対応するプロジェクトを開いてください。23030 と 4326 という名前の 2 つのレイヤが表示されるでしょう。それら両方には同じ点が含まれていますが、CRS は異なっています（EPSG：23030 と EPSG：4326）。QGIS によってその場でプロジェクト CRS（EPSG：4326）に再投影されたので、それらは同じ場所に表示されますが、それらは実際には同じレイヤではありません。

ジオメトリ列の出力/追加アルゴリズムを開きます。

このアルゴリズムは、ベクタレイヤの属性テーブルに新しい列を追加します。列の内容は、レイヤのジオメトリの種類によって異なります。ポイントの場合には、各点の X 及び Y 座標で新しい列を追加します。

入力レイヤのフィールドにある使用可能なレイヤのリストには、各レイヤとそれに対応する CRS が表示されています。それが意味するのは、それらはキャンバス内の同じ場所に表示されますが異なる方法で処理されているということです。4326 レイヤを選択してください。

アルゴリズムの他のパラメータは、アルゴリズムが結果のレイヤに追加する新たな値を計算するために、どのように座標を使用するかを設定できます。ほとんどのアルゴリズムはこのようなオプションがなく、単に座標を直接使用します。座標をそのまま使用する場合は、レイヤ CRS オプションを選択します。これは、ほとんどすべての地理アルゴリズムの動作方法です。
他の2つのレイヤとまったく同じポイントを持つ新しいレイヤが作成されるはずです。レイヤの名前を右クリックしてプロパティを開くと、入力レイヤと同じCRS、つまりEPSG:4326を共有していることがわかります。このレイヤをQGISに読み込む際、レイヤのCRSはQGISがすでに知っているので、それを入力するよう求められることはありません。

新しいレイヤの属性テーブルを開くと、それが各ポイントのXとY座標を持つ2つの新しいフィールドが含まれていることがわかります。

<table>
<thead>
<tr>
<th>ID</th>
<th>PT_NUM_A</th>
<th>PT_ST_A</th>
<th>xcoord</th>
<th>ycoord</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>a</td>
<td>-5.695426</td>
<td>40.248071</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>b</td>
<td>-5.695885</td>
<td>40.247622</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>c</td>
<td>-5.695460</td>
<td>40.247520</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>a</td>
<td>-5.695222</td>
<td>40.247694</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>b</td>
<td>-5.695642</td>
<td>40.248030</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>a</td>
<td>-5.695855</td>
<td>40.248067</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>b</td>
<td>-5.696049</td>
<td>40.248028</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>c</td>
<td>-5.696136</td>
<td>40.247629</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>a</td>
<td>-5.695961</td>
<td>40.247786</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>b</td>
<td>-5.695335</td>
<td>40.247929</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>a</td>
<td>-5.695596</td>
<td>40.247739</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>b</td>
<td>-5.695779</td>
<td>40.247896</td>
</tr>
</tbody>
</table>

それらの座標値は、そうするオプションを選んだので、そのレイヤのCRSで与えられています。しかし他のオプションを選んでも、入力CRSは出力レイヤのCRSを設定するのに使われるので、レイヤの出力CRSは同じであったはずです。他のオプションを選ぶと、値は異なりますが、結果の点が変わり、出力レイヤのCRSが入力レイヤのCRSと異なったりすることはありません。

もう一方のレイヤを使って、同じ計算をしてみてください。出来上がったレイヤは他のレイヤと全く同じ場所にレンダリングされ、入力レイヤのものなのでEPSG:23030 CRSTを持つことになるはずです。

その属性テーブルに行くと、最初に作成したレイヤのものとは異なる値が表示されるでしょう。

<table>
<thead>
<tr>
<th>ID</th>
<th>PT_NUM_A</th>
<th>PT_ST_A</th>
<th>xcoord</th>
<th>ycoord</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>a</td>
<td>270839.655869</td>
<td>4458983.162670</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>b</td>
<td>270798.116425</td>
<td>4458934.552874</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>c</td>
<td>270839.468187</td>
<td>4458921.978139</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>a</td>
<td>270855.745301</td>
<td>445940.799487</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>b</td>
<td>270821.164389</td>
<td>4458979.173980</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>a</td>
<td>270803.157564</td>
<td>4458883.848803</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>b</td>
<td>270786.542791</td>
<td>4458980.047841</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>c</td>
<td>270775.601980</td>
<td>4458935.968837</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>a</td>
<td>270793.184211</td>
<td>4458952.931700</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>b</td>
<td>270845.41756</td>
<td>4458967.311298</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>a</td>
<td>270824.166376</td>
<td>4458916.74250</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>b</td>
<td>270809.035643</td>
<td>4458964.649799</td>
</tr>
</tbody>
</table>

これは、元のデータが異なる（それは異なるCRSを使用する）ためであり、これらの座標はそれから取ら
れます。
このことから何を学ぶべきでしょうか？これらの例の背後にある主な考え方は、地理アルゴリズムは元のデータソースのレイヤをそのまま使用し、QGISでレンダリングする前に行われているかもしれない再投影は完全に無視することです。言い換えれば、キャンパスに見えるものは信用せず、元のデータが使用されるだろうことを常に念頭に置いてください。この場合は一度に1つのレイヤを使用しているのでそれほど重要ではありませんが、複数のレイヤが必要とするアルゴリズム（例えばクリップアルゴリズムのような）では、一致したり重なったりするように見えるレイヤが、異なるCRSを持っているかもしれないため、互いに非常に離れていることがあります。

アルゴリズムでは（次に見る再投影アルゴリズムを除いて）何も再投影を行わないので、レイヤのCRSが一致していることを確認することは自己責任です。

CRSを扱う興味深いモジュールに再投影があります。それは入力レイヤ（再投影するもの）を持っていますが、それは出力レイヤにはそのCRSを使わないので、特定の場合を表しています。

レイヤを再投影アルゴリズムを開く。

入力として、レイヤのいずれかを選択し、出力CRSとしてEPSG:23030を選択します。アルゴリズムを実行すると、入力レイヤと同じで、異なるCRSを持つ新しいレイヤが生成されます。QGISではそれをその場で再投影するのでキャンパスの同じ領域に表示されますが、元の座標は異なっています。この新しいレイヤを入力としてジオメトリ列をエクスポート/追加アルゴリズムを実行すると、追加された座標が前に計算した2つのレイヤの属性テーブルのものと異なっていることを確認することができます。
17.7 選択

注釈：このレッスンでは、プロセッシングアルゴリズムが入力として使用されるベクタレイヤの選択範囲をどのように扱うか、そしてどのようにアルゴリズムの特定のタイプを使用して選択範囲を作成するかについて説明します。

QGIS での他の分析プラグインとは異なり、プロセッシング・ジオアルゴリズムには「選択した地物だけを使用する」のチェックボックスまたは同様のものは何も見つからないでしょう。選択範囲に関する動作は、各アルゴリズムの実行のためではなく、プラグイン全体とそのすべてのアルゴリズムのために設定されています。アルゴリズムでベクタレイヤを使用するときは以下の簡単なルールに従ってください。

- レイヤに選択範囲がある場合は、選択した地物のみが使用されます。
- 選択範囲がない場合は、すべての地物が使用されます。

プロセッシング のオプション 一般 メニュー中の関連するオプションを選択解除すると、この動作を変更できますので、ご注意ください。

それは、前の章で使用されるレイヤのいずれかでポイントをいくつか選択し、それらに再投影アルゴリズムを実行することでテストできます。取得する再投影レイヤには選択されたポイントのみが含まれます。ただし何も選択がない場合は、得られるレイヤには、元のレイヤの全てのポイントが含まれることになります。

選択範囲は、QGIS で利用可能な方法やツールをどれでも使って作成できます。しかし、そのためにジオアルゴリズムを使うこともできます。選択範囲を作成するためのアルゴリズムは、ベクタ選択 中のツールボックスにあります

□	General tools
□	Geometry operations
□	Lines
□	Miscellaneous
□	Overlay
□	Points
□	Polygons
□	Selection
	□ Random selection
	□ Random selection within subsets
	□ Select by attribute
	□ Select by location
□	Statistics
□	Table tools

ランダム選択 アルゴリズムを開きます。

17.7. 選択 579
デフォルト値のままにすると、現在のレイヤーから 10 点が選択されます。

このアルゴリズムでは何も出力が作成されず、入力レイヤー（レイヤー自体ではなく、その選択）が変更されることがわかるでしょう。他のすべてのアルゴリズムでは新たなレイヤーが作成され、入力レイヤーが変更されることはないので、これは珍しい動作です。

選択範囲はデータの一部ではなく、QGIS 内にのみ存在するものなので、これらの選択アルゴリズムは、QGIS で開いているレイヤーを選択するためにのみ使用し、対応するパラメータ値ボックスにあるファイル選択オプションでは使用できません。
17.8 外部のアルゴリズムを実行する

これまで実行したすべてのアルゴリズムは、プロセッシングフレームワークの一部です。つまり、プラグインに実装されたネイティブなアルゴリズムであり、プラグイン自体が実行されるのと同じように QGIS によって実行されます。しかし、プロセッシングフレームワークの最大の特徴は、外部アプリケーションのアルゴリズムを使用し、それらのアプリケーションの可能性を拡張することができるということです。そのようなアルゴリズムはラップされてツールボックスに含まれているため、QGIS から簡単に利用することができ、QGIS のデータを使って実行することができます。

単純化されたビューに表示されるアルゴリズムには、サードパーティ製のアプリケーションがシステムにインストールされていることが必要なものがあります。特別な関心の一つのアルゴリズムプロバイダーは、SAGA（自動地理空間分析のためのシステム）です。まず、QGIS から正しく SAGA を呼び出すように、すべてのものを設定する必要があります。これは難しいことではありませんが、それがどのように動作するかを理解することが重要です。外部アプリケーションにはそれぞれ設定があり、このマニュアルの後半で他のいくつかについて説明しますが、SAGA は主要なバックエンドになるものなので、ここではそれを説明します。

Windows を使っている場合は、外部のアルゴリズムで作業するための最良の方法は、スタンドアロンのインストーラを使用して QGIS をインストールすることです。それは SAGA を含むすべての必要な依存関係のインストールをしてくれますので、それを使用した場合は、他にも行うことはありません。設定ダイアログを開き、プロバイダー/SAGA グループに行くことができます。
SAGA パスは既に設定され、SAGA がインストールされているフォルダを指しているようにしてください。スタンドアロンインストーラを使用しないで QGIS をインストールした場合は、そこに（別個にインストールした）SAGA のインストールへのパスを入力する必要があります。重要なバージョンは、SAGA 2.1 [これは SAGA のリリースに応じて変化します] です。

Linux を使用している場合は、プロセッシング構成で SAGA のインストールへのパスを設定する必要があります。代わりに、SAGA をインストールし、それがコンソールから呼び出すことができるよう SAGA フォルダが、PATH にあることを確認する必要があります（それを確認するため、コンソールを開いて saga_cmd を入力するだけ）。Linux では、SAGA のターゲットバージョンも 2.1 ですが、(OSGeo ライブ DVD など）一部のインストールでは 2.0.8 だけが利用できる可能性があります。2.1 パッケージが利用可能なものがありますが、それらは一般的にインストールされておらず、いくつか問題があるかもしれませんが、より一般的に安定した 2.0.8 を使いたい場合は、SAGA グループ下の設定ダイアログで 2.0.8 の互換性を可能にするこyonによって、それをすることができます。
SAGA がインストールされると、他のアルゴリズムと同様に、その名前を SAGA アルゴリズムをダブルクリックして起動できます。単純化されたインターフェイスを使用しているので、どのアルゴリズムが SAGA 基盤をおいているかまたは別の外部のアプリケーションにいるかはわかりませんが、それらのいずれかをたまたまダブルクリックし、対応するアプリケーションがインストールされていない場合、このようなものが表示されます。
この場合、SAGA が正しくインストールされ構成されていれば、このウィンドウは表示されず、代わりにパラメータダイアログが表示されます。

SAGA ベースのアルゴリズム、シェープレイヤーをランダムに分割と呼ばれるもので試してみましょう。

入力として、このレッスンに対応したプロジェクト内のポイントレイヤー、およびデフォルトのパラメータ値を使用して、このような何かを取得します（分割がランダムであるので、結果は異なる場合があります）。

![Diagram](image-url)
入力レイヤは2つのレイヤに分割されていて、それぞれに同じ数のポイントがあります。この結果は、SAGAによって計算され、後にQGISで取り込まれ、QGISプロジェクトに追加されました。

すべてがうまくいければ、このSAGAベースのアルゴリズムと、以前に実行をしている他のアルゴリズムとの間の違いにも気付かないでしょう。しかし、SAGAでは何らかの理由で、結果を生成できず、QGISによって想定されるファイルが作成されない場合があります。その場合、QGISプロジェクトにその結果を追加すると問題が起き、このようなエラーメッセージが表示されるでしょう。

この種の問題は、SAGA（またはプロセシングフレームワークから呼び出している他のアプリケーション）が正しくインストールされていても起こるもので、それらに対処する方法を知っておくことが重要です。これらのエラーメッセージの1つを出してみましょう。

経緯線網を作成アルゴリズムを開き、次のように使用します。
指定された範囲よりも大きい幅と高さの値を使用しているので、SAGA は何も出力生成できません。言い換えれば、パラメータ値が間違っているが、それらは SAGA がそれらを取得して経緯線網を作成しようとするまではチェックされません。それを作成できないので、期待されるレイヤを生成せず、上記のようなエラーメッセージが表示されます。

注釈: SAGA >= 2.2.3 では、コマンドは自動的に間違った入力データを調整しますので、エラーは出ないでしょう。エラーを発生させるため、割り算のために負の値を使用します。

この種の問題を理解することは、それらを解決し、何が起こっているかの説明を見つけるのに役立つでしょう。エラーメッセージで見ることができるように、テストは、アルゴリズムが実行された方法に問題があるかもしれませんことを示し、SAGA との接続が正しく機能していることを確認するために行われます。これは、同様に SAGA にするだけでなく、他の外部アプリケーションに限らず適用されます。

次のレッスンでは、ジオアルゴリズムによって実行されるコマンドに関する情報が保持される処理ログを、ご紹介します、そしてこのような問題が現れたときに詳細を取得する方法について説明します。
17.9 プロセシングログ

注釈：このレッスンではプロセシングログを説明します。

プロセシングフレームワークで実行されるすべての分析は、QGIS のログシステムに記録されます。これによってプロセシングツールによって行われたことの詳細を知るか、問題が発生したときにそれを解決することができします。またログシステムもいくつかの対話を実装しているので、以前の操作の再実行もできます。

ログを開くには、QGIS のステータスバー右下のパルーンをクリックしてください。いくつかのアルゴリズムは、ここではそれらの実行に関する情報を残すことがあります。例えば、外部アプリケーションを呼び出すアルゴリズムは、通常、そのアプリケーションのコンソール出力をこのエントリにログ出力します。それを見ると、私たちが実行した（そして入力データが正しくなかったので実行に失敗した）ばかりの SAGA アルゴリズムの出力がここに格納されていることがわかります。

これは、何が起こっているか理解するのに便利です。上級ユーザーは、その出力を分析して、アルゴリズムが失敗した理由を探せるでしょう。上級ユーザーでなければ、持っている問題を診断するのを他の人に助けてもらうために有用でしょう。外部のソフトウェアのインストール中の問題であるかもしれないし、提供されたデータの問題であるかもしれません。

アルゴリズムには、そのアルゴリズムが実行できたとしても結果が正しくないかもしれませんに警告を残すものがあります。例えば、非常に少ない点で補間アルゴリズムを実行するとき、アルゴリズムは実行できて結果は作成されますのが、より多くの点が使用されなければならないので、それは正しくない可能性が高いです。指定されたアルゴリズムのいくつかの側面に誤信がない場合は、定期的に警告のこのタイプをチェックすることをお勧めします。

プロセシングメニューから、履歴セクションの下に、アルゴリズムを見つけることができます。実行されるすべてのアルゴリズムは、コンソール（本書で後述する）からではなく、GUI から実行される場合でも、コンソール呼び出しとしてこのセクションに格納されます。それはアルゴリズムを実行するたび、コンソールコマンドがログに追加され、作業セッションには完全な履歴があることを意味します。その履歴がどのように見えるかというと：
これはコンソールを使い始めるときに、アルゴリズムの構文を学ぶのに非常に便利です。コンソールから分析コマンドを実行する方法について説明するときにも使います。

履歴は対話的でもあり、そのエントリーをダブルクリックするだけで、以前のアルゴリズムを再実行できます。これは、すでに前にした作業を再現する簡単な方法です。

たとえば、次のようにしてみてください。このマニュアルの最初の章に対応するデータを開き、そこで説明されたアルゴリズムを実行します。ここでログダイアログに移動して、たった今実行されたアルゴリズムに対応する、リスト内の最後のアルゴリズムを見つけます。これをダブルクリックすると新しい結果が作成されるはずです。ちょうど通常のダイアログを使用してツールボックスからそれを呼び出してそれを実行したときのように。

17.9.1 上級編

アルゴリズムを変更することもできます。ただそれをコピーし、プラグイン → Python コンソールを開き、クラスをインポート → 処理クラスをインポートをクリックし、それから貼り付けで分析を再実行する（随意でテキストを変更します）。結果のファイルを表示するには、iface.addVectorLayer(”/path/filename.shp”, ’凡例にあるレイヤ名’, ’ogr’) とタイプします。それ以外の場合は、processing.runandloadを使用できます。
17.10 ラスタ計算機。データなし値

注解：このレッスンでは、ラスタ計算機を使ってラスタレイヤに対していくつかの操作を行う方法を紹介します。また、「データなし」値とは何か、計算機や他のアルゴリズムがどのようにそれを扱うかについても説明します。

ラスタ計算機は、あなたが見つける最も強力なアルゴリズムの一つです。様々な計算に使える非常に柔軟で汎用性の高いアルゴリズムであり、すぐにあなたのツールボックスの重要な一部になることでしょう。

このレッスンでは、ラスタ計算機を使って、計算を行います。そのほとんどは簡単な計算です。ここでは、ラスタ計算機の使い方や、特殊な状況に対応する方法を学びます。これを理解することは、後で計算機を使うときに期待通りの結果を得るために重要であり、また計算機を使って一般的に適用される特定のテクニックを理解するために重要です。

このレッスンに対応する QGIS プロジェクトを開きます。それにいくつかのラスタレイヤが含まれていることがわかるでしょう。

次にツールボックスを開き、ラスタ計算機に対応するダイアログを開きます。

注解：インターフェイスは、最近のバージョンで異なります。

ダイアログには、2つのパラメータが含まれています。
QGIS Training Manual

- 分析に使用するレイヤ。これは複数入力であり、望むだけ多くのレイヤを選択することができます。右側のボタンをクリックし、表示されるダイアログで使用したいレイヤを選択します。

- 通用する式。式は、上記パラメータで選択され、変数名としてアルファベット文字 (a, b, c...) または g1, g2, g3...で命名されたレイヤを使用します。すなわち、式 a + 2 * b は g1 + 2 * g2と同じであり、第一レイヤの値と第二レイヤの値の2倍の合計を計算します。レイヤの順序付けは選択ダイアログに表示されるのと同じ順序です。

警告: 計算機では、大文字と小文字が区別されます。

手始めに、メートルからフィートに DEM の単位を変更します。必要とする計算式は、次のいずれかです。

\[ h' = h \times 3.28084 \]

レイヤフィールド内で DEM を選択し、式フィールドに a * 3.28084 とタイプします。

警告: 英語以外のユーザーの場合：常に「.」ではなく「.」を使用してください。

アルゴリズムを実行するために実行をクリックしてください。入力レイヤの同じ外観を持つが、異なる値を持つレイヤが得られます。使用した入力レイヤは、そのすべてのセルの有効な値を持っているので、最後のパラメータはまったく効果がありません。

今度は、accflow レイヤを使って、別の計算を行ってみましょう。このレイヤは、水文学的なパラメータである累積流量の値を含んでいます。流域の範囲内にのみその値があり、その外は「データなし」値です。見通しの通り、値が分散しているため、レンダリングはあまり有益ではありません。流量の蓄積の対数を使用すると、より情報量の多い表現になります。ラスタ計算機を使ってそれを計算することができます。

再びアルゴリズムダイアログを開き、入力レイヤとして accflow レイヤだけを選択し、次の式を入力します： log(a)

これが得られるレイヤです。
与えられた点でのレイヤの値を知るために識別ツールを選択し、たった今作成したレイヤを選択し、流域の外でポイントをクリックすると、「データなし」値が含まれていることがわかるでしょう。

次の練習では、1つのレイヤの代わりに2つのレイヤを使用し、2番目のレイヤで定義された盆地内の有効な標高値を持つDEMを取得するつもりです。計算機ダイアログを開き、入力レイヤフィールドでプロジェクトの両方のレイヤを選択します。対応するフィールドに次の数式を入力します:
a/a * b

a は、積算流量のレイヤを指し（リストに表示される最初のものであるため）、b は DEM を指します。外部データ値 - ここで式の最初の部分で示していることは、それ自体に積算流量レイヤを割ることです。この結果は流域内で値 1、外でデータなし値です。それから DEM を掛け、流域内でそれらのセルの標高値（DEM * 1 = DEM）、外でデータなし値（DEM * no_data = no_data）を得ます。

結果のレイヤはこれです。

この技術は、ラスタレイヤ内で値をマスクするために頻繁に使用され、ラスタレイヤによって使用される任意の矩形領域でない領域のための計算を実行したいときはいつでも有効です。例えば、ラスタレイヤの標高ヒストグラムはあまり意味を持ちません。代わりにそれが流域に対応する値のみを使用して（上記の場合のように）計算される場合、得られる結果は実際に流域の構成についての情報を与える有意味なものです。

実行してきたこのアルゴリズムについては、「データなし」値とそれらがどのように処理されるかを別にしても、他に興味深いものがあります。私たちが掛け算しているレイヤの範囲を見る場合（それは目次のレイヤの自分の名前をダブルクリックしてそのプロパティを見ることで行うことができます）、同じでないことがわかります。流量蓄積レイヤによって覆われる範囲は完全 DEM の範囲より小さいので。

それが意味するのは、これらのレイヤが一致しないこと、1つまたは両方のレイヤをリサンプリングすることでそれらのサイズと範囲を同じに揃えなければ直接掛け算はできないことです。しかし、私たちは何もしませんでした。QGIS ではこのような状況の面倒を見ていて、必要なときに自動的に入力レイヤをリサンプリングします。出力範囲は、入力レイヤから計算された最小の被覆範囲、およびそれらセルサイズの最小セルサイズです。

この場合（そしてほとんどの場合）、これは所望の結果を生成しますが、どんな操作が追加で行われているかには常に注意しておく必要があります。なぜならばそれらは結果に影響を与える可能性があるからです。この動作が希望されない場合がある場合には、手動のリサンプリングが事前に適用されるべきです。後の章では、複数のラスタレイヤを使用したときのアルゴリズムの動作について詳細に見るように。

このレッスンを別のマスク作成の練習で終わりましょう。私たちは標高が 1000 メートルと 1500 メートルの間のすべての地域で傾きを計算しようとしています。
この場合は、マスクとして使用するレイヤはありませんが、計算機を使用して作成できます。

唯一の入力レイヤとしてDEMを、そして次式を使用して計算を実行します

\[
\text{ifelse}(\text{abs}(a-1250) < 250, 1, 0/0)
\]

おそらくのように、簡単な代数演算を行うためだけでなく、計算機を使用でき、また上記のような条件文を含むより複雑な計算を実行します。

結果は、私たちは作業をしたい範囲内で値1、およびそれ以外のセルでデータなしを持っています。

データなし値は0/0の式から来ています。それは未定の値であるので、SAGAは、実際にはデータ値として扱うNaN（非数）の値を、追加します。この小さなトリックを使えば、セルのデータなし値が何か知らなくても、データなし値を設定できます。

今、プロジェクトに含まれる傾斜レイヤを掛ける必要があるだけで、希望の結果が得られるでしょう。

すべてのこととは、計算機で、単一の操作で行うことができます。これは読者の練習として残しておきます。

17.11 ベクター計算機

注釈：このレッスンでは、ベクター演算を使用して、数式に基づいてベクターレイヤーに新しい属性を追加する方法について説明します。

数学的な式を使用して新しいラスターレイヤーを作成するためにラスター計算機を使用する方法はすでに知っています。ベクターレイヤーに対して同様のアルゴリズムが使用可能であり、入力レイヤーと同じ属性を持つ新しいレイヤーに加えて入力された式の結果を持つ新しいレイヤーを生成します。このアルゴリズムは、フィールド計算機と呼ばれ、以下の[パラメーター]ダイアログボックスを持っています。
注釈: インターフェイスが大幅に変更されたプロセッシングの新しいバージョンでは、より強力で使いやすいです。

ここでは、そのアルゴリズムを使用してのいくつかの例があります。

まずは、各ポリゴン中の白人の人口密度を計算してみましょう。属性テーブル内の二つのフィールド、すなわち "WHITE" と "SHAPE_AREA" をそれぞれ使用できます。それらを割り算し、百万で乗算する（平方キロメートルあたりの密度にするため）必要があるだけなので、対応するフィールドに次の式を使用できます

( "WHITE" / "SHAPE_AREA" ) * 1000000

以下に示すようにパラメータダイアログが満たされる必要があります。
これは WHITE_DENS という名前の新しいフィールドを生成します。

今度は、男性人口が女性人口に比べて数値的に優位にあるかどうかを示す新しいものを作成するために、MALES と FEMALES フィールド間の比率を計算してみましょう。

次の式を入力します。

"MALES" / "FEMALES"

今回は、パラメータウィンドウは OK ボタンを押す前に、次のようになります。
両方のフィールドが整数型であるため、以前のバージョンでは、結果が整数に切り捨てられることになります。この場合、式は次のようにになります。私たちは浮動小数点数に結果を望んでいることを示すために 1.0 \times \text{"MALES"} / \text{"FEMALES"}。

次の式を使用して、male または female テキスト文字列の代わりに、それらの比の値で新しいフィールドを持つように、条件付きの関数を使用できます:

```
CASE WHEN "MALES" > "FEMALES" THEN 'male' ELSE 'female' END
```

パラメーターウィンドウは、次のようにになります。
Python のフィールドの計算は、ここでは詳述しない。高度な Python のフィールド計算機、で提供されています。
17.12 範囲を定義する

注釈: このレッスンでは、いくつかのアルゴリズムによって必要とされている範囲、特にラスタの範囲を定義する方法について説明します。

いくつかのアルゴリズムは、それらが行う解析によってカバーされる区域を定義する範囲、そしてたいていは結果のレイヤの区域を定義する範囲を必要とします。

範囲が必要とされる場合は、それを定義する4つの値（最小X、最小Y、最大X、最大Y）を入力することによって手動で定義できますが、他にもそれを同様に行うより実用的でより興味深い方法があります。このレッスンではそれらのすべてを見ることができます。
まずは、定義する範囲を必要とするアルゴリズムを開いてみましょう。ベクタレイヤからラスタレイヤを作成する ラスタ化アルゴリズムを開きます。

最後の2つのパラメータを除くすべてのパラメータは、ラスタ化するレイヤを定義し、ラスタ化処理の方法を設定するために使用されます。一方、最後の2つのパラメータは、出力レイヤの特性を定義するものです。つまり、カバーする区域（入力ベクタレイヤがカバーする区域と同じとは限らない）と、解像度/セルサイズ（ベクタレイヤにはセルサイズがないため、ベクタレイヤから推測することはできない）を定義する。

まず行うことができることは、前に説明した定義する4つの値を、カンマで区切って入力することです。

それは余分な説明を必要としません。これは最も柔軟なオプションですが、場合によってはあまり実用的でないこともあり、それが他のオプションが実装されている理由です。それらにアクセスするには、範囲テキストボックスの右側のボタンをクリックする必要があります。
それらのそれぞれが何をするか見てみましょう。

第1のオプションは、レイヤー/キャンパス範囲を使用で、以下に示す選択ダイアログが表示されます。

[画像: Select extent ダイアログ]

ここでは、キャンバスの範囲（現在のズームでカバーされている範囲）、または利用可能ないずれかのレイヤーの範囲を選択できます。それを選択して「OK」をクリックすると、テキストボックスが自動的に対応する値で満たされます。

第2のオプションは、キャンバス上で範囲選択です。この場合、アルゴリズムダイアログが消え、所望の範囲を定義するために QGIS キャンバス上でクリック＆ドラッグできます。

[画像: QGIS キャンバス画面]

マウスポタンを放すとダイアログが再び現れ、そのテキストボックスには定義された範囲に対応する値がすぐに入っています。

最後のオプションは、入力レイヤ範囲をカバーする最小の使用で、デフォルトのオプションです。これは、アルゴリズムを実行するために使用されるすべてのレイヤーの範囲をカバーする最小を計算し、テキストボックスに任意の値を入力する必要はありません。入力レイヤが単一の場合には、実行されているアルゴリズムのように、同じ程度には、すでに見たレイヤー/キャンパス範囲を使用で同じ入力レイヤを選択することによって得ることができます。入力レイヤが複数存在する場合、それは一緒にそれらの全てから計算されるので、範囲をカバーする最小は、入力レイヤの範囲のいずれにも該当しません。

ラスタ化アルゴリズムを実行するために、この最後のメソッドを使用します。

次に示すようにパラメータダイアログボックスに入力し、「OK」を押してください。
注釈：この場合には、NAME は最大値=64 の整数なので、浮動小数点（4バイト）よりも整数（1バイト）を使用するほうが良いです。これによってファイルサイズは小さくなり、計算がより高速になります。

元のベクタレイヤがカバーする区域を正確にカバーするラスタ化レイヤが得られるでしょう。
場合によっては、最後のオプション 入力レイヤ範囲をカバーする最小の使用が使用できないことがあります。これは、入力レイヤを持たず他のタイプのパラメータだけを持つアルゴリズムで起こります。その場合は、手動で値を入力するか、他のオプションのいずれかを使用する必要があります。

選択が存在する場合、レイヤの範囲は地物の全体集合のことであり、たとえラスタ化が選択された項目に対してのみ実行されても、選択は範囲を計算するために使用されませんのでご注意ください。その場合は、実際に選択から新しいレイヤを作成しそれを入力として使用したかもしれません。

17.13 HTML 出力

注釈：このレッスンでは、QGIS は、テキスト出力とグラフを生成するために使用されている HTML 形式の出力を、どのように処理するかを学びます。

これまで作成した出力はすべて（ラスターまたはベクター）レイヤーでした。しかし、いくつかのアルゴリズムは、テキストとグラフィックスの形式で出力を生成します。このすべての出力は HTML ファイルに含まれる方法で表示されます。これは処理フレームワークの別の要素です。

どのように機能するかを理解するため、これらのアルゴリズムの 1 つを見てみましょう。

このレッスンで使用するデータでプロジェクトを開き、それから数値フィールドの基本統計情報 アルゴリズムを開きます。
アルゴリズムはかなり単純で、使用するレイヤーおよびそのフィールド（数値フィールド）の1つを選択する必要があるだけです。出力のタイプは HTML ですが、対応するボックスは正確にラスターまたはベクター出力の場合に見つけることができるもののように動作します。ファイルパスを入力できますし、一時ファイルに保存する場合は空白のままにもできます。この場合は、html と htm 拡張子だけが許可されているので、別の拡張子を使用して出力形式を変更する方法はありません。

入力として、プロジェクト内の唯一のレイヤー、および POP2000 フィールドを選択するアルゴリズムを実行し、アルゴリズムが実行されるとパラメーター| ダイアログが閉じられた後、次の図のような新しいダイアログが表示されます。
これは結果ビューワです。これは、現在のセッション中に生成されたすべてのHTML結果を保持し、簡単にアクセスできますので、必要な時はいつでもすぐに確認できます。それはレイヤーで発生するので、一時ファイルに出力を保存した場合、それはQGISを閉じると削除されます。非一時的なパスに保存されている場合、ファイルが残りますが、それは次回QGISを開くとき結果ビューワに表示されません。

いくつかのアルゴリズムは、他のより詳細な出力に分けることができないテストを生成します。例えば、アルゴリズムで外部プロセスからのテスト出力を取り込む場合がそうです。他の場合には、出力はテストとして提示されますが、内部的には通常は数値の形で、いくつかの小さな出力に分割されます。私たちが実行したアルゴリズムはそのうちの一つです。これらの値の各々は、単一の出力として扱われ、変数に格納されます。これは今はまったく重要性を持ちませんが、モデルデザイナーに移ったときに、これらの値が他のアルゴリズムの数値入力として使用できるようになっていることがわかるでしょう。
17.14 最初の分析例

注釈: このレッスンでは、プロセッシング・フレームワークの要素により精通できるよう、ツールボックスだけを使用していくつかの実際の分析を実行します。

今やすべて設定されていて外部アルゴリズムを使用できますので、空間分析を実行するための非常に強力なツールを持っています。何か実世界のデータでより大規模な練習に取り掛かる時です。

我々は、John Snow が 1854 年に彼の画期的な仕事（https://en.wikipedia.org/wiki/John_Snow_%28physician%29）で使用した有名なデータセットを使用し、いくつかの興味深い結果を得ることになります。このデータセットの分析は非常に明白であり、良い結果と結論に至るために高度な GIS 技術が必要としませんが、このような空間的問題が、異なる処理ツールを使うことによってどのように分析され解決されるかを示す良い方法であるといえるでしょう。

データセットには、コレラによる死者の位置と井戸の位置のシェーブファイル、および TIFF フォーマットでの OSM レンダリングされた地図が含まれています。このレッスンのための対応 QGIS プロジェクトを開きます。
まず、ポンプレイヤのポロノイ図（別名：ティーセン多角形）を計算し、各ポンプの影響範囲を得ます。ポロノイ図アルゴリズムは、そのために使用することができます。

かなり簡単ですが、それですでに興味深い情報が得られます。
明らかに、ほとんどの症例がポリゴンの1つの範囲内にあります

より定量的な結果を得るためには、各ポリゴンにおける死亡者数をカウントできます。各ポイントは、死亡が発生した建物を表しており、死亡者数は、属性に格納されているので、ポイントをカウントすることはできません。私たちは、重み付けされた回数を必要とするので、ポリゴンカウントポイント（加重）ツールを使用します。
新しいフィールドは死亡と呼ばれ、そして COUNT フィールドを重みフィールドとして使用します。結果のテーブルは、明らかに第一の両対応するポリゴンにおける死亡者数が他のものよりもはるかに大きいことを反映しています。
Pumps 井戸レイヤにおけるポイントと Cholera_deaths コレラ死者レイヤの各点の依存性を視覚化するもう一つの良い方法は、最も近いものを線を描くことです。これは、最寄のハブへの距離ツールで行われ、次のような構成を使用できます。
この結果は次の通りです:
線の数は中央の町戸の場合の方が大きいが、これは死亡数ではなくコレラの症例が発見された場所の数を表していることを忘れないでください。それは代表的なパラメーターですが、ある場所では他の場所よりも多くの例があるかもしれませんことが考慮されていません。

密度レイヤはまた、何か起こっているかの非常にクリアな視界を提供します。それはカーネル密度アルゴリズムで作成できます。*Cholera_deaths* コレラ死者 レイヤ、100の半径と、重みフィールドとしての*COUNT* 数フィールド、街のラスタレイヤの範囲とセルサイズを使用すると、このような何かを得ます。
出力範囲を取得するには、入力する必要はありません。右側のボタンをクリックし、レイヤ/キャンバス範囲を使用を選択します。
街のラスタレイヤを選択すると、その範囲が自動的にテキストフィールドに追加されます。セルサイズでも同様であるため、そのレイヤのセルサイズを選択することが必要となります。

井戸レイヤと組み合わせることで、一つの井戸が明らかに死亡例最高濃度が検出されたホットスポット中にあるとわかります。

### 17.15 ラスタレイヤをクリップしてマージする

注記：このレッスンでは、現実の世界のシナリオで地理アルゴリズムを継続して使用する、空間データの準備の別の例が表示されます。

このレッスンでは、ポリゴン1つだけのベクタレイヤによって与えられる市街地を囲む領域に対して傾斜レイヤを計算しようとしています。ベース DEM は2つのラスタレイヤに分割され、併せると作業したい都市の周りのものよりはるかに大きい領域をカバーしています。このレッスンに対応したプロジェクトを開くと、次のように表示されます。
これらのレイヤには二つの問題があります。

• それらは希望するよりずっと大きい領域をカバーしています（興味があるのは市内中心部の周りのより小さな領域）

• それらは2つの異なるファイルにあります（市域は1つだけのラスタレイヤに入るが、言われているように、その周りにいくつかの余分な面積が欲しい）。

それらの両方が適切な地理アルゴリズムで簡単に解決できます。

まず、望む領域を定義する矩形を作成します。これを行うには、市の面積の限界を有するレイヤのパウンティングボックスを含むレイヤを作成し、それから厳密に必要であるよりも少しカバーするラスタレイヤを有するように、それをバッファリングします。

パウンティングボックスを計算するために、レイヤの範囲からポリゴンアルゴリズムを使用できます
それをバッファリングするために、以下のパラメーター値で、固有距離バッファアルゴリズムを使用します。
警告: 横文は最近のバージョンで変更されました；距離とアークの頂点の両方を0.25に設定します

これが上に示したパラメーターを用いて得られた結果のバウンディングボックスです

これは丸みを帯びた箱ですが、それにレイヤの範囲からポリゴン アルゴリズムを実行することで、正方形
の角度での同等のボックスを簡単に取得できます。最初の市域をバッファリングして、一ステップ省略し、範囲矩形を計算することもできましたでしょう。

ラスターは、ベクタと別の投影を有することがわかります。したがって、ワープ（再投影）ツールを使用して、さらに進む前にそれらを再投影する必要があります。

注釈：最近のバージョンではより複雑なインターフェイスになっています。少なくとも一つの圧縮方式が
選択されていることを確認します。

入手したラスタレイヤのバウンディングボックスが含まれるこのレイヤで、ポリゴンでラスタをクリップアルゴリズムを使用して、ラスタレイヤの両方をトリミングできます。

レイヤを切り出したら、SAGA Mosaic raster layers アルゴリズムを使ってレイヤを統合することができます。
注釈：最初にマージしてからトリミングすると時間を節約でき、二回クリッピングアルゴリズムを呼び出さずずにすむでしょう。しかしながら、マージする複数のレイヤがあってそれらがかなり大きなサイズを持っている場合、それが後工程に処理が困難であるよりも大きなレイヤになってしまいます。その場合はクリッピングアルゴリズムを数回呼び出す必要があります。時間がかかりかもしれません但、心配しないで。その操作を自動化するためにいくつかの追加のツールがあることがすぐにわかりますから。この例では、レイヤは2つだけなので、今それを心配することはありません。

それによって、私たちが望む最後のDEMが得られます。
では傾斜レイヤを計算しましょう。
傾斜レイヤは傾斜・方向・曲率アルゴリズムを用いて計算できますが、標高値はメートル単位ですがセルサイズはメートルで表現されていないため、最後の工程で得られた DEM は入力として適していません（レイヤは地理座標を持つ CRS 使用しています）。再投影が必要とされています。ラスタレイヤを再投影するために、ワープ（再投影）アルゴリズムを再び使用できます。単位（例えば 3857）メートルで CRS に再投影。その後、正しく SAGA や GDAL のいずれかで、傾きを計算できます。
新 DEM では、傾きが計算できるようになりました。
そして、これが結果の傾斜レイヤです。
ラスタレイヤ再投影で変換された斜面レイヤを再投影して戻すと、望んでいた最終レイヤーが得られます。

警告: TODO: 画像を追加します。

再投影プロセスでは、最初のステップの1つで計算されたバウンティングボックス外のデータを最終レイヤが格納するようにしている可能性があります。これは、ベースDEMを得るためにしたのと同じように、それを再びクリッピングすることによって解決できます。

### 17.16 水文解析

注釈: このレッスンでは、ちょっとした水文解析を実行します。この分析は解析ワークフローの非常に良い例を構成しているので、後のいくつかのレッスンの一部に使用されます。そして、いくつかの高度な機能を発揮するためにそれを使用します。

目的: DEM から始めて、水路網を抽出し、流域を描写し、いくつかの統計を計算します。

1. 最初に DEM だけが含まれているレッスンデータを持つプロジェクトを読み込みます。
2. 最初に実行するモジュールは集水域です（一部の SAGA バージョンでは、累積流量（トップダウン）と呼ばれますが）。集水域という名前の他の任意のものを使用できます。それらは下に異なるアルゴリズムを持っており、結果は基本的に同じです。

3. 標高フィールドで DEM を選択し、残りのパラメータはデフォルト値のままにしておきます。
一部のアルゴリズムは多くのレイヤを計算しますが、使用するのは集水域レイヤだけです。必要に応じて、他のものを取り除くことができます。
レイヤのレンダリングは非常に有益ではありません。
理由を知るために、ヒストグラムを見ると、値が均等に分散していないことがわかります（非常に高い値のセルがいくつかあります。水路ネットワークに対応するものです）。ラスター計算機アルゴリズムを使用して、集水域の値の領域の対数を計算すると、より多くの情報を含むレイヤーが得られます。
4. 集水地（累積流量としても知られます）は、水路の開始の閾値を設定するために使用することができれます。これは水路網アルゴリズムを使用して行うことができます。

- *Initiation grid*: 対数ではなく、集水域のレイヤを使用します。
- *Initiation threshold*: 10,000,000
- *Initiation type*: Greater than
Initiation threshold の値を大きくすると、より疎な水路網が得られます。値を小さくすると、より密な網になります。提案された値では、このような結果になります。
上の画像は、出来上がったベクタレイヤと DEM だけですが、同じ水路網を持つラスタレイヤも存在するはずです。このラスタレイヤが、これから使用するレイヤとなります。

5. 次に、Watersheds basins アルゴリズムを使って、水路網に対応する第二次流域を、その中のすべてのジッカションを出口点として定義します。ここでは、対応するパラメータをダイアログで設定する必要があります。
そして、得られるものはこれです。
6. これはラスタの結果です。Vectorising grid classes アルゴリズムを使ってベクタ化できます。
さて、第二次流域の一つで標高値についての統計を計算してみましょう。考え方は、ちょうどその第二次流域内だけの標高を表しているレイヤを得て、それをそれらの統計を計算するモジュールに渡すことです。

1. まず、第二次流域を表すポリゴンを使用して元のDEMをクリップします。ポリゴンでラスタをクリップアルゴリズムを使用します。単一の第二次流域ポリゴンを選択してからクリッピングアルゴリズムを呼び出すと、アルゴリズムが選択を認識しているため、DEMをそのポリゴンでカバーされる領域にクリップできます。

1. ポリゴンを選びます

２. 次のパラメータでクリッピングアルゴリズムを呼び出します：

17.16. 水文解析 633
入力フィールドで選択された要素は、もちろん、クリップしたい DEM です。このようなものが得られます。
2. このレイヤは ラスタレイヤの統計量 アルゴリズムで使う準備ができています。
他のレッスンでは流域の計算手順および統計計算の両方を使用するでしょう。そして他の要素がそれらの両方を自動化しより効率的に作業するためにどのように役立つかを見る。

17.17 モデルデザイナーから始める

注釈: このレッスンでは、ワークフローを定義してアルゴリズムの連鎖を実行するために使用できる強力なコンポーネントである、モデルデザイナーを使います。

処理ツールによる通常のセッションは、単一のアルゴリズムを実行する以上のものを含んでいます。通常、結果を得るためには複数のアルゴリズムが実行され、そしていくつかのアルゴリズムの出力は、他のいくつかのアルゴリズムの入力として使われます。

モデルデザイナーを使うと、ワークフローを1つのモデルに入れることができ、一回の実行で必要なすべてのアルゴリズムが実行されるので、全体のプロセスが簡単化され自動化されます。

このレッスンの始めに、地形湿潤指数というパラメータを計算することにします。それを計算するアルゴリズムは Topographic wetness index (twi) と呼ばれています。
ご覧のように、2つの必須入力があります：傾斜と集水域面積。オプションの入力もありますが、それは使用するつもりはありませんので無視できます。

このレッスン用のデータには DEM しか入っていませんから、必要な入力は何もありません。しかし、傾きと集水域面積を計算するアルゴリズムをすでに見ていますので、その DEM からそれらの両方を計算する方法はわかっています。だから最初にこれらのレイヤを計算すると、それらを TWI アルゴリズムのために使用できます。

これが2つの中間レイヤを計算するために使用すべきパラメーターのダイアログです。

注釈: 傾斜はラジアンではなく度で計算しなければなりません。
Slope, aspect, curvature

Elevation

dem25 [EPSG:23030]

Method

[S] Fit 2. Degree Polynom (Zevenbergen & Thorne 1987)

Slope

[Save to temporary file]...[

[Open output file after running algorithm]

Aspect

[Save to temporary file]...[

[Open output file after running algorithm]

Curvature

[Save to temporary file]...[

[Open output file after running algorithm]

Plan Curvature

[Save to temporary file]...[

[Open output file after running algorithm]

0%

Run Close Cancel

QGIS Training Manual
そしてこれはTWIアルゴリズムのパラメータダイアログボックスをどのように設定する必要があるかです。
このような結果が得られます（レンダリングにはデフォルトの単バンド疑似カラー反転パレットが使われています）。提供された twi.qml スタイルを使用することができます。
ここでは、DEM から TWI を 1 ステップで計算するアルゴリズムを作成することを目指します。これにより、後で別の DEM から TWI レイヤを計算する必要が生じた場合、上記の 3 つのステップではなく、ただ 1 つのステップで計算できるため、作業を軽減することができます。必要な処理はすべてツールボックスに用意されているので、あとはそれらを包むワークフローを定義するだけです。そこで登場するのがモデルデザイナーです。

1. プロセッシングメニューで、メニュー項目を選択することにより、モデラーを開きます。

モデルを作成するには 2 つのことが必要です：必要な入力を設定することと、そのモデルに含まれるアルゴリズムを定義することです。この 2 つは、モデラーウィンドウの左側にある 2 つのタブ、入力とアルゴリズムから要素を追加することで実現できます。

2. 入力から始めましょう。このケースでは追加することがあまりありません。DEM を持つラスタレイヤが必要なだけで、それが唯一の入力データとなります。

3. ラスタレイヤ入力でダブルクリックすると次のダイアログが表示されます。
4. ここでは、必要な入力を定義する必要があります：

1. このラスタレイヤは DEM であることが期待されるので、DEM と呼ぶことにします。これは、モデルを実行する際に、モデルのユーザーが見ることができる名前です。

2. そのレイヤがないと動かないので、必須レイヤとして定義します。

これがダイアログを設定する方法です

5. OK をクリックするとモデルキャンバスに入力が現れます。
6. 次にアルゴリズムタブに移りましょう。

7. 最初に実行するアルゴリズムは、Slope, aspect, curvature アルゴリズムです。アルゴリズムリストでこれを探し、ダブルクリックすると、以下のようなダイアログが表示されます。
このダイアログは、ツールボックスからアルゴリズムを実行する際に表示されるダイアログと非常に似ていますが、パラメータ値として使用できる要素は、現在の QGIS プロジェクトではなく、モデル自体から取得されます。つまり、この場合、Elevation フィールドで使用できるのは、プロジェクトのすべてのラスタレイヤではなく、モデルで定義されているものだけということになります。DEM という名前のラスタ入力を 1 つだけ追加したので、Elevation パラメータに対応するリストに表示されるラスタレイヤはこの 1 つだけとなります。

アルゴリズムにより生成された出力は、アルゴリズムがモデルの一部として使用される場合、少し異なって処理されます。各出力を保存するファイルパスを選択する代わりに、その出力が中間層であるか（そしてモデルの実行後に保存しないようにするか）、または最終出力であるかを指定する必要があります。この場合、このアルゴリズムによって生成されるすべてのレイヤは中間です。そのうちの 1 つ（傾斜レイヤ）のみを使用しますが、取得したい最終結果である TWI レイヤを計算するために必要なだけなので、それを保存する必要はありません。

最終的な結果ではないレイヤの場合、対応するフィールドは残しておかなければなりません。そうしないと、後でモデルを実行したときに表示されるパラメータダイアログボックスでレイヤを識別するために使用される名前を入力する必要があります。

8. この最初のダイアログで選択することはあまりありません。なぜなら、このモデルには 1 つのレイヤ（作成した DEM 入力）しかありません。この場合、ダイアログのデフォルト設定が正しいので、OK を押すだけでよいのです。これがモデラーキャンバスに表示されるものです。
9. モデルに追加する必要がある第2のアルゴリズムは、集水域面積のアルゴリズムです。Catchment area (Paralell) という名前のアルゴリズムを使用します。再びDEMレイヤを入力として使用し、それが生成する出力はどれも最終的なものでないので、これが対応するダイアログをどう埋める必要があるかです。
今、モデルは、次のようになります。
10. 最後に Topographic wetness index アルゴリズムを追加し、以下の構成とします。

この場合、入力として DEM を使用しない代わりに、以前に追加アルゴリズムによって計算される傾
斜および集水域レイヤーを使用します。新しいアルゴリズムを追加すると、それらが作り出す出力が他のアルゴリズムのために利用可能になり、それらを使用してアルゴリズムをリンクし、ワークフローを作成します。

11. この場合、出力される TWI レイヤは最終レイヤであるため、そのように表示する必要があります。対応するテキストボックスに、この出力に表示させたい名前を入力します。

今、モデルが完成すると、それは次のようになります。

12. モデルウィンドウの上部に名前とグループ名を入力します。

13. モデルを保存 ボタンをクリックして保存します。好きな場所に保存して後で聞くこともできますが、モデルフォルダ（ファイル保存ダイアログが表示されたときに表示されるフォルダです）に保存すると、あなたのモデルはツールボックスでも利用可能になります。だから、そのフォルダにとどまって、お好みのファイル名でモデルを保存してください。

14. モデラーダイアログを閉じ、ツールボックスに移動します。モデル要素の中にあなたのモデルが見つかります。
15. 通常のアルゴリズムと同じように、ダブルクリックで実行することができます。

16. 入力として DEM を使用して、それを実行すると、1 つのステップだけで TWI レイヤが得られるでしょう。
17.18 より複雑なモデル

注釈：このレッスンでは、モデルデザイナーでより複雑なモデルを扱います。

前章で作成した最初のモデルは、1つの入力と3つのアルゴリズムだけという非常にシンプルなものでした。異なるタイプの入力とより多くのステップを含んだ、より複雑なモデルを作成することができます。この章では、DEMとしきい値に基づいて流域のベクタレイヤを作成するモデルを扱います。このモデルは、異なる値に対応する複数のベクタレイヤを計算するのに非常に便利で、各ステップを毎回繰り返す必要がありません。

このレッスンでは、モデルの作成方法についての説明はありません。必要な手順はすでに知っているし（前のレッスンで見ています）、モデラーについての基本的な考え方も知っているので、自分でやってみるのがいいでしょう。数分かけてモデルを作ってみてください。間違ったことを心配する必要はありません。思い出してください：まず入力を追加し、次にそれをを使ってワークフローを作成するアルゴリズムを追加します。

注釈：完全なモデルをご自分で作れず、いくらかの助けが必要とする場合、このレッスンに対応するデータフォルダにその「ほとんど」完成版が含まれています。モデラーを開き、データフォルダにあるモデルファイルを開きます。このようなものが表示されるはずです。

このモデルは、計算を完了するために必要なすべてのステップを含んでいますが、入力はDEMの1つだけです。つまり、水路決定のしきい値が固定値であるため、このモデルはあまり役に立ちません。しかし、このモデルは編集することができ、これからそれをするので、問題ありません。
1. まず、数値入力を追加してみましょう。これはユーザーが数値入力を求めるもので、このモデルに含まれるアルゴリズムのいずれかにそのような値が必要な場合に使用することができます。

2. 入力ツリーの数値 エントリーをクリックすると、対応するダイアログが表示されます。

3. それに次の値を入力します。
   - パラメータ名: 水路決定のしきい値
   - デフォルト値: 1,000,000

【Parameter definition】

これでモデルは次のようにになります。

先ほど追加した入力は使われないので、モデルは実際には変わっていません。その入力を使用するアルゴリズム（この場合は Channel network のもの）にリンクさせる必要があります。モデラーに既に

17.18. より複雑なモデル
存在するアルゴリズムを編集するには、キャンバスの対応するボックス上でペンのアイコンをクリックするだけです。

4. **Channel network** アルゴリズムをクリックすると、次のようにになります。

![Channel network ダイアログ](image)

ダイアログには、アルゴリズムが使用する現在の値が入力されています。開始しきい値 パラメータが 1,000,000 という固定値を持っていることがわかります（これはアルゴリズムのデフォルト値である）が、他のどんな値でも入れることができます。しかし、このパラメータは一般的なテストボックスではなく、ドロップダウンメニューに入力されていることにお気づきでしょうか？

5. しきい値パラメータメニューを展開すると、次のように表示されます。
追加した入力がそこにあり、それを選択できます。モデルでアルゴリズムが数値を必要とするたびに、それをハードコーディングしそれを直接入力することも、使用可能な入力と値のいずれかを使用することもできます（いくつかのアルゴリズムは単一の数値を生成することを思い出してくださ。これについての詳細はすぐに見るように）。文字列パラメーターの場合も文字列の入力が表示され、それらのいずれかを選択することも、所望の固定値を入力することもできます。

6. 開始しきい値 パラメータで、水路決定のしきい値の入力を選択します。

7. OK をクリックすると、モデルに変更が適用されます。これで、モデルのデザインはこのようになります。
8. これでモデルは完成です。これまでのレッスンで使用した DEM を使用し、しきい値を変ええて実行してください。

以下は、異なる値で得られた結果のサンプルです。デフォルトの値の結果と比較できます。これは、hydrological analysis lesson で得られたものです。
図 17.1: しきい値 = 100,000

図 17.2: しきい値 = 1,000,000
17.19 モデラーでの数値計算

警告: 注意してください、この章は十分にテストされていません、問題は何でもご報告ください；画像は欠けています

注釈: このレッスンでは、モデルの数値出力を使用する方法について説明します

このレッスンでは、最後の章（開始前にモデラーで聞く）で作成した水文モデルを変更して、有効なしきい値の計算を自動化でき、ユーザーに入力を依頼する必要がないようにしています。その値は閾値ラスターレイヤー内の変数を指しているので、いくつかの単純な統計分析に基づいて、そのレイヤーからそれを抽出します。

前述のモデルから開始し、以下の修正を行いましょう。

まず、ラスターレイヤー統計アルゴリズムを使用して流量蓄積レイヤーの統計情報を計算します。

![Raster layer statistics](image)

これは統計値のセットを生成し、これで他のアルゴリズムのすべての数値フィールドで利用可能になります。

水路ネットワークアルゴリズムを編集する場合、最後のレッスンで行ったように、追加した数値の入力から離れて他のオプションを持っていることが今度はわかるでしょう。
それは非常に現実的ではない水路ネットワークになりますので、この値はいずれも、有効なしきい値として使用するために適していません。代わりに、より良い結果を得るために、それらに基づいて、いくつかの新しいパラメーターを導出できます。例えば、平均±標準偏差の2倍を使用できます。

その演算処理を追加するには、Geoalgorithms/modeler/modeler-toolsグループで見つける計算機を使用できます。このグループは、モデラーの外に非常に有用ではないアルゴリズムが含まれていますが、モデルの作成時には、いくつかの有用な機能を提供します。

計算機アルゴリズムのパラメーターダイアログボックスは次のようになります。
ご覧になれるように、ダイアログは、見てきた他のものと異なっているが、そこに水路ネットワーク アルゴリズムにしきい値 フィールドで使用可能だった同じ変数を持っています。上記の式を入力し、OK をクリックしてアルゴリズムを追加します。

上記のように出力項目を展開すると、モデルが 2 つの値、つまり平均と標準偏差に接続されていることがわかります。これは、数式で使用した値です。
この新しいアルゴリズムを追加すると、新しい数値を追加します。水路ネットワークアルゴリズムに再度行く場合、今しきい値パラメーターで、その値を選択できます。

OK をクリックすると、モデルは次のようになります。
モデルに追加した数値入力は使用していないので、それは除去できます。それを右クリックして削除を選択します。

警告：TODO：画像を追加します。

新しいモデルが完成しました。

17.20 モデル内のモデル

警告：注意してください。この章はよく検証されていないため、何か問題を見つけたらご報告ください；画像は欠けています

注釈：このレッスンでは、モデルをより大きなモデル内で使用する方法について説明します。

すでにいくつかのモデルを作成してきましたが、このレッスンでは、大きい方の一つにそれらを組み合わせることができる方法を確認しようとしています。モデルはすでにその後に作成し、別のものの一部として作成したモデルを追加できることを意味し、他のアルゴリズム、同じように動作します。
この場合は、それが結果として生成流域のそれぞれに平均 TWI 値を追加することによって、水文モデルを拡張しようとしています。これを行うには、TWI を計算して、統計を計算する必要があります。すでに DEM から TWI を計算するモデルを作成しているので、代わりにそれが個別に含まれているアルゴリズムを追加することで、そのモデルを再利用することをお勧めします。

最後のレッスンのための出発点として使用するモデルを見てみましょう

警告：TODO：画像を追加します。

まず、TWI モデルを追加します。それが利用可能であるためには、ツールボックスやモデラーにおけるアルゴリズムのリストには表示されませんのでなければ、それは、モデルフォルダに保存されている必要があります。それが用意されていることを確認します。

それを現在のモデルに追加し、その入力として入力 DEM を使用します。TWI レイヤーで統計情報を計算したいだけなので、出力は一時的なものです。私たちが作成しているこのモデルの唯一の出力は、まだ流域のベクターレイヤーになるでしょう。

ここでは、対応するパラメーターダイアログは次のとおりです。

警告：TODO：画像を追加します。

今、私たちはそれぞれの流域に対応 TWI の値を含む新しいものを生成するために、流域ベクターレイヤーと一緒にお使いできる TWI レイヤーを持っています。

この計算は、ポリゴンで格リッドの統計情報 アルゴリズムで使用して行われます。最終的な結果を作成するために、入力として上記のレイヤーを使用します。

警告：TODO：画像を追加します。

グリッドクラスをベクターレイア化 アルゴリズムの出力は、もともとは最終的な出力でしたが、今は中間結果として必要です。それを変更するには、アルゴリズムを編集する必要があります。それをダブルクリックするだけで、そのパラメーターのダイアログを表示し、出力の名前を削除します。これによりそれは一時的な出力になるでしょう、それがデフォルトですので。

警告：TODO：画像を追加します。

これは、最終的なモデルがどのようにになるかです：

警告：TODO：画像を追加します。

ご覧のとおり、別のモデルでモデルを使用することは特別なものではありません。モデルがモデルフォルダに保存され、ツールボックスで使用可能になっているかぎり、ちょうど別のアルゴリズムを追加するよ
うに追加できます。

17.21 モデルを作成するためにモデラー専用ツールを使用する

注釈: このレッスンでは、モデラーに追加機能を提供するために、モデラーでのみ利用可能ないいくつかのアルゴリズムを使用する方法を示しています。

このレッスンの目標は、モデラーを使用して現在の選択を考慮に入れる補間アルゴリズムを作成すること、選択地物だけを使用するのではなく、その選択の範囲を使用して補間されるラスタレイヤを作成することです。

補間処理には、先のレッスンで既に説明したように、2つのステップが含まれます。ポイントレイヤーをラスタ化し、ラスタ化されたレイヤーに表示されるデータなしの値を埋めます。ポイントレイヤーに選択がある場合、選択されたポイントのみが使用されますが、出力範囲が自動的に調整されるように設定されている場合は、レイヤーの全範囲が使用されます。つまり、レイヤーの範囲は、常に選択されたものから計算されたものではなく、すべての地物の完全な範囲とみなされます。私たちはモデルにいくつかの追加ツールを使って修正しようとします。

モデラーを開き、必要な入力を追加することによって、モデルを開始します。この場合は、ラスタ化に使用する値を持つ（ポイントに制限）ベクターレイヤーとそれからの属性が必要です。

次のステップは、選択された地物の範囲を計算することです。ベクターレイヤーの境界と呼ばれるモデル専用ツールを使用できる場所です。まず、それらの選択した地物の範囲を有するレイヤーを作成する必要があります。その後、そのレイヤーの上に、このツールを使用できます。
選択された地物の範囲を有するレイヤーを作成する簡単な方法は、入力ポイントレイヤーの凸包を計算することです。凸包は、選択と同じバウンディングボックスを持つことになりますので、それは選択したポイントだけを使用します。その後は、アルゴリズムベクターレイヤーの境界を追加し、入力として凸包レイヤーを使用できます。これは、モデラーのキャンバスでこれを見てください。

ベクターレイヤーの境界からの結果は、4つの数値のセットと範囲オブジェクトです。この演習では数値出力および範囲の両方を使用します。

今、ベクターレイヤーの境界アルゴリズムからの範囲を入力として使用して、ベクターレイヤーをラスターサー化するアルゴリズムを追加できます。
次に示すようなアルゴリズムのパラメーターを入力します。

17.21. モデルを作成するためにモデラー専用ツールを使用する
キャンバスは、今のようにになります。
最後に、ギャップを閉じるアルゴリズムを使用してラスターレイヤーの無データ値を埋めます。

このアルゴリズムは現在保存され、ツールボックスに追加する準備が整いました。それを実行できます。入力レイヤーで選択された点を補間することからラスターレイヤーが作成され、そしてそのレイヤーは選択と同じ範囲になるでしょう。

ここでアルゴリズムの改善があります。ラスタ化する時には、セルサイズについてはハードコードされた harcoded 値を使用しています。この値は、ここでのテスト入力レイヤーにとっては良いですが、他の例にとっては良くないかもしれません。新しいパラメーターを追加してユーザーが希望の値を入力するようにもできるでしょうが、より良いアプローチは、その値を自動的に計算させることです。

モデラー専用計算機を使用し、範囲座標からその値を計算できます。例えば、固定幅の 100 ピクセルのレイヤーを作成するには、計算機で次の式を使用できます。

17.21. モデルを作成するためにモデラー専用ツールを使用する 665
ここでラスターハ化アルゴリズムを、ハードコードされた値の代わりに計算機の出力を使用するように編集する必要があります。

最終的なアルゴリズムはこうなるはずです：
17.22 補間

注釈：この章では、ポイントデータの補間方法について示し、空間分析の実際の実行例を示します。

このレッスンでは、ポイントデータを補間してラスターレイヤーを得ます。それをする前に、若干のデータ準備をする必要があります。また補間した後では、結果レイヤーを修正する追加の処理をいくつか追加するので、完全な分析ルーチンになるでしょう。

このレッスンの例となるデータを開くと、このように見えます。

データは、最新の収穫機によって作られるような、収穫産出高データ、に対応します。そして、ここではそれを収穫産出高のラスターレイヤーを得るために使います。そのレイヤーでさらに何か分析する計画はなく、最も生産的な地域、そして生産性が改善できる地域を簡単に特定するための背景レイヤーとしてのみ使用します。

最初にすることはレイヤーをクリーンアップすることです。なぜならポイントの中には冗長なポイントがあるからです。これらは収穫機が何かの理由で転回したり速度を変えなければならない場所でした動きに起因します。ポイントフィルタアルゴリズムは、これに役立ちます。二回それを使い、分布の上位または下位の部分の両方で外れ値とみなされるポイントを除外します。
最初の実行には、次のパラメーター値を使います。

次の実行には、以下に示す設定を使用します。
入力としてオリジナルレイヤーを使用しているのではなく、以前に実行した際の出力を使用している点に注意してください。

最終的なフィルタレイヤー、減らされたポイントのセットのもの、はオリジナルものと類似して見えるはずですが、含んでいるポイントはより少ないと考えます。それらの属性テーブルで比較すると確認できます。

ではラスター化アルゴリズムを使用してレイヤーをラスター化しましょう。
フィルタされたポイントレイヤーは第二のフィルタの結果のレイヤーを参照します。アルゴリズムによって名前が指定されているため、第一のフィルタによって作成されたレイヤーと同じ名前になりますが、第一のレイヤーは使用しないでください。それは他の何かに使いませんので、混乱を避けるためにプロジェクトから取り除き、最後にフィルタ処理したレイヤーだけを残すことができます。

結果のラスターレイヤーは次のように見えます。
QGIS Training Manual

それはもうラスターレイヤーですが、一部のセルのデータが欠落しています。ラスター化したベクターレ
イヤー由来のポイントを含むセルで有効な値のみを含み、それ以外のセルにはデータなし値を含みます。
この欠落値を埋めるため、 隙間を閉じる アルゴリズムを使用できます。

17.22. 補間

671


データなし値のないレイヤーはこのように見えます。
収穫産出高が計られた地域において、データによっておおわれる地域を制限するために、提供された制限レイヤーでラスターレイヤーを切り抜くことができます。
滑らかな結果（精度は低いがサポートレイヤーとして背景にレンダリングされるには良い）を得るため、レイヤーにガウスフィルタを適用します。
上記のパラメーターで、次の結果が得られます。
17.23 補間（続）

注釈：この章では、補間アルゴリズムが使用される別の実用的な場合を示しています。

補間は一般的な技術であり、QGIS 処理フレームワークを使用して適用できるいくつかの技術を実証するために使用できます。このレッスンでは、すでに導入されたいくつかの補間アルゴリズムを使用しますが、別のアプローチです。

このレッスン用のデータもポイントレイヤーを含んでいますが、この場合は標高データです。前のレッスンで行ったのとずっと同じ方法でそれを補間しようとしているが、今回は元のデータの一部を保存しておいて、補間処理の品質を評価するためにそれを使用します。

まず、ポイントレイヤーをラスター化し、得られていない入力する必要があり - データセルを、しかし、レイヤー内の点のほんの一部を使用しました。ポイントは 10% が後のチェックのため保存されますので、ポイントの 90%が補間のための標準ができている必要があります。そうするために、シェープレイヤーをランダムに分割 アルゴリズムを使用でき、すでに前のレッスンで使用していたが、それを行うには良い方法があります。任意の新しい中間レイヤーを作成することなく、その代わりに、ちょうど補間に使用したいポイント（90%割合を選択できます）。その後、アルゴリズムを実行します。すでに見てきたように、ラ
スター化アルゴリズムは、これらの選択されたポイントを使用し、残りを無視します。選択は、ランダム選択アルゴリズムを使用して行うことができます。次のパラメーターを使用して、それを実行します。

それはラスター化するレイヤー内の点の 90 %を選択します
選択はランダムなので、選択が上記の画像に示すような選択とは異なる場合があります。
今第１ラスターレイヤーを得るため ラスターアルゴリズムを実行し、ギャップを閉じるアルゴリズムを実行して無データセルを埋めます [セル解像度：100 メートル]。
補間の品質を確認するために、今、選択されていないポイントを使用できます。この時点で、実際の標高（ポイントレイヤーにおける値）と補間標高（補間ラスターレイヤーの値を）を知っています。これらの値の差を計算することにより、2つを比較できます。

選択されていないポイントを使用しようとしているので、まず、この選択を反転してみましょう。

ポイントは、元の値ではなく、補間されたものが含まれています。新しいフィールドにそれらを追加するには、ポイントにラスター値を追加アルゴリズムを使用できます。
選択するラスターレイヤー（アルゴリズムでは複数のラスターをサポートしていますが、ここでは１つだけ必要）は、補間から生じるもののです。その名前を補間に変更し、そのレイヤー名は、追加するフィールドの名前に使用されるものです。

今、補間のために使用されなかったポイントで、両方の値を含むベクターレイヤーを持っていきます。
今、この作業にはフィールド計算機を使用します。フィールド計算機アルゴリズムを開き、次のパラメーターを使用して、それを実行します。
ラスターレイヤーからの値を使用して、フィールドには別の名前を持っている場合は、それに応じて上記の式を変更する必要があります。このアルゴリズムを実行すると、それらのそれぞれが2つの標高値の差を含む、補間のために使用していないだけでポイントを持つ新しいレイヤーが得られるでしょう。

その値に従ってそのレイヤーを表現すると最大の不一致がどこに見つかるかの最初のアイデアが得られるでしょう。
そのレイヤーを補間すると補間された地域のすべての点で推定誤差を持つラスターレイヤーを取得します。
GRASS の v.sample で直接に同じ情報（元の点の値と補間のものとの差）を得ることもできます。
このレッスンの初めでランダムな選択を実行する際に導入されるランダム成分があるので、結果はこれら
のものと異なる場合があります。

17.24 アルゴリズムの反復実行

注釈：このレッスンでは、アルゴリズムを繰り返し実行して入力ベクタレイヤの地物に対して反復適用す
るという、ベクタレイヤを使うアルゴリズムを実行する別の方法を示します。

モデルデザイナーが處理タスクを自動化する方法の一つであることは既に分かりました。しかし、状況に
よっては、モデラーが必要なタスクを自動化するための適切な方法ではないかもしれません。そのような
状況のひとつで、異なる機能：アルゴリズムの反復適用を使った、それを簡単に解決する方法を見てみま
しょう。

この章に対応するデータを開きます。それは次のようになります。

前の章でお馴染みの DEM と、それから抽出された一連の流域を認識することができます。DEM をいくつ
かの小さなレイヤに分割し、各レイヤに単一の流域に対応する標高データだけが含まれるようにする必要
があると想像してください。それは後で各流域に関連する、平均標高や高低曲線などのパラメータを計算
したい場合に便利です。

これは、流域の数が多い場合は特に、長くて退屈な作業になることがあります。しかし、それはこれから
ご覧になるように簡単に自動化できる作業です。

第 17 章 QGIS プロセッシングガイド
ポリゴンレイヤでラスタレイヤを切り抜くために使うアルゴリズムは、Clip raster with polygons（ポリゴンでラスタをクリップ）と呼ばれ、以下のパラメータダイアログボックスを持っています。

流域レイヤーとDEMを入力として使ってそれを実行できます。そして次の結果が得られます。
ご覧のように、すべての分水界ポリゴンで覆われた領域が使用されています。

望む流域を選択し、前に行ったアルゴリズムを実行することにより、1つだけの流域で切り抜かれたDEMが得られます。
選択した地物だけが使われるので、選択されたポリゴンだけがラスタレイヤを切り抜くために使われます。

すべての流域についてこれを行えば、求めている結果が生成されますが、あまり現実的な方法とは思えません。その代わりに、その選択と切り抜きルーチンを自動化する方法を見てみましょう。

まず、前の選択を解除して、全てのポリゴンが再度使用されるようにします。次に、Clip raster with polygon（ポリゴンでラスタをクリップする）アルゴリズムを開き、以前と同じ入力を選択しますが、今回は、選択した集水域レイヤの右側にあるベクターレイヤの入力にあるボタンをクリックします。
このボタンを押すと、選択した入力レイヤはそこにあらわれる地物の数だけ分割され、ひとつのポリゴンを含んだレイヤに分割されます。そのため、アルゴリズムはそれぞれの単一ポリゴンレイヤに対して繰り返し呼び出されます。このアルゴリズムの場合、結果は1つのラスタレイヤではなく、アルゴリズムの実行ごとに応じて複数のラスタレイヤのセットになります。

こちらが説明したようにクリッピングアルゴリズムを実行した場合に得られる結果です。
各レイヤについて、黒と白のカラーバレット（または使用しているパレット）は、最小値から最大値まで異なるように調整されます。そのため、レイヤ間の境界線では、異なるピースと色が一致しないように見えますが、値は一致しています。

出力ファイル名を入力した場合、結果のファイルは、そのファイル名と接尾辞としてそれぞれの反復に対応する番号を使用して名前が付けられます。

17.25 アルゴリズムの反復実行（続）

注釈：このレッスンでは、より一層の自動化をするために、アルゴリズムの反復実行をモデルと組み合わせる方法を示します。

アルゴリズムの反復実行は、内蔵されたアルゴリズムに対してのみでなく、モデルなど、自作できるアルゴリズムに対しても使用可能です。より複雑な結果を簡単に得られるように、モデルとアルゴリズムの反復実行を組み合わせる方法を示していきます。

このレッスンのために使用しようとしているデータは、すでに直前に使用したのと同じものです。この場合、各分水界ポリゴンでDEMをクリッピングするだけでなく、いくつかの余分なステップを追加し、各々についてそれぞれの面積高度曲線を計算し、高度が流域内にどう分布するかを考察します。

いくつかのステップ（面積高度曲線を計算+クリッピング）を必要とするワークフローを持っているので、モデラーに移動し、そのワークフローの対応するモデルを作成する必要があります。
このレッスン用のデータフォルダ内に既に作成したモデルが見つかりますが、最初は自分で作成してみると良いでしょう。興味があるのは曲線だけなので、この場合はクリップされたレイヤーは最終的な結果ではありません。だからこのモデルでは、何もレイヤーを作成せず、曲線データを有するテーブルを作成するだけです。

モデルは次のようになります。

モデルフォルダにこのモデルを追加すると、ツールボックスで使用可能になるので、それを実行します。

DEM および流域を選択します。

アルゴリズムによりすべての盆地のテーブルが作成され、出力ディレクトリに置かれます。

この例をより複雑にして、モデルを拡張し、斜面の統計をいくつか計算できます。勾配アルゴリズムをモデルに追加し、それからラスター統計アルゴリズムを追加します。その唯一の入力として傾斜出力を使用すべき。
ここでモデルを実行すると、テーブルと別に、統計が入ったページのセットが得られるでしょう。これらのページは結果ダイアログで利用できます。

17.26 パッチ処理インターフェイス

注釈: このレッスンではパッチ処理インターフェイスを紹介します。1つのアルゴリズムをさまざまな入力値のセットで実行できます。

あるアルゴリズムを異なる入力で繰り返し実行しなければならないことがあります。例えば、入力ファイルの集合をあるフォーマットから別のフォーマットに変換しなければならない場合や、ある投影法の複数のレイヤを別の投影法に変換しなければならない場合などです。

その場合には、ツールボックスに繰り返しアルゴリズムを呼び出すのは最良の選択肢ではありません。代わりに、パッチ処理インターフェイスを使用するべきです。そうすれば与えられたアルゴリズムの複数の実行が大幅に簡略化されます。パッチプロセスとしてアルゴリズムを実行するには、ツールボックスでそれを見つけ、ダブルクリックではなく右クリックして、パッチ処理として実行を選択します。
この例では、再投影アルゴリズムを使用するので、前述したようにそれを見つけて実行します。次のダイアログが表示されるでしょう。

このレッスンのためのデータを見てみると、3つのシェープファイルのセットは含むが、QGIS プロジェクトファイルが含まれていないことがわかります。アルゴリズムは、バッチプロセスとして実行されると、レイヤの入力は、現在のQGISプロジェクトまたはファイルのいずれかから選択できるからです。それによって、例えば指定したフォルダ内のすべてのレイヤなど、大量のレイヤを簡単に処理できるようになります。

バッチ処理ダイアログのテーブルの各行は、アルゴリズムの単一の実行を表します。行のセルはアルゴリズムによって必要とされるパラメーターに対応します。これは、通常の単一実行ダイアログの中でのように互いに上下にではなく、その行に水平に配置されます。

実行するバッチ処理を定義するには、テーブルに対応する値を入力します。ダイアログ自体には、この作業を容易にするためのいくつかのツールが含まれています。

フィールドの一つ一つを入力始めましょう。入力する最初の列は、入力レイヤ列です。処理したいレイヤのそれぞれの名前を入力する代わりに、それらのすべてを選択してダイアログが各行にひとつを入れるようにさせることができます。左上のセル内のボタンをクリックし、ポップアップするファイル選択ダイアログで、再投影する3つのファイルを選択します。行ごとにそれらの1つだけが必要とされるので、残りは下の行を埋めるために使用されます。
デフォルトの行数は 3 で、これはちょうど変換する必要があるレイヤの数ですが、より多くのレイヤを選択した場合、新しい行が自動的に追加されます。手動でエントリを記入したい場合は、行を追加ボタンを使用して複数の行を追加できます。

これらのレイヤをすべて EPSG:23029 CRS に変換しようとしているので、2 番目のフィールドでその CRS を選択する必要があります。すべての行で同じにしたいが、各行ひとつひとつに対してそれを行う必要はありません。その代わりに、1 行目（最上の 1 つ）にその CRS を、対応するセル内のボタンを使用して設定し、列見出しをダブルクリックします。それにより、列のすべてのセルが最上セルの値を使用して埋められます。
最後に、対応する再投影レイヤが含まれています、各実行のための出力ファイルを選択する必要があります。もう一度、ちょっと最初の行のためにそれをやらせます。上部セル内のボタンをクリックし、出力ファイルを選択したいフォルダにファイル名を入力します（例えば、reprojected.shp）。

さて、ファイル選択ダイアログ上で OK をクリックすると、ファイルは自動的にセルに書き込まれず、以下のようないろいろな入力ボックスが代わりに表示されます。

最初のオプションを選択した場合のみ、現在のセルが入力されます。他のいずれかを選択した場合は、以下のすべての行は、与えられたパターンで埋められます。この場合は、パラメーター値で埋めるオプションを、そしてその後に下のドロップダウンメニューで入力レイヤ値を選択しようとしています。追加したファイル名に追加する（つまり、レイヤ名です）入力レイヤの値が発生して、各出力ファイル名が異なるようになります。バッチ処理テーブルはこのようなになるはずです：
最後の列は、得られるレイヤを現在の QGIS プロジェクトに追加するかどうかを設定します。このような場合には、結果を見ることができるよう、デフォルトの はいオプションのままにしておきます。

OK をクリックするとバッチ処理が実行されます。すべてがうまくいった場合は、すべてのレイヤが処理され、3 つの新しいレイヤが作成されているでしょう。

17.27 バッチ プロセッシング インタフェースのモデル

警告：注意してください。この章はよく検証されていないため、どんな問題でも報告してください。画像は欠けています

注釈：このレッスンではバッチプロセッシングインタフェースのまた別の例を示しますが、今回は内蔵アルゴリズムでなくモデルを使用します

モデルは他のアルゴリズムとまったく同様で、バッチ処理インターフェイスで使用できます。それを実装するための、すでによく知られている水文モデルを使用して行うことができる簡単な例を出します。

モデルがツールボックスに追加した、その後、バッチモードで実行していることを確認します。これは、バッチ処理] ダイアログボックスがどのように見えるかです。
警告: todo: 画像を追加

行を合計5行になるまで追加します。それらのすべてについて、入力として、このレッスンに対応したDEMファイルを選択します。それから、次に示すように5つの異なるしきい値を入力します。

警告: todo: 画像を追加

おわりのようにバッチ処理インターフェイスは、異なるデータセットに同じプロセスを実行するだけでなく、異なるパラメーターで同じデータセットに同じプロセスを実行するために実行できます。

OKをクリックすると、指定された5つのしきい値に対応する流域を持つ5つの新しいレイヤーが得られます。

17.28 実行前後のスクリプトのフック

注釈: このレッスンでは、実行前および実行後のフックを使用して、実際の処理の前と後に追加の操作を実行できるようにする方法を示します。

実行前後のフックは、実際のデータ処理が実行される前と後に実行されるプロセッシングのスクリプトです。これは、アルゴリズムが実行されるたびに実行されるべき作業を自動化するために使用できます。

フックの構文は処理スクリプトの構文と同じです。詳細はQGISユーザーガイドの対応する章を参照してください。

すべてのスクリプト機能に加えて、フックではalgという名前の特別なグローバル変数を使用できます、これはちょっと実行された（またはされようとしている）アルゴリズムを表します。

ここに実行後スクリプトの例があります。デフォルトでは、プロセッシングは一時ファイルでの解析結果を格納します。このスクリプトは、特定のディレクトリに出力をコピーしますので、それはQGISを閉じた後に削除されることはありません。

```python
import os
import shutil
from processing.core.outputs import OutputVector, OutputRaster, OutputFile

MY_DIRECTORY = '/home/alex/outputs'

for output in alg.outputs:
 if isinstance(output, (OutputVector, OutputRaster, OutputFile)):
 dirname = os.path.split(output.value)[0]
 shutil.copytree(dirname, MY_DIRECTORY)
```
例えば、ファイル名を抽出し、ファイルをコピーするような様々なファイルシステム操作のための shutil
---、パス操作のために --- os：最初の 2 行では、必要な Python パッケージをインポートします。三行目で
は、処理の出力をインポートします。これは、このレッスンの後半でより詳しく説明します。

それから、分析結果をコピーしたいディレクトリへのパスである MY_DIRECTORY 定数を定義します。

スクリプトの終わりには、メインのフックのコードがあります。このループ中では、アルゴリズムの出力
すべてについて反復処理し、この出力がファイルベースの出力でありコピーできるかどうかを確認します。
そうである場合は、出力ファイルが置かれる最上位ディレクトリを決定し、そのディレクトリにすべての
ファイルをコピーします。

このフックを有効にするには、[ プロセッシング ] オプションを開き、一般 グループで Post-execution script
file という名前のエントリーを見つけ、そこにフックスクリプトのファイル名を指定します。指定された
フックは、各プロセッシングアルゴリズムの後に実行されます。

同様にして、実行前フックを実装できます。たとえば、幾何学的エラーがないかどうか入力ベクターを
チェックするフックを作成してみましょう。

```python
from qgis.core import QgsGeometry, QgsFeatureRequest
from processing.core.parameters import ParameterVector

for param in alg.parameters:
 if isinstance(param, ParameterVector):
 layer = processing.getObject(param.value)
 for f in layer.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([])):
 errors = f.geometry().validateGeometry()
 if len(errors) > 0:
 progress.setInfo('One of the input vectors contains invalid geometries!')
```

前の例のように、まず最初に必要な QGIS と処理パッケージをインポートします。

その後、すべてのアルゴリズムパラメーターを反復して ParameterVector パラメーターが見つかった場合、
それから、対応するベクターレイヤーオブジェクトを取得します。レイヤーのすべての地物をループし、
ジオメトリエラーのためにそれらを確認してください。少なくとも 1 つの地物に無効なジオメトリが含ま
れている場合、警告メッセージを出力します。

このフックを有効にするには処理の設定ダイアログのオプション 実行前スクリプトファイル にそのファイ
ル名を入力する必要があります。フックは、任意の処理アルゴリズムを実行する前に実行されます。

### 17.29 その他のプログラム

モジュール提供：Paolo Cavallini - Faunalia

注釈：この章では、処理の中から、追加のプログラムを使用する方法を示しています。それを見るとするに
は、オペレーティング・システム、関連するパッケージのツールを使用して、インストールしている必要
があります。

---

17.29. その他のプログラム 697
17.29.1 GRASS

GRASSは、地理空間データの管理と分析、画像処理、グラフィックス、地図制作、空間的モデリング、および視覚化のための、フリーでオープンソースのGISソフトウェアスイートです。
これはOSGeo4Wスタンダードアロンインストール（32ビットおよび64ビット）でWindowsにデフォルトでインストールされ、そしてそれはすべての主要なLinuxディストリビューション用にパッケージされていま

17.29.2 R

Rは、統計計算およびグラフィックス用の、フリーでオープンソースのソフトウェア環境です。
いくつかの必要なライブラリ（LIST）とともに、別途インストールする必要があります。QGISでRを使用できるようにには、Processing R Provider プラグインもインストールする必要があります。
プロセッシングの実装の美点は、ご自身のスクリプトを単純なものも複雑なものも追加できること、それらはその後、より複雑なワークフローにパイプされ、他のモジュールとして使用できること、などです。
Rがすでにインストールされている場合（プロセッシングの一般的な設定からRモジュールをアクティブにすることを忘れないでください）、プリインストールされている例のいくつかをテストします。

17.29.3 他

LASToolsはレーザー測量データを処理し分析するための、混合されたフリーの独自コマンドのセットです。さまざまなオペレーティングシステムで可用性が様々です。
その他のツールは、例えば追加プラグインを通じて入手できます。

• LecoS：土地被覆統計と景観生態学のスイート
• lwgeom：PostGISの以前の一部は、このライブラリは、ジオメトリのクリーンアップのためのいくつかの便利なツールを提供します
• Animove：ツールは、動物の家屋の範囲を分析します。
さらに追加予定。

17.29.4 パックエンドの間での比較

バッファと距離

points.shpをロードしてツールボックスのフィルタでbufとタイプし、それからダブルクリックします：

• 一定距離バッファ：距離は10000
• 可変距離バッファ：距離フィールドは[サイズ]
• v.buffer.distance：距離は10000
• `v.buffer.column` : `bufcolumn SIZE`

• シェイブバッファ：固定値 10000（ディゾルプするおよびしない、縮尺付き）フィールド属性

速度がかなり異なっているか、さまざまなオプションが用意されていることを確認します。

読者のための練習：ジオメトリ出力での異なる方法間の差を見つけます。

さて、ラスターバッファとの距離：

• まず、`GRASS v.to.rast.value` でベクター `rivers.shp` をロードしてラスター化します。注意：セルサイズは 100 メートルに設定する必要があり、そうでなければ計算時間が膨大になります。結果の

地図は 1 と NULL を持つことになります

• 同じく、`SAGA` からグリッド `COUNT` で（結果の地図：6 to 60）

• 次に、`proximity` （`GRASS` の値 = 1、`SAGA` のための河川 ID のリスト）、パラメーター 1000,2000,3000

で `r.buffer r.grow.distance` （2 つの地図のうち 1 つ目；`SAGA` ラスターで行われる場合は、2 番目は各

河川に関連する領域が表示されます）

ディゾルプ

共通の属性に基づいて地物をディゾルプします：

• `GRASS v.dissolve municipalities.shp on PROVINCIA`

• `QGIS` からディゾルプ `municipalities.shp on PROVINCIA`

• `OGR` からディゾルプ `municipalities.shp on PROVINCIA`

• `SAGA` からポリゴンディゾルプ `municipalities.shp PROVINCIA` 上（注：内側境界を保持）未選択

にしてください）

注記：最後の一つは `SAGA<= 2.10` では壊れています

読者のための練習：異なる方法での差（形状と属性）を見つけてください。

17.30 補間と等高線作成

モジュール提供：Paolo Cavallini - Faunalia

注記：この章では、さまざまな補間を計算するために、異なるバックエンドを使用する方法を示しています。
17.30.1 補間

このプロジェクトは、南から北へ、降雨量の計測を示しています。補間のためのさまざまな方法を使用してみましょう。すべてベクター points.shp、パラメーター RAIN に基づきます。

警告: すべての分析に対してセルのサイズは 500 に設定します。

- GRASS v.surf.rst
- SAGA マルチレベル B スプライン補間
- SAGA 逆距離荷重 [べきの逆距離。べき: 4。検索半径: グローバル。検索範囲: すべてのポイント]
- GDAL グリッド [べきの逆距離] [べき: 4]
- GDAL グリッド [移動平均] [Radius1&2: 50000]

次いで、方法間の分散を測定して点までの距離との相関をとります。

- GRASS r.series [Unselect Propagate NULLs, Aggregate operation: stddev]
- GRASS v.to.rast.value on points.shp
- GDAL 近接
- GRASS r.covar で相関マトリックスを表示: 例えば http://vassarstats.net/rsig.html で相関の有意性をチェックします。

このように、ポイントから遠くの領域ではより正確でない補間になります。

17.30.2 等高線

stddev ラスターに等高線を描くための様々な方法 [always step = 10] で:

- GRASS r.contour.step
- GDAL 等高線
- SAGA グリッドからの等高線 [注意: いくつかの古い SAGA のバージョンでは、出力 shp は有効ではなく、既知のバグです]

17.31 ベクターの単純化と平滑化

Module contributed by Paolo Cavallini - Faunalia

注記: この章では、ベクターを単純化し、鋭い角を滑らかにする方法を示します。

時にベクターの単純な版が必要になることがあります。小さいファイルサイズを持つように、不必要的詳細を取り除きます。多くのツールは非常に粗雑なやり方でこれを行うので、隣接関係を損なったり、多角
形が位相的な正しくなくなったりすることもあります。GRASS は、このための理想的なツールです。位相的な GIS ですので、隅接関係および正しさは非常に高い単純化レベルであっても保たれています。私たちのケースでは、ラスターから得られたベクターがあり、これはしたがって境界で「のこぎり」パターンを示します。単純化を適用した結果は直線になります：

- **GRASS v.generalize** [最大許容値 30 M]

また、逆の操作を行い、レイヤーをより複雑にして鋭い角を滑らかにできます：

- **GRASS v.generalize** [方法：chaiken]

この 2 番目のコマンドを、元のベクターおよび最初の分析からのもの両方に適用してみて、違いを見てください。隅接関係が失われないように注意してください。

この第 2 のオプションは、例えば、粗いラスターに起因する等高線、頂点が疎な GPS トラック、等に適用できます

### 17.32 太陽光発電所を計画する

モジュール提供：Paolo Cavallini - Faunalia

注釈：この章では、太陽光発電所を設置するに適した地域を特定するために、いくつかの基準を使用する方法を示しています

まず第一に、DTM から傾斜方向図を作成します。

- **GRASS r.aspect** [データの型：int；セルサイズ：100]

GRASS において、向きは、反時計回りに東から出発して、度で計算されます。南向きの斜面だけを抽出するには（270 度+ - 45）。それらを再分類できます：

- **GRASS r.reclass**

次のルールで:

```
225 thru 315 = 1 south
* = NULL
```

提供されるテキストファイル reclass_south.txt を使用できます。これらの単純なテキストファイルで、非常に複雑な再分類も作成することに注意してください。

大きな発電所を構築したいので、連続した大きな (> 100 ヘクタール) 領域だけを選択します：

- **GRASS r.reclass.greater**

最後に、ベクターに変換します

- **GRASS r.to.vect** [地物の種類：エリア；角を滑らかに：はい]

読者のための練習：GRASS コマンドを他のプログラムからの類似の物に置き換えて、分析を繰り返してください。
17.33 プロセシングでRスクリプトを使用する

このモジュールは、Matteo Ghetta が提供し、Scuola Superiore Sant’Anna が資金を提供しました

（Processing R Provider による）プロセシングは、QGIS の内部で R スクリプトを書いて実行することを可能にします。

警告：コンピュータに R がインストールされ、PATH が正しく設定されている必要があります。さらにプロセシングは外部の R バッケージを呼び出すだけで、それをインストールすることはできません。ですから外部パッケージは必ず R で直接インストールするようにしてください。ユーザーマニュアルの関連する章を参照してください。

注釈：パッケージの問題がある場合、それは sp, rgdal, raster などのプロセシングで必要な必須パッケージが欠けていることに関連しているかもしれません。

17.33.1 スクリプトを追加する

スクリプトを追加するのは簡単です。最も簡単な方法は、プロセシングツールボックスを開き、プロセシングツールボックスの上部にある R メニュー（R のアイコンがついている）から Create new R script... を選択することです。また、例えばテキストエディタでスクリプトを作成し、R スクリプトフォルダ（processing/rscripts）に保存することもできます。そこに保存されると、プロセシングツールボックスのスクリプト名を右クリックして Edit Script... を選択することで編集できるようになります。

注釈：プロセシングの中に R が見あたらない場合は、プロセシングオプションのプロバイダを有効
にする必要があります

スクリプト本体を追加できる前にいくつかのパラメーターを指定する必要があるスクリプトエディタウィンドウを開きます。

17.33.2 プロットを作成する

このチュートリアルでは、ベクタレイヤフィールドの箱ひげ図を作成しようとしています。
exercise_data/processing/r_intro/フォルダの下にあるr_intro.qgs QGISプロジェクトを開きます。

スクリプトのパラメーター

エディタを開いて、それの最初に書き始めます。
スクリプト本体の前にいくつかのパラメーターを指定する必要があります：

1. スクリプトを置くグループの名前（この場合はplots）(グループが存在しない場合は作成されます）:

```
##plots=group
```

スクリプトはプロセシングツールボックスのplots Rグループ内にあります。

2. プロットを（この例に）表示したいことをプロセシングに伝える必要があります:

```
##showplots
```

すると、結果ビューアパネルにプロットへのリンクが表示されます（ビュー 画面パネルとプロセシング結果ビュアでオン/オフを切り替えることができます）。

3. また、入力データについてプロセシングに伝える必要があります。この例では、ベクタレイヤのフィールドからプロットを作成したいと思います:

```
##Layer=vector
```
プロセッシングは入力がベクトルであることが判りました。Layer という名前は重要ではなく、重要なのは vector というパラメータです。

4. 最後に、（上記で指定した名前 レイヤを使って）ベクトライヤの入力フィールドを指定します:

```r
##X=Field Layer
```

これでプロセッシングは、Layer というフィールドが必要で、それを X と呼ぶことを知りました。

5. また、name を使ってスクリプトの名前を定義することも可能です:

```r
##My box plot script=name
```

定義されていない場合、ファイル名がスクリプトの名前として使用されます。

スクリプト本体

今、機能を追加できるスクリプトの 見出し を設定し終わりました:

```r
boxplot(Layer[[X]])
```

boxplot は R 関数の名前で、パラメータ Layer は入力データセットに定義した名前、X はそのデータセットのフィールドに定義した名前です。

警告: パラメータ X は二重の角括弧 ([[]]) の中に入れる必要があります。

最後のスクリプトは次のようにになります:

```r
##Vector processing=group
##showplots
##Layer=vector
##X=Field Layer
boxplot(Layer[[X]])
```
プロセシングが提案するデフォルトのパス (processing/rscripts) にスクリプトを保存します。スクリプトの見出しに name を定義していない場合、選択したファイル名がプロセシングツールボックスのスクリプトの名前となります。

注釈：スクリプトは好きな場所に保存できますが、その場合プロセシングでは自動的にプロセシングツールボックスに含めることができないので、手動でアップロードする必要があります。

今、エディタ・ウィンドウの上部にあるボタンを使用して、それを実行します。

エディタウィンドウを閉じたら、プロセシングのテキストボックスを使って、スクリプトを探します:

```r
Vector processing = group
showplots
Layer = vector
X = Field Layer
boxplot(Layer[[X]])
```

これで、プロセシングアルゴリズムウィンドウに必要なパラメータを入力することができます:

- **Layer** に sample_points を選びます
- X フィールドに value を選びます

[実行] をクリックしてください。

17.33. プロセシングで R スクリプトを使用する
結果ウィンドウが自動的に開くはずですが、そうでない場合はプロセシングウインドウの結果ビューアをクリックするだけです。

ビューアにあるリンクをクリックすると次が表示されます:
注釈: プロットで右クリックすることでその画像を開いたりコピーしたり保存することができます。

### 17.33.3 ベクタを作成する

また、ベクタレイヤを作成し、QGIS に自動的に読み込ませることもできます。

以下の例は、R スクリプトのオンラインコレクションにある Random sampling grid スクリプトから引用したもので（このオンラインコレクションのスクリプトは [https://github.com/qgis/QGIS-Processing/tree/master/rscripts](https://github.com/qgis/QGIS-Processing/tree/master/rscripts) で見ることができます）。

この演習の目的は、sp パッケージの spsample 関数を使用して、範囲を制限する入力ベクタレイヤを使ってランダムポイントベクタレイヤを作成することです。
スクリプトのパラメーター

前と同じように、スクリプト本体の前にいくつかのパラメーターを設定する必要があります。

1. スクリプトを入れるグループ名（ここでは ポイントパターン解析）を指定します:

   ```
 #Point pattern analysis=group
   ```

2. ランダムポイントの配置を制約する入力パラメータ（ベクタレイヤ）を定義します:

   ```
 #Layer=vector
   ```

3. 作成するポイントの数を入力パラメータで設定します（Size、デフォルト値は"10"）:

   ```
 #Size=number 10
   ```

   注釈：デフォルト値（10）が定義されているため、ユーザーはこの数値を変更するか数値のないパラメータのままにすることもできます。

4. （Output と呼ばれる）出力ベクタレイヤがあることを指定します:

   ```
 #Output=output vector
   ```

スクリプト本体

今、関数の本体を追加できます。

1. spssample 関数を使います:

   ```
 pts=spsample(Layer, Size, type="random")
   ```

   この関数は、Layer を使用して、点の配置を制約します（線レイヤの場合、点はレイヤ内のいずれかの線上にある必要があり、ポリゴンレイヤの場合、点はポリゴン内にある必要があります）。点の数は Size パラメータで指定します。サンプリング方法は、random です。

2. 出力（"Output" パラメータ）を生成します:

   ```
 Output=TemporalPointsDataFrame(pts, as.data.frame(pts))
   ```

最後のスクリプトは次のようになります:

```
#Point pattern analysis=group
#Layer=vector
#Size=number 10
#Output=output vector
pts=spsample(Layer, Size, type="random")
Output=TemporalPointsDataFrame(pts, as.data.frame(pts))
```
保存し、実行ボタンをクリックして実行します。
新しいウィンドウで正しいパラメーターを入力し:

そして実行をクリックしてください。
結果レイヤが目次に追加され、そのポイントがマップキャンパスに表示されます:

17.33. プロセッシングで R スクリプトを使用する
17.33.4 R からのテキスト・グラフ出力 - 文法

```
Processing R Provider plugin
```

コマンドの前に `>` は、`>lillie.test(Layer[[Field]])` 中で、結果が R 出力（結果ビューア）に送られるべきことを意味します。

プロットの後に `+` を付けると、オーバーレイプロットを有効にします。例えば、
```R
plot(Layer[[X]], Layer[[Y]]) + abline(h=mean(Layer[[X]]))
```

17.34 地滑りを予測する

Module contributed by Paolo Cavallini - Faunalia

注釈: この章では、地滑りの可能性を予測するために過度に単純化したモデルを作成する方法を示します。

まず、傾斜を計算します（様々なバックエンドの中から選択します；興味のある読者は出力の差分を計算できます）。

- **GRASS** `r.slope`
- **SAGA** 傾斜、向き、曲率
- **GDAL** 傾斜

それから、気象衛星局での降雨値の補間に基づいて、予測雨量のモデルを作成します。

- **GRASS** `v.surf.rst`（解像度：500 メートル）
地すべりの確率は非常に大ざっぱには降雨と傾斜の両方に関連します（もちろん、現実のモデルは、より多くのレイヤー、および適切なパラメータを使用します）、（降雨*傾斜）/100 としましょう。

・ SAGA で ラスター計算機 降雨、傾斜: (a*b)/100 (または: GRASS で r.mapcalc)

・ その後、予測される降雨の危険性が最大である自治体がどこか計算してみましょう: SAGA で ポリゴンでのラスター統計（関心のパラメーターは最大と平均）。
第18章 Module: QGISで空間データベースを使用する

このモジュールでは、QGISで空間データベースを使用し、データベース内のデータを管理、表示、操作する方法と、クエリによる解析を行う方法について学びます。主に PostgreSQLとPostGIS（前の節で取り上げました）を使用しますが、同じコンセプトは SpatiaLiteなど他の空間データベース実装にも適用できます。

18.1 Lesson: QGISブラウザにおいてデータベースで作業する

前の2つのモジュールでは、リレーショナルデータベースの基本的な概念、特徴および機能だけでなく、保存、管理、クエリとリレーショナルデータベース内の空間データを操作できる機能拡張について見ました。このセクションでは、効率的にQGISで空間データベースを使用する方法について深掘りします。

このレッスンの目的：QGISのブラウザのインターフェイスを使って空間的なデータベースをどのように作用させるのかを学びます。

18.1.1 Follow Along: ブラウザを使用してQGISにデータベーステーブルを追加する

すでにQGISレイヤーとしてデータベースからテーブルを追加する方法を簡単に見てきました。これをもう少し詳細に見て、これがQGISで行うことができるさまざまな方法を見てみましょう。新しいブラウザ・インターフェイスを見ることで開始できます。

・QGISで新しい空の地図を開きます。
・レイヤーパネルの下部にあるブラウザタブをクリックしてブラウザを開きます
・木のPostGISの部分を開きます。前に設定した接続が可能なはずです（ブラウザウィンドウの上部にある[更新]ボタンをクリックする必要があるかもしれません）。
・ここに記載されているテーブル/レイヤーのいずれかをダブルクリックすると、それが地図キャンバスに追加されます。

・このビューでテーブル/レイヤーを右クリックすると、いくつかのオプションを提供します。レイヤーのプロパティを見るためにプロパティ項目をクリックしてください。
18.1.2 Follow Along: レコードのフィルタセットをレイヤーとして追加する

今、QGIS レイヤーとしてテーブル全体を追加する方法を見てきたので、前のセクションで学んだクエリを使用して、レイヤーとしてテーブルからレコードのフィルタセットを追加する方法を学ぶのはいいかもしれません。

・レイヤーなしで新しい空の地図を開始

・PostGIS レイヤーを追加 ボタンをクリックするか、メニューから レイヤー ▶ PostGIS レイヤーを追加 を選択します。

・表示される PostGIS のテーブルを追加 ダイアログで、postgis_demo 接続に接続します。

・パブリックスキーマ を展開し、以前に使用していた 3 つのテーブルを見つける必要があります。
• lines レイヤーをクリックして選択しますが、それを追加する代わりに、フィルタを設定ボタンをクリックして、クエリビルダーダイアログを起動してください。

• それを直接入力してボタンを使用するか、次の式を構築する：

"roadtype" = 'major'

• OK をクリックしてフィルタの編集を完了し、追加をクリックして地図にフィルタレイヤーを追加します。

• ツリー内で lines レイヤーの名前を roads_primary に変更します。

地図にはレイヤー全体ではなく主要道路のみが追加されていることに気づくでしょう。
18.1.3 In Conclusion

QGIS ブラウザを使用して空間データベースと対話する方法、およびクエリフィルタに基づいて地図にレイヤーを追加する方法を見ることができました。

18.1.4 What's Next?

次はデータベース管理作業のより完全なセットのために QGIS の DB マネージャインタフェイスで作業する方法について説明します。

18.2 Lesson: DB マネージャを使用して QGIS で空間データベースと連携する

すでに QGIS や他のツールで多くのデータベース操作を実行する方法を見ることができましたが、今度は、この同じ機能の多くに加えてさらに管理指向のツールを提供する DB 管理者ツールを検討します。

このレッスンの目標：QGIS の DB マネージャを使用して、空間データベースと対話する方法を学びます。

18.2.1 Follow Along: DB マネージャで PostGIS データベースを管理する

最初に DB マネージャのインターフェイスを開く必要があります。それはデータベース -> DB マネージャ -> DB マネージャメニューを選択するか、ツールバー上の DB マネージャアイコンを選択します。

すでに設定した接続が表示され、myPGセクションとそのpublicスキーマを展開すると、前のセクションで扱ったテーブルを見ることができはずです。

まず最初に気づくのは、データベース含まれるスキーマに関するメタデータが表示されるようになったことです。
スキーマは PostgreSQL データベースのデータテーブルやその他のオブジェクトをグループ化する方法であり、権限やその他の制約のためのコンテナでもあります。PostgreSQL のスキーマの管理はこのマニュアルの範囲外ですが、PostgreSQL documentation on Schemas にスキーマに関するより多くの情報があります。DB マネージャを使用して新しいスキーマを作成することができますが、効果的に管理するためには pgAdmin III やコマンドラインインタフェースのようなツールを使用する必要があります。

DB マネージャは、データベース内のテーブルを管理するために使用できます。すでに、コマンドライン上でテーブルを作成し管理するためのさまざまな方法を見てきていますが、ここで DB マネージャでこれを行う方法を見てみましょう。

まず、ツリー内の名前をクリックして 情報 タブの中を見ることで、テーブルのメタデータを見てみること は有用です。
このパネルでは、テーブルについての一般情報も、ジオメトリと空間参照系に関して PostGIS 拡張が維持している情報を見ることができます。

情報 タブで下にスクロールした場合、表示しているテーブルに対して、属性、制約、インデックスについての詳細な情報を見ることができます。
単にレイヤツリーにレイヤの属性テーブルを表示することによって、これを行う可能性がありますほとんど同じ方法でデータベース内のレコードを見て DB マネージャを使用することも非常に便利。テーブルタブを選択して、データを閲覧できます。
地図プレビューでレイヤのデータが表示されるプレビュータブもあります。
ツリー内のレイヤを右クリックし、キャンバスに追加をクリックすると地図にこのレイヤが追加されます。
これまでのところはデータベース、そのスキーマとテーブル、それらのメタデータを閲覧しているだけです。
もしテーブルを変更して列を追加したいしたらどうでしょう。DB マネージャを使えば、これを直接行うことができます。

1. ツリーで、編集するテーブルを選択します
2. メニューからテーブル → テーブルを編集を選択し、テーブルプロパティ ダイアログを表示します。
列を追加するには、このダイアログを使用してジオメトリ列を追加し、既存の列を編集したり、列を完全に削除できます。

制約タブを使用、どのフィールドが主キーとして使用されるか、既存の制約を削除するために管理できます。
インデックス タブは、空間索引と通常のインデックスの両方を追加および削除するために使用できます。
18.2.2 Follow Along: 新しいテーブルを作成する

データベース内の既存のテーブルでの作業のプロセスを一通り終えましたので、ここで DB マネージャを使用して新しいテーブルを作成してみましょう。

1. まだ開いていない場合は、DB マネージャウィンドウを開き、データベースに既にあるテーブルのリストが表示されるまでツリー展開します。

2. メニューから テーブル→テーブルを作成 を選択し、[テーブルの作成]ダイアログを開きます。

3. デフォルトの Public スキーマを使用し、テーブル名を places とします。

4. 以下のように id, place_name, elevation フィールドを追加します。

5. id フィールドが主キーとして設定されていることを確認します。

6. ジオメトリカラムを作成のチェックボックスをクリックし、POINT 型に設定されていることを確認し、名前を geom にして、4326 を SRID として指定します。

7. 空間インデックスを作成の横にあるチェックボックスをクリックし、作成をクリックしてテーブルを作成します。
8. テーブルが作成されたことを知らせるダイアログを閉じ、閉じるをクリックして「テーブル作成」
ダイアログを閉じます。

これで、DB マネージャで、テーブルを検査できますし、もちろんその中にデータがないことがわかります。ここからレイヤのメニューで編集を切替えます、テーブルに場所の追加を開始します。

18.2.3  
**Follow Along: 基本的なデータベース管理**

DB マネージャは、基本的なデータベース管理タスクを実行することもできます。確かに、より完全なデータベース管理ツールの代わりにはなりませんが、データベースを維持するために使用できるいくつかの機能を提供します。

データベーステーブルは、多くの場合、非常に大きくなることがありますし、頻繁に変更されているテーブルは、もはや PostgreSQL で必要とされていないレコードの残渣を残したままにすることがあります。

VACUUM コマンドでは、ガベージコレクションのようなものをして、パフォーマンス向上のためにテーブルを圧縮したりオプションで分析します。

DB マネージャから VACUUM ANALYZE コマンドを実行する方法について見てみましょう。

18.2. Lesson: DB マネージャを使用して QGIS で空間データベースと連携する
1. DB マネージャツリーにあるテーブルのひとつを選択します
2. メニューから テーブル の バキューム解析の実行 を選びます

PostgreSQL はこれで操作を実行します。テーブルの大きさにもよりますが、完了までに時間がかかるかもしれません。

VACUUM ANALYZE 处理については、PostgreSQL Documentation on VACUUM ANALYZE に詳細が記載されています。

### 18.2.4 Follow Along: DB マネージャで SQL クエリを実行する

DB マネージャはまた、データベーステーブルに対してクエリを記述し、結果を表示するための方法を提供します。すでにブラウザパネル内のこの機能を見てきましたが、再びここで DB マネージャでそれを見てみましょう。

1. ツリーにある lines テーブルを選択します。
2. [DB マネージャ]ツールバーで SQL ウインドウ ボタンを選択します。

3. 次の SQL クエリ を与えられたスペースに構成します

```sql
select * from lines where roadtype = 'major';
```

4. クエリを実行するには、実行（F5）ボタンをクリックします。
5. Result パネルに一致するレコードが表示されているはずです。
6. 新規レイヤとして読み込むのチェックボックスをクリックして地図に結果を追加します。

7. id 列をユニーク値のカラムとして、geom 列をジオメトリのカラムとして選択します。

8. レイヤ名（接頭辞）として roads_primary を入力します。

9. 読み込みをクリックして地図に新しいレイヤとして結果を読み込みます。
クエリと一致したレイヤーは今、地図上に表示されます。もちろんこのクエリツールは、以前のモジュールとセクション中で見たものなど、任意の SQL コマンドを実行するために使用できます。

18.2.5 DB マネージャを使用したデータベースへのデータのインポート

コマンドラインツールを使用して空間データベースにデータをインポートする方法をすでに見てきました。次に、DB マネージャを使用してインポートを行う方法を学習しましょう。

1. [DB マネージャ] ダイアログボックスのツールバー上の レイヤー/ファイルを読み込み ボタンをクリックしてください。

2. 入力データセットとして exercise_data/projected_data から urban_33S.shp ファイルを選択します。

3. フォームの値の一部を事前に埋めるために、オプションを更新 ボタンをクリックしてください。

4. 新しいテーブルを作成 オプションが選択されていることを確認してください。
5. 変換前 SRID を `32722` に、変換後 SRID を `4326` に指定します
6. 空間索引を作成の横にあるチェックボックスをオンにします。
7. インポートを実行するために OK をクリックします
8. 読み込みが成功したことを知らせるダイアログを閉じます
9. DB マネージャツールバーにある リフレッシュ ボタンをクリックします

これで、ツリーでテーブルをクリックすることで、データベース内のテーブルを検査することができます。 Spatial ref: が WGS 84 (4326) と表示されていることを確認し、データが再投影されていることを確認します。

ツリー中のテーブルを右クリックして キャンパスに追加 を選択すると地図にレイヤとしてテーブルが追加されます。

18.2.6 DB マネージャを使用したデータベースからのデータの書き出し

DB マネージャは空間データベースからデータを書き出すためにも当然使用できますので、それがどのように行われるかを見てみましょう。

1. ツリーで lines レイヤを選択し、ツールバーの ファイルにエクスポート ボタンをクリックして ベクタファイルに出力する ダイアログを表示します。

2. ... ボタンをクリックして 出力ファイルを選択し、exercise_data ディレクトリに urban_4326 という名前でデータを保存します。

3. 変換後 SRID に 4326 を設定します。

4. OK をクリックしてエクスポートを開始します。
5. 書き出しが成功したことを知らせるダイアログを閉じ、DB マネージャを閉じます。
ブラウザパネルで作成したシェープファイルを検査できます。
18.2.7 In Conclusion

これまで、QGIS の DB マネージャインターフェイスを使用して空間データベースを管理する方法、データに対して SQL クエリを実行する方法、データのインポートとエクスポートの方法について説明しました。

18.2.8 What's Next?

次に、これらの同じテクニックを SpatiaLite データベースで使用する方法について説明します。

18.3 Lesson: QGIS で SpatiaLite 空間データベースで作業する

PostGIS は一般的にサーバー上で同時に複数のユーザーに空間データベース機能を提供するために使用されますが、QGIS では SpatiaLite と呼ばれるファイル形式の使用もサポートします。これは、空間データベース全体を単一ファイルに保存するための軽量でポータブルな方法です。明らかに、これら 2 種類の空間データベースは異なる目的に使用する必要がありましたが、同じ基本原則と手法が両方に適用されます。新しい SpatiaLite データベースを作成し、QGIS でこれらのデータベースを操作するために提供される機能を調べてみましょう。

このレッスンの目標 : QGIS ブラウザインターフェースを使用して SpatiaLite データベースと対話する方法を学ぶ。
18.3.1 Follow Along: ブラウザで SpatiaLite データベースを作成する

ブラウザパネルを使用して、新しい SpatiaLite データベースを作成し、QGIS で使用するためにセットアップすることができます。

1. ブラウザツリーの SpatiaLite エントリを右クリックし、データベースの作成を選択します。
2. ファイルシステムのどこにファイルを保存するかを指定し、「qgis-sl.db」という名前をつけます。
3. ブラウザツリーの SpatiaLite エントリをもう一度右クリックし、NewConnection アイテムを選択します。最後の手順で作成したファイルを見つけ開きます。

これでブラウザツリーに新しいデータベースが構成され、その下には何も持たないことがから、行える操作は削除できることだけだということがわかります。このデータベースには何のテーブルも追加していないのでこれは当然です。それでは先に進んでみましょう。

1. 新しいレイヤーを作成するためのボタンを見つけ、ドロップダウンを使用して新しい SpatiaLite レイヤーを作成するか、レイヤー->新規->新しい SpatiaLite レイヤーを選択します。
2. 前の手順で作成したデータベースをドロップダウンから選択します。
3. そのレイヤに名前 places を付けます。
4. 次に 自動増分の主キーを作成する のチェックボックスを選択します。
5. 以下に示すように、2 つの属性を追加します
6. OK をクリックしてテーブルを作成します.
7. プラウザの上部にある更新ボタンをクリックすると、「場所」テーブルが一覧表示されます。
テーブルを右クリックして、前のレッスンで行ったようにプロパティを表示することができます。
ここから編集のセッションを開始して直接新しいデータベースにデータを追加することができます。
また、DB Manager を使用してデータベースにデータをインポートする方法についても学びました。これと
同じ手法を使用して、新しい SpatiaLiteDB にデータをインポートできます。

18.3.2 In Conclusion

SpatiaLite データベースを作成し、それらにテーブルを追加し、これらのテーブルを QGIS のレイヤーとし
て使用する方法を見ることができました。
第19章 付録：このマニュアルに貢献する

このコースに材料を追加するには、この付録のガイドラインに従う必要があります。明確化のためを除き、この付録の条件を変更してはいけません。これは、このマニュアルの品質と一貫性を維持できるようにするためです。

19.1 リソースのダウンロード

この文書のソースは GitHub で提供されています。Git のバージョン管理システムを使用する方法については、GitHub.com を参照してください。

19.2 マニュアルの形式

このマニュアルは、reStructuredText マーク付け言語を使った Python ドキュメントジェネレーター、Sphinx を使って書かれました。これらのツールの使い方はそれぞれのサイトで入手できます。

19.3 モジュールを追加する

- 新しいモジュールを追加するには、最初に新しいモジュール名を持つ新しいディレクトリを（qgis-training-manual ディレクトリのトップレベルのすぐ下に）作成します。
- この新しいディレクトリの下に、index.rst というファイルを作成します。今のところ、このファイルは空のままにします。
- 最上位ディレクトリの下の index.rst ファイル開きます。その最初の数行は:

```bash
.. toctree::
 :maxdepth: 2

 foreword/index
 introduction/index
```

これは、名前 index が続く、ディレクトリ名のリストであることに注意します。これは、トップレベルのインデックスファイルに各ディレクトリ内のインデックスファイルを指示します。リストされている順序で文書中の順序が決定されます。
このリストのモジュールを表示したい場所に、新しいモジュールの名前（すなわち、新しいディレクトリに付けた名前）に /index を続けたものを追加します。

後のモジュールは前のモジュールで提示される知識の上に構築するように、モジュールの順序を論理的に維持することを忘れないでください。

新しいモジュールの独自のインデックスファイル（[module name]/index.rst）を聞きます。

ページの上部に沿って、80 個のアスタリスク（*）の行を書きます。これは、モジュールの見出しを表します。

これに続いて、モジュールの名前が続くマークアップの語句 |MOD|（「モジュール」の略）を含む行を書きます。

もう一度 80 個のアスタリスクの行を書いてこれを終えます。

この下に空白行を置きます。

モジュールの目的と内容を説明する短い段落を書きます。

1 行を空白のままに残し、次のテキストを追加します:

```
.. toctree::
 :maxdepth: 2

lesson1
lesson2
```

...ここで、lesson1、lesson2 などは、計画したレッスンの名前です。

モジュールレベルのインデックスファイルは次のようにになります。

```
|MOD| Module Name

Short paragraph describing the module.

.. toctree::
 :maxdepth: 2

lesson1
lesson2
```
19.4 レッサンを追加する

新規または既存のモジュールにレッサンを追加するには:

- モジュールディレクトリを駆けます。
- index.rst ファイル（新しいモジュールの場合に上で作成）を開きます。
- 計画したレッサンの名前が、上で示されるように、toctree ディレクティブ下に表示されていることを確認します。
- モジュールディレクトリの下に新しいファイルを作成します。
- このファイルにモジュールの index.rst ファイルの中に与えた名前とまったく同じ名前を付け、拡張子 .rst を追加します。

注釈: 編集する目的では、.rst ファイルは通常のテキストファイル (.txt) とまったく同じように動作します。

- レッサンの書き始めるには、マークアップの語句 |LS| を書き、その後ろにレッサン名を書きます。
- 次の行に、80 個の等号 (=) の行を書き込みます。
- この後に空行を置きます。
- レッサンの意図された目的について短い説明を書きます。
- 主題への一般的な紹介を含めます。例として、このマニュアル中の既存のレッサンを参照してください。
- この下には、この語句から始まる、新しい段落を開始します:

**The goal for this lesson:**

- このレッサンを完了することによる意図した成果を簡単に説明します。
- 1 つまたは 2 つの文にレッサンの目標を記述できない場合は、主題を複数のレッサンに分けることを検討してください。

次に説明するように、各レッサンは複数のセクションに細分化されます。

19.5 セクションを追加する

セクションには、「この通りに従ってください」と「自分でやってみよう」の 2 種類があります。

- 「この通りに従ってください」セクションは指示の詳細なセットで、QGIS の所定の態様を使用する方法を読者に教示することを意図しています。これは通常、スクリーンショットを散りばめた状態で、クリックごとの指示をできる限り明確に示すことで行われます。
・「自分でやってみよう」セクションでは、読者自身が試す短い課題を与えます。これは通常表示または課題を完了するために、可能な場合に予想される結果を表示する方法を説明します。文書の最後に解答用紙のエントリに関連付けられています。
すべてのセクションには難易度が付けられています。簡単なセクションは |basic|、適度は |moderate|、そして上級は |hard| で表されます。

19.5.1 「この通りに従ってください」セクションを追加

・（上記のように）このセクションを開始するには、意図した難易度のマークアップ語句を書き込みます。
・スペースを置き、次に（「この通りに従ってください」の：kbd:|FA| を書きます。
・もうひとつスペースを置いて、セクションの名前を書きます（初回のみ大文字だけでなく、固有名詞のための大文字を使用）。
・次の行に、80 個のマイナス/ダッシュ（-）の行を書き込みます。テキストエディタによってデフォルトのマイナス/ダッシュ文字が長いダッシュまたは他の文字で置き換えられないことを確認してください。
・その目的を説明し、セクションへの簡単な紹介を書きます。そして、例証される手続きについての詳細な（クリック毎の）指示を与えます。
・必要に応じて各セクションには、内部リンク、外部リンク、およびスクリーンショットが含まれます。
・可能ならば、それを完了し、次のセクションに自然につながる短い段落で、各セクションを終了してみてください。

19.5.2 「自分でやってみよう」セクションを追加する

・（上記のように）このセクションを開始するには、意図した難易度のマークアップ語句を書き込みます。
・スペースを置き、次に（「自分でやってみよう」の）|TY| と書き込みます。
・次の行に、80 個のマイナス/ダッシュ（-）の行を書き込みます。テキストエディタによってデフォルトのマイナス/ダッシュ文字が長いダッシュまたは他の文字で置き換えられないことを確認してください。
・読者に完成させたい練習を説明します。必要に応じて、前のセクション、レッスンやモジュールを参照します。
・単なる文章での説明でははっきりしない場合、要件を明確にするためにスクリーンショットを含めます。
ほとんどの場合、このセクションで与えられた課題を完成する方法についての解答を提供したいと思うでしょう。そのためには、解答用紙にエントリを追加する必要があるでしょう。
・まず、回答に一意の名前を決めます。この名前には、レッスン名と連番が入っているのが理想です。
この回答へのリンクを作成:

```
:ref:`Check your results <answer-name>`
```

解答用紙 (answers/answers.rst) を開きます。

この行を書き込むことによって、「自分でやってみよう」セクションへのリンクを作成します:

```
.. _answer-name:
```

必要な場合、リンクや画像を使用して、課題を完了する方法の手順を書きます。

それを終了するには、この行を書き込むことによって、「自分でやってみよう」セクションに戻るリンクを含めます:

```
:ref:`Back to text <backlink-answer-name>`
```

このリンクを動作させるために、「自分でやってみよう」セクションに、見出しの上に次の行を追加します:

```
.. _backlink-answer-name:
```

上に示したこれらの線のそれぞれは、その上下に空白行を持たなければならず、それ以外の場合は文書を作成している間にエラーが発生する可能性があることに注意してください。

### 19.6 結論を追加

・レッスンを終了するには、80 個のマイナスハイフン ( - ) の新しい行に続いて、「結論」のための ICI 語句を書きます。どのような概念がレッスンでカバーされているかを説明しながら、レッスンの結論を書きます。

### 19.7 [さらに読む] セクションを追加

・このセクションは任意です。

・80 個のマイナスハイフン ( - ) の新しい行に続いて「さらに読む」のための語句 FR を書きます。

・適切な外部のウェブサイトへのリンクを含めます。
19.8 [次は] セクションを追加

- 80 個のマイナス/ハイフン（-）の新しい行に続いて、「次は」のための語句 |WN| を書きます。
- このレッスンがどのように学生にとって次のレッスンまたはモジュールの準備になったかを説明します。
- 必要であれば前のレッスンの「次は」のセクションを、新しいレッスンを参照するように変更することを忘れないでください。これは既存のレッスンの間に、または既存のレッスンの後に新しいレッスンを挿入した場合に必要となります。

19.9 マークアップを使用する

このドキュメントの基準を遵守するため、テキストに標準的なマークアップを追加する必要があります。

19.9.1 新しい概念

- 新しい概念を説明している場合は、アスタリスク（*）で囲むことでイタリック体で新しい概念の名前を記述する必要があります。

This sample text shows how to introduce a "new concept".

19.9.2 強調

- 新しい概念ではない重要な用語を強調するために、二重のアスタリスク（**）で囲むことで太字の用語を記述します。
- これは控えめに使いましょう！多用すると、読者は怒鳴ってしたり見下しているように見えることがあります。

This sample text shows how to use "**emphasis**" in a sentence. Include the punctuation mark if it is followed by a "**comma**," or at the "**end of the sentence.""

19.9.3 画像

- 画像を追加する場合は、フォルダ _static/lesson_name/_ に保存します。
- 文書にそれを入れるにはこのようにします:

```
.. figure:: img/image_file.extension
 :align: center
```

- 画像マークアップの上方および下方の空行を残すことを忘れないでください。
19.9.4 内部リンク

• リンクのアンカーを作成するには、リンクが指すようにしたい場所の上に次の行を書きます:

```
.. _link-name:
```

• リンクを作成するには、この行を追加します:

```
:ref:`Descriptive link text <link-name>`
```

• この行の上および下に空行を残すことを忘れないでください。

19.9.5 外部リンク

• 外部リンクを作成するには、このように書き出します:

```
`Descriptive link text <link-url>`
```

• この行の上および下に空行を残すことを忘れないでください。

19.9.6 等幅テキストを使う

• ユーザーが入力する必要のあるテキスト、パス名、またはテーブルや列の名前などのデータベース要素の名前を書いているときは、それを等幅テキストで記述する必要があります。例えば:

```
Enter the following path in the text box: :kbd:`path/to/file`.
```

19.9.7 ラベルする GUI 項目

• GUI の項目、ボタンなど、を参照している場合は、GUI ラベルフォーマットの中にその名前を書く必要があります。例えば:

```
To access this tool, click on the :guilabel:`Tool Name` button.
```

• これは、ユーザーがボタンをクリックする必要なしに、ツールの名前を言及している場合にも適用されます。
19.9.8 メニューの選択

- メニューを通じてユーザーを導く場合は、メニュー ▶ 選択 ▶ フォーマットを使用する必要があります。例えば：

To use the :guilabel:`Tool Name` tool, go to :menuselection:`Plugins --> Tool Type --> Tool Name`.

19.9.9 注を追加する

- テキスト中で、簡単には授業の流れの一部にできない余分な詳細を説明するため、注が必要になる場合があります。これは、マークアップです:

[Normal paragraph.]

.. note:: Note text.
   New line within note.

   New paragraph within note.

[Unindented text resumes normal paragraph.]

19.9.10 後援/原作者注を追加する

スポンサーに代わって新しいモジュール、レッスンまたはセクションを記述する場合は、スポンサーが希望する短いスポンサーメッセージを含める必要があります。これはスポンサーの名前を読者に通知しなければならず、そのスポンサーが主催するモジュール、レッスンやセクションの見出しの下に表示されなければなりません。しかし、それはスポンサーの会社の広告であってはいけません。

自身の能力で自発的にモジュール、レッスン、またはセクションを書いた場合、スポンサーに代わってではない場合は、執筆したモジュール、レッスンやセクションの見出しの下に原作者注を入れてもよいです。これは以下の形を取る必要がありますのこの[モジュール/レッスン/セクション]は[著者名]による寄稿です。さらにテキスト、連絡先などは追加しないでください。そのような詳細は、追加した部分（複数可）の名前（複数可）と一緒に、前の「Contributors 寄稿者」セクションに追加されるべきです。機能強化、修正および/または追加を行っただけの場合は、編集者として自身自身をリストします。
19.10 ありがとうございました！

このプロジェクトに貢献していただきありがとうございました！そうすることで、QGISはユーザーからより利用しやすくなり、全体としてQGISプロジェクトに価値を付加しています。
第20章 練習データを準備する

注釈：このプロセスは講座の召集者、または、その講座のためにローカライズしたサンプル・データセットを作りたい経験豊富なQGISユーザ向けにしました。デフォルトのデータセットはトレーニングマニュアルとともに提供されていますが、この手順に従ってそれを置き換えることができます。

提供されているサンプルデータはトレーニングマニュアルと一緒にSwellendamとその周辺の町を指します。Swellendamは南アフリカの西ケープ州ケープタウンの約2時間の東に位置しています。データセットは英語とアフリカーンス語の両方で地物名を含みます。

このデータセットは誰でも問題なく使うことができますが、自分の国や故郷のデータを使うことを好む方もいるかもしれません。それを選択した場合は、ローカライズされたデータが、モジュール3からモジュール7.2のすべてのレッスンで使用されます。それ以降のモジュールはより複雑なデータソースを使用しているので、あなたの地域で利用できる場合でもない場合もあります。

注釈：以下の手順では、QGISの十分な知識を持っており、教材として使用されることを意図していないと仮定します。

20.1 Try Yourself OSMを基にしたベクタファイルを作る

デフォルトのデータセットをコースのためのローカライズされたデータに置き換えない場合、QGISに組み込まれたツールを使って簡単に行うことができます。あなたが使おうとする領域は、都市部と農村部の適当な混合地であり、河川や水面、道路、地域の境界（自然保護区や農場など）などが分かれる必要があります。

1. QGISプロジェクトを開く
2. レイヤー・データソースマネージャを選択し、データソースマネージャダイアログを開きます。
3. プラウザタブで、XYZ Tilesドロップダウンメニューを展開し、OpenStreetMapアイテムをダブルクリックします。
マップキャンバスに世界の地図が表示されるようになります。

4. データソースマネージャ ダイアログを閉じます

5. 学習エリアとして使用したいエリアに移動します

データを抽出する領域ができたので、抽出ツール有効にしましょう。

1. プラグイン → プラグインの管理とインストール... に移動します

2. すべてタブで、検索ボックスに QuickOSM と入力します

3. QuickOSM プラグインを選択し、インストールを押し、ダイアログを閉じるします。
4. ベクタ □ QuickOSM □ QuickOSM... メニューから、新しいプラグインを実行します
5. Quick query タブで、Key ドロップダウンメニューから building を選択します
6. Value フィールドを空にして、すべてのビルに問い合わせることを意味します。
7. 次のドロップダウンメニューで Canvas Extent を選択します
8. 下の Advanced グループを展開し、Multipolygons を除く右側のすべてのジオメトリタイプのチェックを外します。
9. Run query を押します

新しいbuilding レイヤがレイヤパネルに追加され、選択した範囲の建物が表示されます。
10. 他のデータを抽出するため、上記と同様に行います：
1. Key = landuse とジオメトリ型 Multipolygons。
2. Key = boundary, Value = protected_area とジオメトリ型 Multipolygons。
3. Key = natural, Value = water とジオメトリ型 Multipolygons。
4. Key = highway とジオメトリ型 Lines と Multilines をチェックする。
5. Key = waterway, Value = river とジオメトリ型 Lines と Multilines をチェックする。
6. Key = place とジオメトリ型 Points。

このプロセスにより、レイヤーが一時ファイルとして追加されます（名前の横にあるアイコンで示されます）。

あなたの地域に含まれるデータをサンプリングして、あなたの地域でどのような結果が得られるかを確認できます。

講座で使用するために、結果のデータを保存する必要があります。データに応じて、ESRI シェーブファイル、GeoPackage、SpatiaLite 形式を使用します。

*place* 一時レイヤを他の形式に変換するには:

1. *place* レイヤーの横にあるアイコンをクリックして、スクラッチレイヤを保存 ダイアログを開きます。

注釈: 一時レイヤーのプロパティ（CRS、範囲、フィールドなど）のいずれかを変更する必要がある場合は、代わりに書出->地物に名前を付けて保存... コンテキストメニューを使用し、を確認してください。保存したファイルを地図に追加する オプションがチェックされています。これにより、新しいレイヤーが追加されます。

2. ESRI シェーブファイル 形式を選択します。

3. ... ボタンを使用して exercise_data/shapefile/ フォルダを参照し、ファイルを places.shp として保存します。
4. OK を押します

レイヤー パネルで、一時的な place レイヤーが保存された places シェープファイルレイヤーに置き換えられ、その横にある一時的なアイコンが削除されます。

5. レイヤーをダブルクリックして レイヤーのプロパティ->ソース タブを開き、レイヤ名 プロパティをファイル名と一致するように更新します。

6. 他のレイヤーに対してこのプロセスを繰り返し、次のように名前を変更します:

   - natural_water を water
   - waterway_river を rivers
   - boundary_protected_area を protected_areas

各結果データセットは、exercise_data/shapefile/ ディレクトリに保存する必要があります。次のステップは、コース中に使用する 建物 レイヤーから GeoPackage ファイルを作成することです。

1. building レイヤの隣にあるアイコンをクリックします

2. GeoPackage 形式を選びます

3. ファイルを training_data.gpkg として exercise_data/ フォルダの下に保存します

4. レイヤ名がデフォルトのファイル名として記入されます。それを buildings に置き換えます。

20.1. Try Yourself OSM を基にしたベクタファイルを作る
5. OK を押します

6. レイヤのプロパティダイアログで名前を変更します

7. このプロセスを highway レイヤで繰り返し、それを roads として同じ GeoPackage データベースに保存します。

最後のステップは、残りの一時ファイルを SpatiaLite ファイルとして保存することです。

1. landuse レイヤの隣にあるアイコンをクリックします

2. SpatiaLite 形式を選択します

3. そのファイルを exercise_data/ フォルダの下に landuse.sqlite として保存します。デフォルトでは、レイヤー名がファイル名として入力されます。変更しないでください。
4. OK を押します

これで、次のような地図が作成されます（レイヤーが地図に追加されると、QGIS がランダムに色を割り当てるため、シンボルは確かに大きく異なります）：

重要なことは、上に示したものと一致する 7 つのベクターレイヤーがあり、それらすべてのレイヤーにいくつかのデータがあることです。
20.2 Try Yourself SRTM DEM tiff ファイルを作る

モジュール Module: ベクタデータを作成する および Module: ラスタの場合、講座用に選択した地域をカバーするラスターイメージ（SRTM DEM）も必要です。

CGIAR-CGI は、https://srtm.csi.cgiar.org/srtmdata/ からダウンロードできる SRTMDEM を提供します。

使用することを選択した地域全体をカバーする画像が必要になります。範囲座標を見つけるには、QGIS で最大のレイヤーの範囲にズームし、ステータスバーの範囲 ボックスの値を選択します。GeoTiff 形式のままにします。フォームに入力したら、ここをクリックして検索を開始>> ボタンをクリックし、ファイルをダウンロードします。

必要なファイルをダウンロードしたら、それらを raster/SRTM サブフォルダの下の exercise_data ディレクトリに保存する必要があります。

20.3 Try Yourself 画像の TIFF ファイルを作成する

モジュール Module: ベクタデータを作成する で、 Follow Along: データソース レッスンは、生徒がデジタイズするために求められる 3 つの学校の運動場のクローズアップ画像を示します。したがって、新しい SRTMDEMtiff ファイルを使用してこれらの画像を再現する必要があります。学校の運動場を使用する義務はありません。3 つの学校の土地利用タイプを使用できます（たとえば、異なる学校の建物、遊び場、駐車場）。

参考までに、その例題データの画像はこれです:
20.4 トーキーんの置き換え

ローカライズされたデータセットを作成したら、最後に substitutions.txt ファイル内のトークンを置き換えて、ローカライズ版トレーニングマニュアルに適切な名前が表示されるようにします。

置き換える必要のあるトークンは次のとおりです:

- majorUrbanName：これはデフォルトで「スウェレンダム」になります。お住まいの地域の主要な町の名前に置き換えてください。
- schoolAreaType1：これはデフォルトで「陸上競技場」になります。お住まいの地域で最大の学校エリアタイプの名前に置き換えてください。
- largeLandUseArea：これはデフォルトで「ボンテボック国立公園」になります。お住まいの地域の大きな土地利用ポリゴンの名前に置き換えてください。
- srtmFileName：これはデフォルトで srtm_41_19.tif になります。これを SRTMDEM ファイルのファイル名に置き換えます。
• localCRS：これはデフォルトで WGS 84 / UTM34S になります。これをお住まいの地域の正しい CRSに置き換える必要があります。