

Gentle GIS Introduction

QGIS Project

2023年12月04日

目 次

第1章	はじめに	1
1.1	編者からの言葉....................................	2
		•
弗2草		3
2.1		3
2.2		4
2.3	GIS シノトリエア / アノリクーションとは何か?	4
2.4		9
2.5	$\operatorname{GIS} \tau = \varphi \qquad \dots \qquad$	9
2.6		11
2.7		12
2.8		12
2.9	より詳しく知りたい場合は	13
2.10	次は?	13
笛 3 音	ベクタデータ	15
31		15
3.1	ペント地物の詳細	19
3.2	ポリライン地物の詳細	19
3.4	ポリブン地物の詳細 ポリゴン地物の詳細	20
3.5	レイヤ内のベクタデータ	20
3.6	ベクタデータの編集	20
3.7	、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	21
3.8		21
3.0	CIS でけベクタデータで何ができる?	25
3.10	ベクタデータの一般的な問題	25
3.10	カかりましたか?	25
3.12	やってみよう	20
3.12	そうていよう	27
3.13	より洋しく知りたい場合け	28
3 15	次けつ	20
5.15	//16 :	20
第4章	ベクタ属性データ	29
4.1	概要	29
4.2	属性の詳細	32
4.3	単一シンボル	33
4.4	段階シンボル	35
4.5	連続カラーシンボル	36
4.6	単一シンボル	38
4.7	注意すべき点....................................	39

4.8	わかりましたか?	39
4.9	やってみよう....................................	40
4.10	考えてみよう....................................	41
4.11	より詳しく知りたい場合は	41
4.12	次は?	41
	////	
第5章	データの取り込み	43
5.1	概要	43
5.2	GIS のデジタルデータはどのようにして保存されていますか	43
53	始める前に計画する	44
0.0	1000別に計画の000000000000000000000000000000000000	11
	5.5.1 例1, MI22aのFM	15
5 4	3.3.2 例 2. 川につりに乃来 V 、 V の 地図 作成	43
5.4		46
5.5	シェーフファイルにデータを追加する	47
5.6	ヘッドアップデジタイジング	49
5.7	デジタイジングテーブルを使用してデジタイズする..............	50
5.8	地物がデジタイズされた後	51
5.9	一般的な問題 / 注意すべき点	51
5.10	わかりましたか?	52
5.11	やってみよう・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	53
5.12	考えてみよう	53
5.12		53
5.14		52
5.14	// ld. {	55
第6章	ラスタデータ	55
第 6 章	ラスタデータ 概要	55
第6章 6.1	ラスタデータ 概要	55 55
第 6 章 6.1 6.2	ラスタデータ 概要	55 55 56
第6章 6.1 6.2 6.3	ラスタデータ 概要	55 55 56 57
第6章 6.1 6.2 6.3 6.4	ラスタデータ 概要	55 55 56 57 57
第6章 6.1 6.2 6.3 6.4 6.5	 ラスタデータ 概要 ラスタデータの詳細 ジオリファレンス ラスタデータのソース 空間分解能 	55 56 57 57 58
第6章 6.1 6.2 6.3 6.4 6.5 6.6	ラスタデータ 概要	55 55 56 57 57 58 59
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7	ラスタデータ 概要 ラスタデータの詳細 ジオリファレンス ラスタデータのソース 空間分解能 スペクトル分解能 ラスタからベクタへの変換	55 55 56 57 57 58 59 60
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	ラスタデータの詳細	55 55 57 57 58 59 60 60
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	ラスタデータの詳細	55 55 56 57 57 58 59 60 60 60
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	ラスタデータ 概要 ラスタデータの詳細 ジオリファレンス ラスタデータのソース 空間分解能 スペクトル分解能 ラスタからベクタへの変換 ベクタからラスタへの変換 ラスク解析 一般的な問題 / 注意すべき点	55 55 57 57 58 59 60 60 60 60
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	ラスタデータの詳細	55 56 57 57 58 59 60 60 60 60 60
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	ラスタデータ 概要	55 56 57 57 58 59 60 60 60 60 60 61 61
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	ラスタデータ 概要	55 56 57 57 58 59 60 60 60 60 61 61 61
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14	ラスタデータの詳細 ラスタデータの詳細 ジオリファレンス ラスタデータのソース 空間分解能 スペクトル分解能 ラスタからベクタへの変換 ベクタからラスタへの変換 ラスタ解析 一般的な問題 /注意すべき点 わかりましたか? やってみよう より詳しく知りたい場合は	55 56 57 57 58 59 60 60 60 60 61 61 61 61
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14	ラスタデータ 概要	55 56 57 57 58 59 60 60 60 60 61 61 61 62 62
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15	ラスタデータの詳細 ラスタデータの詳細 ジオリファレンス ラスタデータのソース 空間分解能 スペクトル分解能 ラスタからベクタへの変換 ラスタがらベクタへの変換 ラスタ解析 一般的な問題 / 注意すべき点 わかりましたか? やってみよう より詳しく知りたい場合は 次は ?	55 56 57 57 58 59 60 60 60 60 61 61 61 61 62 62
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15	ラスタデータ 概要	55 56 57 57 58 59 60 60 60 60 61 61 61 61 62 62 63
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 第7章 71	ラスタデータ 概要	55 56 57 57 58 59 60 60 60 60 61 61 61 61 62 62 63 63
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 第7章 7.1 7.2	ラスタデータ 概要 ラスタデータの詳細 ジオリファレンス ラスタデータのソース 空間分解能 スペクトル分解能 ラスタからベクタへの変換 ラスタからマクタへの変換 ラスタががらラスタへの変換 ラスタ解析 一般的な問題/注意すべき点 わかりましたか? やってみよう 考えてみよう より詳しく知りたい場合は 次は? トポロジ 概要 トポロジエラー	55 56 57 57 58 59 60 60 60 60 60 61 61 61 61 61 62 62 63 63 64
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 第7章 7.1 7.2 7.2	ラスタデータの詳細 ラスタデータの詳細 ジオリファレンス ラスタデータのソース 空間分解能 スペクトル分解能 ラスタからベクタへの変換 ベクタからラスタへの変換 ラスタ解析 一般的な問題 / 注意すべき点 わかりましたか? やってみよう 考えてみよう より詳しく知りたい場合は 次は? トポロジエラー トポロジエラー	55 56 57 57 58 59 60 60 60 60 61 61 61 61 62 62 63 63 64 64
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 第7章 7.1 7.2 7.3 7.4	ラスタデータの詳細 ラスタデータの詳細 ジオリファレンス ラスタデータのソース 空間分解能 スペクトル分解能 ラスタからベクタへの変換 ベクタからラスタへの変換 マクタからラスタへの変換 ラスタ解析 一般的な問題 / 注意すべき点 わかりましたか? やってみよう より詳しく知りたい場合は 次は? トポロジエラー トポロジルール トポロジルール	55 55 57 57 58 59 60 60 60 60 61 61 61 61 62 62 63 63 64 64
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 第7章 7.1 7.2 7.3 7.4	ラスタデータの詳細 ラスタデータの詳細 ジオリファレンス ラスタデータのソース ラスタデータのソース 空間分解能 スペクトル分解能 ラスタからベクタへの変換 ベクタからラスタへの変換 マスタ解析 一般的な問題 /注意すべき点 わかりましたか? やってみよう 考えてみよう より詳しく知りたい場合は 次は? トポロジエラー トポロジルール トポロジアール	55 555 56 57 57 58 59 60 60 60 60 60 61 61 61 61 62 62 63 63 64 64 65 65
第6章 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 第7章 7.1 7.2 7.3 7.4 7.5	ラスタデータ 概要 ラスタデータの詳細 ジオリファレンス ラスタデータのソース 空間分解能 スペクトル分解能 ラスタからベクタへの変換 ベクタからラスタへの変換 ラスタ解析 一般的な問題/注意すべき点 わかりましたか? やってみよう 考えてみよう より詳しく知りたい場合は 次は? トポロジ 概要 トポロジルール トポロジルール トポロジのツール スナッブ距離	55 55 57 57 58 59 60 60 60 61 61 61 61 61 62 63 63 64 64 65 65

7.7	一般的な問題 / 注意すべき点	66
7.8	わかりましたか?	66
7.9	やってみよう	66
7.10	考えてみよう	67
7.11	より詳しく知りたい場合は	67
7.12	次は?	67
第8章	图 標 参 照 糸	69
8.1	概要	69
8.2		69
8.3	地図投影法の大きな3つ	70
8.4		70
	8.4.1 正角性を持つ地図投影 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	71
	8.4.2 正しい距離を持つ地図投影法	72
	8.4.3 正しい面積を持つ投影法	73
8.5	座標参照系 (CRS) の詳細	74
	8.5.1 地理座標系	74
	8.5.2 投影座標参照系	75
8.6	ユニバーサル横メルカトル(UTM)CRS 詳細	75
	8.6.1 北距(Y)值	77
	8.6.2 東距(X)値	77
8.7	「その場で」投影	77
8.8	一般的な問題 / 注意すべき点	77
8.9	何を学びましたか?	78
8.10	やってみよう....................................	78
8.11	考えてみよう....................................	79
8.12	より詳しく知りたい場合は....................................	79
8.13	次は?	79
第 0 吾	地図制作	Q1
ホッ 早 01		01 81
9.1	1000 · · · · · · · · · · · · · · · · · ·	01 01
9.2		02 02
9.5		02 02
9.4		02 02
9.5		03 02
9.0	スクールの計加	03
9.7		04 04
9.8	クリットの計2011-001-001-001-001-001-001-001-001-001	04 05
9.9	計細な地区投影の石削 · · · · · · · · · · · · · · · · · · ·	05
9.10		00 06
9.11		80
9.12	やつしみよつ	80
9.13	ちんしのよう	87
9.14	より詳しく知りだい場合は	87
9.15	次は?	87
第 10 章	ベクタ空間分析(バッファ)	89
10.1		89

10	.2	バッフ	アリ	リン	グ	の評	羊細	.				•		•			•	•		•	•		•			•	 •	•					•	89
10	.3	バッフ	アの	D種	類												•																•	92
		10.3.1	複	[数(のハ	じッ	フ	<u>ר</u> א	ゾ-	-ン	/						•																	93
		10.3.2	完	全7	な境	訮	ま	た	よ鬲	虫合	àð	ħ	た	;境	界	を	持	Э,	バ	ל פ	フ:	ן ק	ノン	ック	».								•	93
		10.3.3	外	側	また	コは	内	則	~ 0	יוכ	じッ	ヮフ	ア	IJ	ン	グ	•	•					•			•							•	94
10	.4	一般的	な昆	J題	[/注	主意	す	べ	き	Ψ							•						•			•							•	94
10	.5	さらな	33	2間	分材	折じ	ソー	ル	•								•						•			•							•	94
10	.6	わかりま	まし	った	: זי ?	?.											•						•										•	95
10	.7	やってる	みし	ょう													•																•	95
10	.8	考えてる	みし	ょう													•																•	96
10	.9	より詳	しく	く知	ן כיו	たし	\場	合	は								•						•			•							•	96
10	.10	次は?															•	•			•		•	•		•		•		•		•		96
第 11	章	空間分析	斤(補	間))																												97
11	.1	概要.																												•				97
11	.2	空間補問	間0	D詳	細												•																	97
11	.3	逆距離	加了	重(IDV	W)).										•						•											98
11	.4	不規則	三角	自網](7	ΓIN	I)										•						•										. 1	100
11	.5	一般的	な昆	J題	[/注	主意	す	へ	ð,	Ψ							•						•										. 1	101
11	.6	その他の	の袝	橺間	法												•																. 1	101
11	.7	わかりま	まし	った	: זי ?	?.											•						•										. 1	101
11	.8	やってる	みし	ょう).												•																. 1	102
11	.9	考えてる	みし	ょう).																												. 1	102
11	.10	より詳	しく	く知	ן כיו	たし	\場	合	は																								. 1	102
11	.11	次は?															•													•			. 1	103
第 12	章	著者とコ	コン	' H	リヒ	11	. — /	9	127	51	17	-																					1	105

第13章 GNUフリー文書利用許諾契約書

107

第1章 はじめに

やさしい GIS 入門

皆さんのための GIS アプリケーション、フリーでオープンソースソフトウェアである QGIS をご紹介し ます。

T. Sutton, O. Dassau, M. Sutton

資金提供: Chief Directorate: Spatial Planning & Information, Department of Land Affairs, Eastern Cape, South Africa.

パートナーシップ: Spatial Information Management Unit, Office of the Premier, Eastern Cape, South Africa.

Copyright (c) 2009 Chief Directorate: Spatial Planning & Information, Department of Land Affairs, Eastern Cape.

GNU Free Documentation License V1.2 または、フリーソフトウェア財団によって発行されたそれ以降のバージョンの規約に基づき、同ライセンスに必要とされる形式に沿っていない表紙、背表紙、不可変更部分を除いて、このドキュメントに対する複製、頒布、および/または 改変を許可しています。

利用許諾契約書の複製はGNUフリー文書利用許諾契約書のセクションに含まれています。

上記の著作権の表記は、このドキュメントに付加される可能性がある QGIS ユーザマニュアルは対象外で す。これ以上の著作権とライセンスに関する情報については、この QGIS ユーザマニュアルを参照して下 さい。

1.1 編者からの言葉

このプロジェクトは、南アフリカ共和国、東ケープ州プレミアのオフィス、空間情報管理ユニットと、国 土局 (DLA) のチーフ・ディレクター:空間計画・情報によって提供されています。

環境管理、流通、軍事、警察、旅行やその他の多くの目的で、GIS はますます重要なツールとなっていま す。コンピュータや携帯電話を使用する際に、あなたは気づかずにある種の GIS を使ったことがあるので す。それは、Web サービスでの地図、Google Earth、情報提供サービス、あるいはあなたの居場所を教えて くれる携帯電話かもしれません。ここで説明することやさらに多くのことを全て提供してくれる独占的ソ フトウェア(自由にシェアしたり改変できないソフトウェア)は入手可能です。しかし、こうしたソフト ウェアは大抵は大変高価で、そうで無い場合は複製、共有、改変する自由を制限します。GIS ベンダは、教 育活動のために例外的にソフトウェアを安価あるいは無償で提供することがあります。ベンダは先生と生 徒がそのソフトウェアを知るようになれば、他のパッケージソフトウェアを学びたくなくなることを知っ ているのです。生徒達が学校を卒業したら、職場に入り、業務に利用できうる自由な他の選択肢があるこ とを知らないまま、そのベンダのソフトウェアを買います。

QGIS で、社会的な意味での無償と自由なソフトウェアという選択肢を我々は提供しています。好きなだけ 複製をして構いません。学習者が学校をある日卒業しても、スキルを磨き、業務で課題を解決して世界を 良いものにするために、このソフトウェアを使うことができます。

商用ソフトウェアを買うと、将来の選択肢を自ら制限することになります。FOSS(自由でオープンソースのソフトウェア)を学び、使って、共有すれば、食物と住居、そして住んでいる場所の経済を発展させながら、自分自身のスキルを身につけるようになります。

このリソースの作成を資金援助することで、DLA は若者の心に触れる基金を創設しました。知識とデータの自由な共有という原則が採用されるならば、現在の可能性は将来にまで続きます。このために、我々は心からの感謝を DLA に捧げます。

Ubuntu の精神に基づき、QGIS を使うことと学ぶことを楽しんで下さることを願っています!

1m Julla

ティム・サットン 2009年4月

第2章 GIS入門

. Jac		
	目的:	GIS とは何か、何ができるのかを理解する。
	キーワード:	GIS, コンピュータ, 地図, データ, 情報システム, 空間解析

2.1 概要

ワープロを使用してコンピュータで文章を書いたり扱ったりできるのと同じように、GIS アプリケーションを使用して 空間情報を扱うことができます。GIS とは 地理情報システム (Geographical Information System)のことです。

GIS は以下のものから構成されます。

- デジタルデータ ---- コンピュータのハードウェアとソフトウェアを使用して表示および分析する地理 情報。
- ・コンピュータハードウェア ---- データの保存や画面表示, データ処理などに使われるコンピュータ.
- コンピュータソフトウェア ---- ハードウェア上でデジタルデータ処理を実行することのできるコン ピュータプログラム.GIS の一部を構成するプログラムは GIS アプリケーションと呼ばれます.

GIS アプリケーションを使うとコンピュータ上のデジタル地図を開いたり,新しい空間情報データを作成して地図に加えたり,必要に応じてカスタマイズした地図の印刷物を制作したり空間解析が出来ます.

GIS がどんなに便利なのかちょっと例を見てみましょう. あなたが医療従事者だとして, 患者たちの診療日と自宅の位置を記録しているとします.

経度	緯度	病気	日付
26.870436	-31.909519	おたふく風邪	2008年12月13日
26.868682	-31.909259	おたふく風邪	2008年12月24日
26.867707	-31.910494	おたふく風邪	2009年01月22日
26.854908	-31.920759	はしか	2009年01月11日
26.855817	-31.921929	はしか	2009年01月26日
26.852764	-31.921929	はしか	2009年02月10日
26.854778	-31.925112	はしか	2009年02月22日
26.869072	-31.911988	おたふく風邪	2009年02月02日
26.863354	-31.916406	水疱瘡	2009年02月26日

上の表を見ると、1月と2月には多くのはしかが発症していたことがわかります。医療従事者がそれぞれの 患者の家の位置を緯度経度により表形式で記録しています。このデータを GIS アプリケーションで使えば、 病気の規則性についてより多くのことを簡単に理解することができるようになります。

図 2.1: こちらの例では GIS アプリケーションで様々な疾病記録を見せています。おたふく風邪患者同士が 近くに居住していることが簡単に見て取れます.

2.2 GIS についてより詳しく

GIS は比較的新しい分野です。 --- 始まったのは 1970 年代です。かつてコンピュータによる GIS は、高価 なコンピュータ設備のある企業や大学だけで用いられていました。近年では、デスクトップパソコンやノー トパソコンを持っていれば、誰でも GIS ソフトウェアを使うことができるようになりました。以前は GIS アプリケーションを使うには多くのトレーニングが必要とされていましたが、長い時間をかけて使いやすい ものとなり、専門家以外でも簡単に始められるようになりました。以上のように GIS はただのソフトウェ アではなく、様々な局面でデジタル地理情報データを管理したり扱うことができます。続いてのチュート リアルでは、 GIS ソフトウェアについて見ていきます。

2.3 GIS ソフトウェア / アプリケーションとは何か?

GIS アプリケーション がどのようなものか、例を見ることができます 図 2.1。GIS アプリケーションは通 常、マウスとキーボードを使用して操作できるグラフィカル・ユーザー・インターフェイスを備えたプロ グラムです。アプリケーションには、ウィンドウの上部付近に メニュー (ファイル、編集など)があり、 マウスでクリックすると、アクション のパネルが表示されます。これらのアクションは、GIS アプリケー ションに何をしたいかを伝える方法を提供します。例えば、メニューを使って GIS アプリケーションに新 しいレイヤを表示出力に追加するように指示することができます。

図 2.2: アプリケーションのメニューは、マウスでクリックすると、開いて実行可能な操作の一覧が表示されます。

ツールバー (マウスでクリックできる小さなアイコンが並んでいるもの)は、通常メニューバーの下に配置 され、よく使われる操作が簡単に選べるようになっています。

図 2.3: ツールバーでは、よく使う機能にすばやくアクセスできます。アイコンの上でマウスを停止させる と、ふつうはクリックしたときに何が起こるかが分かります。

GIS アプリケーションの一般的な機能としては 地図レイヤ の表示があります。地図レイヤはディスク上の ファイルやデータベースのレコードとして保存します。通常、それぞれの地図レイヤは現実世界の様々な ものを表しています。 ---- 道路レイヤの場合は道路ネットワークを表します。 GIS アプリケーションでレイヤを開くと、地図ビューに表示されます。地図ビューには、レイヤを表すグラフィックが表示されます。地図ビューに複数のレイヤを追加すると、レイヤは互いに重なり合って表示されます。図 2.4、図 2.5、図 2.6、図 2.7を見て、いくつかのレイヤが追加されている地図ビューを見てみてください。地図ビューの重要な機能は、拡大して大きくしたり、縮小してより広い範囲を見たり、地図内を移動(パン)したりすることができることです。

図 2.5: 複数のレイヤが読み込まれた地図ビュー。学校レイヤが地図ビューに追加されている

図 2.6: 複数のレイヤが読み込まれた地図ビュー。鉄道レイヤが地図ビューに追加されている

図 2.7: 複数のレイヤが読み込まれた地図ビュー。河川レイヤが地図ビューに追加されている

GIS アプリケーションのもう一つの一般的な機能は、**マップ凡例**です。マップ凡例は、GIS アプリケーションに読み込まれたレイヤのリストを提供します。紙の地図の凡例とは異なり、GIS アプリケーションのマップ凡例または「レイヤリスト」は、レイヤの順序変更、非表示、表示、およびグループ化を行う方法を提供します。レイヤの順序を変更するには、凡例内のレイヤをクリックし、マウスボタンを押したまま、レイヤを新しい位置までドラッグしてください。 図 2.9 と 図 2.10 では、マップ凡例は GIS アプリケーションウィンドウの左側の領域として表示されています。レイヤの順番を変更することで、レイヤの描画方法を調整することができます。この場合、河川は道路の上にではなく、その下に描画されるようになります。

図 2.8: GIS ソフトウェアにより簡単にシンボル変更ができます --- 道路情報の表示.

図 2.9: レイヤの順番を変更することで、レイヤの描画方法を調整することができます。レイヤの順番を変 更する前は、河川が道路の上に描画される

図 2.10: レイヤの順番を変更することで、レイヤの描画方法を調整することができます。レイヤの順番を 変更すると、河川が道路の下に描画される

2.4 GIS アプリケーションを入手してみよう

数多くの GIS アプリケーションが存在します。洗練された機能を持ち1ライセンス当たり7万円ほどかか るものもあります。一方で、無料で手に入れられるものもあります。どの GIS アプリケーションを選択す るかはどの程度の予算を用意できるかによります。このチュートリアルでは QGIS アプリケーションを用 います。 QGIS は完全にフリーであるため、コピーしたり友人にシェアすることが自由にできます。もし あなたがこのチュートリアルを印刷物として手に入れた場合は、QGIS のコピーも一緒に手に入れているこ とと思います。そうでない場合も、インターネットにアクセスすることができれば、いつでもダウンロー ドページ https://www.qgis.org/ にアクセスすることで無料で手に入れることができます。

2.5 GIS データ

それでは GIS とは何か, GIS アプリケーションは何ができるのかわかってきたところで GIS データ につい て説明をしていきます. データは 情報 と言い換えることもできます. GIS で使われる情報というのは地理 的な側面を持っています. 医療関係者についての例では,以下のような症例リストを作りました:

経度	緯度	病気	日付
26.870436	-31.909519	おたふく風邪	2008年12月13日

経度及び緯度の列は地理情報データを持っています.病気と診療日の列は地理情報ではないデータです.

GIS の一般的な機能としては地理情報以外のデータを地理情報データに関連付けができることです.紙地図では難しい位置と他の多くの情報の関連付けも,GIS アプリケーションでは可能です.例えばこの例での医療従事者の方たちは患者の年齢や性別といったデータを表データとして持っており,GIS アプリケーション

を使うことで性別や症例などにもとづいて表示を切り替えることができます. つまり GIS アプリケーションで地理情報以外のデータを地理情報と関連付けることで様々な可視化をすることができます.

GIS システムでは、さまざまな種類のデータを扱うことができます。ベクタデータ は、コンピュータのメ モリ内に X、Y の座標ペアとして格納されています。ベクタデータは、点、線、面を表現するために使用 されます。イラスト 図 2.11 は GIS アプリケーションで表示される様々なタイプのベクタデータを表して います。この後のチュートリアルでは、ベクタデータについてより詳しく説明します。

図 2.11: ベクタデータによる点(町など),線(河川など),エリア(行政区)などの表示

ラスタデータは、格子状の数値として保存されています。地球を周回する多くの人工衛星が撮影した写真 は、GIS で見ることのできるラスタデータの一種です。ラスタデータとベクタデータの重要な違いの一つ は、ラスター画像を拡大しすぎると「ブロック状」に見えてしまうことです(図2.12 および図2.13 を参 照)。実際には、これらのブロックは、ラスター画像を構成するデータグリッドの個々のセルです。ラスタ データについては、後のチュートリアルでさらに詳しく見ていく予定です。

図 2.12: 衛星画像のラスタデータ. こちらは東ケープの山岳地帯です.

図 2.13: 同じラスタデータを拡大したもの。データのグリッドの性質が判ります。

2.6 わかりましたか?

ここでは以下のことを学びました:

- GIS とはコンピュータ・ハードウェア, ソフトウェア, 地理情報のシステムです.
- ・ GIS アプリケーション は地理情報データを見ることを可能にし、GIS の重要な部分を占めます.
- GIS アプリケーションは通常、メニューバー、ツールバー、地図ビュー、凡例 から構成されます.

- GIS アプリケーションで使用される地理情報データには ベクタデータ と ラスタデータ があります。
- 地理情報 データは 地理情報ではない データと関連付けることができます。

2.7 やってみよう

ここでは人に教える際のアイデアいくつか述べていきます:

- ・地理情報: このチュートリアルで示すように、GISのコンセプトを示す概念です. なぜ紙地図より GISの方が便利なのか,GISを学習する人たちに3つ理由を考えさせてみて下さい. 以下にはいくつ かの例を示します:
 - GIS アプリケーションを用いることで、同じデータから様々なタイプの地図を作ることができます。
 - GIS はすばらしい可視化ツールで,データそのものやそれらが空間的にどのような関係性を持っているのか(例えば先ほど示した病気の拡大など)をしめすことができます.
 - 紙地図はファイルにして保管しなければならず,見られるまでに時間がかかります. GIS は非常 に大きな量の地図データから興味のある地域を簡単に素早く探して見ることができます.
- ・地理学:あなたやあなたの生徒たちはどのように衛星データからラスタデータを活用できると思いますか?ここではいくつかアイデアを述べていきます:
 - 災害発生時、対象地域を見るのにラスタデータは便利で、最新の洪水発生時の衛星画像をにより 人々がどのあたりで救助を必要としているのか見ることができます。
 - 人は植物や動物に害を及ぼす危険な化学薬品の廃棄などといった環境に悪影響をもたらす行為 をすることがあります.こういった問題は、衛星画像のようなラスタデータをつかって観測する ことができます.
 - 都市計画を行う人にとっては衛星画像といったラスタデータを使うことにより、どこに居住区域 が存在するのかを把握し、インフラ計画に役立てることができます。

2.8 考えてみよう

もしコンピュータが利用できない場合でも、このチュートリアルの多くの項目は、OHP とシートを使って、 レイヤー情報の重ね合わせを同様におこなうことで再現可能です。ですが、GIS について正しく理解する 目的ならば、コンピュータを使って学ぶ方がよいでしょう。

2.9 より詳しく知りたい場合は

書籍: Desktop GIS: Mapping the Planet with Open Source Tools. (デスクトップ GIS: オープンソースツール で地球を地図化する) 著者: Gary Sherman. **ISBN:** 9781934356067

QGIS ユーザーガイドでは、QGIS についてより詳細な情報が含まれています.

2.10 次は?

この後のセクションではもっと詳しくどうやって GIS アプリケーションを使うのか掘り下げていきます. すべてのチュートリアルは QGIS で行われています.次はベクタデータを見てみましょう!

第3章 ベクタデータ

يني ا	目的:	GIS で利用されるようなベクタデータモデルを理解すること
	+ -	ベクタ、ポイント、ポリライン、ポリゴン、頂点、ジオメトリ、縮尺、データ品質、
	ワード:	シンボル体系、データソース

3.1 概要

ベクタ データは、GIS 環境内の実際の 地物 を表す方法を提供します。地物とは、風景に見ることのできるものすべてです。丘の上に立っていると想像してみてください。下を見下ろすと、家、道路、木、川などが見えます(図 3.1 参照)。これらのそれぞれは、GIS アプリケーションで表現するときに 地物 になります。ベクタ地物には 属性 があり、これは地物を 説明 するテキストまたは数値情報で構成されます。

図 3.1: 道路、家屋、樹木などの主要な地物が見える景観を見渡したところ。

ベクタ形式の地物は、ジオメトリを用いて形状を表します。ジオメトリは1つまたはそれ以上の相互につ ながった 頂点 で作られます。頂点は空間における位置をX,Y そして必要に応じてZ軸を用いて表しま す。 Z軸がある頂点を持ったジオメトリは、それぞれの頂点の高さあるいは深さ(両方ではない)を表す ため、しばしば2.5D と呼ばれます。

地物のジオメトリが単一の頂点のみで構成されている場合、それはポイント地物と呼ばれます(図図3.2 参照)。ジオメトリが2つ以上の頂点で構成され、最初と最後の頂点が等しくない場合、ポリライン地物 が形成されます(図図3.3参照)。3つ以上の頂点が存在し、最後の頂点が最初の頂点と等しい場合、閉じ たポリゴン地物が形成されます(図図3.4参照)。

図 3.2: ポイント地物は、X,Y および必要に応じてZ座標で表現されます。ポイント属性はそのポイントが、例えば樹木や街灯などであることを表します。

Vector Polyline Feature

図 3.3: ポリラインは一連の結合された頂点です。それぞれの頂点は X, Y (そして必要に応じて Z) 座標を 持ちます。属性はポリラインを説明します。

図 3.4: ポリゴンはポリラインのように、一連の頂点です。ただしポリゴンにおいては、最初と最後の頂点 は常に同じ位置です。

さらに上に示した風景の写真を振り返ると、GIS が現在それらを表す方法でさまざまなタイプの地物を見ることができるはずです(図図 3.5 参照)。

図 3.5: GIS で表現している景観の地物。河川 (青) と道路 (緑) はラインで、樹木はポイント (赤) で、家屋 はポリゴン (白) で表現されている。

3.2 ポイント地物の詳細

ポイント地物についていう場合に最初に意識しておく必要があることは、GIS でポイントとして記述する ものは、考え方にもよるが、縮尺に依存することが多いことです。例として都市を見てみましょう。もし (広いエリアをカバーする)小縮尺の地図を見ている場合は、ポイント地物を使用して都市を表すことが適 しています。しかし、地図を大縮尺へと拡大させるにつれて、ポリゴンで都市の境界を表示する方がふさ わしくなります。

ポイントを使用して地物を表すことを選択する場合は、主に縮尺(その地物からどれだけ離れているか)、効率性(ポイント地物を作成するのはポリゴン地物よりも時間がかからない)、地物の種類(電信柱のようなものはポリゴンとして格納することに意味がない)によります。

図 図 3.2 に示すように、ポイント地物には、X、Y、およびオプションでZ値があります。X値とY値は、 使用されている座標参照系(CRS)によって異なります。後のチュートリアルで座標参照系について詳し く説明します。今のところ、CRSとは特定の場所が地球の表面のどこにあるかを正確に記述する方法であ ると簡単に言いましょう。最も一般的な参照系の1つは、経度と緯度です。経度の線は北極から南極まで 伸びています。緯度の線は東から西に走っています。経度(X)と緯度(Y)を誰かに与えることで、地球 上の任意の場所にいる場所を正確に表すことができます。木や電柱について同様の測定を行い、それを地 図上にマークすると、ポイント地物が作成されます。

我々は地球は平らではないと知っているので、点の地物にはZ値を追加すると便利です。これは、どれだけの高さにあるかを海抜で示します。

3.3 ポリライン地物の詳細

ポイント地物は単一の頂点ですが、ポリラインには複数の頂点があります。ポリラインは、 図 3.3 に示す ように、各頂点を通る連続した径路です。2 つの頂点が連結されると、線が作成されます。 3 つ以上が連 結されると、それらは「線の線」またはポリライン を形成します。

ポリラインは、道路、河川、等高線、歩道、飛行経路などの線形の地物のジオメトリを示すために使用されます。時にはそれらの基本的なジオメトリに加えて、ポリラインのための特別なルールがあります。例えば、等高線は互いに接する(例えば崖面で)ことはできますが交わることはありません。同様に、道路網を格納するために使用されるポリラインは、交差点で接続されるべきです。GIS アプリケーションによっては、地物タイプ(例えば道路)に対してこれらの特別な規則を設定できて、そうするとこれらのポリラインが常にこれらの規則に準拠していることを GIS の方で確認してくれるものもあります。

曲線のポリラインの頂点間の距離が非常に大きい場合、表示される縮尺に応じて、角度またはギザギザに 見える場合があります(図 3.6 参照)。このため、データを使用する縮尺に対して十分に小さい頂点間の距 離でポリラインをデジタル化(コンピューターにキャプチャ)することが重要です。

図 3.6: 小縮尺(左1:20000)で見てポリラインが滑らかに湾曲し表示されることがあります。大縮尺(右 1:500)にズームするとポリラインはとても角ばって見えるかもしれません。

ポリラインの 属性 はその特性や特徴を説明します。例えば道路ポリラインはその表面が砂利やタールで舗 装されているか、車線はいくつあるか、一方通行かどうかなどを説明する属性を持っているかもしれませ ん。これらの属性は GIS がポリライン地物を最適な色や線種で記号化するために使うことができます。

3.4 ポリゴン地物の詳細

ポリゴン地物は、ダム、島、国境などの囲まれた領域です。ポリライン地物と同様に、ポリゴンは連続線 で連結された一連の頂点から作成されます。しかし、ポリゴンは常に閉じた領域を記述しているので、最 初と最後の頂点は常に同じ場所でなければなりません!ポリゴンは、多くの場合、共有ジオメトリ ---隣接 するポリゴンと共通している境界を有します。多くの GIS アプリケーションには、隣接するポリゴンの境 界が正確に一致することを確実にする能力があります。このチュートリアルの後のトポロジトピックでは これについて見ていきます。

ポイントとポリラインと同様に、ポリゴンは属性を持っています。属性は、ポリゴンごとに記述します。 例えば、ダムは深さと水質の属性を持っている可能性があります。

3.5 レイヤ内のベクタデータ

ベクタデータとは何かを説明しましたので、GIS 環境においてベクタデータがどのように管理され使われ ているかを見てみましょう。ほとんどの GIS アプリケーションでは、ベクタ地物を複数の レイヤ に分類 します。あるひとつのレイヤ内の地物は、すべてが同じジオメトリタイプ(例えばポイント)と、同じ種 類の属性(例えば樹木レイヤならその樹木の種の情報)を持ちます。例として学校の中のすべての歩道の 位置を記録したとしましょう。それらは通常、まとめてコンピューターのハードディスクに格納され、単 ーのレイヤとして GIS の中で表示されます。こうすることの利点は、マウスを1回クリックするだけで、 このレイヤの地物すべてを GIS アプリケーション上で隠したり表示したりできることです。

3.6 ベクタデータの編集

GIS アプリケーションでは、ジオメトリデータを作成、修正することができます。 --- このプロセスは、一般に デジタイジング と呼ばれます--- デジタイジングについては、後述のチュートリアルで説明します。 レイヤ中にポリゴン (例. 農業用貯水池) がある場合, 新たなポリゴンを作成することが可能です。同様に、 地物の形状を変更することも可能ですが、ポリゴンの規則に従う必要があります。例えば、1 つの頂点し かない線を引くことはできません --- これは、線は必ず 2 つ以上の頂点を有する必要があるからです。

ベクタデータの作成と編集は、興味のあるものに対して個人的なデータを作成できる主要な方法の一つで あるため、GIS の重要な機能です。たとえば、川での汚染を監視している、とします。GIS を使用すると、 雨水排水のためのすべての排水口を(ポイント地物として)デジタイズできるでしょう。また、川自体を (ポリライン地物として)デジタイズできるでしょう。最後に、川の流路に沿って pH レベルを読み取り、 これらを読み取った場所を(ポイントレイヤとして)デジタイズできます。

自らデータを作成するだけでなく、たくさんの入手および利用可能なフリーのベクタデータがあります。 たとえば、地図測量局(国土地理院)からは1:50000の地図シートで表示されるベクタデータを入手でき ます。

3.7 縮尺とベクタデータ

地図の 縮尺 は、GIS でベクタデータを操作するときに考慮すべき重要な問題です。データがキャプチャさ れるとき、それは通常、既存の地図から、または測量士の記録と全地球測位システムデバイスから情報を 取得することによってデジタイズされます。地図の縮尺はさまざま異なるため、ベクタデータを地図から GIS 環境にインポートする場合(たとえば、紙の地図をデジタイズすることにより)、デジタルベクタデー タには元の地図と同じ縮尺の問題があります。この効果は、イラスト 図 3.7 と 図 3.8 で見ることができま す。地図の縮尺を適切に選択しないと、多くの問題が発生する可能性があります。たとえば、イラスト 図 3.7 のベクタデータを使用して湿地保全地域を計画すると、湿地の重要な部分が保護区から除外される可能 性があります。一方、地域の地図を作成しようとしている場合は、1:1000 000 でキャプチャされたデータ を使用するのが適切であり、データをキャプチャする時間と労力を大幅に節約できます。

図 3.7: 小縮尺(1:1000000)の地図からデジタイズされたベクタデータ(赤線)。

図 3.8: 大縮尺(1:50000)の地図からデジタイズされたベクタデータ(緑色の線)。

3.8 シンボロジ

GIS アプリケーションの地図ビューにベクタレイヤを追加すると、ランダムな色と基本的なシンボルで描画 されます。GIS を使用する大きな利点の1つは、パーソナライズされた地図を非常に簡単に作成できるこ とです。GIS プログラムでは、地物タイプに合わせて色を選択できます(たとえば、水域のベクタレイヤを 青で描画するように指示できます)。GIS では、使用する記号を調整することもできます。したがって、木 ポイントレイヤがある場合は、レイヤを最初にロードするときに GIS が使用する基本的な円マーカーでは なく、木の小さな画像でそれぞれの木の位置を表示できます(図図3.9、: numref:*figure_generic_symbology* および図3.11 参照)。

neral Symbology Me	tadata Labels Actions	Attributes		
ieral Symbology Me	tadata Labels Actions	Attributes		
end type	Single Symbol	 Transparency: 0% 		
Label				
Point Symbol				
	(△△☆☆♪▲¶	P 🍣 🗳 🔂 🔂 🐯 😰 🕒 🖲] 🖻 🕜 😗 🚳 🗌 🗉	∆i A
\$ → @ ↔ 0	• • B 👭 🖶 🐛 🕯	i⊂1∥∎56€	l 🖗 P 🛚 🛨 🛧 🔹	? 🗵
LXAAAA	* • * ► 2 8 6	• † 3 ¤ D & • 1	Ì⊕+ † ↑ ↑ ↑	••
のようままの			< × × * * * 🕄	8 P
Rotation field	Area scale	field	Size	`
<off></off>	▼ <off></off>	•	2.00	-
Style Options				
	Outline style	Solid Line	•	
	Outline color			
	Outline width	0.26		
	Fill color			
	Fill style	Solid	· ···	
Restore Default Style	Save As Default	t Load Style	e Sa	ive Style

図 3.9: GIS では、レイヤ内の地物を描画する方法を調整する(上記のような)パネルを使用できます。

図 3.10: レイヤ(例えば上にある木のレイヤ)が初めてロードされると、GIS アプリケーションは一般的な シンボルを与えます。

図 3.11: 調整を行った後は、ポイントが木を表すことがずっとわかりやすいです。

シンボロジは強力な機能であり、地図をより生き生きと、GIS中のデータをより理解しやすくします。後に続くトピック(ベクタ属性データ)では、シンボロジが、ユーザーがベクタデータを理解するのにいかに役立つかを深く探求します。

3.9 GIS ではベクタデータで何ができる?

最も単純なレベルで通常の地形図を使用するのとほぼ同じ方法で、GIS アプリケーションでのベクタデー タを使用できます。GIS の真の力は、「ある河川の 100 年洪水レベルの範囲内にある家はどれ?」;「なる べく多くの人が簡単に行けるように病院を配置したいが、最適な場所はどこ?」;「どこそこの郊外に住ん でいる生徒は誰?」といった質問を尋ね始めたときに発揮され始めます。GIS は、ベクタデータの助けを 借りてこれらの種類の質問に答えるための素晴らしいツールです。一般的には、これらの種類の質問に答 えるプロセスを 空間分析 と言います。このチュートリアルの後のトピックでは、より詳細に空間分析を見 ていきます。

3.10 ベクタデータの一般的な問題

ベクタデータの取り扱いには、いくつかの問題や課題があります。既に挙げた例として、異なる縮尺でベク タデータが作成されることによって起こる問題があります。これに加えて、ベクタデータの正確さと信頼 性を担保するためには、多くのメンテナンス作業が必要となることも挙げられます。不正確なベクタデー タは、データを作成する際に使用したツールが適切に設定されていない場合、作成者が注意深く作業を行 わなかった場合、十分に詳細なデータ収集を行うには時間とお金が足りなかった場合、などに生じ得るも のです。

質の悪いベクタデータがある場合、GIS でデータを表示するときにこれを検出できることがよくあります。 たとえば、 スライバ は、2 つのポリゴン領域の辺が適切に合わない場合に発生する可能性があります(図 3.12 参照)。

図 3.12: スライバは隣接する二つのポリゴンの境界を構成する頂点がうまく合致していないときに発生します。小縮尺 (ex. 左図 1) ではこれらのエラーを見つけられないかもしれません。しかし大縮尺 (ex. 右図 2) にするとそれらが二つのポリゴンの間の細い領域として顕在化します。

オーバーシュート は、道路などのライン地物が交差点で別の道路と正確に一致しない場合に発生する可能 性があります。 アンダーシュート は、ライン地物 (川など)が、接続する必要のある別の地物と正確に一 致しない場合に発生する可能性があります。図 図 3.13 は、アンダーシュートとオーバーシュートがどのよ うに見えるかを示しています。

図 3.13: アンダーシュート (1) は互いに接合すべきライン地物をぴったり接合せずにデジタイズを行うと発生します。オーバーシュート (2) は接合すべきラインの端点が接合対象の地物を飛び越え交差してしまった際に発生します。

このようなタイプのエラーがあるため、デジタイズを注意深く正確に行うことはとても重要です。これか ら先のトピックにある トポロジ では、この種のエラーのいくつかについてさらに詳しく検討します。

3.11 わかりましたか?

ここでは以下のことを学びました:

- GIS において、 ベクタデータ は現実世界を代表する 地物 を表現するために利用されます。
- ベクタ地物は ポイント、 ライン または ポリゴン の ジオメトリ タイプを持つことができます。
- 各ベクタ地物は、それを記述する 属性データ を持ちます。
- 地物のジオメトリ(幾何形状)は頂点の観点で記述されます。
- ポイントジオメトリは、1つの頂点(X、Yおよび任意でZ)で構成されています。
- ポリラインジオメトリは ラインをつないで形成する 2つ以上の 頂点で構成されています。
- ポリゴンジオメトリは閉じた領域を形成する少なくとも4つの頂点で構成されています。最初と最後の頂点は常に同じ位置です。
- ・使用するジオメトリタイプの選択は、縮尺、利便性やGISにおいてデータでしたいことに依存します。
- ほとんどの GIS アプリケーションでは、単一のレイヤで複数のジオメトリタイプを混在させること はできません。
- デジタイジングは、GIS アプリケーションで描画することにより、デジタルベクタデータを作成する プロセスです。
- ベクタデータにはアンダーシュート,オーバーシュート そして スライバ のような、注意が必要な品 質上の問題があります。

- GIS アプリケーションではベクタデータを 空間分析 に利用できます。例えば、学校に近い病院を見つけるなどです。
- GIS ベクタデータの概念を図 図 3.14 にまとめました。

図 3.14: この図は、GIS アプリケーションがベクタデータを扱う方法を示しています。

3.12 やってみよう

ここでは人に教える際のアイデアいくつか述べていきます:

- お住まいの地域の地形図のコピー(図 3.15 に示されているものなど)を使用して、学習者がさまざ まな種類のベクタデータの例を地図上で強調表示して識別できるかどうかを確認します。
- 学校の敷地にある現実世界の地物を表すために、GIS でベクタ地物をどのように作成するか考えてください。学校の中および周りのさまざまな地物のテーブルを作成し、その後、それらは GIS ではポイント、ライン、ポリゴンのどれで表現するのが最善かを決定する課題を生徒たちに与えます。例えば table_vector_1 を参照してください。

図 3.15: この地図上の2つのポイント地物と1つのポリゴン地物を識別できますか?

実際の地物	最適なジオメトリタイプ
学校の旗のポール	
サッカー場	
学校および周辺の歩道	
タップが置かれている場所	
Etc.	

表ベクタ1:このようなテーブルを作成します(空のジオメトリタイプの列を残して)、生徒たちに適切な ジオメトリタイプを決定するように問います。

3.13 考えてみよう

利用可能なコンピュータがなくても、ベクタデータを生徒たちに見せるためトポシートと透明なシートを 使用できます。

3.14 より詳しく知りたい場合は

QGIS ユーザーガイドでは、ベクタデータの操作についてより詳細な情報が含まれています.

3.15 次は?

次のセクションでは属性データ について詳しく見て、それがどうベクタ地物を記述するか確認しましょう。

第4章 ベクタ属性データ

ž	目的:	ここでは属性データをどのようにベクタ地物と結びつけ、データをシンボル化する のに使うかについて扱います.
	キーワー	属性, データベース, フィールド, データ, ベクター, シンボロジ
	ド:	

4.1 概要

地図上のすべての線が同じ色、幅、太さで、同じラベルが付いていたら、何が起こっているのかを理解す るのは非常に困難です。またその地図は私達にほとんど情報を与えないでしょう。たとえば 図 4.1 を見て ください。

図 4.1: 地図は、異なる地物を区別できるように異なる色やシンボルが使用されていると見やすくなります。 左の地図で河川、道路、等高線を区別はできるでしょうか?右の地図の場合はそれが簡単にできます。

このトピックでは、興味深く有益な地図を作成するために属性データがどのように役立つかを見ていきます。ベクタデータに関する前のトピックでは属性データがベクタ地物を説明するために使用されることを簡単に説明しました。 図 4.2 の家の写真を見てください。

図 4.2: すべての地物は記述可能な特徴を持っています。それらは目に見える特徴もあれば、私たちが知る ことのできる情報(例. 建築年)もあります。

これらの家の地物の形状はポリゴン(家の間取り図に基づく)であり、記録した属性は屋根の色、バルコ ニーがあるかどうか、家が建てられた年です。属性は目に見えるものである必要はないことに注意してく ださい---それらは、地物が構築された年など、地物について私たちが知っていることを説明できます。 GIS アプリケーションでは、この地物タイプを家のポリゴンレイヤで表し、属性を属性テーブルで表すことが できます(図 4.3 参照)。

図 4.3: 家のレイヤ。家の地物には、屋根の色等の属性やその他属性情報が記述されています。属性テー ブル(下図)には、地図上に示された家エリアの属性のリストが示されています。地物がテーブルの中で強 調表示されているときは、地図上では黄色のポリゴンとして見えるでしょう。

GIS アプリケーションにおいて地物にはジオメトリだけでなく属性もあるという事実は、多くの可能性を 開きます。たとえば、属性値を使用して、地物描画するときに使用する色とスタイルを GIS に指示できま
す(図 4.4 参照)。 色や描画スタイルを設定する手順は、よく地物の シンボロジ を設定するといわれます。

図 4.4: GIS アプリケーションでは、属性に応じて異なる地物を描画できます。例えば左図では、家の屋根 の色の属性と同じ色で、家のポリゴンを描画しています。右図では、バルコニーの有無に応じて、家のポ リゴンを塗り分けています。

属性データはまた 地図ラベル を作成する場合にも役立ちます。ほとんどの GIS アプリケーションには、各 地物にラベルを付けるために使用する属性を選択する機能があるでしょう。

地名や特定の地物を地図で検索 したことがある人なら、それがどれほど時間がかかるものかわかるで しょう。属性データがあれば、特定の地物をすばやく簡単に検索できます。 図 4.5 には、GIS での属性検 索の例があります。

図 4.5: GIS アプリケーションでは、属性に基づいても地物を検索できます。ここでは、黒い屋根の家のための検索を見られます。結果は、地図中ではターコイズ、テーブル上では黄色で表示されます。

最後に、属性データは 空間分析 を行う上で非常に役立ちます。空間解析は、その属性情報を持つ地物のジ

オメトリに保存された空間情報を組み合わせています。これは、地物およびそれらがお互いにどう関係す るか研究することを可能にします。実行できる空間分析の多くの種類があります、例えば GIS を使用して、 特定の領域で赤い屋根の家がどのくらいの数発生するか見つけることができます。木の地物があれば、GIS を使用して、土地の一部が開発されたときにどの種が影響を受ける可能性があるかを見つけだす試みがで きます。汚染が流れに入っているかを理解するためには、川の流路に沿って水試料について保存された属 性を使用できます。可能性は無限大!後のトピックでは、より詳細に空間分析を探索します。

属性データの詳細に移る前に、簡単にまとめてみましょう。

地物は、道路、敷地境界、変電所サイトなどの現実世界のものです。 地物 には ジオメトリ (ポイント、ポリライン、ポリゴン のいずれであるかを決定します)と 属性 (その地物を説明します)があります。 これは 図 4.6 に示されています。

図 4.6: ベクター地物について簡単に

4.2 属性の詳細

ベクタ地物の属性は、テーブルに格納されます。テーブルとはスプレッドシートのようなものです。テー ブルの各列はフィールドと呼ばれます。テーブルの各行はレコードです。テーブルtable_house_attributes は、属性テーブルが GIS でどのように見えるかの簡単な例を示します。GIS における属性テーブル内のレ コードそれぞれが一つの地物に対応しています。通常、属性テーブル内の情報は、データベースのいくつ かの種類に格納されます。地図上の地物を選択することで、テーブル内のレコードを検索し、テーブル上 の地物を選択することで、地図中の地物を見つけることができるように、GIS アプリケーションは、地物 ジオメトリと属性レコードをリンクします。

属性テーブル	フィールド1 : YearBuilt	フィールド 2: RoofColour	フィールド 3: Balcony
レコード1	1998	赤	はい
レコード2	2000	黒	いいえ
レコード 3	2001	銀色	はい

家の属性表:属性テーブルはフィールド(列)とレコード(行)を持っています.

属性テーブルの各フィールドには、特定のタイプのデータ(テキスト、数値、または日付)が含まれてい ます。地物に使用する属性を決定するには、いくつかの検討と計画が必要です。このトピックの前半の家 の例では、関心のある属性として、屋根の色、バルコニーの有無、および建設の月を選択しました。以下 のような家の他の面を選択することもたやすくできたでしょう:

- 部屋数
- 居住者数
- 住居の種類(RDPハウス、アパートのブロック、小屋、れんが造りの家など)
- 家が建てられた年
- 家の床面積
- 他には....

それほど多くの選択肢があるのに、どの属性が地物のために必要かをどうしたらうまく選択できるのでしょうか?これは通常、データで何をする予定かに帰着します。年齢によって家屋を示す色分けされた地図を 作成したい場合は、地物に「建築年」属性があると意味があります。このタイプの地図を使用することはな いと確かに知っている場合、情報を格納しない方が良いです。不要な情報を収集し格納するのは、情報を 調査しキャプチャするためにコストや時間が必要なので、悪い考えです。非常に多くの場合は、企業、友 人や政府からベクタデータを取得します。これらの場合には、特定の属性を要求することは通常不可能で あり、得られたもので何とかする必要があります。

4.3 単一シンボル

地物が任意の属性テーブルのデータを使用せずに記号化されている場合は、それだけで簡単に描くことが できます。ポイント地物ではたとえば、色やマーカー(丸、四角、星など)を設定できますが、それがす べてです。属性テーブル中のプロパティのいずれかに基づいて地物を描画するよう GIS に伝えることはで きません。そのためには、 段階、 連続 や ユニークな値 シンボルのいずれかを使用する必要があります。 これらは、以下のセクションに詳細に記載されています。

GIS アプリケーションでは、通常、 図 4.7 に示すような ダイアログボックス を使用してレイヤのシンボ ルを設定できます。このダイアログボックスでは、色と記号のスタイルを選択できます。レイヤのジオメ トリタイプに応じて、さまざまなオプションが表示される場合があります。たとえば、ポイントレイヤで は、 マーカースタイル を選択できます。ラインレイヤとポリゴンレイヤでは、マーカースタイルのオプ ションはありませんが、代わりに、砂利道の場合は破線のオレンジ、非主要道路の場合は実線のオレンジ など、 ラインスタイル と 色を選択できます (図 図 4.8 参照)。ポリゴンレイヤでは、塗りつぶしスタイ ル と色を設定するオプションもあります。

Layer Properties 🗙					
General Symbolo	gy Metadata Labels Acti	ons Attributes			
Legend type	Single Symbol	Transparency: 0%			
Label					
Point Symbol					
	×△△☆☆î ♠¶\$(] 🕂 🕄 🖸 🗐 🖻 🗑 🖷 🕄 🖸 🛆 İ			
\$ - • • •	0 • · B # ₱ ¼ \$ ∞.		=		
			•		
Rotation field	Area scale field	Size			
<011>	¢ <011>	\$ 2.70	•		
Style Options					
	Outline style	— Solid Line 😫			
	Outline color				
	Outline width	0.26			
Fill color					
	Fill style	Solid 🗧			
Restore Default St	yle Save As Default	Load Style Save Style	e		
Help		Apply 😣 Cancel	<u> </u>		

図 4.7: シンプルシンボルを用いる際、地物は属性情報に応じた描画はできません。これは点地物のシンプ ルシンボルのダイアログです。

		Layer Properties X
General	Symbology	Metadata Labels Actions Attributes
Legend t	ype	Single Symbol Transparency: 0%
Label		
Style 0	Options	
		Outline style -Solid Line 🗧
		Outline color
		Obtline width 0.26
		Fill style
Restore	Default Style	Save As Default Load Style Save Style
🕜 Help		Apply 😣 Cancel 🚄 QK

図 4.8: ラインとポリゴンの地物のシンプルなシンボルを定義するための様々なオプションがあります。

4.4 段階シンボル

ベクタ地物では変化する数値で物事を表現することがあります。等高線はこの良い例です。各等高線には 通常、その等高線がどの高さを表現するかという情報が含まれる'高さ'と呼ばれる属性値があります。こ のトピックで以前、すべて同じ色で描かれた等高線を示しました。等高線に色を追加すると、等高線の意 味を解釈する助けになりえます。例えば、低地をある色で、中間高度地を別の色で、高地を第三の色で描 画できます。

Layer Properties X						
General Symbology Metadat	a Labels Actions Attributes					
Legend type Graduated Symbol 😜 Transparency: 0%						
Classification field	HEIGHT	\$				
Mode	Quantiles	\$				
Number of classes	3	-				
	Classify Delete class					
Classify Delete class 980.000000 - 1120.000000 1120.000000 1240.000000 - 1500.000000 Label Style Options Outline style Outline color Outline width 0.26 + Fill color Fill style Solid \$\$\$ Solid \$\$\$\$						
Restore Default Style Save As Default Load Style Save Style						

図 4.9: 等高線の高さ属性は 3 クラスに等高線を分離するために使用できます。980 メートルと 1120 メート ルの間の等高線は褐色、1120 メートルと 1240 メートルの間は緑、1240 メートルと 1500 メートルの間は 紫で描画されます。

図 4.10: 等高線にグラデーションカラーを設定した後の地図。

属性値の個別のグループに基づいて色を設定することは、QGIS では段階的シンボル体系と呼ばれます。

このプロセスは、イラスト 図 4.9 および 図 4.10 に示されています。 段階的シンボル は、異なる値の範囲の属性値を持つ地物間の明確な違いを示したい場合に最も役立ちます。 GIS アプリケーションは、属性データ(高さなど)を分析し、要求したクラスの数に基づいて、グループ化を作成します。この手順は *table_graduated* に示されています。

属性值	クラスと色
1	クラス1
2	クラス1
3	クラス1
4	クラス 2
5	クラス 2
6	クラス 2
7	クラス 3
8	クラス 3
9	クラス 3

表の段階的:段階的な色は、属性値の範囲を選択したクラスの数に分割します。各クラスは異なる色で表 されます。

4.5 連続カラーシンボル

段階色シンボルについての前のセクションでは、個別のグループまたはクラスの地物を描画できることを 見ました。時には一つの色から別のものに 色範囲 内で地物を描くのに便利です。GIS アプリケーションで は、地物からの数値属性値(例えば、等高線の高さや流れでの汚染レベル)を使用して使用する色を決定 します。表 *table_continuous* では属性値は色の連続的な範囲を定義するために使用される方法を示してい ます。

属性值	カラー(無階級またはグルーピング)
1	
2	
3	
4	
5	
6	
7	
8	
9	

表 連続:連続色シンボルは開始色(例えばここでは明橙色)および終了色(例えばここでは暗褐色)を 使用し、それらの色の間で色調の系列を作成します。

前のセクションで使用したのと同じ等高線の例を使用して、連続した色の記号を使用した地図がどのよう に定義され、どのように見えるかを見てみましょう。このプロセスは、図 4.11 に示すようなダイアログを 使用して、レイヤのプロパティを連続色に設定することから始まります。

	Layer Pi	roperties	×
General Symbology	Metadata Labels Actio	ons Attributes	
Legend type	Continuous Color 🗘	Transparency: 0%	
Classification Field:			HEIGHT \$
Minimum Value:			
Maximum Value:			_
Outline Width:			0.26
Destars Default State	Cause As Default		Caus Shila
Restore Default Style	Save As Default	Load Style	Save Style
Help		At 💊	oply 🛛 🗙 Cancel 🛛 斗 🛛 K

図 4.11: 連続色のシンボルを設定します。等高線高さ属性は、色値を決定するために使用されます。色は、 最小値と最大値のために定義されています。GIS アプリケーションは、その高さに基づいて地物を描画す るための色のグラデーションを作成します。

色の範囲で最小色と最大色を定義した後、描画される色の特徴は、属性が最小と最大の間の範囲のどこに あるかによって異なります。たとえば、値が 1000m で始まり 1400m で終わる等高線地物がある場合、値 の範囲は 1000~1400 です。最小値に設定された色がオレンジに設定され、最大値に設定された色が黒の場 合、等高線値が 1400m に近い場合、黒に近く描画されます。一方、1000 m に近い値の等高線は、オレン ジに近く描画されます(図 4.12 を参照)。

図 4.12: 連続カラーシンボルを用いた等高線地図

4.6 単一シンボル

地物の属性が数値でなく、代わりに文字列が使用されていることがあります。「文字列」は文字、数字、その他の書き込みシンボルのグループを意味するコンピュータ用語です。文字列の属性は、多くの場合、名前で物事を分類するために使用されます。それぞれの固有の文字列または数値に独自の色やシンボルを与えるように GIS アプリケーションに伝えることができます。道路の地物は、異なる分類(例えば、「街路」、「周辺道路」、「主要道路」など)を有していて、それぞれは GIS の地図ビュー内で異なる色またはシンボルで描くことができます。これは table_unique に例示されています。

属性值	色クラスとシンボル
幹線道路	
主要道路	
周辺道路	
街路	

表 一意: 地物タイプ(e.g. 道路)のユニークな属性値で各々のシンボルを持つ。

GIS アプリケーション内で、レイヤに一意の値のシンボルを開く/使用することを選択できます。 GIS は、 属性フィールドのさまざまな文字列値をすべてスキャンし、一意の文字列または数値のリストを作成しま す。次に、それぞれの一意の値に色とスタイルを割り当てることができます。これは 図 4.13 に示されてい ます。

Layer Properties						
General Symbology Metadat	a Labels Actions Attributes	_				
Legend type Unique Value 🗢 Transparency: 0%						
Classification field	FEAT_TYPE \$					
Classify	Add class Delete classes Randomize Colors Reset Colors					
ARTERIAL ROUTE HIKING TRAIL MAIN ROAD OTHER ACCESS SECONDARY ROAD STREET TRACK FOOTPATH	Label					
	Style Options					
	Outline style Solid Line \$					
	Outline color					
	Outline width 0.00					
	Fill color					
	Fill style					
Restore Default Style Sa	ve As Default Load Style Save Style					
🕜 Help	Apply 😫 Cancel 🚽 OK					

図 4.13: 道路の種類に基づいて、道路に対して一意のシンボルを定義します。

GIS がレイヤを描画するとき、画面に描画する前に各地物の属性を確認します。属性テーブルで選択した フィールドの値に基づいて、道路の線が適切な色と線のスタイル(およびポリゴン地物の場合は塗りつぶ しのスタイル)で描画されます。これは 図 4.14 に示されています。

図 4.14: 道路ベクタレイヤは道路の種別ごとに一意の値を用いてシンボル化されます。

4.7 注意すべき点

使用する属性と記号を決定するときは、いくらか計画が必要です。何らかの地理空間データの収集を開始 する前に、必要とされている属性が何で、それがどのように記号化されるかを知っているか確かめる必要 があります。最初の頃に立てた計画が悪いと、前に戻ってデータを再収集することは非常に困難です。属 性データを収集する目的は、空間情報を分析し、解釈できるようにすることであることも忘れないでくだ さい。どのようにこれをするかは答えようとしている質問に依存します。シンボル体系は、人々が使用さ れた色や記号に基づいて属性データを見て理解できるようにする視覚言語です。このため、理解しやすく するためには地図をどのようにシンボル化したらよいかに、思考の多くをつぎ込む必要があります。

4.8 わかりましたか?

ここでは以下のことを学びました:

- ベクタデータは 属性 を持っています
- ・ 地物の 情報 を 記述 する属性
- 属性は テーブル に格納されます
- テーブルの行は レコード と呼ばれます
- ベクタレイヤでは それぞれの地物ごとにレコード があります
- テーブルの列は フィールド と呼ばれます
- ・フィールドは地物の持つ情報(例.高さ,屋根の色)を表します
- •フィールドは、数値、(任意の)文字列、日付などの情報を含むことができます
- 地物の属性データはシンボルの設定に使用することができます
- 段階カラー シンボルはデータをいくつかのクラスにまとめることができます

- ・ 連続カラー シンボルは、地物の属性情報に基づいてカラーレンジの色を割り当てることができます
- 個別値 シンボルは指定した属性フィールドの中の個別値にそれぞれ異なるシンボル (色やスタイル) を設定することができます
- ベクタレイヤの属性が定義されたシンボル体系を使用していない場合は、単一シンボルを使用して 描画されます。

4.9 やってみよう

ここでは人に教える際のアイデアいくつか述べていきます:

- 最後のトピックで作成したテーブルを使用して、地物タイプごとに使用し記号の種類の新しい列を追加し、生徒たちに彼らが使用しているシンボルの種類を識別させてください(例えば table_example_symbols を参照)。
- ベクタ地物は、次のタイプで使用しているシンボロジの種類を特定するようにしてください:
 - 学校のまわりで採集された土壌サンプルの pH レベルを示す点
 - 都市の道路網を示すライン
 - レンガ、木材、あるいは「他の」材料で作られているかどうかを示す属性をもつ住宅ポリゴン。

実際の地	ジオメ	シンボルタイプ
物	トリタ	
	イプ	
学校の旗	点	単一シンボル
のポール		
サッカー	ポリゴ	単一シンボル
場	ン	
学校およ	ポリラ	生徒たちに、学校の前の時間に各歩道を利用する生徒の数を数えさせ、それから
び周辺の	イン	段階シンボル を使用して各歩道の人気を示させてください
步道		
タップが	点	単一シンボル
置かれて		
いる場所		
教室	ポリゴ	教室にいる生徒たちの学年にもとづく ユニーク値。
	ン	
フェンス	ポリラ	学校の周りのフェンスについて、区間に分離してその各区間を状態に基づいて1
	イン	-9の尺度で採点することで、生徒たちに状態を評価させます。状態属性を分類
		するために 段階シンボル を使用してください。
教室	ポリゴ	各教室における生徒たちの数をカウントし、赤から青に色の範囲を定義するため
	ン	に 連続色シンボル を使用します。

表 例記号:地物タイプとそれぞれのために使用するシンボルの種類を定義するテーブルの例。

4.10 考えてみよう

利用可能なコンピュータを持っていない場合は、別のシンボルの種類を試して、透明シートと1:50,000 地 図シートを使用できます。例えば、地図上に透明シートを配置し、異なる色のフェルトペンを使用して、す べての行上または900 メートルに等しい赤色900 M(または類似の)以下と緑内のすべての等高線を描き ます。同じ技術を使用して他のシンボルタイプを再現する方法を考えることができますか?

4.11 より詳しく知りたい場合は

ウェブサイト: https://en.wikipedia.org/wiki/Cartography

QGIS ユーザーガイドにも、QGIS における属性データとシンボル体系についてのより詳細な情報があります。

4.12 次は?

続くセクションでは データキャプチャ を詳しく見てみます。ここでベクターデータおよび属性について学んできたことは、新しいデータを作成することによって実践するでしょう。

第5章 データの取り込み

5.1 概要

先の二つのトピックでは、ベクタデータを見てきました。ベクタデータには,ジオメトリ と 属性 の 2 つ の重要なコンセプトがあるのを見てきました。ベクタ地物のジオメトリは,形状 と 位置 を示し、属性 は プロパティ (色、大きさ、年など)を示します。

このセクションでは、ベクタデータ(ベクタ地物のジオメトリと属性の両方)を作成し編集する過程を詳 しく見ていきます。

5.2 GIS のデジタルデータはどのようにして保存されていますか

ワードプロセッサ、スプレッドシート、グラフィックパッケージはすべて、デジタルデータを作成し編集 するプログラムです。アプリケーションの各タイプでは、特定のファイル形式にそのデータを保存します。 例えば、グラフィックスプログラムであれば図画を.jpg JPEG 画像として、ワードプロセッサであれば書 類を.odt OpenDocument か.doc ワード文書として保存できるでしょう。

これらの他のアプリケーションとまったく同様に、GIS アプリケーションではコンピュータのハードディ スク上のファイルにそのデータを保存できます。GIS データのファイル形式はさまざまありますが、最も 一般的なものは、おそらく「シェープファイル」です。名前に少し奇妙なところがあります。シェープファ イル(単数)と呼びますが、それは実際には *table_shapefile* に示すように、デジタルベクタデータを保存 するために一緒に動作する最低3つの異なるファイルで構成されます。

拡張	説明
子	
.shp	このファイルにはベクタ地物のジオメトリが保存されます
.dbf	このファイルにはベクタ地物の属性が保存されます
.shx	このファイルは地物をより早く検索するために GIS アプリケーションを助けるインデックス
	です。

表 シェープファイル1:一緒に「シェープファイル」を構成する基本的なファイル。

コンピューターのハードディスク上のシェープファイルを構成するファイルを見ると、図 5.1 のようなものが表示されます。シェープファイルに保存されているベクタデータを他の人と共有したい場合は、その人にそのレイヤーのすべてのファイルを渡すことが大事です。したがって、図 5.1 に示されている trees レイヤの場合、:file:`trees.shp`、 trees.shx、 trees.dbf、 trees.prj`および :file:`trees.qml を渡す必要があります。

図 5.1: コンピュータのファイルマネージャで見られるような「木」 シェープファイルを構成するファイル。

多くの GIS アプリケーションでは、 データベース 内にもデジタルデータを保存できます。データベース に GIS データを保存することは、データベースは、 大量 のデータを 効率的 に保存でき、迅速に GIS アプ リケーションにデータを提供できるため、一般的に良いソリューションです。 データベースを使用すると、 多くの人が同時に同じベクタデータレイヤで作業できます。 GIS データを格納するデータベースを設定す るのはシェープファイルを使用するよりも複雑ですので、このトピックでは、シェープファイルの作成お よび編集に焦点を当てます。

5.3 始める前に計画する

新しいベクタレイヤ(シェープファイルに保存される)を作成する前に、そのレイヤの形状(ポイント、ポ リラインまたはポリゴン)がどうか、そのレイヤの属性がどうなるか知っている必要があります。いくつ かの例を見てみましょう、そうすればこれをやって行く方法がより明確になるでしょう。

5.3.1 例1:旅行地図の作成

お住まいの地域のために素敵な観光地図を作成したいと思っているとしましょう。最終的な地図に対する ビジョンは、観光客への関心のサイトのためにオーバーレイマーカーと5万分の1のトポシートです。ま ずは、ジオメトリについて考えてみましょう。ベクタレイヤはポイント、ポリラインまたはポリゴンの地 物を使用して表現できることはわかっています。この観光地図にはどれが最も理にかなっていますか?外 を見るポイント、記念碑、古戦場などの特定の位置をマークしたい場合はポイントを使用できます。峠を 通る風光明媚なルートなど、観光客にルートを案内したい場合は、ポリラインを使用しても意味がありま す。自然保護区や文化村など、全体が観光上関心のある領域がある場合は、ポリゴンを選択するのが良い かもしれません。

ご覧のとおり、必要なジオメトリのタイプを知るのは簡単ではないことがよくあります。この問題に対す る一般的なアプローチの1つは、必要なジオメトリタイプごとに1つのレイヤを作成することです。たと えば南アフリカの測量・地図主任局によって提供されたデジタルデータを見ると、河川領域の(ポリゴン) レイヤと河川のポリラインレイヤが提供されています。河川領域(ポリゴン)は広い川の広がりを表し、河 川のポリラインは狭い川の広がりを表すのに使用されています。図 5.2 では、3 つのジオメトリタイプす べてを使用した場合に、観光レイヤが地図上でどのように見えるかを確認できます。

図 5.2: 観光レイヤーを有する地図。適切に彼らが必要なすべての情報を与え、訪問者のために必要な地物の 種類を表すことができるよう、観光のデータのための3つの異なるジオメトリタイプを使用していました。

5.3.2 例2:川に沿った汚染レベルの地図作成

川のコースに沿って汚染レベルを測定したい場合は、通常はボートで川に沿って移動するか、その土手に 沿って歩きます。一定間隔で止まって、溶存酸素(DO)レベル、大腸菌群(CB)カウント、濁度レベルお よび pH などの様々な測定値を取ることでしょう。自分の位置の地図読みをしたり、GPS 受信機を使用し て自分の位置を取得する必要もあります。

GIS アプリケーションでは、このような実習から収集したデータを格納するためには、おそらく点ジオメトリを持つ GIS レイヤを作成します。撮影した各サンプルは非常に限られた場所での条件を表しているため、点ジオメトリを使用することはここでは意味があります。

属性のために、サンプルサイトを説明する各々の物事に対してフィールドが欲しくなるかもしれません。 だから *table_river_attributes* のように見える属性テーブルで終わることがあります。

サンプルナンバー	рН	DO	СВ	濁り	採取者	データ
1	7	6	Ν	低い	患者	2009/12/01
2	6.8	5	Y	中程度	Thabo	2009/12/01
3	6.9	6	Y	高い	Victor	2009/12/01

テーブル河川属性1:ベクタレイヤを作成する前に、このようなテーブルを描くと、どんな属性フィールド(列)が必要となるかを決定できるようになります。ジオメトリ(サンプルが採取された位置)は属性テーブルに示されていないことに注意してください---GIS アプリケーションではジオメトリは別途保存されます!

5.4 空のシェープファイルを作成する

どんな地物を GIS に取り込むか、またそれぞれの地物がどんなジオメトリタイプと属性を持つべきか計画 したら、空のシェープファイルを作成するための次のステップに進むことができます。

この手順は通常、GIS アプリケーションで [新しいベクタレイヤ] オプションを選択してから、ジオメトリ タイプを選択することから始まります(図 5.3 参照)。前のトピックで説明したように、これは、ジオメト リにポイント、ポリライン、またはポリゴンのいずれかを選択することを意味します。

Q New Vector Laye	21			? ×
File format		ESRI Shap	efile	•
Point	🔿 Lir	ne	O Poly	jon
Attributes				
Name				
Туре		String		-
Name	Туре			
Туре	String			
Notes	String			
Help			<u>о</u> к	Cancel

図 5.3: 新しいベクタレイヤを作成することは、フォームにいくつかの詳細に記入するのと同じくらい簡単 です。まず、ジオメトリタイプを選択し、それから属性フィールドを追加します。

次は属性テーブルにフィールドを追加します。通常は、短くて空白を含まず、フィールドに格納されている情報の種類を示唆するフィールド名を与えます。フィールド名の例としては「pH」、「屋根色」、「道路種別」などでしょう。各フィールドの名前を選択するのと同様に、情報がそのフィールドにどう格納されるかを示す必要があります---つまりそれは数か、単語や文章か、または日付か?

コンピュータプログラムは、通常、言葉や文章の'文字列'で構成された情報を呼び出します。だから通り の名前や川の名前のようなものを保存する必要がある場合は、フィールドタイプに'文字列'を使用する必 要があります。

シェープファイル形式は、数値フィールド情報を全体の数(整数)または小数(浮動小数点数)のいず れかとして保存できます---キャプチャしようとしている数値データが小数点以下を持っているかどうかを 事前に考えておく必要があります。

シェープファイルを作成するための最後のステップ(図 5.4 に示されている)は、シェープファイルに名前 とコンピューターのハードディスク上の作成場所を指定することです。繰り返しになりますが、シェープ ファイルには短くて意味のある名前を付けることをお勧めします。良い例は、「川」、「水質標本」などです。

🧕 Save As	? ×
Look in:	🗀 C:\Program FilesIS\gisdata\local 🔻 😋 🕤 🧭 📰 🗐
😨 My Com	nuter 50k_riversa.shp 50k_spothgt.shx house strator 50k_riversa.shx boundary.dbf house 50k_roads.dbf boundary.prj slivers 50k_roads.prj boundary.gml slivers 50k_roads.qml boundary.shp slivers 50k_roads.shp boundary.shp slivers 50k_roads.shp boundary.shx slivers 50k_roads.pg.qml elevation_p1000.dbf touris 50k_roadsoutline.qml elevation_p1000.shp touris 50k_spothgt.dbf elevation_p1000.shx touris 50k_spothgt.prj houses.dbf touris 50k_spothgt.qml houses.qml touris 50k_spothgt.shp houses.qml touris
File <u>n</u> ame:	tourism_points.shp
Files of type:	All Files (*)
Encoding:	System 💌

図 5.4: 新しいレイヤのジオメトリと属性を定義したら、それをディスクに保存する必要があります。シェー プファイルに短いが意味のある名前を与えることが重要です。

再び処理を手短におさらいしてみましょう。シェープファイルを作成するには、最初にそれが保持するジ オメトリの種類を言い、それから属性テーブルのために1つ以上のフィールドを作成し、認識しやすい名 前を使用してハードディスクにシェープファイルを保存します。1-2-3のように簡単に!

5.5 シェープファイルにデータを追加する

これまでのところは、空のシェープファイルを作成しただけです。今は、GIS アプリケーションの「編集を 有効」メニューオプションまたはツールバーのアイコンを使用してシェープファイルでの編集を有効にす る必要があります。シェープファイルが誤って、それらに含まれるデータの変更や削除を防ぐために、デ フォルトでは編集のために有効になっていません。次は、データの追加を開始する必要があります。シェー プファイルに追加するレコードごとに、2 つのステップを完了する必要があります。

1. ジオメトリの取得

2. 属性の入力

ジオメトリの取得プロセスはポイント、ポリラインおよびポリゴンかによって異なります。

ポイントをキャプチャするには、最初に地図のパンおよびズームツールを使用して、データを記録する予定の正しい地理的領域に到達します。次に、ポイントキャプチャツールを有効にする必要があります。それが終わったら、地図ビューでマウスの左ボタンで次にクリックする場所は、新しいポイントジオメトリを表示する場所です。マップをクリックすると、ウィンドウが表示され、そのポイントのすべての属性データを入力できます(図5.5参照)。特定のフィールドのデータがわからない場合は、通常は空白のままにすることができますが、多くのフィールドを空白のままにすると、データから有用な地図を作成するのが難しくなることに注意してください。

🧕 Enter Attri	bute Values	<u>? ×</u>
Type (txt)	Look Out Point	
		_
Notes (txt)	View of the lake	
	<u>O</u> K Can	cel

図 5.5: ポイントジオメトリをキャプチャした後は、その属性を記述するように求められます。属性フォームは、ベクタレイヤを作成したときに指定したフィールドに基づいています。

ポリラインをキャプチャ するプロセスは、最初にパンツールとズームツールを使用して地図ビューの地図 を正しい地理的領域に移動する必要があるという点で、ポイントの手順と似ています。新しいベクタポリ ライン地物が適切な縮尺になるように、十分にズームインする必要があります(縮尺の問題の詳細につい ては、ベクタデータ参照)。準備ができたら、ツールバーのポリラインキャプチャアイコンをクリックし、 地図をクリックして線の描画を開始できます。最初のクリックを行うと、線がゴムバンドのように伸びて、 マウスカーソルを動かしながら動き回ることに気付くでしょう。マウスの左ボタン でクリックするたび に、新しい頂点が地図に追加されます。この手順は、図 5.6 に示されています。

図 5.6: 観光地図のラインをキャプチャします。ラインレイヤを編集する場合、頂点はラインのジオメトリ を調整するために、マウスで動き回ることができ、円形のマーカーで示されています。(赤で表示)新しい 行を追加する場合は、マウスをクリックするたびに、新しい頂点を追加します。

ラインの定義が終了したら、編集が完了したことを GIS アプリケーションを伝えるために マウスの右ボタ ン を使用します。ポイント地物をキャプチャする手順のときと同じように、新しいポリライン地物の属性 データへの入力を求められます。

ポリゴンをキャプチャ するためのプロセスは、ツールバーでポリゴンキャプチャツールを使用する必要が あることを除けば、ほとんどポリラインをキャプチャするのと同じです。また、画面上の図形を描画する 際に、GIS アプリケーションでは常に閉じた領域が作成されることに気づくでしょう。

最初の地物を作成した後に新しい地物を追加するには、単にポイント、ポリラインまたはポリゴンキャプ チャツールをアクティブにして地図を再度クリックすると、次の地物の描画を開始できます。

もう追加する地物がなくなったら、必ず「編集を許可」アイコンをクリックしてそれをオフに切り替えて ください。GIS アプリケーションは、ハードディスクに新たに作成したレイヤを保存します。

5.6 ヘッドアップデジタイジング

上記の手順を実行した場合、おそらくこれまでに発見したように、参照点として使用できる他の地物がな い場合、空間的に正しいように地物を描画するのはかなり困難です。この問題の一般的な解決策の1つ は、背景レイヤとしてラスタレイヤ(航空写真や衛星画像など)を使用することです。そうするとこのレ イヤーを参照地図として使用できます。また、ラスタレイヤからベクタレイヤに地物が表示されている場 合は、それらをトレースすることもできます。このプロセスは「ヘッドアップデジタイジング」と呼ばれ、 図 5.7 に示されています。

図 5.7: 背景として衛星画像を使用したヘッドアップデジタイジング。画像はその上をトレースすることに よってポリライン地物をキャプチャするための基準として使用されます。

5.7 デジタイジングテーブルを使用してデジタイズする

ベクタデータをキャプチャする別の方法は、デジタイズテーブルを使用することです。このアプローチは、 GIS の専門家以外ではあまり一般的に使用されておらず、高価な機器が必要です。デジタルイズテーブル を使用する手順は、テーブルに紙の地図を配置することです。紙の地図は、クリップを使用して所定の位 置にしっかりと保持されます。次に、「パック」と呼ばれる特別なデバイスを使用して、地図から地物を トレースします。パックの小さな十字線は、線と点が正確に描画されるようにするために使用されます。 パックはコンピューターに接続されており、パックを使用してキャプチャされた各地物はコンピューター のメモリに保存されます。図 5.8 でデジタイジングパックがどのように見えるかを確認できます。

図 5.8: デジタイジングテーブルやパックは、GIS の専門家が既存の地図から地物をデジタル化したいとき に使用されています。

5.8 地物がデジタイズされた後...

地物がデジタイズされたら、前のトピックで学んだ技術をレイヤのシンボルを設定するために使用できま す。シンボルを適切に選択すると、地図を見るときにキャプチャしたデータをより良く理解できるように なります。

5.9 一般的な問題 / 注意すべき点

航空写真や衛星画像などの背景ラスタレイヤを使用してデジタル化する場合は、ラスタレイヤが適切に地 理参照されていることが非常に重要です。地理参照されたレイヤは、GIS アプリケーションの地球の内部 モデルに基づいて、地図ビューの正しい位置に適切に表示されます。地理参照が不十分な画像の影響は、 図 5.9 で確認できます。

図 5.9: ヘッドアップデジタイジングのために適切にジオリファレンスされたラスタ画像を使用することの 重要性。左側には適切に地理記録された道路の地物(オレンジ色)が完全に重なっている画像を見ること ができます。(右図のように)画像が下手にジオリファレンスされた場合、地物は十分に揃いません。さら に悪いことに、新しい地物をキャプチャする場合に右の画像が参照として使用される場合、新しく取得さ れたデータは不正確になります!

また、作成するベクタ地物が有用になるように、適切な縮尺にズームインすることが重要であることを覚 えておいてください。ベクタジオメトリについての前のトピックで見たように、キャプチャしたデータを 後で 1:50 000 の縮尺で使用するつもりならば、1:1000 000 の縮尺にズームアウトしてデータをデジタル化 するのは良くありません。

5.10 わかりましたか?

ここでは以下のことを学びました:

- デジタイジングとは、地物のジオメトリと属性の知識を、コンピュータのディスクに保存される デジタルフォーマットへとキャプチャするプロセスです。
- GIS データは データベース あるいは ファイル として保存されます。
- 一般的なファイルフォーマットの1つはシェープファイルです。これは実際には3つ(.shp、.dbf、.shx)またはそれ以上のファイルのグループです。
- 新しいベクタレイヤファイルを作成する前には、それはどのジオメトリタイプでどんな属性フィールドを含めるか、両方を計画する必要があります。
- ジオメトリはポイントまたは,ポリライン,ポリゴンです。
- 属性は 整数 (整数) 浮動小数点数 (小数) テキスト (文字)または 日付 でありえます。
- デジタイジングプロセスは、の地図ビューでジオメトリを 描画 して、その属性を入力することで構成されています。これは、各地物ごとに繰り返されます。
- ヘッドアップデジタイジングは、多くの場合、背景にラスタ画像を使用してデジタイズする時の幾 何学的配置を提供するために使用されます。
- 専門的な GIS ユーザーは時々、紙の地図から情報を取り込む デジタイジングテーブル を使います。

5.11 やってみよう

ここでは人に教える際のアイデアいくつか述べていきます:

- ・取り込むと興味深いと思うご自分の学校とその周辺の地物のリストを描画します。たとえば、学校の 境界、火災避難場所の位置、各クラスの部屋のレイアウト、等々。異なるジオメトリタイプを混ぜて 使用してみてください。今、生徒たちをグループに分割し、各グループに取り込むいくつかの地 物を割り当てます。彼らは見て、より意味のあるように、彼らに自分たちのレイヤをシンボル化させ ます。すべてのグループからのレイヤを組み合わせると、学校とその周辺の素敵な地図が出来上がり ます!
- ・地元の川を見つけて、その長さに沿って水のサンプルを取ります。GPSを使用するかトポシートで それをマークすることで、各サンプルの位置を慎重にメモしておきます。各サンプルについて pH、 溶存酸素等などの値を計測します。GIS アプリケーションを使用してデータを取り込み、適切なシン ボルを有するサンプルを示す地図を作ります。懸念の領域を何か特定できますか? GIS アプリケー ションはこれらの領域を識別するために助けになりましたか?

5.12 考えてみよう

コンピュータが利用できない場合は、透明シートとノートブックを使用して同じ手順をたどることができ ます。背景レイヤとして航空写真、オルソシートや衛星画像のプリントアウトを使用してください。お使 いのノートブックにページ下の列を描画し、情報を格納したい各属性のフィールドの列見出しを書き入れ ます。今では識別できるように、次の各地物に番号を書いて、透明シート上に地物のジオメトリをトレー スします。今、ノートブックでテーブルの最初の列に同じ番号を書き、次に記録したいすべての追加情報 を入力します。

5.13 より詳しく知りたい場合は

QGIS ユーザーガイドには、QGIS での ベクタデータをデジタル化する 詳細があります。

5.14 次は?

次のセクションでは、GIS で画像データをどのように使用できるかのすべてを学ぶために、 ラスタデータ について詳しく見てみましょう。

第6章 ラスタデータ

6.1 概要

前のトピックでは、ベクタデータを詳しく見てきました。ベクタ地物はジオメトリ(ポイント、ポリライン、ポリゴン)を使用して実世界を表現しますが、ラスタデータは別のアプローチを取ります。ラスタは ピクセルのマトリックス(セルとも呼ばれます)で構成され、各ピクセルには、そのセルがカバーする領 域の条件を表す値が含まれています(図6.1参照)。このトピックでは、ラスタデータが役立つ場合、ベク タデータを使用する方が理にかなっている場合について詳しく見ていきます。

図 6.1: ラスタデータセットはピクセル(セルとしても知られています)の行(横方向)と列(縦方向)で 構成されています。それぞれのピクセルは、地理的な領域を表しており、ピクセル中の値はその領域の何 らかの特徴を表しています。

6.2 ラスタデータの詳細

ラスタデータは、GIS アプリケーションにおいて、エリア全体で連続していてベクタ地物に簡単に分割で きない情報を表示する場合に使用されます。ベクタデータを紹介したとき、:numref:`figure_landscape`で画 像を表示しました。ポイント、ポリライン、ポリゴン地物は、樹木、道路、建物のフットプリントなど、こ のランドスケープ上のいくつかの地物を表すのに適しています。ランドスケープ上の他の地物は、ベクタ 地物を使用して表現するのがより難しい場合があります。たとえば、示されている草地には、色と覆いの 密度に多くのバリエーションがあります。各草地エリアの周りに単一のポリゴンを作成するのは簡単です が、地物を単一のポリゴンに単純化する過程で、草地に関する多くの情報が失われます。これは、ベクタ 地物属性値を指定するとそれらは地物全体に適用されるため、ベクタは全体的に均一ではない(完全に同 じ)地物を表現するのがあまり得意ではないためです。取りうるもう一つのアプローチは、草の色のすべ ての小さなバリエーションをデジタル化し、別々のポリゴンとしてカバーすることです。このアプローチ の問題は、優れたベクタデータセットを作成するために膨大な量の作業が必要になることです。

図 6.2: 風景上の地物には、ポイント、ポリライン、ポリゴン(樹木、道路、住宅など)として表現するの が簡単なものもあります。あるいはそれが困難な場合もあります。たとえば、草原をどのように表現しま すか?ポリゴンとして?草の中に見える色の変化はどうですか?連続的に値を変更して大きな領域を表現 しようとするときは、ラスタデータを使用するほうがよいでしょう。

ラスタデータを使用することは、これらの問題の解決策です。多くの人々がラスタデータを、ベクタ情報 の意味をより明確にするためにベクタレイヤの背後で使用される 背景 として使用しています。人間の目 は画像を解釈する上で非常に優れているので、ベクタレイヤの背後に画像を使用すると、より多くの意味 を持つ地図が得られます。ラスタデータは、現実世界の表面(例えば、衛星画像および航空写真)を描写 する画像に適しているだけでなく、より抽象的なアイデアを表現するのにも適しています。たとえば、ラ スタを使用して地域の降雨傾向を表示したり、火災リスクを風景上に描いたりできます。この種のアプリ ケーションでは、ラスタ中の各セルは異なる値、たとえば1から10の尺度で火災の危険性を表します。

衛星から取得した画像と計算値を示す画像の違いを示す例は、 図 6.3 にあります。

図 6.3: トゥルーカラーのラスタ画像(左)には、ベクタ地物として取り込むのは難しいが、ラスタ画像を 見るときには見やすいような、詳細を多く持つので便利です。ラスタデータには右に示された図のような 非写真データもあります。これは3月の西ケープにおける計算された平均最低温度を示しています。

6.3 ジオリファレンス

ジオリファレンスは、地表面のどこに画像データまたはラスタデータセットが作成されたかを正確に定義 するプロセスです。この位置情報は、空中写真のデジタル版と共に記憶されます。 写真を GIS アプリケー ションで開くと、写真は位置情報を使用して地図上の正しい場所に表示されます。通常、この位置情報は、 画像内の左上のピクセルの座標、X 方向の各ピクセルのサイズ、Y 方向の各ピクセルのサイズ、および画 像が回転される量(存在する場合)です。これらの情報を使用して、GIS アプリケーションはラスタデー タが正しい場所に表示されることを確実にします。ラスタのジオリファレンス情報は、ラスタに付随する 小さなテキストファイルで提供されることがよくあります。

6.4 ラスタデータのソース

ラスタデータは、さまざまな方法で取得できます。最も一般的な方法の2つは、航空写真と衛星画像です。 航空写真では、飛行機がその下にカメラが取り付けられた領域を飛行します。次に、写真がコンピュータに インポートされ、地理参照されます。衛星画像は、地球を周回する衛星が特殊なデジタルカメラを地球に 向け、通過する地球上の領域の画像を撮影するときに作成されます。画像が撮影されると、 図 6.4 に示さ れているような特別な受信局に無線信号を使用して地球に送り返されます。飛行機や衛星からラスタデー タをキャプチャするプロセスは、リモートセンシングと呼ばれます。

図 6.4: ヨハネスブルグ近くにある Hartebeeshoek の CSIR 衛星アプリケーションセンター。頭上を通過し 電波を用いて画像をダウンロードするような特別なアンテナ・トラック衛星である。

その他の場合、ラスタデータを計算できます。たとえば、保険会社は警察の犯罪事件の報告を受け取り、 各地域で犯罪の発生率がどれほど高いかを示す全国的なラスタ地図を作成する場合があります。気象学者 (気象パターンを研究する人々)は、気象観測所から収集されたデータを使用して、平均気温、降雨量、お よび風向を示す州レベルのラスタを生成する場合があります(図 6.4 参照)。このような場合、補間などの ラスタ分析手法を使用することがよくあります(トピック 空間分析(補間) で説明します)。

データ所有者が、使いやすい形式でデータを共有したいため、ベクタデータからラスタデータが作られる ことがあります。たとえば、道路、鉄道、教区などのベクタデータセットを持つ会社は、従業員がこれら のデータセットを Web ブラウザで表示できるように、これらのデータセットのラスタバージョンを作成す ることがあります。これは通常、ユーザーが認識する必要がある属性をラベルやシンボルで地図上に表す ことができる場合にのみ有効です。ユーザーがデータの属性テーブルを参照する必要がある場合、ラスタ レイヤには通常それらに関連付けられた属性データは含まれていないため、ラスタ形式で提供するのは悪 い選択です。

6.5 空間分解能

GIS のすべてのラスターレイヤーには、空間分解能を決定する固定サイズのピクセル(セル)があります。 これは、画像を小さな縮尺で見て(図 6.5 参照)次に大きな縮尺にズームインすると(図 6.6 参照)明ら かになります。

図 6.5: 小縮尺で使用するとこの衛星画像はきれいに見えます...

図 6.6: …が、大縮尺で見た場合は画像を構成する個々のピクセルが見えてしまいます。

いくつかの要因が画像の空間分解能を決定します。リモートセンシングデータの場合、空間分解能は、通 常、画像を撮るために使用されるセンサの能力によって決定されます。例えば、SPOT5 衛星は、各ピクセ ルが 10m × 10m の画像を撮影できます。 MODIS などの他の衛星では、ピクセルあたり 500mx500m の画 像しか撮影しません。航空写真では、50cmx50cm のピクセルサイズは一般的ではありません。小さな領域 をカバーするピクセルサイズの画像は、画像の詳細度を高くできるため、「高解像度」画像と呼ばれます。 大面積のピクセルサイズの画像は、画像が表示する詳細の量が低いため、「低解像度」画像と呼ばれます。

空間分析によって計算されるラスタデータ(先に述べた降雨量図など)では通常、ラスタを作成するため に使用される情報の空間密度が空間分解能を決定します。例えば、高解像度の平均降雨量図を作成する場 合、理想的には互いに近い多くの気象観測所が必要になるでしょう。

高空間分解能で取り込まれたラスタを知る上で重要なことの1つは、記憶容量要件です。3x3ピクセルの ラスタを考えてみてください。各ピクセルには平均降雨量を表す数値が含まれています。ラスタに含まれ るすべての情報を保存するには、コンピュータのメモリに9個の数値を格納する必要があります。今、南 アフリカ全体の1キロ×1キロメートルのピクセルでラスタレイヤを作成したいとします。南アフリカは およそ1,219,090 km²です。これは、すべての情報を保持するために、ハードディスクに100万を超える 数字を保存する必要があることを意味します。ピクセルサイズを小さくすると、必要な記憶容量が大幅に 増加します。

低空間分解能を使用した方が、広い領域で作業したくて細部のいずれかの領域を見るのに興味がない場合、 便利なこともあります。天気予報で見られる雲の地図はその一例です。全国の雲が見えると便利です。あ る雲だけに高解像度でズームインしても、今後の天気を教えてくれることはありません!

その一方、画像から個々の地物はたぶん作れなくなるため、小さな領域に興味があるなら、低解像度のラ スタデータを使用することは問題となる可能性があります。

6.6 スペクトル分解能

デジタルカメラや携帯電話のカメラでカラー写真を撮ると、カメラは電子センサーを使って赤、緑、青の 光を検出します。画像がスクリーンに表示されたりプリントアウトされたりすると、赤、緑、青(RGB)の 情報が組み合わされて、目に見える画像が表示されます。情報はまだデジタル形式ですが、この RGB 情報 は別々のカラー バンド に保存されます。

私たちの目では RGB 波長しか見ることができませんが、カメラの電子センサーであれば目には見えない波 長を検出できます。もちろん、手持ち式のカメラでは、ほとんどの人は自分のペットだの何だのの写真を 見たいだけなので、スペクトルの不可視部分からの情報を記録するのはおそらく意味がありません。光ス ペクトルの不可視部分のデータを含むラスタ画像は、しばしばマルチスペクトル画像と呼ばれます。 GIS では、スペクトルの不可視部分を記録することは非常に便利です。例えば、赤外光を測定すると水域を特 定するのに有用です。

光のマルチバンドを含む画像があると GIS で非常に役立つので、ラスタデータはしばしばマルチバンド画像として提供されます。画像の各バンドは別々のレイヤのようなものです。GIS では3つのバンドを組み合わせて、それらを赤、緑、青の3つのバンドとして表示するので、人間の目で見ることができます。ラスタ画像のバンド数は、スペクトル分解能と呼ばれます。

画像が1つのバンドのみからなる場合は、 グレースケール 画像と呼ばれることがよくあります。 グレース ケール画像では、偽色を適用してピクセルの値の差異をより明瞭にすることができます。偽色が適用され た画像は、しばしば 擬似カラー画像 と呼ばれます。

6.7 ラスタからベクタへの変換

ベクタデータの議論では、多くの場合、ラスタデータは、ベクタ地物をデジタル化するためのベースとし て使用される背景レイヤとして使用されると説明しました。

別のアプローチは、高度なコンピュータプログラムを使用して画像からベクタ地物を自動的に抽出するこ とです。道路などの一部の地物は、隣接するピクセルからの色の突然の変化として画像に表示されます。 コンピュータプログラムは、そのような色の変化を探し、結果としてベクタ地物を生成します。この種の 機能は通常、非常に特殊な(しばしば高価な)GIS ソフトウェアでのみ利用可能です。

6.8 ベクタからラスタへの変換

ベクタデータをラスタデータに変換するのは便利なことがあります。これの1つの副作用は、変換が行われるときに属性データ(元のベクタデータに関連付けられた属性)が失われることです。ベクタをラスタ形式に変換すると、GIS以外のユーザーにGISデータを渡したいときに便利です。より単純なラスタ形式では、ラスタ画像を渡された人は、特別なGISソフトウェアを必要とすることなく、単純にコンピュータ上の画像として見ることができます。

6.9 ラスタ解析

ラスタデータに対して実行できる、ベクタデータには使用できない、非常に多くの分析ツールがあります。 例えば、ラスタを使用して、地表面上の水の流れをモデル化できます。この情報は、地形に基づいて、分 水界や流域ネットワークがどこに存在するかを計算するのに使用できます。

ラスタデータは、作物生産を管理するために、農業や林業でよく使用されます。たとえば、農家の土地の 衛星画像を使用すると、植物の生育不良のある地域を特定し、その情報を使用して影響を受けた地域にの みより多くの施肥することができます。森林管理者はラスタデータを、ある地域から採取できる木材の量 を推定するために使用します。

ラスタデータは災害管理にとっても非常に重要です。浸水する可能性のある領域を識別するために、デジ タル標高モデル(各ピクセルに海抜高度を含む一種のラスタ)の解析が使用できます。これは、救助活動 と救援活動を最も必要とされる地域へ向けるために使用できます。

6.10 一般的な問題 / 注意すべき点

すでに述べたように、高解像度のラスタデータは、コンピュータ記憶容量を大量に必要とすることがあり ます。

6.11 わかりましたか?

ここでは以下のことを学びました:

- ラスタデータは規則的なサイズの ピクセル のグリッドです。
- ラスタデータはたえず変化する情報を表示するのに適しています。
- ラスタ内のピクセルの大きさは、その 空間分解能 を決定します。
- ラスタ画像は1つまたはそれ以上のバンドを含みます。それぞれが空間的なエリアをカバーするが、 異なる情報を持ちます。
- ラスタデータは、電磁スペクトルの異なる部分からのバンドが含まれている場合、それらはマルチ スペクトル画像と呼ばれます。
- マルチスペクトル画像のバンドの三つは色、赤、緑、青で表示できるので、それらは見ることができます。
- 単一バンドの画像はグレースケール画像と呼ばれます。
- 単一バンドのグレースケール画像は、GIS により疑似カラーで表示できます。
- ラスタ画像は、記憶領域を大量に消費することがあります。

6.12 やってみよう

ここでは人に教える際のアイデアいくつか述べていきます:

- どんな状況であればラスタデータを使用し、どんな状況であればベクタデータを使用するか、生徒たちと議論しましょう。
- ・グリッド線が描かれた A4 の透明シートを使用して、学校のラスタ地図を生徒たちに作成させてください。 OHP フィルムをあなたの学校のポスター用紙または航空写真に重ねます。ここで、各生徒または生徒のグループが、特定のタイプの地物を表すセル内で色付けされるようにする。運動競技場、樹木、歩道などがすべて完成したら、すべてのシートを重ね合わせて、あなたの学校の良いラスタ地図表現を作成するかどうかを確認します。ラスタとして表現されたときにどのタイプの地物がうまく機能しましたか?セルサイズの選択は、さまざまな地物タイプを表現する能力にどのように影響しましたか?

6.13 考えてみよう

コンピュータを使用できない場合は、紙と鉛筆を使用してラスタデータを理解できます。サッカー場を表 すために、紙の上に四角形のグリッドを描きます。サッカー場の芝カバーの値を表す数字でグリッドを塗 りつぶします。パッチが裸の場合、セルに0の値を与えます。パッチが裸と覆われている混合の場合は、1 の値を与えます。領域が完全に芝で覆われている場合は、値2を与えます。次に鉛筆を使用してそれらの 値に基づいてセルを色付けします。値2の色のセルは濃い緑です。値1は色が薄い緑色になり、値0は茶 色で色付けされます。色づけが終わったら、サッカー場のラスタ地図ができているはずです!

6.14 より詳しく知りたい場合は

図書:

- Chang, Kang-Tsung (2006). Introduction to Geographic Information Systems. 3rd Edition. McGraw Hill. ISBN: 0070658986
- DeMers, Michael N. (2005). Fundamentals of Geographic Information Systems. 3rd Edition. Wiley. ISBN: 9814126195

Web サイト: https://en.wikipedia.org/wiki/GIS_file_formats#Raster

QGIS ユーザーガイドには、ラスタデータの操作についてより詳細な情報が含まれています.

6.15次は?

次のセクションでは、最高のデータの品質を保証するための トポロジ について詳しく見てみましょう。

第7章 トポロジ

ž	目的:	ベクタデータにおけるトポロジの理解
	キ ー ワ ー ド :	ベクタ、トポロジ、トポロジルール、トポロジエラー、検索半径、スナップ距離、 単純地物

7.1 概要

トポロジは GIS におけるベクタ地物(ポイント、ポリライン、ポリゴン)の接続または隣接のような空間 的関係を表現したものです。トポロジデータまたはトポロジベースのデータはデジタイジングエラー(例 えば、 道路レイヤ内の2本のラインが交差点で完全に合っていない)を検出して修正するのに便利です。 トポロジは、ネットワーク分析のような、ある種の空間分析を実行するのに必要です。

あなたはロンドンに旅行しているとします。観光ツアーで、まずセント・ポール大聖堂を訪れ、午後にはコ ベントガーデンマーケットでお土産を買おうと計画しています。ロンドンの地下鉄の地図を見て(図7.1 を参照)、コベントガーデンからセント・ポールまで行くための接続列車を探さなければなりません。その ためには、どこで列車を乗り換えることができるかというトポロジ情報(データ)が必要です。地下鉄の 地図を見ると、トポロジ的な関係は接続性を示す円で示されています。

図 7.1: ロンドン地下鉄ネットワークのトポロジ。

7.2 トポロジエラー

トポロジエラーには様々な種類があり、ベクタ地物タイプがポリゴンかポリラインかによってグループ分けされます。 ポリゴン 地物のトポロジエラーには、閉じていないポリゴン、ポリゴン境界の隙間、ポリゴン境界の重なりがあります。 ポリライン 地物の一般的なトポロジエラーは、点(ノード)で完全に合流しないことです。このタイプのエラーは、線と線の間に隙間がある場合は アンダーシュート と呼ばれ、線が接続すべき線を越えて終わっている場合は オーバーシュート と呼ばれます (図7.2参照)。

図 7.2: アンダーシュート (1) は、お互いに接続する必要があるデジタイズしたベクタラインがまったく接触しないときに起きます。オーバーシュート (2) は、ラインが接続すべきラインを超えて終了した場合に 起きます。スライバ (3) は、2 つのポリゴンの頂点が境界上で一致しないときに起きます。

オーバーシュートとアンダーシュートのエラーはいわゆるラインの端にある'ぶら下がりノード'です。ぶ ら下がりノードは、特別な場合、例えば、行き止まりの通りに接続されている場合には許容されます。

トポロジエラーは、地物間の関係を壊します。ネットワーク分析(例えば、道路ネットワークを介して最 適なルートを見つける)または計測(例えば、川の長さを見つける)といった手順でベクタデータが分析 できるようにするには、これらのエラーを修正する必要があります。トポロジがネットワーク分析と計測 に有用であることに加えて、正しいトポロジでベクタデータを作成することが重要かつ有用である他の理 由があります。ご自身の地域のために市町村界地図をデジタイズして、ポリゴンが重なっていたりスライ バがあったりするとちょっと想像してみてください。このようなエラーが存在した場合、計測ツールは使 用はできますが、得られる結果は不正確になります。どの市町村の面積も正しく知ることができませんし、 市町村間の境界がどこにあるかも正確に定義できません。

トポロジ的に正しいデータを作成し所有することは、自分の解析のために重要なだけでなく、データを渡 される人々のためでもあります。データを渡された人はあなたのデータと分析結果が正しいことを期待す るでしょう!

7.3 トポロジルール

幸いなことに、ベクタ地物をデジタル化する場合に発生しうる多くの一般的なエラーは、多くの GIS アプリケーションに実装されているトポロジルールで防止できます。

いくつかの特別な GIS データ形式を除いて、トポロジは、通常はデフォルトで適用されません。QGIS の ような多くの一般的な GIS は、ベクタレイヤに実装されるように、リレーションシップルールとしてトポ ロジを定義し、ユーザーがルールを選択できます。

次のリストは、ベクタ地図の現実世界の地物がどのトポロジルールで定義されるかの例を示しています:

• 市町村地図の領域の境界が重なり合っていてはいけません。

- 市町村地図の領域の境界にギャップ(細長い隙間)があってはいけません。
- 境界を示すポリゴンは閉じていないといけません。境界線のアンダーシュートやオーバーシュート
 は許可されません。
- ベクターラインレイヤにおいて等高線はインターセクト(互いに交差)してはいけません。

7.4 トポロジ的ツール

多くの GIS アプリケーションでは、トポロジ的な編集用のツールを提供しています。例えば、QGIS では、 トポロジカル編集 を有効にすることで、ポリゴンレイヤの編集と共通の境界の維持を改善することができ ます。QGIS のような GIS はポリゴン地図の共有境界を「検出」するので、あるポリゴン境界のエッジ頂 点を移動するだけで、QGIS は他のポリゴン境界を 図 7.3 (1) に示すように確実に更新してくれるのです。

もう一つのトポロジ的オプションによって、デジタイズ時に ポリゴンの重なり を防ぐことができます(図7.3(2)参照)。すでに1つのポリゴンがある場合、このオプションを使用して、両方のポリゴンが重なるように隣接する2番目のポリゴンをデジタイズすることが可能で、QGISは2番目のポリゴンを共通の境界線にクリップします。

図 7.3: (1) 頂点を移動しているとき、共有の境界を検出するトポロジ的編集。頂点を移動しているとき は、その頂点を共有するすべての地物が更新されます。(2) ポリゴンの重なりを回避するために、新たな ポリゴンはデジタル化される(赤色で表示)とき、重なっている隣接する領域が重ならないようにクリッ プされます。

7.5 スナップ距離

スナップ距離とは、デジタイズする際に、最も近い頂点やセグメントを検索するために GIS が使用する距離のことです。セグメント とは、ポリゴンまたはポリラインのジオメトリにおける 2 つの頂点間で形成される直線のことです。スナップ距離内にない場合、QGIS などの GIS は、既存の頂点やセグメントにスナップするのではなく、マウスボタンを離した位置に頂点を置きます (図 7.4 を参照してください)。

図 7.4: 各頂点やセグメントをスナップするために、スナップ距離(黒い円)は地図単位(例えば 10 進数 の度)で定義されます。

7.6 検索半径

検索半径は、地図をクリックしたときに、動かそうとしている最も近い頂点を検索するために GIS が使用 する距離です。検索半径内にない場合、GIS は地物編集用の頂点を検索・選択しません。原理的には、ス ナップ距離機能に極めて類似しています。

スナップ距離と検索半径は両方とも地図単位で設定されていますので、距離値を正しく設定するには試行 錯誤する必要があるかもしれません。大きすぎる値を指定した場合、近くに密集した頂点を扱っている場 合は特に、GIS は間違った頂点にスナップします。小さすぎる検索半径を指定した場合、GIS アプリケー ションは移動または編集する地物または頂点を見つけることができません。

7.7 一般的な問題 / 注意すべき点

トポロジを必要とするデータ分析(例えば、ネットワーク経由のルートを見つけるなど)のためでなく、主 に簡単にするためおよび高速なレンダリングのために設計されています。多くの GIS アプリケーションで は、トポロジ的なデータと単純な図形データを一緒に表示できます。両方とも作成、編集、および分析で きるものもあります。

7.8 わかりましたか?

ここでは以下のことを学びました:

- トポロジは隣接するベクタ地物の空間的関係を示します。
- GIS でのトポロジは トポロジ的ツール によって提供されます。
- トポロジは デジタイズのエラーを検出し修正する ために利用されます。
- ネットワーク分析のように、いくつかのツールではトポロジデータが必要不可欠です。
- スナップ距離と検索半径はトポロジ的に正しくベクターデータをデジタイズするのに役立ちます。
- 単純地物 データは真のトポロジデータ・フォーマットではないが、GIS アプリケーションで一般的 に使われます。

7.9 やってみよう

ここでは人に教える際のアイデアをいくつか述べていきます:

- トポシート地図であなたの地域のバス停に注目しましょう。すると2点のバス停間の最短ルートを 見つけることができます。
- あなたの町のトポロジ的道路網を表現するために、GIS にベクター地物を作成する方法を考えます。
 どんなトポロジのルールが重要であり、どのようなツールをあなたの生徒たちが QGIS で使用して、
 新しい道路レイヤが位相的に正しいことを確認できるでしょうか?
7.10 考えてみよう

利用可能なコンピュータがなくても、バスや鉄道の路線ネットワーク図を使用すれば、空間的な位置関係 とトポロジについて生徒たちと議論できます。

7.11 より詳しく知りたい場合は

図書:

- Chang, Kang-Tsung (2006). Introduction to Geographic Information Systems. 3rd Edition. (地理情報シス テムの紹介 第3版) McGraw Hill. ISBN: 0070658986
- DeMers, Michael N. (2005). Fundamentals of Geographic Information Systems. 3rd Edition. (地理情報 システムの基礎。第3版) Wiley. ISBN: 9814126195

ウェブサイト:

- http://www.innovativegis.com/basis/
- https://en.wikipedia.org/wiki/Geospatial_topology

QGIS ユーザーガイドには QGIS で提供されるトポロジ編集に関する詳細な情報があります。

7.12 次は?

続くセクションでは、データを球体の地球から平らな地図へとどのように関連づけるかを理解するため、 座標参照系 についてさらに詳しく見ていきます。

第8章 座標参照系

,	
目的:	座標参照系を理解する
キーワード:	座標参照系 (CRS)、地図投影法、「その場で」投影、緯度、経度、北距、東距

8.1 概要

「地図投影」は、地球の表面や地球の一部を平らな紙またはコンピュータ画面に描写しようとします。 簡 単に言い換えると、地図投影は地球を球形(3D)から平面形(2D)に変換しようとします。

「座標参照系」(CRS)は、GISに投影された二次元の地図が、地球上の実際の場所とどのように関係するのかを定義します。使用する地図投影とCRSは、対象範囲、分析範囲およびデータの有効範囲により決定されます。

8.2 地図投影法の詳細

地球の形を表現する従前の方法は,球体を使う方法です。しかしながら,この方法には問題があります。 球体は地球の形状の大半を保持し,大陸の大きさという空間的特徴を表すが,ポケットにしまって持ち歩 くのは大変難しい。それは,相当な小縮尺(例えば1:100,000,000)で使うときのみ便利です。

GIS アプリケーションで一般に使われる大部分の主題地図データは,かなり大きい縮尺です。典型的なGIS データセットは,詳細の度合いにもよりますが、1:250000かそれ以上です。このサイズの球体は,製作す るのが高価で難しく、持ち歩くのも困難です。このため,地図制作者は、球状の地球を二次元で合理的な 正確度で表す地図投影法と呼ばれる技術を発展させてきました。

近距離で見ると、地球は比較的平坦に見えます。しかし、宇宙から見ると、地球は比較的球形であること がわかります。地図は、次の地図制作の話題の中で見られるように、現実の表現です。それらは、地物だ けでなく、地物の形状と空間配置を表すように設計されています。各地図投影法には 長所 と 短所 があり ます。地図の最適な投影法は、地図の 縮尺 がどれほどで、それが使用される目的が何であるかによって変 わります。たとえば、ある投影法は、アフリカ大陸全体の地図作成に使用すると許容範囲外の歪みが生じ るが、自国内での 大縮尺(詳細)地図 には優れた選択肢となります。地図投影法の性質は、地図のデザイ ン面に何かしら影響する場合もあります。投影法は、小領域に適するものあれば、東西に大きく広がる地 図領域に適するもの、南北に大きく広がる地図領域に適するものもあります。

8.3 地図投影法の大きな3つ

地図投影法の作成方法は、透明な地球儀の中に光源を置き、その上に不透明な地物を配置するのが最も分かりやすい。そして、その地物の輪郭を2次元の平らな紙に投影します。地球儀を円筒形や円錐形、あるいは平面で囲むなど、さまざまな投影する方法を作ることができます。これらの方法はそれぞれ、地図投影族と呼ばれるものを作り出します。したがって、平面投影の族、円筒投影の族、および円錐投影の族が存在します(図 8.1 参照)

図 8.1:3 つの地図投影の族。それらは a) 円筒投影、b) 円錐投影、c) 平面投影に代表されます。

今日では、もちろん、平らな紙片に球状の地球を投影するプロセスは、幾何学と三角法という数学的原理 を用いて行われます。これは、地球を通過する光の物理的な投影を再現します。

8.4 地図投影の精度

地図投影は決して球体の地球を絶対的に正確に表現しているわけではありません。地図投影プロセスの結果、すべての地図は、角度整合、距離、面積の歪みを示します。地図投影は、これらの特性のいくつかを 組み合わせることもあれば、面積、距離、角度整合のすべての特性を、ある許容範囲内で歪める妥協案と することもあります。妥協した投影法の例として、ヴィンケル図法やロビンソン図法(図8.2参照)が あり、これらは世界地図の作成と視覚化によく使われます。

図 8.2: ロビンソン投影は面積、角度整合と距離の歪みが許容される妥協点です。

地図投影で同時にすべての特性を維持するのは通常不可能です。これは、正確な分析操作を実行したい場合、分析のための最良の特性を与える地図投影を使用する必要があることを意味します。たとえば地図上 で距離を計測する必要がある場合は、データに対して距離精度が高い地図投影を使用してみてください。

8.4.1 正角性を持つ地図投影

球で作業する場合、羅針図の主な方向(北、東、南、西)は常に相互に 90 度で発生します。言い換えれば、 東は常に北へ 90 度の角度で発生します。正しい角度性質を維持することは地図投影上でも保存できます。 正角性のこの性質を保持する地図投影は正角または等角投影と呼ばれます。

これらの投影は、角度関係の保存 が重要な場合に使用されます。一般的には、航海や気象の仕事に使われ ます。ただし、地図上で真の角度を保つことは、広い範囲では困難であり、地球の小さな部分でのみ試み るべきであることを覚えておく必要があります。正角型の投影では、面積の歪みが生じます。つまり、地 図上で面積を測定すると、不正確な値になります。面積が大きければ大きいほど、面積の測定は正確では なくなります。例としては、メルカトル図法(図8.3にあるように)とランバート正角円錐図法 があり ます。米国地質調査所では、地形図の多くに正角図法を使用しています。

図 8.3: メルカトル図法は、例えば、角度関係が重要である場合に使用されるが、面積の関係が歪んでいます。

8.4.2 正しい距離を持つ地図投影法

地図を投影する際に、距離を正確に測定することが目的であれば、距離をよく保存するように設計された 投影法を選択する必要があります。このような投影は、正距図法と呼ばれ、地図のスケールが一定に保 たれることが必要です。地図は、投影の中心から地図上の他の場所までの距離を正しく表現しているとき、 正距であると言えます。正距図法は、投影の中心から、あるいは与えられた線に沿って、正確な距離を維 持します。これらの投影は、電波地図や地震動図、航法に使用されています。 プレートカレ正距円筒図法 (図 8.4 参照)と正距円筒図法は正距図法の良い例です。正距方位図法は国連の紋章に使われている射 影です(図 8.5 参照)。

図 8.4: 正確な距離測定が重要であるときは、例えばプレートカレ等距円筒投影が使用されます。

図 8.5: 国際連合のロゴは正距方位図法が用いられています。

8.4.3 正しい面積を持つ投影法

地図に描かれた区域が地球上の区域と同じ比率になるように地図全体に領域を描く場合、その地図は正積 図 となります。実際のところ、一般的な参考地図や教育用地図では、正積図法を使用することがほとん どです。その名の通り、この地図は面積の計算が主な計算である場合に最適です。例えば、あなたの町の ある区域に新しいショッピングモールを作るのに十分な広さがあるかどうか分析しようとする場合、正積 図法が最も適しています。一方、分析する区域が広ければ広いほど、他の種類の投影法ではなく、等積図 法を使えば、より正確な面積測定が可能になります。一方、大きな面積を扱う場合、正積図法は正角性の 歪みを生じさせます。正積図法を使うとき、小さい面積の場合は角度の歪みが少ないです。 アルベルス正 積、 ランベルト正積、 モルワイデ正積円筒図法 (図 8.6 で示す)は、GIS 作業でよく出会う正積図法の 種類です。

図 8.6: モルワイデ等積円筒投影は、例えば、地図化された領域はすべて、地球上の領域に同一の比例関係 を有していることを保証します。 地図投影は非常に複雑なトピックであることに留意してください。世界的な利用可能な異なる投影法は何 百もあり、それぞれが紙の平らな部分にできるだけ忠実に地球の表面の特定の部分を描写しようとします。 実際にどの投影を使用するかは多くの場合、ご自身のために選択されます。ほとんどの国では一般的に使 用される投影があり、人々はデータを交換するときはその国家的傾向に従います。

8.5 座標参照系 (CRS) の詳細

地球上のあらゆる場所は、座標参照系(CRS)の助けを借りて、座標と呼ばれる3つの数字のセットで指定できます。一般にCRSは投影座標系(デカルト又は直角座標系とも呼ばれる)と地理座標系に分類できます。

8.5.1 地理座標系

地理座標参照系を使用することは非常に一般的です。それらは、地球の表面上の位置を記述するために緯度および経度と、時には高さ値を使用しています。最も一般的なものは WGS 84 と呼ばれています。

緯線は赤道と平行に走り、地球を北から南(または南から北)へ180等分しています。緯度の基準線は赤 道で、各半球は90のセクションに分けられ、それぞれが緯度の1度を表します。北半球では、赤道上の 0度から北極の90度までが緯度として測られます。南半球では、赤道上の0度から南極点の90度までが 緯度です。地図のデジタイズを容易にするため、南半球の緯度には負の値(0~-90°)が割り当てられる ことが多くあります。地球上のどこにいても、緯度線間の距離は同じです(60海里)。絵で見るには図8.7 を参照してください。

180'-150'-120'-90'-60 -30' 0' 30' 60' 90' 120' 150' 180'

図 8.7: 緯線は赤道に平行で、経線は本初子午線がグリニッジを通る地理座標系。

経線は、一様性という基準にはあまり適いません。経線は赤道に対して垂直に走り、極点で収束します。 経線の基準線(本初子午線)は北極から南極まで、イングランドのグリニッジを通っています。それ以降 の経線は、本初子午線から東または西に0度から180度までの範囲で測定されます。本初子午線より西側 は、デジタルマッピングアプリケーションで使用するために負の値が割り当てられていることに注意して ください。絵による説明は 図 8.7 を参照してください。 赤道で、そして赤道のみで、経度の線で表される距離は緯度1度で表される距離に等しくなります。極の 方に移動するにつれ経線間の距離は徐々に小さくなっていき、ちょうど極の位置になると経度の全ての360 。は単一の点で表現され、上に指を置くことができるでしょう(手袋を着用したくなるでしょうが)。地 理座標系を使用すると、赤道では約12363.365 平方キロメートルを覆う正方形に地球を分割する線格子を 得られます、---手始めには良いですがその正方形内の何かの位置を決定するのにとても使い易いものでは ありません。

真に有用であるためには、地図の格子は、(精度の許容レベルで)地図上の点の位置を記述するために使用 できるように、十分小さな部分に分割されなければなりません。これを達成するために、度は分(')と 秒(")に分割されます。1度は60分、1分は60秒です(1度は3600秒)。したがって、赤道では、緯度 または経度の1秒= 30.87624 メートルです。

8.5.2 投影座標参照系

2次元の座標参照系は、一般に2本の軸で定義されます。互いに直角で、いわゆる XY 平面 を形成します (図8.8の左側を参照)。横軸は通常 X と表示され、縦軸は通常 Y と表示されます。3次元座標参照系で は、通常 Z と表示されるもう1つの軸が追加されます。この軸も**X**軸と**Y**軸に直角です。Z 軸は 空間の3番目の次元を提供します(図8.8の右側を参照)。球面座標で表されるすべての点は、X Y Z 座標 で表すことができます。

図 8.8: 二次元と三次元の基準座標系。

南半球(赤道南)での投影座標参照系は通常、特定の 経度 で赤道にその原点を有しています。これは、Y-値 は南に増加し、X-値は西に増加することを意味します。北半球(赤道北)でも、原点は特定の 経度 での赤 道です。しかし今度は、Y値は北に増加し、X-値は東に増加します。次のセクションではしばしば南アフ リカについて使用されるユニバーサル横メルカトル(UTM)と呼ばれる投影座標参照系を記載しています。

8.6 ユニバーサル横メルカトル(UTM)CRS 詳細

ユニバーサル横メルカトル (UTM) 座標参照系は、特定の 経度 の 赤道 上に原点を持ちます。ここで、Y 値 は南に向かって増加し、X 値は西に向かって増加します。UTM CRS は世界地図投影法です。つまり、一般 的に世界中で使用されています。しかし、上記の「地図投影の精度」の項で既に述べたように、面積が大き くなればなるほど(例えば南アフリカ)、角度整合性、距離、面積の歪みが発生します。そこで、あまり大 きな歪みが生じないように、世界を東西に経度6度の幅を持つ60等分ゾーンに分割しています。UTM ゾーンには1から60までの番号が付けられており、図8.9に示すように、天底子午線(西経180度の ゾーン1)から始まり、東に戻って天底子午線(東経180度のゾーン60)まで進行するようになっています。

図 8.9: ユニバーサル横メルカトルゾーン。南アフリカには UTM ゾーン 33S、34S、35S、36S が使用されています。

figure_utm_zones`と :numref:`figure_utm_for_sa にあるように、南アフリカは歪みを最小にするた めに 4 つの UTM ゾーン に覆われています。これらの ゾーン は、 UTM 33S 、 UTM 34S 、 UTM 35S 、 UTM 36S と呼ばれています。ゾーンの後の S は、UTM ゾーンが 赤道より南 に位置していることを意味 します。

図 8.10: UTM ゾーンは、その中央経度(経絡)と 33S、34S、35S、36S とは、高い精度で南アフリカを投 影するために使用されます。赤の十字は関心領域(AOI)を示します。

例えば、図 8.10 の赤い十字で示された Area of Interest (AOI) 内の二次元座標を定義したいとしましょう。 この領域は、UTM ゾーン 35S 内に位置していることがわかります。つまり、歪みを最小限に抑え、正確 な解析結果を得るためには、UTM ゾーン 35S を座標参照系として使用する必要があるのです。

赤道より南の UTM 座標の位置は、ゾーン番号 (35) と、 北距 (Y) 値 と 東距 (X) 値 をメートルで示さなけ ればなりません。 北距値 は、赤道 からの距離 (メートル)です。 東距値 は、使用する UTM ゾーンの 中 央子午線 (経度)からの距離です。UTM ゾーン 35S の場合、 図 8.10 に示すように 27 度 East となります。 さらに、赤道の南側であり、UTM 座標参照系では負の値は許されないので、北緯 (Y) の値には 10,000,000m のいわゆる 疑似北距値 を、東経 (X) の値には 500,000m の疑似東距値を追加しなければなりません。難し そうなので、例として、Area of Interest の正しい UTM 35S 座標を求める方法を説明します。

8.6.1 北距(Y)值

探している場所は赤道から南 355 万メートルですので、北距(Y)の値には 負の符号 が付き-355 万メート ルです。UTM の定義に従い、1000 万メートルの 偽の北距値 を追加する必要があります。ということは、 座標の北距(Y)の値は 645 万メートル(-355 万メートル+1000 万メートル)です。

8.6.2 東距(X)値

まず、UTM ゾーン 35S の 中心子午線(経度)を求めなければなりません。 図 8.10 でわかるように、それは 東経 27 度 です。探している場所は、中心子午線から西に 85,000m のところです。北距値と同様に、 東距値にも負の符号がつき、 -85,000 m という結果になります。UTM の定義によると、この座標の東方値 は-85,000 m + 500,000 m の 415,000 m となります。最後に、正しい値を得るために、東距値に ゾーン番号 を追加する必要があります。

結果として、我々の 関心地点 の座標、 UTM ゾーン 35S に投影されるものは、このように記述されるで しょう: 35 415,000 メートル東 /6,450,000 メートル北。GIS によっては、正しい UTM ゾーン 35S が定義 されその座標系内で単位がメートルに設定されているとき、座標は単に 415,000 6,450,000 として現れる可 能性があります。

8.7 「その場で」投影

おそらく想像できるでしょうが、GIS で使用するデータが異なる座標参照系に投影されている状況はあり えます。たとえば、UTM 35S で投影された南アフリカの国境を示すベクターレイヤーと、WGS 84 地理座 標系で与えられた降雨に関する地点情報のベクターレイヤーがあるとします。GIS ではこれら 2 つのベク ターレイヤーは、投影が異なるので、地図ウィンドウ中で全く異なる領域に配置されます。

この問題を解決するために、多くの GIS には オンザフライ 投影と呼ばれる機能が含まれています。つま り、GIS を開始するときに特定の投影法を 定義 でき、ロードするすべてのレイヤーは、それらの座標参照 系に関係なく、定義した投影法で自動的に表示されます。この機能を使用すると、 異なる 参照系にある場 合でも GIS の地図ウィンドウ内にレイヤをオーバーレイできます。 QGIS ではこの機能はデフォルトで適 用されます。

8.8 一般的な問題 / 注意すべき点

地図投影の話題は非常に複雑であり、地理、測量、あるいはその他のGIS 関連科学を研究している専門家 ですら地図投影と基準座標系を正しく定義できないことがよくあります。GIS で作業するときは通常、開 始するデータをすでに投影しています。ほとんどの場合、これらのデータは、特定のCRS に投影されます ので、新しいCRS を作成したり、そのデータをあるCRS から別のCRS へ再投影する必要はありません。 ですが、地図投影とCRS が意味することについて理解があるといつでも役に立ちます。

8.9何を学びましたか?

このワークシートで扱ったものをまとめてみましょう:

- 地図投影は紙またはコンピュータ画面の二次元の平面部分に地球の表面を描きます。
- ・ 全世界的な地図投影はありますが、ほとんどの地図投影は地球の表面の小領域を投影するのに最適なように作成されています。
- ・地図投影では、球形の地球を絶対的に正確な表現することは決してありません。それらは正角性、距離および面積における歪みを示します。地図投影ですべてのこれらの特性を同時に保つことは不可能です。
- 座標参照系 (CRS) は、座標の助けを借りて、二次元の投影図が地球の実位置にどう関係づけられる かを定義します。
- 異なる 2 つの座標参照系があります。地理座標系 と 投影座標系 です。
- オンザフライ投影は、別の座標参照系で投影されているレイヤを重ねることを可能にする GIS の機能です。

8.10 やってみよう

ここでは人に教える際のアイデアをいくつか述べていきます:

- 1. QGIS を始める
- 2. プロジェクト プロパティ... CRS で CRS なし(または未知/非地球)をチェックします
- 3. 同じ面積で異なる投影法を持つ2つのレイヤを読み込む
- 4. 生徒たちに、2つのレイヤ上のいくつかの場所の座標を見つけさせましょう。2つのレイヤを重ねる ことは不可能であることを示すことができます。
- 5. 次に、 プロジェクトプロパティ ダイアログで、座標参照系を Geographic/WGS 84 として定義します
- 6. 同じ区域の2つのレイヤを再度読み込み、プロジェクトのCRSの設定(つまり、「オンザフライ」投影を可能にする)がどのように機能するかを生徒たちに見せてください。
- 7. QGIS で プロジェクトのプロパティ ダイアログを開き、生徒にさまざまな座標参照系を見せれば、このトピックの複雑さを教えることができます。同じレイヤーを異なる投影で表示するために様々な CRS を選択できます。

8.11 考えてみよう

利用できるコンピュータがない場合は、3つの地図投影の族の原則を生徒たちに見せることができます。球体と紙を取得し、円筒、円錐、平面の投影が一般的にどのように機能するかを示します。透明シートの助けを借りると、X軸とY軸を示す2次元の座標参照系を描くことができます。次に、生徒たちに異なる場所の座標(XとYの値)を定義させましょう。

8.12 より詳しく知りたい場合は

図書:

- Chang, Kang-Tsung (2006). Introduction to Geographic Information Systems. 3rd Edition. McGraw Hill. ISBN: 0070658986
- DeMers, Michael N. (2005). Fundamentals of Geographic Information Systems. 3rd Edition. Wiley. ISBN: 9814126195
- Galati, Stephen R. (2006): Geographic Information Systems Demystified. Artech House Inc. ISBN: 158053533X

ウェブサイト:

- https://foote.geography.uconn.edu/gcraft/notes/mapproj_f.html
- http://geology.isu.edu/wapi/geostac/Field_Exercise/topomaps/index.htm

QGIS ユーザーガイドでは、地図投影法の操作についてより詳細な情報が含まれています.

8.13 次は?

続くセクションでは 地図投影法 について詳しく見ていきます。

第9章 地図製作

Xe		
	目的:	空間情報の地図の理解
	キーワード:	地図製作,地図のレイアウト,スケールバー,方位記号,凡例,地図,単位

9.1 概要

地図の作成とは、多くの言葉がなくても、平均的な人がそれが何であるかを理解できるように、1枚の紙に地図要素を配置する過程です。地図は通常、聴衆または読者がGISの専門的背景を持たない政治家、市民、または学習者であるプレゼンテーションおよびレポート用に作成されます。このため、地図は空間情報の伝達に効果的でなければなりません。地図の一般的な要素は、タイトル、地図本体、凡例、北矢印、スケールバー、認証、および地図境界です(図9.1参照)。

図 9.1: 一般的な地図要素(赤でラベル)は、タイトル、地図本体、凡例、方位、スケールバー、承認および地図境界です。

追加されるかもしれない他の要素は、例えば、目盛、または地図投影の名称(CRS)です。一緒に、これ らの要素は地図読者が地図上に示された情報を解釈するのに役立ちます。地図本体は、地図情報が含まれ ているため、当然のことながら、地図の最重要部分です。他の要素は、コミュニケーションのプロセスを サポートし、地図読者が自分自身の方角を定めて地図のトピックを理解するように助けます。例えば、タ イトルは主題を説明し、凡例は地図記号を地図化されたデータに関連づけます。

9.2 タイトルの詳細

地図のタイトルは、たいてい読者が地図上で見る最初のものですので、非常に重要です。それは新聞のタ イトルに比することができます。短くて、読者に地図が何であるかについての最初のアイデアを与える必 要があります。

9.3 地図境界の詳細

地図境界は、地図に表示される領域の縁を正確に定義する線です。経緯線を使用して地図を印刷する場合 (これについてはさらに詳しく説明します) 図 9.2 に示すように、境界に沿った経緯線の座標情報を見つ けることがよくあります。

9.4 地図凡例の詳細

地図は実世界の簡略化された表現であり、地図記号は現実の対象を表すために使用されます。記号がなければ、地図を理解することはできません。人が地図を正しく読むことができるようにするために、地図の凡例を使用して、地図で使用されているすべての記号のキーを提供します。それは、地図が示すものの意味を理解することを可能にする辞書のようなものです。地図の凡例は通常、地図の隅にある小さなボックスに表示されます。アイコンが含まれており、各アイコンは地物のタイプを表します。たとえば、 *house* アイコンは、地図上で家を識別する方法を示します(図9.2参照)。

図 9.2: 同じ領域からの 2 つの地図、両方とも背景に水面を持つが、凡例の異なるテーマ、地図記号、色を 持つ。

凡例でさまざまな記号やアイコンを使用して、さまざまなテーマを表示することもできます。 図 9.2 では、 水色の湖に等高線と地点の高さを重ねた地図で、その地域の地形に関する情報を見ることができます。右 側には、湖を背景にした同じエリアが表示されていますが、この地図は、観光客が休暇中に借りることが できる家の場所を示すように設計されています。それは、より明るい色、家のアイコン、そして凡例のよ り説明的で魅力的な言葉を使用しています。

9.5 北向き矢印の詳細

方位(時にはバラコンパスと呼ばれる)は主要な方向、 北 、 南 、 東 、 西 を表示する図です。地図上で は、北の方向を示すために使用されます。

たとえば、GIS ではこのことは、この湖から北に位置している家は地図上の湖上に見つけることができる ことを意味しています。東の道路は、地図上の水面の右側になり、南の川は水面の下になり、湖の西側に 鉄道駅を検索する場合、それは地図上の左側に見つかるでしょう。

9.6 スケールの詳細

地図の縮尺は、地図上の1単位の距離の値であり、実世界の距離を表します。値は地図単位(メートル、フィート、または度)で表示されます。縮尺は、いくつかの方法で表すことができます。たとえば、単語、比率、またはグラフィカルな縮尺バーとして表すことができます(図9.3参照)。

縮尺を単語で表現するは一般的に使用される方法であり、ほとんどの地図利用者が簡単に理解できるという利点があります。単語に基づく縮尺の例は、図 9.3(a)で確認できます。もう1つのオプションは、表現分数(RF)方式です。この方法では、実世界の地図距離と地上距離の両方が、比率として同じ地図単位で指定されます。たとえば、RF値1:25,000は、地図上の任意の距離が地上の実際の距離の25,000分の1であることを意味します(図 9.3(b)参照)。比率の25,000の値は、**縮尺分母**と呼ばれます。経験豊富なユーザーは、混乱を減らすため、表現分数方式を好むことがよくあります。

表現分数が非常に小さな比、例えば 1:1000 000、を表す場合、小縮尺地図 と呼ばれます。一方、比が非常 に大きい場合、例えば 1:50 000 地図、 大縮尺地図 と呼ばれます。小縮尺地図は 大きな領域 をカバーし、 大縮尺地図は 小さな領域 をカバーする、と覚えておくと便利です!

グラフィックまたはバー縮尺としての縮尺表現は、縮尺を表現するもう1つの基本的な方法です。バース ケールは、地図上で計測された距離を示します。 図 9.3 (c)でわかるように、実世界での同等の距離は上 に配置されます。

b) 1:25 000

図 9.3: 地図の縮尺は、言葉で(a) 比として(b) またはグラフィックやバースケールとして(c)表現で きます

地図は通常、例えば、1:10000、1:25000、1:50 000、1:100000、1:250 000、1:500000 の標準縮尺で製造され ています。これは地図の読者には何を意味するでしょう? それは地図上での測定距離に 縮尺分母 を掛けれ ば 現実世界 での距離がわかることを意味します。

例えば、1:25000の縮尺の地図上で100ミリメートルの距離を測定する場合、現実世界の距離はこのよう に計算します:

100 mm x 25,000 = 2,500,000 mm

これは、地図上の100ミリメートルは、実世界の250万ミリメートル(2500メートル)と等価であること を意味します。

地図縮尺のもう1つの興味深い側面は、地図縮尺が小さいほど、地図内の地物情報がより詳細になること です。 図 9.4 にこの例を見ることができます。両方の地図は同じサイズですが縮尺が異なります。左側の 画像は詳細を示しています。たとえば、水域の南西にある家は、別々の正方形として明確に識別できます。 右の画像では、黒い長方形の塊しか見えず、各家をはっきりと見ることはできません。

図 9.4: ある地域を二つの異なる縮尺で示す地図。左の地図の縮尺は 1:25,000。右の地図の縮尺は 1:50,000。

9.7 整飾の詳細

地図の整飾エリアでは、重要な情報とテキストを追加することが可能です。例えば、使用されるデータの 品質に関する情報は、いつだれによって地図の作成されたかなどの詳細についてのアイデアを読者に与え るために有用であり得ます。自分の町の地形図を見る場合、いつだれによって地図が作成されたか知って おくと便利でしょう。地図がすでに 50歳であれば、おそらく、もはや存在しないか多分存在しなかった 家屋や道路がたくさんあります。地図が公的機関によって作成されたことがわかっている場合は、連絡を とって、それらが更新された情報と、その地図のより多くの現在のバージョンを持っているかどうか尋ね ることができます。

9.8 グリッドの詳細

経緯線は、読者が空間的な向きを簡単にするために地図上に重ねられた線のネットワークです。これらの線 は参照として使用できます。例として、経緯線の線は、地球の緯線と経度の子午線を表すことができます。 プレゼンテーション中またはレポートで地図上の特別な領域を参照したい場合は、次のように言うことが できます。「緯度 26.04/経度-32.11 に近い家は、1 月と 2 月にしばしば洪水被害を受けます」(図 9.5 参照)。

図 9.5: 地球の緯度と経度の経線を表す格子線 (赤線)。地図上の緯度と経度の値を地図上のより良い方向 付けに使用できます。

9.9 詳細な地図投影の名前

地図投影は、紙の平らなシート上に家、道路や湖のような、そのすべての地物を有する3次元地球を表現 しようとします。想像できるように、これは非常に困難であり、さらには何百年も後に世界のどの地域の ために完璧に地球を表現することが可能である単一の投影はありません。すべての投影は長所と短所があ ります。

可能な限り正確に地図を作成できるようにするために、人々はさまざまな種類の投影法を研究、修正、および作成してきました。結局、ほぼすべての国が、自国の領土領域の地図の精度を向上させることを目的として、独自の地図投影法を開発しました(図 9.6 参照)。

図 9.6: 世界にはさまざまな投影法があります。 左は Mollweide Equal Area 投影法、右は Plate Carree Equidistant 円柱投影法。

これを考慮すると、地図に投影の名前を追記しておくことが意味がある理由がわかります。ある地図が別の地図と比較できるかを読者はすばやく確認できます。たとえば、いわゆる等面積投影法の地図上の特徴は、正距円筒図法で投影された特徴とは非常に異なって見えます(図 9.6 参照)。

地図投影は、非常に複雑なトピックであり、ここで完全にカバーすることはできません。それについての 詳細をお知りになりたい場合は、私たちの前のトピック:「参照座標系」を見てみたいかもしれません。

9.10 一般的な問題 / 注意すべき点

読者が知る必要があるすべての情報を表示し説明ながらも、理解しやすくて良いレイアウトの地図を作成 することが困難な場合があります。これを実現するには、すべての地図要素の理想的な配置と構図を作成 する必要があります。地図でどんな物語を語りたいか、凡例、スケールバーと認定などの要素がどのよう に整列されなければならないかに集中する必要があります。そうすることで、よいデザインの教育的な地 図になり、誰が見ても理解できるでしょう。

9.11 わかりましたか?

ここでは以下のことを学びました:

- 地図製作は、地図要素を一枚の紙に配置することを意味します。
- 地図要素 は,タイトル,地図,地図境界,凡例,縮尺、方位記号,謝辞です。
- ・ 縮尺 は、現実の世界では、実際の距離と、地図上の距離の比率を表しています。
- ・ 縮尺は 地図単位 (メートル,フィート,度) で示します。
- 凡例 は地図の全てのシンボルを説明します。
- 地図は,複雑な情報をできる限り簡潔に説明するべきです。
- 地図は普通 北が上 で表示されます。

9.12 やってみよう

ここでは人に教える際のアイデアいくつか述べていきます:

- GIS に地元の地域のいくつかのベクターレイヤーをロードします。生徒たちが道路の種類や建物などのさまざまなタイプの凡例要素の例を識別できるかどうかを確認します。凡例要素のリストを作成し、アイコンがどのように表示されるべきかを定義します。そうすれば、読者は地図内の意味を簡単に把握できます。
- 生徒たちと一緒に紙の上に地図レイアウトを作成します。地図のタイトル、表示する GIS レイヤー、 地図上でどのような色やアイコンが必要かを決めます。 トピック ベクタデータ と ベクタ属性デー タ で学んだテクニックを使って、それに応じてシンボルを調整してください。テンプレートをお持 ちの場合は、 QGIS の印刷レイアウトを開き、地図レイアウトを計画どおりに配置してください。

9.13 考えてみよう

コンピュータを利用できない場合は、任意の地形図を使用して、生徒たちと地図設計について話し合うこ とができます。地図が何を伝えたいのか生徒たちが理解しているかどうかを把握します。改善できるもの は何ですか?地図がその地域の歴史をどのくらい正確に表現していますか?100年前の地図は、今日の同 じ地図とどう違うのですか?

9.14 より詳しく知りたい場合は

図書:

- Chang, Kang-Tsung (2006). Introduction to Geographic Information Systems. 3rd Edition. McGraw Hill. ISBN: 0070658986
- DeMers, Michael N. (2005). Fundamentals of Geographic Information Systems. 3rd Edition. Wiley. ISBN: 9814126195

ウェブサイト : 縮尺(地図)

QGIS ユーザーガイドも QGIS で提供される地図作成に関するより詳細な情報を持っています。

9.15 次は?

次のセクションでは、ベクター分析を詳しく見ていきます。GIS で見栄えの良い地図を作成するより以上のことがどうすればできるかがわかります!

第10章 ベクタ空間分析 (バッファ)

يني ا	目的:	ベクタ空間分析におけるバッファの利用を理解する		
	+ -	ベクタ、バッファゾーン、空間分析、バッファ距離、境界のディゾルブ、内側方向お		
	ワード:	よび外側方向のバッファ、複数のバッファ		

10.1 概要

空間分析では、空間情報を使用してGIS データから新たな追加的な意味を抽出します。空間分析はたい ていGIS アプリケーションを使用して行われます。GIS アプリケーションには、地物統計(例えばこのポ リラインはいくつの頂点で構成されるか?)または地物バッファリングなどのジオプロセッシングのため の空間分析ツールがあるのが普通です。使用される空間分析の種類は、対象領域に応じて変化します。水 の管理や研究(水文学)で働く人々は、等高線の分析と、それを横切って移動する水をモデル化すること に興味がありそうです。野生生物管理ではユーザーは、野生生物のポイントでの位置と環境との関係を扱 う分析機能に興味があります。このトピックにおいてはバッファリングを、ベクタデータで行うことがで きる便利な空間分析の例として説明します。

10.2 バッファリングの詳細

バッファリングは通常2つのエリアを作成します:1つは、選択した現実世界の地物から指定距離内のエリア、もう1つは外のエリアです。指定距離内の領域をバッファゾーンといいます。

バッファゾーンは、現実世界の機能を互いに遠ざける目的で機能する領域です。多くの場合、緩衝地帯は、 環境を保護し、住宅および商業地帯を労働災害や自然災害から保護するため、または暴力を防ぐために設定 されます。一般的なタイプの緩衝地帯は、住宅地と商業地の間のグリーンベルト、国の間の国境地帯(図 10.1 参照)、空港周辺の騒音保護地帯、または河川沿いの汚染防止地帯です。

図 10.1: アメリカとメキシコの境界はバッファゾーンによって分けられています (SGT Jim Greenhill 2006 によって撮影された写真)。

GIS アプリケーションでは、バッファゾーン は常に ベクトルポリゴン として表され、他のポリゴン、ライン、またはポイント地物を囲みます(図 10.2、図 10.3、図 10.4 参照)。

図 10.2: ベクタポイント周辺のバッファゾーン。

図 10.3: ベクタポリライン周辺のバッファゾーン。

図 10.4: ベクタポリゴン周辺のバッファゾーン。

10.3 バッファの種類

バッファリングにはいくつかのバリエーションがあります。 バッファ距離 またはバッファサイズは、各地物のベクタレイヤ属性テーブルで提供される数値に応じて 変化する 可能性があります。数値は、データで使用される座標参照系(CRS)に従って、地図単位で定義する必要があります。たとえば、川の土手に沿った バッファゾーンの幅は、隣接する土地利用の強度に応じて変化する可能性があります。 集約的栽培の場合、 バッファ距離は有機農業の場合よりも大きくなる可能性があります(図10.5 および表 *table_buffer_attributes* 参照)。

図 10.5: 異なるバッファ距離でバッファリングされた河川

河川	隣接する土地利用	バッファ距離(メートル)
ブリード川	集中的な野菜耕作	100
コマティ	集中的な綿の耕作	150
オラニエ	有機農業	50
テレ川	有機農業	50

表 バッファ属性1:隣接する土地利用に関する情報に基き河川までのバッファ距離が異なる属性テーブル。

こうした、河川や道路などのポリライン地物の周りのバッファは、ラインの両側にある必要はありません。 それらはライン地物の左側または右側のどちらかだけにできます。その場合にどちらが左側か右側かは、 デジタイズの際のラインの始点から終点への方向によって決定されます。

10.3.1 複数のバッファゾーン

地物は、複数のバッファゾーンを持つこともできます。原子力発電所は、10、15、25、および 30 km の距離 で緩衝される可能性があるため、避難計画の一環として、発電所の周囲に複数のリングを形成します(図 10.6 参照)。

図 10.6: 10km、15km、25km および 30km という距離でポイント地物にバッファを作成する

10.3.2 完全な境界または融合された境界を持つバッファリング

多くの場合、バッファゾーンは境界が融合しているため、バッファゾーン間に重複する領域はありません。 ただし場合によっては、バッファゾーンの境界を完全に保って各バッファゾーンを個別のポリゴンとし、 重複する領域を識別できるようにすることが有用な場合があります(図図10.7参照)。

図 10.7: 重複する領域を示す、融合した境界をもつバッファゾーン (左) と完全な境界をもつバッファゾーン (右)。

10.3.3 外側または内側へのバッファリング

ポリゴン地物の周囲のバッファゾーンは、通常、ポリゴンの境界から外側に広がりますが、ポリゴンの境 界から内側にバッファゾーンを作成することもできます。例えば、観光省がロベン島の周りに新しい道路 を計画したくて、環境法では道路は海岸線から少なくとも 200 メートル内側にあることが要求されるとし ます。観光省は海岸線から内への 200 メートルラインを見つけるために、内側にバッファを使用して、そ の線を越えないように自分たちの道路を計画できます。

10.4 一般的な問題 / 注意すべき点

ほとんどの GIS アプリケーションは、分析ツールとしてバッファ作成を提供していますが、バッファを作成するためのオプションはいろいろです。たとえば、ライン地物の左右両側へバッファリングすること、バッファゾーンの境界をディゾルプすること、ポリゴンの境界から内側へバッファを作成することは、すべての GIS アプリケーションでできるわけではありません。

バッファ距離は常に整数(整数)または小数(浮動小数点値)として定義されなければなりません。この 値は、ベクターレイヤーの座標参照系(CRS)に従った地図単位(メートル、フィート、小数の度)で定 義されています。

10.5 さらなる空間分析ツール

バッファ作成は重要かつ頻繁に使用される空間分析ツールですが、ユーザーが GIS で使用して検討できる ものは他にも多くあります。

空間オーバーレイは、同じエリアのすべてまたは一部を共有する2つのポリゴン地物間の関係を識別できるようにするプロセスです。出力ベクタレイヤは、入力地物情報の組み合わせです(図10.8参照)。

図 10.8: 2 つのベクタレイヤ (a_input = 方形、b_input = 円)の空間オーバーレイ。結果のベクタレイヤは 緑で表示されます。

典型的な空間オーバーレイの例:

- インターセクション: 出力レイヤは2つのレイヤの重なる(交わる)すべての領域を含みます。
- ユニオン:出力レイヤは組み合わせた2つの入力レイヤのすべての領域を含みます。
- ・対称差:出力レイヤには、入力レイヤのすべての領域が含まれます。ただし、2つのレイヤが重なる (交わる)領域は除きます。
- ・ 差分:出力レイヤには、第2の入力レイヤと重ならない(交わらない)第1の入力レイヤのすべての領域が含まれます。

10.6 わかりましたか?

ここでは以下のことを学びました:

- バッファゾーンは、現実世界の地物の周りの領域を示します。
- バッファゾーンは常にベクタポリゴンです。
- 地物は 複数の バッファゾーンを持ちえます。
- バッファゾーンのサイズは バッファ距離 によって定義されます。
- バッファ距離は 整数 または 小数点 の値でなければいけません。
- バッファ距離は、ベクタレイヤ内の各地物ごとに変えることもできます。
- ・ポリゴンは、その境界から内側へまたは外側へバッファを作成できます。
- 完全な または 解消された 境界で作成されたバッファゾーン
- バッファ作成の他にも、GIS では通常、空間的な課題を解決するためにいろいろなベクタ解析ツール が提供されています。

10.7 やってみよう

ここでは人に教える際のアイデアいくつか述べていきます:

- ・交通量が劇的に増加したため、都市計画者は幹線道路を広げ、2番目の車線を追加したいと考えています。道路の周りにバッファを作成して、バッファゾーン内にある資産を見つけます(図10.9参照)。
- 抗議グループを制御するために、警察は抗議者を建物から少なくとも 100 メートル離しておくために 中立ゾーンを設置したいと思っています。建物の周りにバッファを作成し、バッファ領域がどこにあ るかイベントプランナーにわかるように色付けします。
- トラック工場が拡張を計画しています。立地基準には、敷地候補は大型道路の1キロ以内でなければ ならないと規定されています。敷地候補がどこにあるかわかるように、主要道路に沿ってバッファを 作成します。
- ・ 酒屋は学校や教会の千メートルバッファゾーン内にあってはいけないと規定する法律を市が導入したいと思っていると想像してみてください。学校の周りに1キロのバッファを作成し、それから学校に近すぎる酒屋がないか見に行ってください。

図 10.9: 道路地図(茶)周辺のバッファゾーン(緑)。どの家がバッファゾーンに入るかについて見ること ができるので、今、所有者に連絡して状況について話すことができるでしょう。

10.8 考えてみよう

利用可能なコンピュータを持っていないならば、建物の周辺にバッファゾーンを作成するために、トポシートとコンパスを使うことができます。コンパスを使って地物に沿って等距離で小さい鉛筆マークを入力してください、それから定規を使ってマークをつないでください!

10.9 より詳しく知りたい場合は

図書:

- Galati, Stephen R. (2006): Geographic Information Systems Demystified. Artech House Inc. ISBN: 158053533X
- Chang, Kang-Tsung (2006). Introduction to Geographic Information Systems. 3rd Edition. McGraw Hill. ISBN: 0070658986
- DeMers, Michael N. (2005). Fundamentals of Geographic Information Systems. 3rd Edition. Wiley. ISBN: 9814126195

QGIS ユーザーガイドでは、QGIS におけるベクター分析についてより詳細な情報が含まれています.

10.10 次は?

次のセクションでは、ラスタデータを使った空間解析の例として 補間 について詳しく見ましょう。

第11章 空間分析(補間)

11.1 概要

空間分析は、元のデータから新しい情報と意味を抽出するために空間情報を操作する処理です。ふつうは 空間分析は地理情報システム(GIS)を使用して実行されます。GISにはたいてい、地物統計を計算し、 データ補間のようなジオプロセッシング操作を実行するための空間分析ツールがあります。水文学では、 ユーザーは地形解析と水文学モデリング(水の移動をモデル化すること)の重要性を強調するでしょう。 野生生物管理の世界では、ユーザーは、野生生物の点位置およびそれらの環境との関係を扱う分析機能に 関心があります。それぞれのユーザーは、自分が行っている仕事の種類に応じて、関心を持つものはさま ざまに異なるでしょう。

11.2 空間補間の詳細

空間補間は、既知の値を持つポイントを使用して、他の未知のポイントの値を推定する手順です。たとえ ば、自国の降水量(降雨量)地図を作成するために、地域全体をカバーするのに十分に均等に広がった気 象観測所を見つけることはできません。空間補間では、近くの気象観測所での既知の温度測定値を使用し て、データが記録されていない場所の温度を推定できます(図11.1参照)。このタイプの内挿されたサー フェスは、多くの場合、統計サーフェスと呼ばれます。標高データ、降水量、積雪量、地下水面、人口密 度は、内挿を使用して計算できる他のタイプのデータです。

図 11.1: 気温図は、南アフリカの気候条件から補間されています。

データ収集はコストが高く資源は限られているため、通常は選択されたポイント位置で限定された数だけ 実施されます。 GIS において、これらの点に空間補間を適用すると、全てのラスタのセルに対して行われ た推定値を持つラスタサーフェスを作成できます。

連続的な地図を、例えば GPS 装置で計測された高度地点からのデジタル標高地図を生成するためには、適切な補間方法を使用して、サンプルまたは計測が行われなかった場所の値を最適に推定しなければなりません。補間解析の結果はその後、全領域をカバーする解析やモデリングに使用できます。

多くの補間方法があります。本稿では、逆距離加重 (IDW)と不規則三角網 (TIN)と呼ばれる2つの 広く使用される補間方法を紹介します。その他の補間方法をお探しの場合は、このトピックの末尾にある 「さらに読む」セクションを参照してください。

11.3 逆距離加重(IDW)

IDW 内挿法では、サンプルポイントは内挿中に重み付けされ、作成する未知のポイントからの距離に応じて、あるポイントの別のポイントに対する影響が減少します(図 11.2 参照)。

図 11.2: 重み付けられたサンプル点の距離に基づく逆距離加重補間(左)。標高ベクタポイントからの補間 IDW サーフェス(右)。画像元: Mitas, L., Mitasova, H. (1999).

重み付けが、新しい点からの距離が増加するにつれて重み付けの影響がどのように低下 するかを制御 する重み付け係数を使用して、サンプル点に割り当てられます。重み付け係数が大きくなるほど、補間処 理に与える効果はその未知の点から遠い点ほど小さくなります。係数が増加するにつれ、未知の点の値は 最も近い観測点の値に近づきます。

IDW 内挿法には、いくつかの欠点もあることに注意することが重要です。サンプルデータポイントの分布 が不均一な場合、内挿結果の品質が低下する可能性があります。さらに、内挿されたサーフェスの最大値 と最小値は、サンプルデータポイントでのみ発生する可能性があります。これにより、図 11.2 に示すよう に、サンプルデータポイントの周囲に小さなピークとピットが生じることがよくあります。

GIS では、内挿結果は通常2次元ラスタレイヤとして表示されます。 図 11.3 では、GPS デバイスを使用 して野外で収集された標高サンプルポイントに基づいた、典型的な IDW 補間結果を確認できます。

図 11.3: IDW 補間では不規則に集められた標高サンプルポイント(黒十字で示す)から結果が得られます。

11.4 不規則三角網(TIN)

TIN 補間は、GIS で人気のあるもう1つのツールです。一般的なTIN アルゴリズムは、 ドロネー三角形 分割 と呼ばれます。これは、最も近い隣接点の三角形によって形成されるサーフェスを作成しようとしま す。これを行うには、選択したサンプルポイントの周囲に外接円を作成し、それらの交点を重なり合わな い、可能な限りコンパクトな三角形のネットワークに接続します(図 11.4 参照)。

図 11.4: 赤のサンプルデータの周りの外接円とのドロネー三角形分割。標高ベクタポイントから作成された結果として補間した TIN サーフェスを右側に示します。画像元: Mitas, L., Mitasova, H. (1999).

TIN 補間の主な欠点は、サーフェスが滑らかでなく、ギザギザの外観になる可能性があることです。これ は、三角形のエッジとサンプルデータポイントでの不連続な勾配が原因で発生します。さらに、三角測量 は通常、収集されたサンプルデータポイントのある領域を超えた外挿には適していません(図11.5参照)。

図 11.5: ドローネ TIN 補間は不規則に収集された降水量のサンプルポイント(青い円)に由来します。

11.5 一般的な問題 / 注意すべき点

すべての状況に適用できる単一の補間方法はないことを覚えておくことが重要です。いくつかは他より正 確で有用ですが、計算に時間がかかります。それらには長所と短所があります。実際には、どの補間方法 を選択するかは、サンプルデータ、生成されるべき表面のタイプおよび推定誤差の許容誤差に応じて変え るべきです。一般的に、3つのステップの手順が推奨されます。

- 1. サンプルデータを評価します。これはデータが地域にどう分布しているかについてのアイデアを得 るために行います。どの補間法を使用するかについてのヒントを提供するかもしれないので。
- 2. サンプルデータと研究目的の両方に最適な補間法を適用します。疑問がある場合には、利用可能であ れば、複数の方法を試してみてください。
- 結果を比較し、最良の結果と最も適切な方法を見つけます。これは、最初は時間のかかるプロセスのように見えるかもしれません。しかし、さまざまな補間方法の経験と知識を得ると、最適なサーフェスを生成するために必要な時間が大幅に短縮されます。

11.6 その他の補間法

このワークシートでは IDW および TIN 補間法だけを取り上げましたが、GIS には、張力付正規スプライン法(RST) クリギングまたはトレンドサーフェス補間など、より多くの空間補間方法が用意されています。 Web リンクについては、以下の追加の読み物のセクションを参照してください。

11.7 わかりましたか?

ここでは以下のことを学びました:

- 補間は全領域をカバーするラスタサーフェスを作成することを目的とし未知の場所で値を推定するために、既知の値を持つベクターポイントを使用しています。
- 補間結果は通常は ラスタ レイヤです。
- 未知の場所の値を最適に推定する 適切な補間法を見つける ことが重要です。
- IDW 補間では、ある点から別の点への影響が推定される新点からの距離で減衰するように、サンプ ル点に重みを与えます。
- TIN 補間 は最寄りのポイント情報に基づいた三角形で形成されたサーフェスを作成するためのサン プル点を使います。

11.8 やってみよう

ここでは人に教える際のアイデアいくつか述べていきます:

- ・農業省があなたの地域で新しい耕作地を計画していますが、土壌の特性とは別に、収穫のために降雨 量が十分あるかどうかを知りたいと考えています。利用可能なすべての情報は、周辺のいくつかの 気象観測所から得られます。生徒たちといっしょに最高の降雨量がありそうな地域を示す補間サー フェスを作成してください。
- 観光局は、1月と2月に気象条件に関する情報を公開したいと考えています。彼らは気温、降雨量、 風力データを持っており、気温や雨量、風の強さなどの気象条件が最適な場所を推測するためにデー タを補間するよう求めます。これらの基準を満たす地域を特定できますか?

11.9 考えてみよう

コンピュータを使用できない場合は、トポシートと定規を使用して架空の気象観測所間の等高線または降雨値の標高値を推定できます。たとえば、気象局 A の降雨量が 50 mm で、気象観測所 B の気温が 90 mm の場合、気象観測所 A と B の真ん中での降雨量は 70 mm と推定できます。

11.10 より詳しく知りたい場合は

図書:

- Chang, Kang-Tsung (2006). Introduction to Geographic Information Systems. 3rd Edition. McGraw Hill. ISBN: 0070658986
- DeMers, Michael N. (2005): Fundamentals of Geographic Information Systems. 3rd Edition. Wiley. ISBN: 9814126195
- Mitas, L., Mitasova, H. (1999). Spatial Interpolation. In: P.Longley, M.F. Goodchild, D.J. Maguire, D.W.Rhind (Eds.), Geographical Information Systems: Principles, Techniques, Management and Applications, Wiley.

ウェブサイト:

- https://en.wikipedia.org/wiki/Interpolation
- https://en.wikipedia.org/wiki/Delaunay_triangulation

QGIS ユーザーガイドには、QGIS で提供される補間ツールの詳細な情報が含まれています。
11.11 次は?

これは、このシリーズの最後のワークシートです。私たちは、QGIS を探索し、GIS ソフトウェアで行うことができる他のすべてを発見するために、添付の QGIS 説明書を使えるようになることをお勧めします!

第12章 著者とコントリビュータについて

	Tim Sutton Editor & Lead Author. Tim Sutton is a developer and project steering committee member of the QGIS project. He is passionate about seeing GIS being Freely available to everyone. Tim is also a founding member of Linfiniti Consulting CC a small business set up with the goal of helping people to learn and use opensource GIS software. Web : https://kartoza.com Email : tim@kartoza.com
CO	Otto Dassauアシスタント著者。Otto Dassau はドキュメントの保守管理者であり、 QGIS プロジェクトのプロジェクト運営委員会のメンバーです。Otto は、フリーで オープンソースの GIS ソフトウェアを使用すること、使用できるよう人々を訓練す ることにおいて、かなりの経験を積んでいます。Web: http://www.nature-consult.de, Email: otto.dassau@gmx.de
	Marcelle Sutton プロジェクト・マネージャ。Marcelle Sutton は英語とドラマを研究し、教員資格を持っています。Marcelle はまた、Linfiniti Consulting CC(人々がオー プンソースの GIS ソフトウェアを学び使用するのを支援することを目標とした中小 企業)の創立メンバーです。Web: https://kartoza.com Email: marcelle@kartoza.com
	Lerato Nsibandeビデオプレゼンター。 Lerato はプレトリアに住む高校 3 年生で す。Lerato は学校で地理学を学び、私たちと一緒に GIS を学ぶことを楽しんでい ます!
	Sibongile Mthombeni —- ビデオプレゼンター。Sibongile は幼い娘と一緒に Johan- nesburg の近くに住んでいます。目標は研究を続けることと看護婦になることです。 このプロジェクトでの成果は Sibongile が初めてコンピュータを使用したことでし た。

第13章 GNUフリー文書利用許諾契約書

Version 1.3, 3 November 2008

Copyright 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc https://www.fsf.org/

誰もがこのライセンス文書の逐語的なコピーを複製および頒布することは許可されていますが、それを変 更することはできません。

はじめに

このライセンスの目的は、マニュアル、教科書、または他の機能的で便利な文書を、自由という意味で「フ リー」にすることです。商業的または非商業的、またはそれを修正することなく、誰もがそれをコピーし て再配布するための事実上の自由を確保するために。第二に、このライセンスは、他の人によって行われ た変更の責任とみなされていないながら、著者や出版社が自分の仕事のためにクレジットを取得する方法 を保持します。

このライセンスは「コピーレフト」の一種です。すなわち、文書の派生物自体は同じ意味でフリーでなけれ ばなりません。これは、フリーソフトウェアのために設計されたコピーレフトライセンスである GNU – 般公衆利用許諾契約書を、補完します。

フリーのプログラムは、ソフトウェアが行うのと同じ自由を提供するマニュアルが付属していなければな らない:フリーソフトウェアはフリーな文書が必要なので、私たちは、フリーソフトウェアのマニュアル のためにそれを使用するために、このライセンスを設計しています。しかし、このライセンスは、ソフト ウェアのマニュアルに限定されるものではありません。それは関係なく、主題のか、それが印刷された本 として出版されているかどうか、任意のテキストの仕事のために使用できます。私たちは、その目的の命 令または参照された作品のため、主にこのライセンスをお勧めします。

1.適用性と定義

このライセンスは、あらゆる媒体で、任意の手動または他の作業に適用される、それはそれは、本ライセンスの条件の下で配布することができますと言って著作権者に置か通告が含まれています。このような通知は、本明細書に記載された条件の下でその作品を使用して、期間中無制限の世界的な、ロイヤリティフリーのライセンスを、付与します。文書は、以下で、そのようなマニュアルや作業を指します。公共の任意のメンバーは、ライセンシーで、「あなた」として扱われます。あなたがコピーした場合、ライセンスを受け入れ、著作権法の下で許可を必要とする方法で仕事を変更したり、配布します。

文書の「修正版」は、ドキュメントまたはその一部、逐語的、または変更してコピー及び/又は他の言語 に翻訳のいずれかを含む任意の作業を意味します。

「補遺部分」は、名前の付録か(または関連事項)文書の全体的な対象への文書の出版社や著者の関係で 独占的に扱う文書のフロントマター部であり、それは、その全体的な対象内で直接落下する可能性があり ます何も含まれていません。(文書が部分的に数学の教科書である場合はこのように、補遺部分は、任意の 数学を説明できないことがあります。)関係は主題または関連事項との歴史的な関連の問題であるか、対象 とか、あるいはそれらに関する法的、商業、哲学的、倫理的、あるいは政治的な位置の問題である可能性 があります。

「変更不可部分」とは、その題の文書がこのライセンスの下でリリースされていることを述べている通知 に、変更不可部分のそれであるとして、指定された特定の二次著作物セクションです。セクションが「二 次著作物」の上記の定義に適合しない場合、不変として指定することは許可されません。文書はゼロの変 更不可部分が含まれていてもよいです。文書に何も変更不可部分が特定されていない場合は、何もありま せん。

「カバーテキスト」とは、短い文章であって、文書がこのライセンスの下でリリースされていることを述べている通知中でフロントカバーテキストまたはバックカバーテキストとしてリストされているものです。 フロントカバーテキストは最大5語、バックカバーテキストは最大で25語が許されています。

文書の「透明」コピーとは、機械読み取り可能なコピーで、その仕様が一般公衆に利用可能な形式で表さ れている、一般的なテキストエディタで、または(ピクセルで構成される画像については)汎用ペイントプ ログラム、または(図面については)いくつかの広く利用可能な描画エディタですぐに文書を改訂するに 適しているもの、そしてテキストフォーマッタへの入力に適しているか、テキストフォーマッタへの入力 に適した様々なフォーマットへの自動翻訳に適したものです。透明ファイル形式で作られたコピーは、そ のマークアップが、またはマークアップがないことが、読者が後続の変更を妨害または阻止するように整 えられているならば透明でありません。画像フォーマットは、何かかなりの量のテキストについて使用し た場合は透明ではありません。「透明」でないコピーは 不透明 と呼ばれます。

透明な複製に適した形式の例としては、マークアップなしのプレーン ASCII、Texinfo の入力形式、LaTeX 入力形式、一般に入手可能な DTD を使用した SGML または XML、および標準に準拠した単純 HTML、人 間の変更のために設計された PostScript または PDF があります。透明な形式の例には、PNG、XCF および JPG があります。不透明な形式には、商用ワードプロセッサで読み取り編集できる商用形式、DTD および /またはプロセシングツールが一般に利用可能でない SGML または XML、および機械生成 HTML、いく つかのワードプロセッサによって作成された出力目的のみの PostScript や PDF があります。

「 題扉 」とは、印刷された書籍、題扉自体、プラスを保持するために必要とされるような以下のページの ために、読みやすく、材料は、このライセンスは、題扉に表示されている必要があります。以下のような任 意の題扉を持っていないフォーマットの作品については、「題扉」には、テキストの本文の先頭に先行し、 作品の題の最も顕著な外観に近いテキストを意味します。

「 パブリッシャー 」は、公衆への文書のコピーを配布する個人または団体を意味します。

「XYZ という題」セクションには、題を正確 XYZ であるか、XYZ を別の言語に翻訳し、テキストを次の 括弧内に XYZ が含まれているいずれかの文書の名前のサブユニットを意味します。(ここで、XYZ は「謝 辞」、「献呈」、「裏書」、または「歴史」などのような、下記の特定のセクション名を表します)。この定 義によると「文書」を修正するときにセクションの 題を保持 することは、XYZ という題のセクションを 残すことを意味します。

ドキュメントは、本ライセンスは、ドキュメントに適用されると述べている通知に次の保証の免責事項を 含めることができます。これらの保証免責事項は、この契約書では、唯一の保証を放棄に関して参照によ り含まれると考えている。これらの保証の免責が持っていることを他の含意は無効であり、このライセン スの意味には影響を与えません。

2.逐語的に忠実な複製

このライセンス、著作権表示、および本ライセンスが文書に適用されると述べるライセンス通知がすべて のコピーに再現されている、かつ、本ライセンスのものに一切の他の条件を追加していないという条件が 満たされる限り、文書は、商業的にも非商業的にも、任意の媒体にコピーして配布できます。作成あるい は頒布するコピーの閲覧または再コピーを妨げたり制御するための技術的手段を使用することはできません。ただし、コピーと引き換えに報酬を受け取ることはできます。十分に多い数のコピーを配布する場合は、セクション3の条件にも従わなければなりません。

また、上記と同じ条件の下で、コピーを貸与でき、コピーを公に表示できます。

3. 大量の複製

文書の印刷された複製物(または通常は印刷された表紙を持つ媒体における複製物)を100部を超えて出版し、文書のライセンス通知がカバーテキストを要求する場合、コピーをこれらすべてのカバーテキスト (表紙にフロントカバーテキスト、および背面カバーにバックカバーテキスト)を持ち運びするカバー内に はっきりと読みやすく、同封しなければなりません。どちらのカバーでもあなたがこれらのコピーの出版 者であることがはっきりと法的に確認できる必要があります。表表紙には文書の完全な題名を、題名を構 成するすべての語が等しく目立つようにして、視認可能な形で示さなければなりません。表紙にさらに他 の材料を加えてもよいです。表紙のみを変更した複製物は、それが『文書』の題名を保存し上記の条件を 満たす限り、他の点では逐語的な複製物として扱うことができます。

どちらかのカバーに必要なテキストが読みやすく収まらないほど膨大な場合、最初のものを実際の表紙に (適当に収まるくらい多く)記載されている入れて、残りを隣接するページに続けるべきです。

文書の不透明複製物を100部を超えて出版あるいは頒布する場合、それぞれの不透明複製物と一緒に機械 で読み取り可能な透明複製物を添付するする必要があります。さもなくば、非透過な複製物と内容的に寸 分違わず余計なものが追加されていない完全な『文書』の透過的複製物を、一般ネットワークを使用する 公衆が一般に標準的と考えられるネットワークプロトコルを使用してアクセスしダウンロードできるコン ピュータネットワーク上の所在地を、それぞれの不透明複製物(あるいはそれに付属する文書)中に記述 する必要があります。後者の方法を使用する場合は、複製物の大量の配布を開始するとき、公衆にその版 の不透明な複製物が(直接または代理店や小売店を通じて)配布された最後の時から少なくとも1年後ま で、この透明複製物が記述された場所からこのようにアクセス可能なままであることを保証するため、十 分に慎重な手順を実行する必要があります。

複製物の大量の再配布をするときは十分に前に文書の作成者に連絡し、文書の更新版を提供することがで きるようにすることを(必須ではありませんが)お願いいたします。

4. 変更

「文書」の「変更版」は、その「変更版」をまさにこのライセンスの下でリリースしていて、その「変更 版」が「文書」の役割を満たしている、したがってそのコピーを所有している誰にでも「変更版」の配布、 変更を許可している限り、上記のセクション2と3の条件の下でコピーおよび配布できます。また、「変更 版」では以下のことを行う必要があります:

- A. 題扉(とカバー、もしあれば)には文書の題、および以前の版(あった場合には文書の「履歴」セク ションに表示されているはずです)の題とは異なる題を使用してください。その版の元の出版社が許 可を与える場合は、以前の版と同じ題扉を使用できます。
- B. 題扉のリストには、彼らはこの要件からあなたを解放しない限り、著者として、変更版における変更の著作者として責任がある1人以上の人または団体を、文書の主著者の少なくとも5(5より少ない場合その主著者のすべて)と一緒に、列挙します。
- C. 題扉に修正版の出版社の名前を、出版社として、述べます。

D. 文書のすべての著作権表示を残します。

E. 他の著作権表示の近くに、あなたの修正のための適切な著作権表示を追加します。

- F. 、すぐに著作権表示の後に、下記の補遺に示されている形で、本ライセンスの条項の下で変更版を使 用する公開許可を与えるライセンス通知を含めます。
- G. そのライセンスに保存するには、不変のセクションの完全なリストを気づくと文書のライセンス通知 に与えられたカバーテキストを必要としていました。
- H. 本ライセンスの変更されていないコピーが含まれます。
- I.「履歴」と題するセクションを保持し、その題を保持し、それに題ページに与えられたとして、修正版の、少なくとも題、年、新しい著者、および出版社を明記のアイテムを追加します。文書に「履歴」と題した章が存在しない場合は、その題ページに与えられたとして、文書の題、年、著者、および出版社を述べるものを作成し、その後、前の文で述べたように、変更版を記述する項目を追加します。
- J. もしあれば、文書の透明複製物への公衆がアクセスするため文書中で与えられるネットワークの場所、同様にそれが基づいていた以前のバージョンの文書で与えられるネットワークの場所を保存します。これらは「履歴」セクションに配置できます。ネットワークの場所は、文書自体より少なくとも4年前に出版された作品については、またはそれが参照するバージョンの元々の出版者が許可を与える場合は、省略できます。
- K.「謝辞」または「献呈」と題された任意のセクションは、セクションの「題を保持」し、セクションの 寄稿者の肯定応答および/またはその中に与えられた献呈の各々の全ての物質とトーンを維持します。
- L. その本文および題名を変更せず、文書のすべての不変のセクションを保持します。章番号やそれに相 当するものは、セクション題の一部とはみなされません。
- M. 「裏書」と題されたいずれかのセクションを削除します。このようなセクションは、修正版には含ま れないことがあります。
- N.「裏書」または任意の不変セクションとの題で競合する権利を有することに任意の既存のセクション を改称しないでください。
- O. 任意の保証免責を保存します。

修正版は二次著作物セクションとしての資格や文書からコピーされた何の材料を含まない新しいフロント マターセクションまたは付録が含まれている場合、自身の選択によりこれらの一部または全部を不変とし て指定できます。これを行うには、変更版の利用許諾告知における変更不可部分のリストに自分の題を追 加します。これらの題は、他のセクションの題は区別しなければなりません。

「推薦の辞」と題されたセクションを、そこに様々な関係者によるあなたの変更版の推薦しか含まれてい ないのであれば、追加できます。例えば、ピアレビューのステートメント、またはテキストは、標準の権 威ある定義として組織によって承認されたことの声明など。

変更版ではカバーテキストのリストの最後に、バックカバーテキストとして、最大5つのフロントカバー テキストなどの単語、および最大25ワードの通路の通過を追加できます。フロントカバーテキストとバッ クカバーテキストの1の唯一の通路はによって(またはによって行われた取り決めにより)いずれかのエ ンティティを添加してもよいです。文書が既に同じカバーするためのカバーテキストが含まれている場合 は、以前にあなたによってか、の代わりに動作している同じエンティティによって行われた配置で追加さ れた、別のものは追加できません。しかし、古い文を加えた以前の出版者からの明示的な許可に、古いも のを置き換えることができます。

ドキュメントの作者と出版社(単数または複数)は、このライセンスによってのための宣伝のために自分 の名前を使用するか、いずれかの修正版の裏書を主張または暗示する許可を与えることはありません。

5.書類を組み合わせる

文書は、このライセンスの下で発表された文書と結合することが許されます。ただし、変更版に関して上 記のセクション4で定義された条件の下で、オリジナルの文書のすべての不変のセクションのすべてが組 み合わせて無修正で含まれていて、そしてそれらがすべて組み合わせた作品の不変のセクションとしてリ ストアップされ、そしてそれらのすべての保証の免責事項を保持していること。

結合後の著作本ライセンスのコピーが含まれているのみ必要とし、複数の同一の不変のセクションは、単 ーのコピーで置き換えることができます。同じ名前が異なる内容の変更不可部分が複数ある場合は、括弧 内に、それの最後に追加することによって、そのような各セクション独特の題を作る、そのセクションの 原作者や出版社の名前は、他の知られている場合、または一意の番号。結合後の著作物の利用許諾告知に おける変更不可部分の一覧で、章の題名に同様の調整を行います。

組み合わせでは、「履歴」と題する一つのセクションを形成し、様々なオリジナルの文書中の「履歴」という題のすべてのセクションを組み合わせなければなりません。「謝辞」という題のすべてのセクション、および「献呈」という題のすべてのセクションも同様に組み合わせます。「推薦」という題のすべてのセクションは削除する必要があります。

6. 文書のコレクション

文書および本ライセンスの下でリリースされた他の文書からなるコレクションを作成し、コレクションに 含まれる単一のコピーで様々な文書中のこのライセンスの個々のコピーを置き換えることは、他のすべて の点で文書の各逐語的にコピーについてこのライセンスの規則に従う限りにおいて、許可されます。

このようなコレクションから単一の文書を抽出して個別に配布することは、このライセンスのコピーを抽 出された文書に挿入し、その文書の逐語的なコピーに関して他のすべての点で本ライセンスに従うかぎり、 このライセンスの下で許可されます。

7.独立した作品でのまとめ

編集から生じた著作権は法律上の権利を制限するために使用されていない場合は、他の別個の独立した文書や作品で、またはストレージまたは配布媒体のボリューム上の文書またはその誘導体の編纂は、「まとめ」と呼ばれています、個々の作品は許可している以上、編纂のユーザーの。「文書」がまとめに含まれている場合、それ自体が「文書」の派生物ではないまとめ中の他の作品には、このライセンスは適用されません。

セクション3のカバーテキスト要件文書のこれらのコピーに適用可能である場合文献は、全体集合体の半 分未満である場合、次に、文書のカバーテキストは、集合内の文書を囲むカバー上に配置されてもよい、ま たはカバーの電子同等の文書は、電子形式である場合。そうでなければ、彼らは全体の集計を一括印刷カ バーの上に表示される必要があります。

8.翻訳

翻訳は変更の一種と考えられているので、翻訳で不変のセクションを交換部4の条件の下での文書の翻訳 を配布することが彼らの著作権者からの特別な許可が必要ですが、に加えて、一部またはすべての不変の セクションの翻訳を含むことができこれらの不変のセクションの元版。また、本ライセンスの元の英語版 およびそれらの通知および免責事項の元版が含まれていることを提供し、このライセンスの翻訳、および 文書内のすべてのライセンス通知、および任意の保証免責事項を含むことができます。翻訳と本ライセン スまたは通知または免責条項の元版との間に食い違いが生じた場合は、元版が優先されます。

文書内のセクションは、「謝辞」、「献呈」と題された、または「履歴」である場合、要件(セクション4) はその題(セクション1)を維持するために、典型的には実際の題を変更する必要があります。

9.終了

コピー、変更、サブライセンス、または明示本ライセンスの下で提供以外の文書を配布することはできま

せん。そうでない場合は、コピー、変更、サブライセンス、またはそれを配布しようとすると無効となり、 かつ自動的に本ライセンスの下であなたの権利を終了します。

あなたがこの契約書のすべての違反をやめる場合は、その後、特定の著作権者からライセンスは、著作権 者が明示的に、最終的には永久ライセンス、および(B)を終了しない限り、とまでは(a)の仮、著作権 者が失敗した場合復活さ中止後60日前にいくつかの合理的な手段で違反を通知します。

著作権者は、いくつかの合理的な手段で違反を通知した場合また、特定の著作権者からライセンスを永続 的に復活され、これはあなたがその著作権者から(すべての作業のための)本ライセンスの違反の通知を 受けたのは初めてで、そしてあなたは、予告のあなたの受領後 30 日前に違反を治します。

このセクションの下であなたの権利の終了は、このライセンスの下であなたから複製や権利を受け取った 当事者のライセンスは終了しません。あなたの権利が終了し、恒久的に回復いないされている場合は、同 じ材料の一部または全部のコピーの受領はあなたにそれを使用する権利を与えるものではありません。

** 10。本契約の将来の改訂**

フリーソフトウェア財団は随時 GNU フリードキュメントライセンスを更新しています。新しいバージョンは既存のバージョンと同様の精神のもとにありますが、ときに、新しい課題や関心ごとについて異なる 異なる見解をノベル場合があります。 詳しくは https://www.gnu.org/copyleft/ を参照してください。

ライセンスの各バージョンは、バージョン番号によって区別を与えています。文書は、本ライセンスの特定の番号のバージョン「またはそれ以降のバージョンが」それに適用され、あなたがその指定されたバージョンのか、と(いない出版されている任意の以降のバージョンのいずれかの条件を次のオプションを持っていることを指定した場合フリーソフトウェア財団によって草案)。文書が本ライセンスのバージョン番号が指定されていない場合は、フリーソフトウェア財団によってかつてない(ないドラフトとして)発行されたバージョンを選択することができます。文書がプロキシは、このライセンスの将来のバージョンを使用できるかを決定できるように指定した場合は、バージョンの受け入れのそのプロキシの公開声明は、恒久的に文書のために、そのバージョンを選択するように許可します。

11. 再ライセンス

「大勢の複数著者協働サイト」(または「MMC サイト」)は、著作権の作品を公開して任意のワールド・ワ イド・ウェブ・サーバーを意味し、また、それらの作品を編集するために誰のための著名な施設を提供し ます。誰もが編集できることを公共の wiki は、サーバーの一例です。サイトに含まれる「大勢の複数著者 協働」(または「MMC」という。)を MMC サイトで公開著作権保護作品の任意のセットを意味します。

「CC-BY-SA」は、クリエイティブ・コモンズ・コーポレーション(カリフォルニア州サンフランシスコに主たる営業所を持つ非営利企業)よって発行されたクリエイティブ・コモンズ表示 - 継承 3.0 ライセンス、ならびにその同じ組織によって公開されたそのライセンスの将来のコピーレフトのバージョンを意味します。

「組み込む」とは、公開または文書を、全体的または部分的に、別の文書の一部として再発行することを 意味します。

MMC は、それが本ライセンスの下でライセンスされている場合、「再ライセンスの対象」であり、すべて の作品は、MMC に最初にこの MMC 以外の場所に本ライセンスの下で公開され、その後、全体的にまた は部分的に組み込まれたものならば、(1)無ましましたテキスト又は不変セクションをカバーし、そして (2)このようにして前 2008 年 11 月 1 日に組み込まれました。

MMC サイトの運営者は、2009 年 8 月 1 日前の任意の時点で、同じサイト上の CC-BY-SA の下のサイトに 含まれる MMC を再発行 MMC が再ライセンスの対象となり提供することがあります。

補遺:あなたの文書のために、このライセンスを使用する方法

文書内のライセンスのコピーを含め、書かれている文書で、このライセンスを使用すると、ちょうど題扉 の後に、次の著作権およびライセンス通知を配置するには:

著作権© YEAR YOUR NAME。許可は、複製、頒布および/または GNU Free Documentation License の、バージョン 1.3 またはフリーソフトウェア財団発行のそれ以降のバージョンの条項の下でこの文書を修正するために付与されています。変更不可部分、フロントカバーテキストず、ノーバックカバーテキスト。ライセンスのコピーは「GNU Free Documentation License の」という章に含まれています。

あなたは不変のセクションを持っている場合は、フロントカバーテキストとバックカバーテキストは、「テ キスト... と。」置き換えます これに伴い:

不変のセクションがリストであるフロントカバーテキストで、LIST その題である、とバックカ バーテキストで LIST ていると。

あなたがカバーテキストのない不変のセクション、または3の他のいくつかの組み合わせを持っている場合は、状況に合わせて、これらの二つの選択肢を混ぜ合わせます。

文書中にプログラムコードの自明でない例が含まれている場合は、フリーソフトウェアでの使用を可能と するために、GNU 一般公衆利用許諾契約書として、フリーソフトウェアライセンスの選択の下で並行して これらの例をリリースすることをお勧めします。