Índice general

1 Introducción

2 Comenzando
 2.1 Instalación en sistemas basados en Debian .. 3
 2.1.1 Servidor HTTP Apache ... 5
 2.1.2 NGINX HTTP Server .. 7
 2.1.3 Xvfb ... 11
 2.2 Instalación en Windows .. 12
 2.3 Sirve un proyecto .. 14
 2.4 Configure su proyecto ... 15
 2.4.1 Capacidades WMS ... 17
 2.4.2 Capacidades WFS ... 18
 2.4.3 Capacidades WCS ... 18
 2.4.4 Ajuste fino de OWS ... 18
 2.5 Integración con terceras partes ... 18
 2.5.1 Integración con QGIS Desktop ... 18
 2.5.2 Integración con MapProxy ... 18
 2.5.3 Integración con QWC2 .. 19

3 Servicios
 3.1 Básicos .. 21
 3.1.1 SERVICIO ... 22
 3.1.2 SOLICITUD .. 22
 3.1.3 MAPA .. 22
 3.1.4 FILE_NAME .. 22
 3.1.5 Nombre corto ... 23
 3.2 Web Map Service (WMS) ... 23
 3.2.1 GetCapabilities .. 24
 3.2.2 GetMap ... 24
 3.2.3 GetFeatureInfo ... 33
 3.2.4 GetLegendGraphics .. 36
 3.2.5 GetStyle(s) ... 49
 3.2.6 DescribeLayer .. 49
 3.2.7 GetPrint .. 50
 3.2.8 GetProjectSettings ... 52
 3.2.9 GetSchemaExtension .. 53
 3.2.10 Capas WMS Externas .. 53
 3.2.11 Redlining ... 54
 3.3 Web Feature Service (WFS) .. 56
 3.3.1 GetCapabilities .. 56
 3.3.2 GetFeature ... 57
QGIS Server es un WMS, WFS, OGC API de código abierto para la implementación de Características 1.0 (WFS3) y WCS que, además, implementa características cartográficas avanzadas para mapeo temático. QGIS Server es una aplicación FastCGI/CGI (Common Gateway Interface) escrita en C++ que funciona junto con un servidor web (por ejemplo, Apache, Nginx). Tiene compatibilidad con el complemento Python, lo que permite un desarrollo e implementación rápidos y eficientes de nuevas funciones.

El servidor QGIS utiliza QGIS como back-end para la lógica de los SIG y de mapa de representación. Además, la biblioteca Qt se utiliza para gráficos y para la plataforma independiente la programación en C++. En contraste con otro software de WMS, el servidor de qgis utiliza reglas cartográficos como un lenguaje de configuración, tanto para la configuración del servidor y de las reglas cartográficas definidas por el usuario.

Como el escritorio QGIS y el servidor QGIS usan las mismas bibliotecas de visualización, los mapas que se publican en la web tienen el mismo aspecto que en el escritorio SIG.

En las siguientes secciones, proporcionaremos una configuración de muestra para configurar un servidor QGIS en Linux (Debian, Ubuntu y derivados) y en Windows. Para obtener más información sobre el desarrollo de complementos de servidor, lea server_plugins.

Se permite copiar, distribuir y/o modificar este documento bajo los términos de la Licencia de Documentación Libre GNU, Versión 1.3 o cualquier otra versión posterior publicada por la Free Software Foundation; sin secciones invariantes, sin textos de portada y sin textos de contraportada.

Se incluye una copia de la licencia en la sección gnu_fdl.
2.1 Instalación en sistemas basados en Debian

Daremos un breve y sencillo procedimiento de instalación para una configuración de trabajo mínima en sistemas basados en Debian (incluidos Ubuntu y derivados). Sin embargo, muchas otras distribuciones y sistemas operativos proporcionan paquetes para QGIS Server.

Nota: En Ubuntu puede usar su usuario habitual, anteponiendo `sudo` a los comandos que requieren permisos de administrador. En Debian puede trabajar como administrador (`root`), sin usar `sudo`.

Los requisitos y pasos para agregar repositorios oficiales de QGIS para instalar QGIS Server en un sistema basado en Debian se proporcionan en QGIS installers page. Es posible que desee instalar al menos la versión a largo plazo más reciente.

Una vez que se configura el repositorio de la versión de destino y se instala QGIS Server, puede probar la instalación con:

```
/usr/lib/cgi-bin/qgis_mapserv.fcgi
```

Si obtiene el siguiente resultado, el servidor está instalado correctamente.

Nota: Dependiendo de la versión de QGIS, es posible que vea un resultado ligeramente diferente cuando ejecuta `qgis_mapserv.fcgi`.

```
QFSFileEngine::open: No file name specified
Warning 1: Unable to find driver ECW to unload from GDAL_SKIP environment variable.
Warning 1: Unable to find driver ECW to unload from GDAL_SKIP environment variable.
Warning 1: Unable to find driver JP2ECW to unload from GDAL_SKIP environment....variable.
Warning 1: Unable to find driver ECW to unload from GDAL_SKIP environment variable.
Warning 1: Unable to find driver JP2ECW to unload from GDAL_SKIP environment....variable.
Content-Length: 206
Content-Type: text/xml; charset=utf-8
```

(continue en la próxima página)
Nota: Como se ve a continuación, QGIS informa un código de estado 400, que identifica correctamente que la solicitud falló porque no hay una sesión http activa. Esto no es un error e indica que el servidor está funcionando correctamente.

Agreguemos un proyecto de muestra. Puede utilizar el suyo propio o uno de Datos de demostración de entrenamiento:

```bash
mkdir /home/qgis/projects/
cd /home/qgis/projects/
wget https://github.com/qgis/QGIS-Training-Data/archive/release_3.16.zip
unzip release_3.16.zip
mv QGIS-Training-Data-release_3.16/exercise_data/qgis-server-tutorial-data/world.qgs
mv QGIS-Training-Data-release_3.16/exercise_data/qgis-server-tutorial-data/naturalearth.sqlite
```

Por supuesto, puede utilizar su software GIS favorito para abrir este archivo y echar un vistazo a la configuración y las capas disponibles.

Para implementar correctamente el servidor QGIS, necesita un servidor HTTP. Las opciones recomendadas son **Apache** o **NGINX** **.
2.1.1 Servidor HTTP Apache

Nota: A continuación, reemplace qgis.demo con el nombre o la dirección IP de su servidor.

Instala Apache y mod_fcgid:

```
apt install apache2 libapache2-mod-fcgid
```

Puede ejecutar QGIS Server en su sitio web predeterminado, o configurar un host virtual específico para esto, como sigue.

En el directorio `/etc/apache2/sites-available` cree un archivo llamado `qgis.demo.conf`, con este contenido:

```xml
<VirtualHost *:80>
 ServerAdmin webmaster@localhost
 ServerName qgis.demo
 DocumentRoot /var/www/html

 # Apache logs (different than QGIS Server log)
 ErrorLog $(APACHE_LOG_DIR)/qgis.demo.error.log
 CustomLog $(APACHE_LOG_DIR)/qgis.demo.access.log combined

 # Longer timeout for WPS... default = 40
 FcgidIOTimeout 120

 FcgidInitialEnv LC_ALL "en_US.UTF-8"
 FcgidInitialEnv PYTHONIOENCODING UTF-8
 FcgidInitialEnv LANG "en_US.UTF-8"

 # QGIS log
 FcgidInitialEnv QGIS_SERVER_LOG_STDERR 1
 FcgidInitialEnv QGIS_SERVER_LOG_LEVEL 0

 # default QGIS project
 SetEnv QGIS_PROJECT_FILE /home/qgis/projects/world.qgs

 # QGIS_AUTH_DB_DIR_PATH must lead to a directory writeable by the Server's FCGI process user
 FcgidInitialEnv QGIS_AUTH_DB_DIR_PATH "/home/qgis/qgisserverdb/
 FcgidInitialEnv QGIS_AUTH_PASSWORD_FILE "/home/qgis/qgisserverdb/qgis-auth.db"

 # Set pg access via pg_service file
 SetEnv PGSERVICEFILE /home/qgis/.pg_service.conf
 FcgidInitialEnv PGPASSFILE "/home/qgis/.pgpass"

 # if qgis-server is installed from packages in debian based distros this is usually /usr/lib/cgi-bin/
 # run "locate qgis_mapserv.fcgi" if you don't know where qgis_mapserv.fcgi is
 ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/
 <Directory "/usr/lib/cgi-bin/">
 AllowOverride None
 Options +ExecCGI -MultiViews -SymLinksIfOwnerMatch
 Order allow,deny
 Allow from all
 Require all granted
 </Directory>

<IfModule mod_fcgid.c>
 FcgidMaxRequestLen 26214400
```

(continúa en la próxima página)
FcgidConnectTimeout 60
</IfModule>
</VirtualHost>

Otras lecturas:
- QGIS Server logging
- pg-service-file in QGIS Server

Puede hacer lo anterior en un sistema de escritorio Linux pegando y guardando la configuración anterior después de hacer:

```bash
nano /etc/apache2/sites-available/qgis.demo.conf
```

Nota: Algunas de las opciones de configuración se explican en la sección del servidor *environment variables*.

Creemos ahora los directorios que almacenarán los registros del servidor QGIS y la base de datos de autenticación:

```bash
mkdir -p /var/log/qgis/
chown www-data:www-data /var/log/qgis
mkdir -p /home/qgis/qgisserverdb
chown www-data:www-data /home/qgis/qgisserverdb
```

Nota: *www-data* es el usuario de Apache en sistemas basados en Debian y necesitamos que Apache tenga acceso a esas ubicaciones o archivos. Los comandos chown *www-data*... cambian el propietario de los respectivos directorios y archivos a *www-data*.

Ahora podemos habilitar el host virtual, habilita el mod fcgid si no está activado todavía:

```bash
a2enmod fcgid
a2ensite qgis.demo
```

Ahora reinicie Apache para que se tenga en cuenta la nueva configuración:

```
systemctl restart apache2
```

Ahora que Apache sabe que debe responder las solicitudes a http://qgis.demo, también necesitamos configurar el sistema cliente para que sepa quién es *qgis.demo*. Lo hacemos agregando 127.0.0.1 *qgis.demo* en el archivo *hosts*. Podemos hacerlo con sh `-c"echo '127.0.0.1 qgis.demo' >> /etc/hosts"`. Reemplaza 127.0.0.1 con la IP de tu servidor.

Nota: Recuerde que los archivos *qgis.demo.conf* y */etc/hosts* deben estar configurados para que su instalación funcione. También puede probar el acceso a su servidor QGIS desde otros clientes en la red (por ejemplo, máquinas con Windows o macOS) yendo a su archivo */etc/hosts* y apuntando el nombre *myhost* a cualquier IP que servidor tiene la máquina en la red (no 127.0.0.1 ya que es la IP local, solo accesible desde la máquina local). En máquinas *nix, el archivo *hosts* está ubicado en */etc*, mientras que en Windows está bajo el directorio C:\Windows\System32\drivers\etc. En Windows, debe iniciar su editor de texto con privilegios de administrador antes de abrir el archivo de hosts.

QGIS Server ahora está disponible en http://qgis.demo. Para verificar, escriba en un navegador, como en el caso simple:

```
http://qgis.demo/cgi-bin/qgis_mapserv.fcgi?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities
```
2.1.2 NGINX HTTP Server

Nota: A continuación, reemplace qgis.demo con el nombre o la dirección IP de su servidor.

También puede usar QGIS Server con NGINX. Unlike Apache, NGINX no genera automáticamente procesos FastCGI. Los procesos FastCGI deben ser iniciados por otra cosa.

Instala NGINX:

```
apt install nginx
```

- Como primera opción, puede usar **spawn-fcgi** o **fcgiwrap** para iniciar y administrar los procesos de QGIS Server. Existen paquetes oficiales de Debian para ambos. Cuando no tiene un servidor X en ejecución y necesita, por ejemplo, imprimir, puede usar **xvfb**.
- Otra opción es confiar en **Systemd**, el sistema de inicio para GNU / Linux que la mayoría de las distribuciones de Linux utilizan en la actualidad. Una de las ventajas de este método es que no requiere otros componentes o procesos. Está destinado a ser simple, pero robusto y eficiente para implementaciones de producción.

NGINX Configuración

El **incluido fastcgi_params;** usado en la configuración anterior es importante, ya que agrega los parámetros de

```
/etc/nginx/fastcgi_params
```

```
fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;
fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_param REQUEST_URI $request_uri;
fastcgi_param DOCUMENT_URI $document_uri;
fastcgi_param DOCUMENT_ROOT $document_root;
fastcgi_param SERVER_PROTOCOL $server_protocol;
fastcgi_param REQUEST_SCHEME $scheme;
fastcgi_param HTTPS $https if_not_empty;
fastcgi_param GATEWAY_INTERFACE CGI/1.1;
fastcgi_param SERVER_SOFTWARE nginx/nginx_version;
```

Además, puede usar algunos Variables de entorno para configurar QGIS Server. En el archivo de configuración de NGINX, `/etc/nginx/nginx.conf`, debe usar la instrucción `fastcgi_param` para definir estas variables como se muestra a continuación:

```
location /qgisserver {
    gzip off;
    include fastcgi_params;
    fastcgi_param QGIS_SERVER_LOG_STDERR 1;
    fastcgi_param QGIS_SERVER_LOG_LEVEL 0;
}
```

(continúa en la próxima página)

2.1. Instalación en sistemas basados en Debian
FastCGI envoltorios

Advertencia: **fcgiwrap** es más fácil de configurar que **spawn-fcgi**, porque ya está incluido en un servicio Systemd. Pero también conduce a una solución que es mucho más lenta que usar spawn-fcgi. Con fcgiwrap, se crea un nuevo proceso de QGIS Server en cada solicitud, lo que significa que el proceso de inicialización de QGIS Server, que incluye leer y analizar el archivo del proyecto QGIS, se realiza en cada solicitud. Con spawn-fcgi, el proceso de QGIS Server permanece activo entre solicitudes, lo que resulta en un rendimiento mucho mejor. Por esa razón, se recomienda spawn-fcgi para uso en producción.

spawn-fcgi

Si quieres usar spawn-fcgi, el primer paso es instalar el paquete:

```
apt install spawn-fcgi
```

Luego, introduce el siguiente bloque en la configuración de su servidor NGINX:

```
location /qgisserver {
    gzip off;
    include fastcgi_params;
    fastcgi_pass unix:/var/run/qgisserver.socket;
}
```

Y reinicie NGINX para tener en cuenta la nueva configuración:

```
systemctl restart nginx
```

Finalmente, considerando que no existe un archivo de servicio predeterminado para spawn-fcgi, debe iniciar manualmente QGIS Server en su terminal:

```
spawn-fcgi -s /var/run/qgisserver.socket \
    -U www-data -G www-data -n \
    /usr/lib/cgi-bin/qgis_mapserv.fcgi
```


Nota: Al usar spawn-fcgi, puede definir directamente las variables de entorno antes de ejecutar el servidor. Por ejemplo:

```
export QGIS_SERVER_LOG_STDERR=1
```

Por supuesto, puede agregar un script de inicio para iniciar QGIS Server en el momento del arranque o cuando lo desee. Por ejemplo, con systemd, edite el archivo `/etc/systemd/system/qgis-server.service` con este contenido:

```
[Unit]
Description=QGIS server
After=network.target

[Service]
;; set env var as needed
;Environment="LANG=en_EN.UTF-8"
;Environment="QGIS_SERVER_PARALLEL_RENDERING=1"
```

(continue en la próxima página)
Luego habilite e inicie el servicio:

```bash
systemctl enable --now qgis-server
```

Advertencia: Con los comandos anteriores, spawn-fcgi genera solo un proceso de QGIS Server.

fcgiwrap

Usando fcgiwrap es mucho más fácil de configurar que spawn-fcgi pero es mucho más lento. Primero tienes que instalar el paquete correspondiente:

```bash
apt install fcgiwrap
```

Luego, introduzca el siguiente bloque en la configuración de su servidor NGINX:

```bash
location /qgisserver {
    gzip off;
    include fastcgi_params;
    fastcgi_pass unix:/var/run/fcgiwrap.socket;
    fastcgi_param SCRIPT_FILENAME /usr/lib/cgi-bin/qgis_mapserv.fcgi;
}
```

Finalmente, reinicie NGINX y fcgiwrap para tener en cuenta la nueva configuración:

```bash
systemctl restart nginx
systemctl restart fcgiwrap
```


Systemd

QGIS Server necesita un servidor X en ejecución para ser completamente utilizable, en particular para imprimir. En el caso de que ya tenga un servidor X en ejecución, puede utilizar los servicios de systemd.

Este método, para implementar QGIS Server, se basa en dos unidades Systemd:

- un Socket unit
- y un Service unit.

La unidad QGIS Server Socket define y crea un socket del sistema de archivos, utilizado por NGINX para iniciar y comunicarse con QGIS Server. La unidad Socket debe configurarse con `Accept = false`, lo que significa que las llamadas a la llamada del sistema «Aceptar ()» se delegan al proceso creado por la unidad de Servicio. Se encuentra en `/etc/systemd/system/qgis-server@.socket`, que en realidad es una plantilla:

2.1. Instalación en sistemas basados en Debian
Ahora habilite e inicie sockets:

```
for i in 1 2 3 4; do systemctl enable --now qgis-server@%i.socket; done
```

Nota: El servidor QGIS *environment variables* se define en un archivo separado, /etc/qgis-server/env. Podría parecerse a esto:

```
QGIS_PROJECT_FILE=/etc/qgis/myproject.qgs
QGIS_SERVER_LOG_STDERR=1
QGIS_SERVER_LOG_LEVEL=3
```

Ahora inicie el servicio de socket:

```
for i in 1 2 3 4; do systemctl enable --now qgis-server@%i.service; done
```

Finalmente, para el servidor HTTP NGINX, introduzcamos la configuración para esta configuración:

```
upstream qgis-server_backend {
    server unix:/var/run/qgis-server-1.sock;
    server unix:/var/run/qgis-server-2.sock;
    server unix:/var/run/qgis-server-3.sock;
    server unix:/var/run/qgis-server-4.sock;
}
server {
    
    (continué en la próxima página)
```
Ahora reinicie NGINX para que se tenga en cuenta la nueva configuración:

```
systemctl restart nginx
```

Gracias a Oslandi por compartir su tutorial.

2.1.3 Xvfb

QGIS Server necesita un servidor X en ejecución para ser completamente utilizable, en particular para imprimir. En los servidores, generalmente se recomienda no instalarlo, por lo que puede usar `xvfb` para tener un entorno X virtual.

Si está ejecutando el servidor en un entorno gráfico/X11, no es necesario instalar xvfb. Mas info en https://www.itopen.it/qgis-server-setup-notes/.

Para instalar el paquete:

```
apt install xvfb
```

Cree el archivo de servicio, `/etc/systemd/system/xvfb.service`, con este contenido:

```ini
[Unit]
Description=X Virtual Frame Buffer Service
After=network.target

[Service]
ExecStart=/usr/bin/Xvfb :99 -screen 0 1024x768x24 -ac +extension GLX +render -noreset

[Install]
WantedBy=multi-user.target
```

Activa, inicia y prueba el estado de `xvfb.service`:

```
systemctl enable --now xvfb.service
systemctl status xvfb.service
```

Luego, de acuerdo con su servidor HTTP, debe configurar el parámetro DISPLAY o usar directamente `xvfb-run`.

Con Apache

Luego puede configurar el parámetro DISPLAY.

Con Apache, simplemente agregue a su configuración `FastCGI` (ver arriba):

```
FcgidInitialEnv DISPLAY ":99"
```

Ahora reinicie Apache para que se tenga en cuenta la nueva configuración:

```
systemctl restart apache2
```

2.1. Instalación en sistemas basados en Debian
Con NGINX

Luego, puede usar `xvfb-run` directamente o configurar el parámetro `DISPLAY`.

- Con `spawn-fcgi` usando `xvfb-run`:
  ```bash
  xvfb-run /usr/bin/spawn-fcgi -f /usr/lib/cgi-bin/qgis_mapserv.fcgi
  -s /tmp/qgisserver.socket
  -G www-data -U www-data -n
  
  fastcgi_param DISPLAY "*:99";
  
  2.2 Instalación en Windows

QGIS Server también se puede instalar en sistemas Windows. Si bien el paquete QGIS Server está disponible en la versión de 64 bits del instalador de red OSGeo4W (https://qgis.org/en/site/forusers/download.html) no hay ningún paquete Apache (u otro servidor web) disponible, por lo que debe instalarse por otros medios.

Un procedimiento sencillo es el siguiente:

1. Descarga el instalador de XAMPP (https://www.apachefriends.org/download.html) para Windows e instale Apache

2. Descargue el instalador de OSGeo4W, siga la «Instalación avanzada» e instale los paquetes QGIS Desktop y QGIS Server
3. Edite el archivo httpd.conf (C:\xampp\apache\conf\httpd.conf si se han utilizado las rutas de instalación predeterminadas) y realice los siguientes cambios:

De:

```
ScriptAlias /cgi-bin/ "C:/xampp/cgi-bin/"
```

A:

```
ScriptAlias /cgi-bin/ "C:/OSGeo4W64/apps/qgis/bin/"
```

De:

```
<Directory "C:/xampp/cgi-bin">
 AllowOverride None
 Options None
 Require all granted
</Directory>
```

A:

```
<Directory "C:/OSGeo4W64/apps/qgis/bin">
 SetHandler cgi-script
 AllowOverride None
 Options ExecCGI
 Order allow,deny
 Allow from all
 Require all granted
</Directory>
```

De:

```
AddHandler cgi-script .cgi .pl .asp
```

A:

```
AddHandler cgi-script .cgi .pl .asp .exe
```

4. Luego, en la parte inferior de httpd.conf, agregue:
5. Reinicie el servidor web Apache desde el Panel de control de XAMPP y abra la ventana del navegador para probar una solicitud GetCapabilities en QGIS Server.

http://qgis.demo/cgi-bin/qgis_mapserv.fcgi.exe?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities

### 2.3 Sirve un proyecto

Ahora que QGIS Server está instalado y funcionando, solo tenemos que usarlo.

Obviamente, necesitamos un proyecto QGIS en el que trabajar. Por supuesto, puede personalizar completamente su proyecto definiendo la información de contacto, precisando algunas restricciones en CRS o incluso excluyendo algunas capas. Todo lo que necesita saber al respecto se describe más adelante en "Configure su proyecto."

But for now, we are going to use a simple project already configured and previously downloaded in `/home/qgis/projects/world.qgs`, as described above.

Al abrir el proyecto y echar un vistazo rápido a las capas, sabemos que actualmente hay 4 capas disponibles:

- airports
- places
- countries
- countries_shapeburst

No es necesario que comprenda la solicitud completa por ahora, pero puede recuperar un mapa con algunas de las capas anteriores gracias a QGIS Server haciendo algo como esto en su navegador web para recuperar la capa `countries`:

http://qgis.demo/qgisserver?
MAP=/home/qgis/projects/world.qgs&
LAYERS=countries&
SERVICE=WMS&
VERSION=1.3.0&
REQUEST=GetMap&
CRS=EPSG:4326&
WIDTH=400&
HEIGHT=200&
BBOX=-90,-180,90,180

Si obtiene la siguiente imagen, QGIS Server se está ejecutando correctamente:
Perciba que puede definir la variable de entorno QGIS_PROJECT_FILE para usar un proyecto por defecto en lugar de dar un parámetro MAP (ver Variables de entorno).

Por ejemplo con spawn-fcgi:

```bash
export QGIS_PROJECT_FILE=/home/qgis/projects/world.qgs
spawn-fcgi -f /usr/lib/bin/cgi-bin/qgis_mapserv.fcgi "
 -s /var/run/qgisserver.socket \
 -U www-data -G www-data -n
```

### 2.4 Configure su proyecto

Para proporcionar un nuevo servidor QGIS WMS, WFS o WCS, debe crear un archivo de proyecto QGIS con algunos datos o usar uno de su proyecto actual. Defina los colores y estilos de las capas en QGIS y el proyecto SRC, si aún no está definido.
Luego, vaya al menú *QGIS Server* del diálogo *Proyecto ➤ Propiedades*… y proporcionar información sobre el OWS en los campos de *Service Capabilities*. Esto aparecerá en la respuesta GetCapabilities del WMS, WFS o WCS. Si no marca *Service capabilities*, QGIS Server utilizará la información proporcionada en el archivo *wms_metadata.xml* ubicado en la carpeta *cgi-bin*.

**Figura 2.2:** Definiciones para un proyecto WMS/WFS/WCS de QGIS Server
2.4.1 Capacidades WMS

En la sección Capacidades de WMS, puede definir la extensión anunciada en la respuesta GetCapabilities de WMS ingresando los valores mínimos y máximos de X e Y en los campos debajo de: guilabel:` Extensión de publicidad`. Al hacer clic en **Usar extensión de lienzo actual** establece estos valores en la extensión que se muestra actualmente en el lienzo del mapa QGIS. Marcando **Restricciones de SRC**, puede restringir en qué sistemas de referencia de coordenadas (SRC) QGIS Server ofrecerá renderizar mapas. Se recomienda que restrinja el SRC ofrecido, ya que esto reduce el tamaño de la respuesta WMS GetCapabilities. Utilice el botón de abajo para seleccionar esos SRC del Selector de Sistema de Referencia de Coordenadas, o haga clic en **Usada** para agregar los SRC usados en el proyecto QGIS a la lista.

Si tiene diseños de impresión definidos en su proyecto, se enumerarán en la respuesta GetProjectSettings y la solicitud GetPrint puede usarlos para crear impresiones, utilizando uno de los diseños de impresión como plantilla. Esta es una extensión específica de QGIS para la especificación WMS 1.3.0. Si desea excluir cualquier diseño de impresión de ser publicado por el WMS, marque **Excluir diseños** y haga clic en el botón de abajo. Luego, seleccione un diseño de impresión en el cuadro de diálogo **Seleccionar diseño de impresión** para agregarlo a la lista de diseños excluidos.

Si desea excluir cualquier capa o grupo de capas de la publicación del WMS, marque **Excluir capas** y haga clic en el botón de abajo. Esto abre el cuadro de diálogo: guilabel:` Seleccionar capas y grupos restringidos`, que le permite elegir las capas y grupos que no desea que se publiquen. Utilice la techa *Shift* o *kb: CTRL* si desea seleccionar varias entradas. Se recomienda que excluya de la publicación las capas que no necesita, ya que esto reduce el tamaño de la respuesta de WMS GetCapabilities, lo que conduce a tiempos de carga más rápidos en el lado del cliente.

Si marca **Use los identificadores de capa como nombre**, los identificadores de capa se usarán para hacer referencia a las capas en la respuesta GetCapabilities o el parámetro GetMap LAYERS. Si no es así, se usa el nombre de la capa o el nombre corto si está definido (ver vectorservermenu).

Puede recibir GetFeatureInfo solicitado como texto sin formato, XML y GML. El predeterminado es XML.

Si lo desea, puede marcar **Add geometry to feature response.** Esto incluirá el cuadro delimitador para cada función en la respuesta de GetFeatureInfo. Consulte también el parámetro **WITH_GEOMETRY**.

Como muchos clientes web no pueden mostrar arcos circulares en geometrías, tiene la opción de segmentar la geometría antes de enviarla al cliente en una respuesta GetFeatureInfo. Esto permite a dichos clientes seguir mostrando la geometría de una característica (por ejemplo, para resaltar la entidad). Debe marcar la casilla de verificación **Segmentize feature info geometry** para activar la opción.

También puede usar la opción **Precisión de geometría GetFeatureInfo** para establecer la precisión de la geometría GetFeatureInfo. Esto le permite ahorrar ancho de banda cuando no necesita toda la precisión.

Si desea que QGIS Server publique URL de solicitud específicas en la respuesta WMS GetCapabilities, ingrese la URL correspondiente en el campo **URL anunciada**.

Además, puede restringir el tamaño máximo de los mapas devueltos por la solicitud GetMap ingresando el ancho y la altura máximos en los campos respectivos bajo **Máximos para solicitud GetMap.**

Puede cambiar el factor **Calidad para imágenes JPEG.** El factor de calidad debe estar en el rango de 0 a 100. Especifique 0 para compresión máxima, 100 para sin compresión.

Puede cambiar el límite para que las entidades de Atlas se impriman en una solicitud configurando el campo **Entidades máximas para solicitudes de impresión de Atlas.**

Cuando QGIS Server se usa en modo mosaico (ver **TILED parameter**), puede establecer el **Tile buffer in pixels.** El valor recomendado es el tamaño del símbolo más grande o ancho de línea en su proyecto QGIS.

Si una de sus capas usa Map Tip display (por ejemplo para mostrar texto usando expresiones) esto se enumerará dentro de la salida GetFeatureInfo. Si la capa usa un mapa de valor para uno de sus atributos, esta información también se mostrará en la salida de GetFeatureInfo.
2.4.2 Capacidades WFS

En el área WFS capabilities puede seleccionar las capas que desea publicar como WFS y especificar si permitirán operaciones de actualización, inserción y eliminación. Si ingresa una URL en el campo Advertised URL de la sección WFS capabilities, QGIS Server anunciará esta URL específica en la respuesta WFS GetCapabilities.

2.4.3 Capacidades WCS

En el área WCS capabilities, puede seleccionar las capas que desea publicar como WCS. Si ingresa una URL en el campo Advertised URL de la sección WCS capabilities, QGIS Server anunciará esta URL específica en la respuesta WCS GetCapabilities.

2.4.4 Ajuste fino de OWS

Para capas vectoriales, el menú Campos del diálogo Capa ► Propiedades de capa permite definir para cada atributo si se publicará o no. De forma predeterminada, todos los atributos son publicados por su WMS y WFS. Si no desea que se publique un atributo específico, desmarque la casilla correspondiente en la columna WMS o WFS.

Puede superponer marcas de agua sobre los mapas producidos por su WMS agregando anotaciones de texto o anotaciones SVG al archivo del proyecto. Ver la sección sec_annotations para obtener instrucciones sobre cómo crear anotaciones. Para que las anotaciones se muestren como marcas de agua en la salida de WMS, la casilla de verificación Fixed map position en el cuadro de diálogo Annotation text debe estar desmarcada. Se puede acceder a esto haciendo doble clic en la anotación mientras una de las herramientas de anotación está activa. Para las anotaciones SVG, necesitará configurar el proyecto para guardar rutas absolutas (en el menú General del cuadro de diálogo: menuselection: `Proyecto -> Guardar en -> PostgreSQL en QGIS Desktop) y modificar manualmente la ruta para la imagen SVG para que represente una ruta relativa válida.

2.5 Integración con terceras partes

QGIS Server proporciona servicios web OGC como WMS, WFS, etc. por lo tanto, puede ser utilizado por una amplia variedad de herramientas de usuario final.

2.5.1 Integración con QGIS Desktop

QGIS Desktop es el diseñador de mapas donde QGIS Server es el servidor de mapas. Los mapas o proyectos QGIS serán servidos por el servidor QGIS para proporcionar estándares OGC. Estos proyectos de QGIS pueden ser archivos o entradas en una base de datos (usando Proyecto -> Guardar en -> PostgreSQL en QGIS Desktop).

Además, se debe establecer un flujo de trabajo de actualización dedicado a actualizar un proyecto utilizado por un servidor QGIS (es decir, copiar los archivos del proyecto en la ubicación del servidor y reiniciar el servidor QGIS). Por ahora, los procesos automatizados (como la recarga del servidor a través del servicio de cola de mensajes) aún no están implementados.

2.5.2 Integración con MapProxy

MapProxy es un servidor de caché de teselas y como tal puede leer y servir cualquier servidor de mapas WMS/WMTS, puede conectarse directamente a los servicios web del servidor QGIS y mejorar la experiencia del usuario final.
2.5.3 Integración con QWC2

QWC2 es una aplicación web receptiva dedicada a QGIS Server. Le ayuda a construir un visor de mapas altamente personalizado con selección de capas, información de características, etc. También hay muchos complementos disponibles como autenticación o servicio de impresión, la lista completa está disponible en este repositorio.
QGIS Server puede servir datos de acuerdo con los protocolos estándar descritos por Open Geospatial Consortium (OGC):

- WMS 1.1.1 y 1.3.0
- WFS 1.0.0 y 1.1.0
- OGC API - Entidades (WFS3)
- WCS 1.0.0 and 1.1.1
- WMTS 1.0.0

Se admiten parámetros y solicitudes adicionales del proveedor además del estándar original que mejora enormemente las posibilidades de personalizar su comportamiento gracias al motor de renderización QGIS.

### 3.1 Básicos

En esta sección se describen conceptos y parámetros compartidos entre sí por los servicios. Algunos de estos son estándar y están definidos en las especificaciones de OGC, mientras que otros son muy específicos de QGIS Server.

Conceptos estándar:

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Nombre del servicio</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Nombre de la petición</td>
</tr>
</tbody>
</table>

Conceptos de proveedores:

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Archivo de proyecto QGIS</td>
</tr>
<tr>
<td>FILE_NAME</td>
<td>Nombre de archivo de la capa descargada</td>
</tr>
<tr>
<td>Short name</td>
<td>Definición de nombre corto</td>
</tr>
</tbody>
</table>
3.1.1 SERVICIO

Este parámetro estándar permite especificar el nombre del servicio a utilizar para una request específica y tiene que formarse como SERVICIO=NOMBRE.

Ejemplo de URL para el servicio WMS:

```
http://localhost/qgisserver?
SERVICE=WMS
&...
```

Nota: No disponible para servicios basados en DESCANSO como WFS3 (OGC API Features).

3.1.2 SOLICITUD

Este parámetro estándar permite especificar el nombre de la solicitud a ejecutar para un service específico y debe formarse como SOLICITUD=NombreSolicitud.

Ejemplo de URL para la solicitud GetCapabilities:

```
http://localhost/qgisserver?
REQUEST=GetCapabilities
&...
```

Nota: No disponible para servicios basados en DESCANSO como WFS3 (OGC API Features).

3.1.3 MAPA

Este parámetro de proveedor permite definir el archivo de proyecto de QGIS a utilizar. Puede ser una ruta absoluta o una ruta relativa a la ubicación del ejecutable del servidor qgis_mapserv.fcgi. MAP es obligatorio por defecto porque una solicitud necesita un proyecto QGIS para funcionar. Sin embargo, la variable de entorno QGIS_PROJECT_FILE puede usarse para definir un proyecto QGIS predeterminado. En este caso específico, MAP ya no es un parámetro obligatorio. Para más información puede consultarse el capítulo Configuración avanzada.

URL ejemplo:

```
http://localhost/qgisserver?
MAP=/tmp/QGIS-Training-Data/exercise_data/qgis-server-tutorial-data/world.qgs
&...
```

3.1.4 FILE_NAME

Si se establece este parámetro de proveedor, la respuesta del servidor se enviará al cliente como un archivo adjunto con el nombre de archivo especificado.

Ejemplo de URL para guardar un documento XML GetCapabilities:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetCapabilities
&FILE_FORMAT=wms_capabilities.xml
&...
```
Nota: No disponible para servicios basados en DESCANSO como WFS3 (OGC API Features).

3.1.5 Nombre corto

Varios elementos tienen tanto un nombre corto como un título. El nombre abreviado es una cadena de texto utilizada para la comunicación de máquina a máquina, mientras que el título es para beneficio de los humanos. Por ejemplo, un conjunto de datos puede tener el título descriptivo “Temperatura atmosférica máxima” y solicitarse con el nombre corto abreviado “ATMAX”. Puede establecer el título, el nombre corto y el resumen para:

- **Capas**: haga clic con el botón derecho en una capa y seleccione Propiedades… Servidor QGIS Descripción.
- **Grupos**: haga clic con el botón derecho en un grupo y seleccione Establecer datos WMS del grupo
- **Proyecto**: vaya a Proyecto Propiedades… Servidor QGIS Capacidades de servicio.

Por lo tanto, el nombre corto puede usarse para identificar estos elementos al interactuar con QGIS Server. Por ejemplo con el parámetro CAPAS estándar:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&LAYERS=shortname1,shortname2
&...
```

![Figura 3.1: Establecer cuadro de diálogo de datos WMS de grupo](image)

3.2 Web Map Service (WMS)

Los estándares WMS 1.1.1 y 1.3.0 implementados en QGIS Server proporcionan una interfaz HTTP para solicitar imágenes de mapas o leyendas generadas a partir de un proyecto QGIS. Una solicitud WMS típica define el proyecto QGIS que se utilizará, las capas que se renderizarán y el formato de imagen que se generará. El soporte básico también está disponible como Descriptor de capa con estilo (SLD).

Especificaciones:

- WMS 1.1.1
- WMS 1.3.0
- perfil SLD 1.1.0 WMS

 Solicitudes standard proporcionadas por el servidor QGIS:
### Solicitud

<table>
<thead>
<tr>
<th>Solicitud</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetCapabilities</td>
<td>Devuelve metadatos XML con información sobre el servidor</td>
</tr>
<tr>
<td>GetMap</td>
<td>Devuelve un mapa</td>
</tr>
<tr>
<td>GetFeatureInfo</td>
<td>Recupera datos (geometría y valores) para una ubicación de píxeles</td>
</tr>
<tr>
<td>GetLegendGraphics</td>
<td>Devuelve símbolos de leyenda</td>
</tr>
<tr>
<td>GetStyle(s)</td>
<td>Returns XML document with style description in SLD</td>
</tr>
<tr>
<td>DescribeLayer</td>
<td>Returns information about WFS and WCS availability respectively for vector and raster layers</td>
</tr>
</tbody>
</table>

**Solicitudes de proveedor proporcionadas por QGIS Server:**

<table>
<thead>
<tr>
<th>Solicitud</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetPrint</td>
<td>Returns a QGIS layout</td>
</tr>
<tr>
<td>GetProjectSettings</td>
<td>Devuelve información específica sobre QGIS Server</td>
</tr>
<tr>
<td>GetSchemaExtension</td>
<td>Returns XML metadata about optional extended capabilities</td>
</tr>
</tbody>
</table>

#### 3.2.1 GetCapabilities

Standard parameters for the **GetCapabilities** request according to the OGC WMS 1.1.1 and 1.3.0 specifications:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Name of the request (GetCapabilities)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
</tbody>
</table>

The **GetCapabilities** request supports as well the following vendor parameters:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
</tbody>
</table>

**URL ejemplo:**

```
http://localhost/qgis_server?
SERVICE=WMS
&VERSION=1.3.0
&REQUEST=GetCapabilities
```

#### 3.2.2 GetMap

Parámetros estándar para la petición **GetMap** de acuerdo con las especificaciones OGC WMS 1.1.1 y 1.3.0:
In addition to the standard ones, QGIS Server supports *redlining, external WMS layers* as well as the following extra parameters:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
<tr>
<td>BGCOLOR</td>
<td>No</td>
<td>Especifica el color de fondo</td>
</tr>
<tr>
<td>DPI</td>
<td>No</td>
<td>Especifica la resolución de salida</td>
</tr>
<tr>
<td>IMAGE_QUALITY</td>
<td>No</td>
<td>compresión JPEG</td>
</tr>
<tr>
<td>OPACITIES</td>
<td>No</td>
<td>Opacidad de la capa o Grupo</td>
</tr>
<tr>
<td>FILTER</td>
<td>No</td>
<td>Subconjunto de entidades</td>
</tr>
<tr>
<td>SELECTION</td>
<td>No</td>
<td>Resalta entidades</td>
</tr>
<tr>
<td>FILE_NAME</td>
<td>No</td>
<td>Nombre de archivo de la capa descargada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solo para &quot;FORMAT=application/dxf&quot;</td>
</tr>
<tr>
<td>FORMAT_OPTIONS</td>
<td>No</td>
<td>Opciones del formato de archivo especificado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solo para &quot;FORMAT=application/dxf&quot;</td>
</tr>
<tr>
<td>TILED</td>
<td>No</td>
<td>Trabajando en <em>modo teselado</em></td>
</tr>
</tbody>
</table>

URL ejemplo:

```text
http://localhost/qgis_server?
SERVICE=WMS
&VERSION=1.3.0
&REQUEST=GetMap
&MAP=/home/qgis/projects/world.qgs
&LAYERS=mylayer1,mylayer2,mylayer3
&STYLES=style1,default,style3
&OPACITIES=125,200,125
&CRS=EPSG:4326
&WIDTH=400
&HEIGHT=400
&FORMAT=image/png
&TRANSPARENT=TRUE
&DPI=300
&TILED=TRUE
```
VERSIÓN

Este parámetro permite especificar la versión del servicio a utilizar. Los valores disponibles para el parámetro VERSIÓN son:

- 1.1.1
- 1.3.0

Según el número de versión, se esperan ligeras diferencias como se explica más adelante para los siguientes parámetros:

- CRS / SRS
- BBOX

CAPAS

Este parámetro permite especificar las capas que se mostrarán en el mapa. Los nombres deben estar separados por una coma.

Además, QGIS Server introdujo algunas opciones para seleccionar capas mediante:

- a short name
- el id de capa

The project option allowing to select layers by their id is in OWS Server ➤ WMS capabilities menu of the Project ➤ Properties… dialog. Check the Use layer ids as names checkbox to activate this option.

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&LAYERS=mylayerid1,mylayerid2
&...
```

ESTILOS

Este parámetro se puede utilizar para especificar el estilo de una capa para el paso de renderizado. Los estilos deben estar separados por una coma. El nombre del estilo predeterminado es default.

SRS / CRS

Este parámetro permite indicar la salida del mapa Spatial Reference System en WMS 1.1.1 y tiene que ser foramdo como EPSG:XXXX. Note que SRC también es compatible si la versión actual es 1.1.1.

Para WMS 1.3.0, es preferible el parámetro SRC pero también se admite SRS.

Tenga en cuenta que si en la solicitud se indican los parámetros SRC y SRS, entonces es la versión actual indicada en el parámetro versión la que es decisiva.

En el siguiente caso, el parámetro SRS se mantiene cualquiera que sea el parámetro VERSION porque no se indica SRC:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&SRS=EPSG:2854
&...
```

En el siguiente caso, el parámetro SRS se mantiene en lugar de SRC debido al parámetro VERSIÓN:
En el siguiente caso, el parámetro SRC se mantiene en lugar de SRS debido al parámetro VERSION:

En caso de WMS 1.1.1, el orden de los ejes es oeste/norte mientras que en WMS 1.3.0, el orden de los ejes depende de la autoridad del CRS, por lo que el orden de los núcleos es norte/este.

For example, in case of EPSG:4326 and WMS 1.1.1, a is the longitude (east) and b the latitude (north), leading to a request like:

http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&VERSION=1.1.1
&SRS=epsg:4326
&BBOX=-180,-90,180,90
&...
ANCHURA
Este parámetro permite especificar el ancho en píxeles de la imagen de salida.

ALTURA
Este parámetro permite especificar la altura en píxeles de la imagen de salida.

FORMATO
Este parámetro se puede utilizar para especificar el formato de la imagen del mapa. Los valores disponibles son:

- jpg
- jpeg
- image/jpeg
- image/png
- image/png; mode=1bit
- image/png; mode=8bit
- image/png; mode=16bit
- application/dxf: only layers that have read access in the WFS service are exported in the DXF format

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WMS&VERSION=1.3.0
REQUEST=GetMap
FORMAT=application/dxf
LAYERS=Haltungen,Normschacht,Spezialbauwerke
CRS=EPSG%3A21781
BBOX=696136.28844801,245797.12108743,696318.91114315,245939.25832905
WIDTH=1042
HEIGHT=811
FORMAT_OPTIONS=MODE:SYMBOL LAYERSYMBOLOGY;SCALE:250
FILE_NAME=plan.dxf
```

TRANSPARENTE
Este parámetro booleano se puede utilizar para especificar la transparencia del fondo. Los valores disponibles son (no distinguen entre mayúsculas y minúsculas):

- TRUE
- FALSE

However, this parameter is ignored if the format of the image indicated with FORMAT is different from PNG.
BG COLOR

Este parámetro permite indicar un color de fondo para la imagen del mapa. Sin embargo, no se puede combinar con el parámetro "TRANSPARENTE" en el caso de imágenes PNG (la transparencia tiene prioridad). El color puede ser literal o en notación hexadecimal.

URL ejemplo con la notación literal:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&VERSION=1.3.0
&BGCOLOR=green
&...
```

Ejemplo URL con la notación hexadecimal:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&VERSION=1.3.0
&BGCOLOR=0x00FF00
&...
```

DPI

Este parámetro se puede utilizar para especificar la resolución de salida solicitada.

IMAGE_QUALITY

Este parámetro solo se utiliza para imágenes JPEG. De forma predeterminada, la compresión JPEG es -1. Puede cambiar el valor predeterminado por proyecto QGIS en el menú OWS Server -> Capacidades WMS del Proyecto -> Propiedades…. Si desea anularlo en una solicitud GetMap puede hacerlo usando el parámetro 'IMAGE_QUALITY'.

OPACITIES

Comma separated list of opacity values. Opacity can be set on layer or group level. Allowed values range from 0 (fully transparent) to 255 (fully opaque).

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&VERSION=1.3.0
&WIDTH=400
&HEIGHT=200
&CRS=EPSG:4326
&LAYERS=countries,places
&BBOX=42,-6,52,15
&OPACITIES=255,0
```
Se puede seleccionar un subconjunto de capas con el parámetro FILTER. La sintaxis es básicamente la misma que para la cadena del subconjunto QGIS. Sin embargo, existen algunas restricciones para evitar inyecciones de SQL en bases de datos a través de QGIS Server. Si se encuentra una cadena peligrosa en el parámetro, QGIS Server devolverá el siguiente error:

```xml
<ServiceExceptionReport>
 <ServiceException code="Security">The filter string XXXXXXXXX has been rejected because of security reasons.
 Note: Text strings have to be enclosed in single or double quotes. A space between each word / special character is mandatory.
 Allowed Keywords and special characters are IS, NOT, NULL, AND, OR, IN, =, !, <, >, =
 Not allowed are semicolons in the filter expression.</ServiceException>
</ServiceExceptionReport>
```

**URL ejemplo:**

```url
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&VERSION=1.3.0
&WIDTH=400
&HEIGHT=300
&CRS=EPSG:4326
&BBOX=41,-6,52,10
&LAYERS=countries_shapeburst,countries,places
&FILTER=countries_shapeburst,countries:"name" = 'France';places: "name" = 'Paris'
```

Figura 3.2: To the left OPACITIES=255,0 and to the right OPACITIES=255,255
In this example, the same filter \texttt{"name" = 'France'} is applied to layers \texttt{countries} and \texttt{countries\_shapeburst}, while the filter \texttt{"name" = 'Paris'} is only applied to \texttt{places}.

\textbf{Nota:} Es posible realizar búsquedas de atributos a través de GetFeatureInfo y omitir el parámetro X / Y si hay un FILTRO. QGIS Server luego devuelve información sobre las características coincidentes y genera un cuadro delimitador combinado en la salida XML.

**SELECTION**

El parámetro \texttt{SELECCIÓN} puede resaltar entidades de una o más capas. Las características vectoriales se pueden seleccionar pasando listas separadas por comas con identificadores de objetos.

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&LAYERS=mlayer1,mylayer2
&SELECTION=mlayer1:3,6,9;mylayer2:1,5,6
&...
```

La siguiente imagen presenta la respuesta de una solicitud GetMap usando la opción \texttt{SELECTION} p.ej. \texttt{http://myserver.com/...&SELECTION=countries:171,65}.

Como los identificadores de esas características corresponden en el conjunto de datos de origen a \textbf{Francia} y \textbf{Rumanía}, están resaltados en amarillo.
Figura 3.4: Respuesta del servidor a una solicitud GetMap con el parámetro SELECTION

FORMAT-OPTIONS

Este parámetro se puede utilizar para especificar opciones para el formato seleccionado. Solo para FORMAT=application/dxf. Una lista de pares clave: valor separados por punto y coma:

- **ESCALA**: para ser utilizado para reglas de simbología, filtros y estilos (no escala real de los datos - los datos permanecen en la escala original).
- **MODO**: corresponde a las opciones de exportación que se ofrecen en el cuadro de diálogo de exportación QGIS Desktop DXF. Los valores posibles son NOSYMBOLSYMBOL, FEATURESYMBOLSYMBOL y SYMBOLSYMBOLSYMBOL.
- **LAYERSATTRIBUTES**: especifique un campo que contenga valores para los nombres de las capas DXF; si no se especifica, se utilizan los nombres de las capas QGIS originales.
- **USE_TITLE_AS_LAYERNAME**: si está habilitado, el título de la capa se utilizará como nombre de capa.
- **CODEC**: especificar un código que se utilizará para la codificación. El valor predeterminado es ISO-8859-1. Consulte el cuadro de diálogo de exportación DXF del escritorio de QGIS para obtener valores válidos.
- **NO_MTEXT**: Utilice TEXT en lugar de MTEXT para las etiquetas.
- **FORCE_2D**: Forzar salida 2D. Esto es necesario para el ancho de la polilínea.
**TILED**

Por motivos de rendimiento, QGIS Server se puede utilizar en modo mosaico. En este modo, el cliente solicita varios mosaicos pequeños de tamaño fijo y los ensambla para formar el mapa completo. Al hacer esto, los símbolos en o cerca del límite entre dos teselas pueden aparecer cortados, porque solo están presentes en una de las teselas.

Establezca el parámetro `TILED` en `TRUE` para decirle al servidor QGIS que funcione en modo teselado y para aplicar el `bufér de teselas` configurado en el proyecto QGIS (consulte [Configure su proyecto](#)).

Cuando `TILED` es `TRUE` y cuando se configura un bufer de mosaico distinto de cero en el proyecto QGIS, las entidades fuera de la extensión del mosaico se dibujan para evitar símbolos de corte en los límites del mosaico.

`TILED` predeterminado como `FALSE`.

### 3.2.3 GetFeatureInfo

Parámetros estándar para la petición `GetFeatureInfo` de acuerdo con las especificaciones OGC WMS 1.1.1 y 1.3.0:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Nombre de la solicitud (GetFeatureInfo)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
<tr>
<td>QUERY LAYERS</td>
<td>Sí</td>
<td>Capas a consultar</td>
</tr>
<tr>
<td>LAYERS</td>
<td>Sí</td>
<td>Layers to display (identical to QUERY_LAYERS)</td>
</tr>
<tr>
<td>STYLES</td>
<td>No</td>
<td>Estilo de capas</td>
</tr>
<tr>
<td>SRS / CRS</td>
<td>Sí</td>
<td>Sistema de referencia de coordenadas</td>
</tr>
<tr>
<td>BBOX</td>
<td>No</td>
<td>Extensión del mapa</td>
</tr>
<tr>
<td>WIDTH</td>
<td>Sí</td>
<td>Ancho de la imagen en pixeles.</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>Sí</td>
<td>Altura de la imagen en pixeles.</td>
</tr>
<tr>
<td>TRANSPARENT</td>
<td>No</td>
<td>Fondo transparente</td>
</tr>
<tr>
<td>INFO_FORMAT</td>
<td>No</td>
<td>Formato de salida</td>
</tr>
<tr>
<td>FEATURE_COUNT</td>
<td>No</td>
<td>Número máximo de objetos espaciales a devolver</td>
</tr>
<tr>
<td>I</td>
<td>No</td>
<td>Columna de pixeles del punto a consultar</td>
</tr>
<tr>
<td>J</td>
<td>No</td>
<td>Fila de pixeles del punto a consultar</td>
</tr>
<tr>
<td>WMS_PRECISION</td>
<td>No</td>
<td>La precisión (número de dígitos) que se utilizará al devolver la geometría (consulte <a href="#">Cómo agregar geometría a la respuesta de la función</a>). El valor predeterminado es -1, lo que significa que se utiliza la precisión definida en el proyecto.</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
<tr>
<td>FILTER</td>
<td>No</td>
<td>Subconjunto de entidades</td>
</tr>
<tr>
<td>FI_POINT_TOLERANCE</td>
<td>No</td>
<td>Tolerancia en pixeles para capas punto</td>
</tr>
<tr>
<td>FI_LINE_TOLERANCE</td>
<td>No</td>
<td>Tolerancia en pixeles para capas línea</td>
</tr>
<tr>
<td>FI_POLYGON_TOLERANCE</td>
<td>No</td>
<td>Tolerancia en pixeles para capas polígono</td>
</tr>
<tr>
<td>FILTER_GEOM</td>
<td>No</td>
<td>Filtrado de geometría</td>
</tr>
<tr>
<td>WITH_MAPTIP</td>
<td>No</td>
<td>Agregar consejos de mapa a la salida</td>
</tr>
<tr>
<td>WITH_GEOMETRY</td>
<td>No</td>
<td>Agregar geometría a la salida</td>
</tr>
</tbody>
</table>

URL ejemplo:

#### 3.2. Web Map Service (WMS)
INFO_FORMAT

Este parámetro se puede utilizar para especificar el formato del resultado. Los valores disponibles son:

- text/xml
- text/html
- text/plain
- application/vnd.ogc.gml
- application/json

QUERY_LAYERS

Este parámetro especifica las capas a mostrar en el mapa. Nombres son separados por comas.
Además, El servidor de QGIS presenta opciones para seleccionar las capas por:

- nombre corto
- id capa

See the LAYERS parameter defined in GetMap for more information.

FEATURE_COUNT

Este parámetro especifica el número máximo de entidades por capa que se devolverán. Por ejemplo, si QUERY_LAYERS se establece en layer1, layer2 y FEATURE_COUNT se establece en 3, se devolverán un máximo de 3 entidades de layer1. Asimismo, se devolverá un máximo de 3 entidades de layer2.

De formar predeterminada, sólo 1 objeto espacial por capa es devuelto.
Este parámetro, definido en WMS 1.3.0, le permite especificar la columna de píxeles del punto de consulta.

**X**

Igual que el parámetro I, pero definido en WMS 1.1.1.

**J**

Este parámetro, definido en WMS 1.3.0, le permite especificar la fila de píxeles del punto de consulta.

**Y**

Igual que el parámetro J, pero definido en WMS 1.1.1.

**FI_POINT_TOLERANCE**

Este parámetro especifica la tolerancia en píxeles para capas de puntos.

**FI_LINE_TOLERANCE**

Este parámetro especifica la tolerancia en píxeles para capas de líneas.

**FI_POLYGON_TOLERANCE**

Este parámetro especifica la tolerancia en píxeles para capas de polígonos.

**FILTER_GEOM**

Este parámetro especifica una geometría WKT con la cuál las entidades deben interseccarse.

**WITH_MAPTIP**

Este parámetro especifica si agregar sugerencias de mapas a la salida.

Valores disponibles son (no en caso sensitivo):

- TRUE
- FALSE

**WITH_GEOMETRY**

Este parámetro especifica si se deben agregar geometrías a la salida. Para usar esta función, primero debe habilitar la opción: guilabel:Agregar geometría a la entidad de respuesta en el proyecto QGIS. Ver: ref: Configura tu proyecto <Creatingwmsfromproject>.

Valores disponibles son (no en caso sensitivo):

- TRUE
- FALSE
### 3.2.4 GetLegendGraphics

Standard parameters for the `GetLegendGraphics` request according to the OGC WMS 1.1.1 and 1.3.0 specifications:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Name of the request (GetLegendGraphics)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
<tr>
<td>LAYERS</td>
<td>Sí</td>
<td>Capas a mostrar</td>
</tr>
<tr>
<td>STYLES</td>
<td>No</td>
<td>Estilo de capas</td>
</tr>
<tr>
<td>SRS / CRS</td>
<td>No</td>
<td>Sistema de referencia de coordenadas</td>
</tr>
<tr>
<td>BBOX</td>
<td>No</td>
<td>Extensión del mapa</td>
</tr>
<tr>
<td>WIDTH</td>
<td>No</td>
<td>Ancho de la imagen en pixeles.</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>No</td>
<td>Altura de la imagen en pixeles</td>
</tr>
<tr>
<td>FORMAT</td>
<td>No</td>
<td>Legend format</td>
</tr>
<tr>
<td>TRANSPARENT</td>
<td>No</td>
<td>fondo transparente</td>
</tr>
</tbody>
</table>

In addition to the standard ones, QGIS Server supports extra parameters to change the size of the legend elements or the font properties for layer titles and item labels:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
<tr>
<td>SRCWIDTH</td>
<td>No</td>
<td>Map width</td>
</tr>
<tr>
<td>SRCHEIGHT</td>
<td>No</td>
<td>Map height</td>
</tr>
<tr>
<td>SHOWFEATURECOUNT</td>
<td>No</td>
<td>Add feature count of features</td>
</tr>
<tr>
<td>RULE</td>
<td>No</td>
<td>Rule symbol to render</td>
</tr>
<tr>
<td>RULELABEL</td>
<td>No</td>
<td>Item labels rendering</td>
</tr>
<tr>
<td>BOXSPACE</td>
<td>No</td>
<td>Space between legend frame and content (mm)</td>
</tr>
<tr>
<td>LAYERSPACE</td>
<td>No</td>
<td>Vertical space between layers (mm)</td>
</tr>
<tr>
<td>LAYERTITLESSPACE</td>
<td>No</td>
<td>Vertical space between layer title and items (mm)</td>
</tr>
<tr>
<td>SYMBOLSPACE</td>
<td>No</td>
<td>Vertical space between symbol and items (mm)</td>
</tr>
<tr>
<td>ICONLABELSPACE</td>
<td>No</td>
<td>Horizontal space between symbol and label (mm)</td>
</tr>
<tr>
<td>SYMBOLWIDTH</td>
<td>No</td>
<td>Width of the symbol preview (mm)</td>
</tr>
<tr>
<td>SYMBOLHEIGHT</td>
<td>No</td>
<td>Height of the symbol preview (mm)</td>
</tr>
<tr>
<td>LAYERTITLE</td>
<td>No</td>
<td>Layer title rendering</td>
</tr>
<tr>
<td>LAYERFONTFAMILY</td>
<td>No</td>
<td>Layer font family</td>
</tr>
<tr>
<td>LAYERFONTBOLD</td>
<td>No</td>
<td>Layer title bold rendering</td>
</tr>
<tr>
<td>LAYERFONTSIZE</td>
<td>No</td>
<td>Layer title font size (pt)</td>
</tr>
<tr>
<td>LAYERFONTITALIC</td>
<td>No</td>
<td>Layer title italic rendering</td>
</tr>
<tr>
<td>LAYERFONTCOLOR</td>
<td>No</td>
<td>Layer title color</td>
</tr>
<tr>
<td>ITEMFONTFAMILY</td>
<td>No</td>
<td>Item font family</td>
</tr>
<tr>
<td>ITEMFONTBOLD</td>
<td>No</td>
<td>Item label bold rendering</td>
</tr>
<tr>
<td>ITEMFONTSIZE</td>
<td>No</td>
<td>Item label font size (pt)</td>
</tr>
<tr>
<td>ITEMFONTITALIC</td>
<td>No</td>
<td>Item label italic rendering</td>
</tr>
<tr>
<td>ITEMFONTCOLOR</td>
<td>No</td>
<td>Item label color</td>
</tr>
</tbody>
</table>
BBOX

This parameter can be used to specify the geographical area for which the legend should be built (its format is described [here]) but cannot be combined with the RULE parameter. The SRS/CRS parameter becomes mandatory when using the BBOX parameter.

URL ejemplo:

```
http://localhost/qgisserver?SERVICE=WMS&REQUEST=GetLegendGraphics&LAYERS=countries,airports&BBOX=43.20,-2.93,49.35,8.32&CRS=EPSG:4326
```

Notas: When the BBOX parameter is defined, the legend is referred to as a content based legend.

ANCHURA

This parameter is not used by default but becomes mandatory when the RULE parameter is set. In this case it allows to specify the width in pixels of the output image.

```
http://localhost/qgisserver?SERVICE=WMS&REQUEST=GetLegendGraphics&LAYER=testlayer%20%C3%A8%C3%A9&RULE=rule1&WIDTH=30&HEIGHT=30
```

ALTURA

This parameter is not used by default but becomes mandatory when the RULE parameter is set. In this case it allows to specify the height in pixels of the output image.

```
http://localhost/qgisserver?SERVICE=WMS&REQUEST=GetLegendGraphics&LAYER=testlayer%20%C3%A8%C3%A9&RULE=rule1&WIDTH=30&HEIGHT=30
```

FORMATO

This parameter may be used to specify the format of legend image. Available values are:

- image/jpeg
- image/png
- application/json

For JSON, symbols are encoded with Base64 and most other options related to layout or fonts are not taken into account because the legend must be built on the client side. The RULE parameter cannot be combined with this format.

URL example with the corresponding JSON output:
http://localhost/qgisserver?
SERVICE=WMS&
REQUEST=GetLegendGraphics&
LAYERS=airports&
FORMAT=application/json

And the corresponding JSON output:

```json
{
 "nodes": [
 {
 "icon": "<base64 icon>",
 "title": "airports",
 "type": "layer"
 }
],
 "title": ""
}
```

**SRCWIDTH**

This parameter may be defined when the `RULE` parameter is set. In this case, the `SRCWIDTH` value is forwarded to the underlying `GetMap` request as the `WIDTH` parameter while the `WIDTH` parameter of `GetLegendGraphics` is used for the image legend size.

**SRCHEIGHT**

This parameter may be defined when the `RULE` parameter is set. In this case, the `SRCHEIGHT` value is forwarded to the underlying `GetMap` request as the `HEIGHT` parameter while the `HEIGHT` parameter of `GetLegendGraphics` is used for the image legend size.

**SHOWFEATURECOUNT**

This parameter can be used to activate feature count in the legend. Available values are (not case sensitive):

- TRUE
- FALSE

Por ejemplo:

```
Tram lines [10]
1 [2]
2 [2]
3 [4]
4 [2]
```
RULE

This parameter is available on layers with Rule-based rendering and allows to build a legend with only the named rule symbol. It cannot be combined with BBOX parameter nor the JSON format.

URL ejemplo:

```plaintext
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=mylayer,
&RULE=myrulename
```

RULELABEL

This parameter allows to control the item label rendering. Available values are (not case sensitive):

- **TRUE**: display item label
- **FALSE**: hide item label
- **AUTO**: hide item label for layers with Single symbol rendering

URL ejemplo:

```plaintext
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=countries,airports
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&RULELABEL=AUTO
```

Figura 3.5: Legend rendering without label for single symbol layers
**BOXSPACE**

This parameter allows to specify the space between legend frame and content in millimeters. By default, the space value is 2 mm.

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WMS
REQUEST=GetLegendGraphics
LAYERS=airports
BBOX=43.20,-2.93,49.35,8.32
CRS=EPSG:4326
TRANSPARENT=TRUE
BOXSPACE=0
```

Figura 3.6: To the left BOXSPACE=0 and to the right BOXSPACE=15

**LAYERSPACE**

This parameter allows to specify the vertical space between layers in millimeters. By default, the space value is 3 mm.

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WMS
REQUEST=GetLegendGraphics
LAYERS=airports,places
BBOX=43.20,-2.93,49.35,8.32
CRS=EPSG:4326
TRANSPARENT=TRUE
LAYERSPACE=0
```

Figura 3.7: To the left LAYERSPACE=0 and to the right LAYERSPACE=10
LAYERTITLESPACE

This parameter allows to specify the vertical space between layer title and items following in millimeters. By default the space value is 3 mm.

URL ejemplo:

http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=airports,places
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&LAYERTITLESPACE=0

Figura 3.8: To the left LAYERTITLESPACE=0 and to the right LAYERTITLESPACE=10

SYMBOLSPACE

This parameter allows to specify the vertical space between symbol and item following in millimeters. By default the space value is 2 mm.

URL ejemplo:

http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=countries
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&Symbollspace=0
ICONLABELSPACE

Este parámetro permite especificar el espacio horizontal entre el símbolo y el texto de la etiqueta en milímetros. Por defecto, el valor de espacio es 2 mm.

URL ejemplo:

http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYER=countries,
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&ICONLABELSPACE=0

Figura 3.10: To the left ICONLABELSPACE=0 and to the right ICONLABELSPACE=10
SYMBOLWIDTH

Este parámetro permite especificar la anchura del preview del símbolo en milímetros. Por defecto, el valor predeterminado es 7 mm.

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=countries,
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&SYMBOLWIDTH=2
```

Figura 3.11: A la izquierda SYMBOLWIDTH=2 y a la derecha SYMBOLWIDTH=20

SYMBOLHEIGHT

Este parámetro permite especificar la altura del preview del símbolo en milímetros. Por defecto, el valor predeterminado es 4 mm.

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=countries,
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&SYMBOLHEIGHT=2
```
Figura 3.12: To the left SYMBOLHEIGHT=2 and to the right SYMBOLHEIGHT=6

LAYERTITLE

This parameter specifies whether to render layer title.

Valores disponibles son (no en caso sensitivo):

• TRUE (default value)
• FALSE

LAYERFONTFAMILY

This parameter specifies the font family to use for rendering layer title.

http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=countries
&LAYERFONTFAMILY=monospace

LAYERFONTBOLD

This parameter specifies whether the layer title is rendered in bold. Available values are (not case sensitive):

• TRUE
• FALSE

URL ejemplo:

http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=airports,places
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&LAYERFONTBOLD=TRUE
**LAYERFONTSIZE**

This parameter specifies the font size for rendering layer title in point.

URL ejemplo:

```plaintext
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=airports,places
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&LAYERFONTSIZE=20
```

**Figura 3.14: Legend with LAYERFONTSIZE=20**

**LAYERFONTITALIC**

This parameter specifies whether the layer title is rendered in italic. Available values are (not case sensitive):

- TRUE
- FALSE

URL ejemplo:

```plaintext
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=airports,places
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&LAYERFONTITALIC=TRUE
```

3.2. Web Map Service (WMS)
Figura 3.15: Legend with **LAYERFONTITALIC=TRUE**

**LAYERFONTCOLOR**

This parameter specifies the layer title color. The color may be literal (red, green, ..) or in hexadecimal notation (0xFF0000, 0x00FF00, ...).

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=airports,places
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&LAYERFONTCOLOR=0x5f9930
```

Figura 3.16: Legend with **LAYERFONTCOLOR=0x5f9930**

**ITEMFONTFAMILY**

This parameter specifies the font family to use for rendering item label.

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=countries
&ITEMFONTFAMILY=monospace
```

46 Capítulo 3. Servicios
ITEMFONTBOLD

This parameter specifies whether the item label is rendered in bold. Available values are (not case sensitive):

- TRUE
- FALSE

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=airports,places
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&ITEMFONTBOLD=TRUE
```

Figura 3.17: Legend with ITEMFONTBOLD=TRUE

ITEMFONTSIZE

This parameter specifies the font size for rendering layer title in point.

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=airports,places
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&ITEMFONTSIZE=20
```

Figura 3.18: Legend with ITEMFONTSIZE=30
ITEMFONITALIC

This parameter specifies whether the item label is rendered in italic. Available values are (not case sensitive):

- TRUE
- FALSE

URL ejemplo:

```text
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=airports,places
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&ITEMFONITALIC=TRUE
```

Figura 3.19: Legend with ITEMFONITALIC=TRUE

ITEMFONCOLOR

This parameter specifies the item label color. The color may be literal (red, green, ..) or in hexadecimal notation (0xFF0000, 0x00FF00, ...).

URL ejemplo:

```text
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetLegendGraphics
&LAYERS=airports,places
&BBOX=43.20,-2.93,49.35,8.32
&CRS=EPSG:4326
&TRANSPARENT=TRUE
&ITEMFONCOLOR=0x5f9930
```

Figura 3.20: Legend with ITEMFONCOLOR=0x5f9930
### 3.2.5 GetStyle(s)

Standard parameters for the GetStyle (or GetStyles) request according to the OGC WMS 1.1.1 specifications:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Name of the request (GetStyle or GetStyles)</td>
</tr>
<tr>
<td>LAYERS</td>
<td>Sí</td>
<td>Capas a consultar</td>
</tr>
</tbody>
</table>

The GetStyle request supports as well the following vendor parameters:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
</tbody>
</table>

URL ejemplo:

http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetStyles
&LAYERS=mylayer1,mylayer2

### 3.2.6 DescribeLayer

Standard parameters for the DescribeLayer request according to the OGC WMS 1.1.1 and 1.3.0 specifications:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Name of the request (DescribeLayer)</td>
</tr>
<tr>
<td>LAYERS</td>
<td>Sí</td>
<td>Layers to describe</td>
</tr>
<tr>
<td>SLD_VERSION</td>
<td>Sí</td>
<td>SLD version</td>
</tr>
</tbody>
</table>

The DescribeLayer request supports as well the following vendor parameters:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
</tbody>
</table>

URL ejemplo:

http://localhost/qgisserver?
SERVICE=WMS
&amp;REQUEST=DescribeLayer
&amp;SLD_VERSION=1.1.0
&amp;LAYERS=mylayer1

The XML document looks like:

```xml
 <Version>1.1.0</Version>
 <LayerDescription>
 <owsType>gfs</owsType>
 <se:OnlineResource xlink:href="http://localhost/qgis_server" xlink:type="simple"/>
 </LayerDescription>
</DescribeLayerResponse>
```

(continúa en la próxima página)
SLD_VERSION

This parameter allows to specify the version of SLD. Only the value 1.1.0 is available.

3.2.7 GetPrint

QGIS Server tiene la capacidad de crear una salida de diseño de impresión en formato pdf o pixel. Las ventanas de diseño de impresión del proyecto publicado se utilizan como plantillas. En la solicitud GetPrint, el cliente tiene la posibilidad de especificar parámetros de las etiquetas y mapas de diseño contenidos.

The GetPrint request supports redlining, external WMS layers as well as the following parameters:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Nombre de la solicitud (GetPrint)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
<tr>
<td>LAYERS</td>
<td>No</td>
<td>Capas a mostrar</td>
</tr>
<tr>
<td>TEMPLATE</td>
<td>Sí</td>
<td>Plantilla de diseño a usar</td>
</tr>
<tr>
<td>SRS / CRS</td>
<td>Sí</td>
<td>Sistema de referencia de coordenadas</td>
</tr>
<tr>
<td>FORMAT</td>
<td>No</td>
<td>Formato de salida</td>
</tr>
<tr>
<td>ATLAS_PK</td>
<td>No</td>
<td>Características del Atlas</td>
</tr>
<tr>
<td>STYLES</td>
<td>No</td>
<td>Estilo de capas</td>
</tr>
<tr>
<td>TRANSPARENT</td>
<td>No</td>
<td>fondo transparente</td>
</tr>
<tr>
<td>OPACITIES</td>
<td>No</td>
<td>Opacidad de la capa o Grupo</td>
</tr>
<tr>
<td>SELECTION</td>
<td>No</td>
<td>Resalta entidades</td>
</tr>
<tr>
<td>mapX:EXTENT</td>
<td>No</td>
<td>Extensión del mapa “X”</td>
</tr>
<tr>
<td>mapX:LAYERS</td>
<td>No</td>
<td>Capas del mapa “X”</td>
</tr>
<tr>
<td>mapX:STYLES</td>
<td>No</td>
<td>Estilo de capas del mapa “X”</td>
</tr>
<tr>
<td>mapX:SCALE</td>
<td>No</td>
<td>Escala de capas del mapa “X”</td>
</tr>
<tr>
<td>mapX:ROTATION</td>
<td>No</td>
<td>Rotación del mapa “X”</td>
</tr>
<tr>
<td>mapX:GRID_INTERVAL_X</td>
<td>No</td>
<td>Intervalo de cuadrícula en eje x del mapa “X”</td>
</tr>
<tr>
<td>mapX:GRID_INTERVAL_Y</td>
<td>No</td>
<td>Intervalo de cuadrícula en eje y del mapa “X”</td>
</tr>
</tbody>
</table>

URL ejemplo:

http://localhost/qgisserver?
SERVICE=WMS
&VERSION=1.3.0
&REQUEST=GetPrint
&MAP=/home/qgis/projects/world.qgs

(continúa en la próxima página)
Tenga en cuenta que la plantilla de diseño puede contener más de un mapa. De esta forma, si quieres configurar un mapa específico, debes utilizar los parámetros `mapX` donde `X` es un número positivo que puedes recuperar gracias a la solicitud `GetProjectSettings`.

Por ejemplo:

```xml
<WMS_Capabilities>
 ...
 <ComposerTemplates xsi:type="wms:_ExtendedCapabilities">
 <ComposerTemplate width="297" height="210" name="Druckzusammenstellung 1"/>
 <ComposerMap width="171" height="133" name="map0"/>
 <ComposerMap width="49" height="46" name="map1"/>
 </ComposerTemplates>
 ...
</WMS_Capabilities>
```

**TEMPLATE**

Este parámetro puede ser usado para especificar el nombre de la plantilla de composición a usar para la impresión.

**FORMATO**

Este parámetro especifica el formato de la imagen de mapa. Los valores disponibles son:

- `png` (valor predeterminado)
- `image/png`
- `jpg`
- `jpeg`
- `image/jpeg`
- `svg`
- `image/svg`
- `image/svg+xml`
- `pdf`
- `application/pdf`

Si el parámetro `FORMAT` es diferente de uno de estos valores, entonces se devuelve una excepción.
ATLAS_PK

Este parámetro permite la activación del renderizado Atlas indicando qué características queremos imprimir. Para recuperar un atlas con todas las características, se puede usar el símbolo * (según el número máximo de características permitidas en la configuración del proyecto).

Cuando FORMATO es pdf, se devuelve un solo documento PDF que combina las páginas de funciones. Para todos los demás formatos, se devuelve una sola página.

mapX:EXTENT

Este parámetro especifica la extensión para un elemento del diseño de mapa como xmin, ymin, xmax, ymax.

mapX:ROTATION

Este parámetro especifica la rotación del mapa en grados.

mapX:GRID_INTERVAL_X

Este parámetro especifica la densidad de línea de cuadrícula en la dirección X.

mapX:GRID_INTERVAL_Y

Este parámetro especifica la densidad de línea de cuadrícula en la dirección Y.

mapX:SCALE

Este parámetro especifica la escala de mapa para un elemento de la composición de mapa. Es útil para asegurar la visibilidad basada en escala de capas y etiquetas incluso si el cliente y servidor puedan tener diferentes algoritmos para calcular el denominador de escala.

mapX:LAYERS

This parameter specifies the layers for a layout map item. See GetMap Layers for more information on this parameter.

mapX:STYLES

This parameter specifies the layers’ styles defined in a specific layout map item. See GetMap Styles for more information on this parameter.

3.2.8 GetProjectSettings

This request type works similar to GetCapabilities, but it is more specific to QGIS Server and allows a client to read additional information which are not available in the GetCapabilities output:

• visibilidad inicial de las capas
• información acerca de atributos vectoriales y sus tipos de edición
• información acerca de orden de capa y orden de dibujado
• lista de capas publicadas en WFS
• mostrar si un grupo en el árbol de capas es mutuamente exclusivo
The `GetProjectSettings` request supports the following parameters:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Name of the request (<code>GetProjectSettings</code>)</td>
</tr>
</tbody>
</table>

### 3.2.9 GetSchemaExtension

The `GetSchemaExtension` request allows to retrieve optional extended capabilities and operations of the WMS service such as implemented by QGIS Server.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Name of the request (<code>GetSchemaExtension</code>)</td>
</tr>
</tbody>
</table>

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetSchemaExtension
```

The XML document looks like:

```xml
 <import namespace="http://www.opengis.net/wms" schemaLocation="http://schemas.opengis.net/wms/1.3.0/capabilities_1_3_0.xsd"/>
 <element name="GetPrint" type="wms:OperationType" substitutionGroup="wms:_ExtendedOperation"/>
 <element name="GetStyles" type="wms:OperationType" substitutionGroup="wms:_ExtendedOperation"/>
</schema>
```

### 3.2.10 Capas WMS Externas

QGIS Server allows including layers from external WMS servers in WMS `GetMap` and WMS `GetPrint` requests. This is especially useful if a web client uses an external background layer in the web map. For performance reasons, such layers should be directly requested by the web client (not cascaded via QGIS server). For printing however, these layers should be cascaded via QGIS server in order to appear in the printed map.

External layers can be added to the LAYERS parameter as `EXTERNAL_WMS:<layername>`. The parameters for the external WMS layers (e.g. url, format, dpiMode, crs, layers, styles) can later be given as service parameters `<layername>:<parameter>`. In a `GetMap` request, this might look like this:

```
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&LAYERS=EXTERNAL_WMS:basemap,layer1,layer2
&STYLES=,
&basemap:url=http://externalserver.com/wms.fcgi
&basemap:format=image/jpeg
&basemap:dpiMode=7
&basemap:crs=EPSG:2056
```

(continue en la próxima página)
Similarly, external layers can be used in GetPrint requests:

```plaintext
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetPrint
&TEMPLATE=A4
&map0:layers=EXTERNAL_WMS:basemap,layer1,layer2
&map0:EXTENT=<minx,miny,maxx,maxy>
&basemap:url=http://externalserver.com/wms.fcgi
&basemap:format=image/jpg
&basemap:dpiMode=7
&basemap:crs=EPSG:2056
&basemap:layers=orthofoto
&basemap:styles=default
```

### 3.2.11 Redlining

This feature is available and can be used with GetMap and GetPrint requests.

La función de marcación roja se puede utilizar para pasar geometrías y etiquetas en la solicitud que el servidor superpone sobre la imagen devuelta estándar (mapa). Esto permite al usuario poner énfasis o quizás agregar algunos comentarios (etiquetas) a algunas áreas, ubicaciones, etc. que no están en el mapa estándar.

The GetMap request is in the format:

```plaintext
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetMap
&HIGHLIGHT_GEOM=POLYGON((590000 5647000, 590000 6110620, 2500000 6110620, 2500000 5647000, 2500000 5647000))
&HIGHLIGHT_SYMBOL=<StyledLayerDescriptor><UserStyle><Name>Highlight</Name>
 <FeatureTypeStyle><Rule><Name>Symbol</Name><LineSymbolizer><Stroke><SvgParameter name="stroke">%23ea1173</SvgParameter><SvgParameter name="stroke-opacity">1</SvgParameter><SvgParameter name="stroke-width">1.6</SvgParameter></Stroke></LineSymbolizer></Rule></FeatureTypeStyle></UserStyle></StyledLayerDescriptor>
&HIGHLIGHT_LABELSTRING=Write label here
&HIGHLIGHT_LABELSIZE=16
&HIGHLIGHT_LABELCOLOR=%23000000
&HIGHLIGHT_LABELBUFFERCOLOR=%23FFFFFF
&HIGHLIGHT_LABELBUFFERSIZE=1.5
```

The GetPrint equivalent is in the format (note that mapX: parameter is added to tell which map has redlining):

```plaintext
http://localhost/qgisserver?
SERVICE=WMS
&REQUEST=GetPrint
&map0:HIGHLIGHT_GEOM=POLYGON((590000 5647000, 590000 6110620, 2500000 6110620, 2500000 5647000, 2500000 5647000))
&map0:HIGHLIGHT_SYMBOL=<StyledLayerDescriptor><UserStyle><Name>Highlight</Name>
 <FeatureTypeStyle><Rule><Name>Symbol</Name><LineSymbolizer><Stroke><SvgParameter name="stroke">%23ea1173</SvgParameter><SvgParameter name="stroke-opacity">1</SvgParameter><SvgParameter name="stroke-width">1.6</SvgParameter></Stroke></LineSymbolizer></Rule></FeatureTypeStyle></UserStyle></StyledLayerDescriptor>
&map0:HIGHLIGHT_LABELSTRING=Write label here
&map0:HIGHLIGHT_LABELSIZE=16
```

(continúa en la próxima página)
Aquí está la imagen obtenida por la solicitud anterior en la que se dibujan un polígono y una etiqueta sobre el mapa normal:

![Figura 3.21: Respuesta del servidor a una solicitud GetMap con parámetros de marcado](image)

Puede ver que hay varios parámetros en esta solicitud:

- **HIGHLIGHT GEOM**: Puede añadir POINT, MULTILINESTRING, POLYGON etc. Admite geometrías multipartes. Aquí hay un ejemplo: `HIGHLIGHT GEOM=MULTILINESTRING((0 0, 0 1, 1 1))`. Las coordenadas deben estar en el SRC de la solicitud GetMap/GetPrint.

- **HIGHLIGHT SYMBOL**: Esto controla cómo se perfilan las geometrías y puede cambiar el ancho, el color y la opacidad del trazo.

- **HIGHLIGHT LABELSTRING**: Puede pasar su texto de etiquetado a este parámetro.

- **HIGHLIGHT LABELSIZE**: Este parámetro controla el tamaño de la etiqueta.

- **HIGHLIGHT LABELFONT**: Este parámetro controla la fuente de la etiqueta (por ejemplo, Arial)

- **HIGHLIGHT LABELCOLOR**: Este parámetro controla el color de la etiqueta.

- **HIGHLIGHT LABELBUFFERCOLOR**: Este parámetro controla el color del búfer de etiquetas.

3.2. Web Map Service (WMS)
• HIGHLIGHT_LABELBUFFERSIZE: Este parámetro controla el tamaño del búfer de etiquetas.

### 3.3 Web Feature Service (WFS)

Los estándares WFS 1.0.0 y 1.1.0 implementados en QGIS Server proporcionan una interfaz HTTP para consultar características geográficas de un proyecto QGIS. Una solicitud WFS típica define el proyecto QGIS a usar y la capa a consultar.

Documento de especificaciones según el número de versión del servicio:

- WFS 1.0.0
- WFS 1.1.0

Solicitudes standard proporcionadas por el servidor QGIS:

<table>
<thead>
<tr>
<th>Solicitud</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetCapabilities</td>
<td>Devuelve metadatos XML con información sobre el servidor</td>
</tr>
<tr>
<td>GetFeature</td>
<td>Devuelve una selección de objetos espaciales</td>
</tr>
<tr>
<td>DescribeFeatureType</td>
<td>Devuelve una descripción de los tipos de entidades y propiedades.</td>
</tr>
<tr>
<td>Transaction</td>
<td>Permite insertar, actualizar o eliminar objetos</td>
</tr>
</tbody>
</table>

#### 3.3.1 GetCapabilities

Parámetros estándar para la solicitud ObtenerCapacidades según las especificaciones OGC WFS 1.0.0 y 1.1.0:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WFS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Nombre de la solicitud (GetCapabilities)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>Archivo de proyecto QGIS</td>
</tr>
</tbody>
</table>

**VERSIÓN**

Este parámetro permite especificar la versión del servicio a utilizar. Los valores disponibles para el parámetro VERSIÓN son:

- 1.0.0
- 1.1.0

Si no se indica una versión en la solicitud, entonces se usa 1.1.0 por defecto.

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WFS
&VERSION=1.1.0
&...
```
3.3.2 GetFeature

Parámetros estándar para la solicitud GetFeature de acuerdo con las especificaciones OGC WFS 1.0.0 y 1.1.0:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WFS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Nombre de la solicitud (GetFeature)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
<tr>
<td>TYPENAME</td>
<td>No</td>
<td>Nombre de las capas</td>
</tr>
<tr>
<td>FEATUREID</td>
<td>No</td>
<td>Filtrar los objetos espaciales por ids</td>
</tr>
<tr>
<td>OUTPUTFORMAT</td>
<td>No</td>
<td>Formato de Salida</td>
</tr>
<tr>
<td>RESULTTYPE</td>
<td>No</td>
<td>Tipo de resultado</td>
</tr>
<tr>
<td>PROPERTYNAME</td>
<td>No</td>
<td>Nombre de las propiedades a regresar</td>
</tr>
<tr>
<td>MAXFEATURES</td>
<td>No</td>
<td>Número máximo de objetos espaciales a devolver</td>
</tr>
<tr>
<td>SRSNAME</td>
<td>No</td>
<td>Sistema de referencia de coordenadas</td>
</tr>
<tr>
<td>FILTER</td>
<td>No</td>
<td>OGC Codificación de Filtro</td>
</tr>
<tr>
<td>BBOX</td>
<td>No</td>
<td>Extensión del Mapa</td>
</tr>
<tr>
<td>SORTBY</td>
<td>No</td>
<td>Ordena los resultados</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>Archivo de proyecto QGIS</td>
</tr>
<tr>
<td>STARTINDEX</td>
<td>No</td>
<td>Paginamiento</td>
</tr>
<tr>
<td>GEOMETRYNAME</td>
<td>No</td>
<td>Tipo de geometría para regresar</td>
</tr>
<tr>
<td>EXP_FILTER</td>
<td>No</td>
<td>Filtrado de expresión</td>
</tr>
</tbody>
</table>

**TYPENAME**

Este parámetro permite especificar los nombres de las capas y es obligatorio si no se establece FEATUREID.

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WFS
&VERSION=1.1.0
&REQUEST=GetFeature
&TYPENAME=countries
```

**FEATUREID**

Este parámetro permite especificar el ID de una característica específica y se forma como typename.fid, typename.fid,...

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WFS
&REQUEST=GetFeature
&FEATUREID=countries.0,places.1
```

Respuesta XML:
OUTPUTFORMAT

Este parámetro se puede utilizar para especificar el formato de la respuesta. Si VERSION es mayor o igual que 1.1.0, GML3 es el formato predeterminado. De lo contrario, se utiliza GML2.

Los valores disponibles son:

- gml2
- text/xml; subtype=gml/2.1.2
- gml3
- text/xml; subtype=gml/3.1.1
- geojson
- application/vnd.geo+json,
- application/vnd.geo json
- application/geo+json
- application/geo json
- application/json

URL ejemplo:

http://localhost/qgisserver?
SERVICE=WFS
&REQUEST=GetFeature
&FEATUREID=countries.0
&OUTPUTFORMAT=geojson

Respuesta GeoJSON:

```json
{
 "type":"FeatureCollection",
 "bbox":
```
RESULTTYPE

Este parámetro se puede utilizar para especificar el tipo de resultado que se devolverá. Los valores disponibles son:

- **results**: el comportamiento predeterminado
- **hits**: devuelve solo un recuento de objetos

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WFS
&VERSION=1.1.0
&REQUEST=GetFeature
&RESULTTYPE=hits
&...
```

PROPERTYNAME

Este parámetro se puede usar para especificar una propiedad específica para devolver. Una propiedad necesita ser mapeada con un TYPENAME o un FEATUREID:

Ejemplo de URL válida:

```
http://localhost/qgisserver?
SERVICE=WFS
&REQUEST=GetFeature
&PROPERTYNAME=name
&TYPENAME=places
```

Por el contrario, la siguiente URL devolverá una excepción:
El párrafo representado es un fragmento del Guía del Usuario de QGIS Server 3.22. Aunque el texto parece provenir de un documento en español, el contenido se refiere a la configuración de parámetros para el Servicio WFS (Web Feature Service) en QGIS Server. El texto se centra en el uso de los parámetros MAXFEATURES, SRSNAME, FILTER y BBOX.

MAXFEATURES
Este parámetro permite limitar el número de características devueltas por la solicitud. Nota: Este parámetro puede resultar útil para mejorar el rendimiento cuando las capas vectoriales subyacentes son pesadas.

SRSNAME
Este parámetro permite indicar la salida de respuesta del Sistema de Referencia Espacial así como el SRC BBOX y tiene que formarse como EPSG:XXXX.

FILTER
Este parámetro permite filtrar la respuesta con el lenguaje Codificación de filtro definido por el OGC Filter Encoding standard.

URL ejemplo:

<table>
<thead>
<tr>
<th>URL</th>
<th>Parámetros</th>
<th>Contexto</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://localhost/qgiserver">http://localhost/qgiserver</a>? SERVICE=WFS &amp;REQUEST=GetFeature &amp;PROPERTYNAME=name &amp;TYPENAME=places,countries</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;ServiceExceptionReport xmlns=&quot;http://www.opengis.net/ogc&quot; version=&quot;1.2.0&quot;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;ServiceException code=&quot;RequestNotWellFormed&quot;&gt;There has to be a 1:1 mapping between each element in a TYPENAME and the PROPERTYNAME list&lt;/ServiceException&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;/ServiceExceptionReport&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXFEATURES</td>
<td>Este parámetro permite limitar el número de características devueltas por la solicitud. Nota: Este parámetro puede resultar útil para mejorar el rendimiento cuando las capas vectoriales subyacentes son pesadas.</td>
<td></td>
</tr>
<tr>
<td>SRSNAME</td>
<td>Este parámetro permite indicar la salida de respuesta del Sistema de Referencia Espacial así como el SRC BBOX y tiene que formarse como EPSG:XXXX.</td>
<td></td>
</tr>
<tr>
<td>FILTER</td>
<td>Este parámetro permite filtrar la respuesta con el lenguaje Codificación de filtro definido por el OGC Filter Encoding standard.</td>
<td></td>
</tr>
<tr>
<td>URL ejemplo:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://localhost/qgiserver">http://localhost/qgiserver</a>? SERVICE=WFS &amp;REQUEST=GetFeature &amp;TYPENAME=places &amp;SRSNAME=EPSG:32620</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBOX</td>
<td>Este parámetro permite especificar la extensión del mapa con unidades según el SRC actual. Las coordenadas deben estar separadas por una coma. El parámetro SRSNAME puede especificar el CRS de la extensión. Si no se especifica, se utiliza el CRS de la capa.</td>
<td></td>
</tr>
<tr>
<td>URL ejemplo:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
El parámetro FEATUREID no se puede utilizar con BBOX. Cualquier intento resultará en una excepción:

```xml
<ServiceExceptionReport xmlns="http://www.opengis.net/ogc" version="1.2.0">
 <ServiceException code="RequestNotWellFormed">FEATUREID FILTER and BBOX parameters are mutually exclusive</ServiceException>
</ServiceExceptionReport>
```

**SORTBY**

Este parámetro permite clasificar las características resultantes de acuerdo con los valores de las propiedades y debe formarse como `propertyname SORTRULE`.

Valores disponibles para SORTRULE en caso de clasificación descendente:

- D
- +D
- DESC
- +DESC

Valores disponibles para SORTRULE en caso de clasificación ascendente:

- A
- +A
- ASC
- +ASC

URL ejemplo:

```text
http://localhost/qgisserver?
SERVICE=WFS
&REQUEST=GetFeature
&TYPENAME=places
&BBOX=-11.84,42.53,8.46,50.98

&PROPERTYNAME=name
&MAXFEATURES=3
&SORTBY=name DESC
```

El resultado correspondiente:

```xml
 ...
 </gml:boundedBy>
 </gml:featureMember>
 <qgs:places gml:id="places.90">
 <qgs:name>Zagreb</qgs:name>
 </qgs:places>
</wfs:FeatureCollection>
```

(continuado en la próxima página)
GEOMETRYNAME

Este parámetro se puede utilizar para especificar el tipo de geometría que se devolverá para las entidades. Los valores disponibles son:

- extent
- centroid
- bash

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WFS
&VERSION=1.1.0
&REQUEST=GetFeature
&GEOMETRYNAME=centroid
&...
```

STARTINDEX

Este parámetro es estándar en WFS 2.0, pero es una extensión para WFS 1.0.0.

En realidad, se puede usar para omitir algunas funciones en el conjunto de resultados y, en combinación con MAXFEATURES, proporciona la capacidad de desplazarse por las páginas de los resultados.

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WFS
&VERSION=1.1.0
&REQUEST=GetFeature
&STARTINDEX=2
&...
```
**EXP_FILTER**

Este parámetro permite filtrar la respuesta con expresiones QGIS.

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAME=places&
EXP_FILTER="name"='Paris'
```

### 3.3.3 DescribeFeatureType

Parámetros estándar para la solicitud **DescribelaTipodefunción** según las especificaciones OGC WFS 1.0.0 y 1.1.0:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WFS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Nombre de la solicitud (DescribelaTipodefunción)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
<tr>
<td>OUTPUTFORMAT</td>
<td>No</td>
<td>Formato de la respuesta</td>
</tr>
<tr>
<td>TYPENAME</td>
<td>No</td>
<td>Nombre de las capas</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>Archivo de proyecto QGIS</td>
</tr>
</tbody>
</table>

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WFS
&VERSION=1.1.0
&REQUEST=DescribeFeatureType
&TYPENAME=countries
```

Respuesta de salida:

```xml
 <import schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd" namespace="http://www.opengis.net/gml"/>
 <element type="qgs:countriesType" substitutionGroup="gml:_Feature" name="countries"/>
 <complexType name="countriesType">
 <complexContent>
 <extension base="gml:AbstractFeatureType">
 <sequence>
 <element minOccurs="0" type="gml:MultiPolygonPropertyType" maxOccurs="1" name="geometry"/>
 <element type="long" name="id"/>
 <element nillable="true" type="string" name="name"/>
 </sequence>
 <extension>
 <element minOccurs="0" type="gml:MultiPolygonPropertyType" maxOccurs="1" name="geometry"/>
 <element type="long" name="id"/>
 <element nillable="true" type="string" name="name"/>
 </extension>
 </extension>
 </complexContent>
 </complexType>
</schema>
```
### 3.3.4 Transacción

Esta solicitud permite actualizar, eliminar o agregar una o varias características gracias a un documento XML. La acción *delete* se puede lograr con una solicitud POST, así como con el parámetro `OPERATION`, mientras que las operaciones *add* y *update* se pueden lograr a través de la solicitud POST solamente.

Parámetros estándar para la solicitud de Transacción según las especificaciones OGC WFS 1.0.0 y 1.1.0:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WFS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Nombre de la solicitud (Transacción)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
<tr>
<td>FILTER</td>
<td>No</td>
<td>OGC Codificación de Filtro</td>
</tr>
<tr>
<td>BBOX</td>
<td>No</td>
<td>Extensión del Mapa</td>
</tr>
<tr>
<td>FEATUREID</td>
<td>No</td>
<td>Filtrar los objetos espaciales por ids</td>
</tr>
<tr>
<td>TYPENAME</td>
<td>No</td>
<td>Nombre de las capas</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>Archivo de proyecto QGIS</td>
</tr>
<tr>
<td>OPERATION</td>
<td>No</td>
<td>Especificar la operación</td>
</tr>
<tr>
<td>EXP_FILTER</td>
<td>No</td>
<td>Filtrado de expresión</td>
</tr>
</tbody>
</table>

**OPERATION**

Este parámetro permite eliminar una característica sin usar una solicitud POST con un documento XML dedicado.

URL ejemplo:

```
http://localhost/qgisserver?
SERVICE=WFS
&VERSION=1.1.0
&REQUEST=Transaction
&OPERATION=DELETE
&FEATUREID=24
```

**Nota:** Los parámetros FEATUREID, BBOX y FILTER se excluyen mutuamente y se priorizan en este orden.

#### Agrega características

Ejemplo de solicitud POST:

```bash
wget --post-file=add.xml "http://localhost/qgisserver?SERVICE=WFS&
--REQUEST=Transaction"
```

Con el documento `add.xml`:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<wfs:Transaction service="WFS" version="1.0.0" xmlns:wfs="http://www.opengis.net/wfs"
xmlns=",http://www.opengis.net/wfs" updateSequence="0"
xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="http://www.opengis.net/wfs http://schemas.opengis.net/wfs/1.0.0/WFS-capabilities.xsd"
xmlns:gm="http://www.opengis.net/gml" xmlns:ows="http://www.opengis.net/ows">
 <wfs:Insert idgen="GenerateNew">
 (continúa en la próxima página)```
Actualizar características

Ejemplo de solicitud POST:

```bash
wget --post-file update.xml "http://localhost/qgisserver?SERVICE=WFS&REQUEST=Transaction"
```

con el documento `update.xml`:

```xml
<?xml version="1.0" encoding="UTF-8"?>
  <wfs:Update typeName="places">
    <wfs:Property>
      <wfs:Name>name</wfs:Name>
      <wfs:Value>Lutece</wfs:Value>
    </wfs:Property>
    <ogc:Filter>
      <ogc:FeatureId fid="24"/>
    </ogc:Filter>
  </wfs:Update>
</wfs:Transaction>
```

Eliminar características

Ejemplo de solicitud POST:

```bash
wget --post-file delete.xml "http://localhost/qgisserver?SERVICE=WFS&REQUEST=Transaction"
```

con el documento `delete.xml`:

```xml
<?xml version="1.0" encoding="UTF-8"?>
  <wfs:Delete typeName="places">
    <ogc:Filter>
      (continuado en la próxima página)
    </ogc:Filter>
  </wfs:Delete>
</wfs:Transaction>
```
3.4 Web Coverage Service (WCS)

The 1.0.0 and 1.1.1 WCS standards implemented in QGIS Server provide a HTTP interface to access raster data, referred to as *coverage*, coming from a QGIS project.

Especificaciones:

- WCS 1.0.0
- WCS 1.1.1

Solicitudes standard proporcionadas por el servidor QGIS:

<table>
<thead>
<tr>
<th>Solicitud</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetCapabilities</td>
<td>Devuelve metadatos XML con información sobre el servidor</td>
</tr>
<tr>
<td>DescribeCoverage</td>
<td>Retiene XML documento sobre información extra sobre las coverages</td>
</tr>
<tr>
<td>GetCoverage</td>
<td>Retiene el coverage</td>
</tr>
</tbody>
</table>

3.4.1 GetCapabilities

Standard parameters for the `GetCapabilities` request according to the OGC WCS 1.1.1 specifications:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WCS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Nombre del request (GetCapabilities)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>Archivo del proyecto QGIS</td>
</tr>
</tbody>
</table>

URL ejemplo:

```
http://localhost/qgis_server?SERVICE=WCS &VERSION=1.1.1 &REQUEST=GetCapabilities
```

XML document example when a single raster layer (named `T20QPD_20171123T144719_TCI`) is published in the QGIS project for the WCS service:

```xml
...</Service>
```

(continúa en la próxima página)
VERSIÓN

This parameter allows to specify the version of the service to use. Currently, the version values is not internally used and always fallback to 1.1.1.

3.4.2 DescribeCoverage

This request allows to retrieve additional information about coverages like the format of the underlying datasource, the number of bands, … Standard parameters for the DescribeCoverage request according to the OGC WCS 1.1.1 specifications:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Name of the service (WCS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Name of the request (DescribeCoverage)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
<tr>
<td>COVERAGE</td>
<td>No</td>
<td>Specify coverage layers (WCS 1.0.0)</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>No</td>
<td>Specify coverage layers (WCS 1.1.1)</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
</tbody>
</table>

The XML document for a 3 bands GeoTIFF raster layer looks like:

```xml
<Capability>
...
</Capability>
<ContentMetadata>
<CoverageOfferingBrief>
<name>T20QPD_20171123T144719_TCI</name>
<label>T20QPD_20171123T144719_TCI</label>
<lonLatEnvelope srsName="urn:ogc:def:crs:OGC:1.3:CRS84">
  <gml:pos>-61.585973 16.331189</gml:pos>
  <gml:pos>-61.52537 16.400376</gml:pos>
</lonLatEnvelope>
</CoverageOfferingBrief>
</ContentMetadata>
</WCS_Capabilities>

<Capability>
...
</Capability>
```
COVERAGE

This parameter, defined in WCS 1.0.0, allows to specify the layers to query for additional information. Names have to be separated by a comma.

In addition, QGIS Server introduced an option to select layers by its short name. The short name of a layer may be configured through Properties ➤ Metadata in layer menu. If the short name is defined, then it’s used by default instead of the layer’s name:

![Code example]

Nota: COVERAGE is mandatory if IDENTIFIER is not set.

IDENTIFIER

This parameter replaces the COVERAGE parameter in WCS 1.1.1. But QGIS Server does not filter according to the VERSION parameter so IDENTIFIER and COVERAGE have the same effect.

Nota: IDENTIFIER is mandatory if COVERAGE is not set. If both IDENTIFIER and COVERAGE parameters are defined, COVERAGE is always used in priority.
3.4.3 GetCoverage

This request allows to retrieve the coverage according to specific constraints like the extent or the CRS. Standard parameters for the DescribeCoverage request according to the OGC WCS 1.1.1 specifications:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Name of the service (WCS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Name of the request (GetCoverage)</td>
</tr>
<tr>
<td>VERSION</td>
<td>No</td>
<td>Versión del servicio</td>
</tr>
<tr>
<td>COVERAGE</td>
<td>No</td>
<td>Specify coverage layers (WCS 1.0.0)</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>No</td>
<td>Specify coverage layers (WCS 1.1.1)</td>
</tr>
<tr>
<td>WIDTH</td>
<td>Sí</td>
<td>Width of the response in pixels</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>Sí</td>
<td>Height of the response in pixels</td>
</tr>
<tr>
<td>BBOX</td>
<td>Sí</td>
<td>Map extent in CRS units</td>
</tr>
<tr>
<td>CRS</td>
<td>Sí</td>
<td>Coordinate reference system of the extent</td>
</tr>
<tr>
<td>RESPONSE_CRS</td>
<td>No</td>
<td>Coordinate reference system of the response</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>QGIS project file</td>
</tr>
</tbody>
</table>

BBOX

This parameter allows to specify the map extent in the units of the current CRS. Coordinates have to be separated by a comma. The BBOX parameter is formed like minx,miny,maxx,maxy.

URL ejemplo:

```url
http://localhost/qgisserver?
SERVICE=WCS
&REQUEST=GetCoverage
&IDENTIFIER=T20QPD_20171123T144719_TCI
&BBOX=647533,1805950,660987,1813940
&CRS=EPSG:32620
```

CRS

This parameter allows to indicate the Spatial Reference System of the BBOX parameter and has to be formed like EPSG:XXXX.

RESPONSE_CRS

This parameter allows to indicate the output response Spatial Reference System and has to be formed like EPSG:XXXX. The CRS of the corresponding coverage layer is used by default.
ANCHURA

This parameter allows to specify the width in pixels of the output image. The resolution of the response image depends on this value.

ALTURA

This parameter allows to specify the height in pixels of the output image. The resolution of the response image depends on this value.

![Figura 3.22: From left to right: WIDTH=20&HEIGHT=20, WIDTH=50&HEIGHT=50, WIDTH=100&HEIGHT=100](image)

3.5 Web Map Tile Service (WMTS)

El estándar WMTS 1.0.0 implementado en QGIS Server proporciona una interfaz HTTP para solicitar imágenes de mapas en mosaico generadas a partir de un proyecto QGIS. Una solicitud WMTS típica definió el proyecto QGIS a usar, algunos parámetros WMS como capas para renderizar, así como parámetros de mosaico.

Documento de especificaciones del servicio:

- **WMTS 1.0.0**

Solicitudes standard proporcionadas por el servidor QGIS:

<table>
<thead>
<tr>
<th>Solicitud</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetCapabilities</td>
<td>Devuelve metadatos XML con información sobre el servidor</td>
</tr>
<tr>
<td>GetTile</td>
<td>Devuelve una tesela</td>
</tr>
<tr>
<td>GetFeatureInfo</td>
<td>Recupera datos (geometría y valores) para una ubicación de píxeles</td>
</tr>
</tbody>
</table>

3.5.1 GetCapabilities

Parámetros estándar para la solicitud **GetCapabilities** de acuerdo con las especificaciones OGC WMTS 1.0.0:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMTS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Nombre de la solicitud (Obtener Capacidades)</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>Archivo de proyecto QGIS</td>
</tr>
</tbody>
</table>
3.5.2 GetTile

Parámetros estándar para la solicitud **GetTile** de acuerdo con las especificaciones OGC WMTS 1.0.0:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMTS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Nombre de la solicitud (GetTile)</td>
</tr>
<tr>
<td>LAYER</td>
<td>Sí</td>
<td>Identificador de capa</td>
</tr>
<tr>
<td>FORMAT</td>
<td>Sí</td>
<td>Formato de salida de la tesela</td>
</tr>
<tr>
<td>TILEMATRIXSET</td>
<td>Sí</td>
<td>Nombre de la pirámide</td>
</tr>
<tr>
<td>TILEMATRIX</td>
<td>Sí</td>
<td>Enmallado</td>
</tr>
<tr>
<td>TILEROW</td>
<td>Sí</td>
<td>Coordenada de fila en la malla</td>
</tr>
<tr>
<td>TILECOL</td>
<td>Sí</td>
<td>Coordenada de columna en la malla</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>Archivo de proyecto QGIS</td>
</tr>
</tbody>
</table>

URL ejemplo:

```
http://localhost/?
SERVICE=WMTS
&REQUEST=GetCapabilities
&MAP=/home/qgis/projects/world.qgs
```

FORMATO

Este parámetro se puede utilizar para especificar el formato de la imagen del mosaico. Los valores disponibles son:

- jpg
- jpeg
- image/jpeg
- image/png

Si el parámetro FORMATO es diferente de uno de estos valores, entonces se usa el formato predeterminado PNG en su lugar.

URL ejemplo:

```
http://localhost/?
SERVICE=WMTS
&REQUEST=GetTile
&MAP=/home/qgis/projects/world.qgs
&LAYER=mylayer
&FORMAT=image/png
&TILEMATRIXSET=EPSG:4326
&TILEROW=0
&TILECOL=0
```
TILEMATRIXSET

Este parámetro define el SRC que se utilizará al calcular la pirámide subyacente. Formato: EPSG: XXXX.

TILEMATRIX

Este parámetro permite definir la matriz a utilizar para el mosaico de salida.

TILEROW

Este parámetro permite seleccionar la fila del mosaico para entrar en la matriz.

TILECOL

Este parámetro permite seleccionar la columna del mosaico para entrar en la matriz.

3.5.3 GetFeatureInfo

Parámetros estándar para la solicitud GetFeatureInfo de acuerdo con la especificación OGC WMTS 1.0.0:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE</td>
<td>Sí</td>
<td>Nombre del servicio (WMTS)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>Sí</td>
<td>Nombre de la solicitud (GetFeatureInfo)</td>
</tr>
<tr>
<td>LAYER</td>
<td>Sí</td>
<td>Identificador de capa</td>
</tr>
<tr>
<td>INFOFORMAT</td>
<td>No</td>
<td>Formato de salida</td>
</tr>
<tr>
<td>I</td>
<td>No</td>
<td>coordenada X de un píxel</td>
</tr>
<tr>
<td>J</td>
<td>No</td>
<td>coordenada Y de un píxel</td>
</tr>
<tr>
<td>TILEMATRIXSET</td>
<td>Sí</td>
<td>Nombre de la pirámide</td>
</tr>
<tr>
<td>TILEMATRIX</td>
<td>Enmallado</td>
<td></td>
</tr>
<tr>
<td>TILEROW</td>
<td>Sí</td>
<td>Coordenada de fila en la malla</td>
</tr>
<tr>
<td>TILECOL</td>
<td>Sí</td>
<td>Coordenada de columna en la malla</td>
</tr>
</tbody>
</table>

En adición a los estándares, QGIS Server apoya los siguientes parámetros extra:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Necesario</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>Sí</td>
<td>Archivo de proyecto QGIS</td>
</tr>
</tbody>
</table>

URL ejemplo:

```text
http://localhost/?
SERVICE=WMTS
&REQUEST=GetFeatureInfo
&MAP=/home/qgis/projects/world.qgs
&LAYER=mylayer
&INFOFORMAT=image/html
&I=10
&J=5
```
INFOFORMAT

Este parámetro permite definir el formato de salida del resultado. Los valores disponibles son:

- text/xml
- text/html
- text/plain
- application/vnd.ogc.gml

El valor predeterminado es text/plain.

I

Este parámetro permite definir la coordenada X del pixel para el que queremos recuperar la información subyacente.

J

Este parámetro permite definir la coordenada Y del pixel para el que queremos recuperar información subyacente.

3.6 WFS3 (Objetos API OGC)

WFS3 es la primera implementación de la nueva generación de protocolos OGC. Es descrito por el OGC API - Features - Part 1: Core documento.

Aquí hay un resumen informal rápido de las diferencias más importantes entre el conocido protocolo WFS y WFS3:

- WFS3 está basada en una API REST
- API WFS3 debe seguir las especificaciones OPENAPI
- WFS3 admite múltiples formatos de salida, pero no dicta ninguno (solo GeoJSON y HTML están disponibles actualmente en QGIS WFS3) y usa negociación de contenido para determinar qué formato se servirá al cliente
- JSON y HTML son ciudadanos de primera clase en WFS3
- WFS3 se autodocumenta (a través del punto final /api)
- WFS3 es totalmente navegable (a través de enlaces) y navegable

Importante: Si bien la implementación de WFS3 en QGIS puede hacer uso del parámetro MAP para especificar el archivo del proyecto, la especificación OPENAPI no permite parámetros de consulta adicionales. Por esta razón, se recomienda encarecidamente que MAP no esté expuesto en la URL y que el archivo del proyecto se especifique en el entorno por otros medios (es decir, estableciendo QGIS_PROJECT_FILE en el entorno a través de una regla de reescritura del servidor web).

Nota: La API punto final proporciona documentación completa de todos los parámetros y formatos de salida admitidos de su servicio. Los siguientes párrafos solo describirán los más importantes.
3.6.1 Representación de recurso

La implementación de QGIS Server WFS3 actualmente admite los siguientes formatos de representación de recursos (salida):

• HTML
• JSON

El formato que se sirve realmente dependerá de la negociación de contenido, pero se puede solicitar explícitamente un formato específico agregando un especificador de formato a los puntos finales.

Las extensiones de especificador de formato admitidas son:

• .json
• .html

Los alias de especificador de formato adicionales se pueden definir por puntos finales específicos:

• .openapi: alias para .json soportado por la API endpoint
• .geojson: alias para .json soportado por los endpoints Features y Feature

3.6.2 Puntos finales

La API proporciona una lista de puntos finales que los clientes pueden recuperar. El sistema está diseñado de tal manera que cada respuesta proporciona un conjunto de enlaces para navegar a través de todos los recursos proporcionados.

Los puntos finales proporcionados por la implementación de QGIS son:

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Ruta</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Página de Aterrizaje</td>
<td>/</td>
<td>Información general sobre el servicio y proporciona enlaces a todos los puntos finales disponibles.</td>
</tr>
<tr>
<td>Conformidad</td>
<td>/conformance</td>
<td>Información sobre la conformidad del servicio con los estándares.</td>
</tr>
<tr>
<td>API</td>
<td>/api</td>
<td>Descripción completa de los puntos finales proporcionados por el servicio y la estructura de los documentos devueltos</td>
</tr>
<tr>
<td>Colecciones</td>
<td>/collections</td>
<td>Lista de todas las colecciones (es decir, “capas vectoriales”) proporcionadas por el servicio</td>
</tr>
<tr>
<td>Colección</td>
<td>/collections/ {collectionId}</td>
<td>Información sobre una colección (nombre, metadatos, extensión, etc.)</td>
</tr>
<tr>
<td>Prestaciones</td>
<td>/collections/ {collectionId}/items</td>
<td>Lista de los objetos espaciales provistos por la colección</td>
</tr>
<tr>
<td>Objeto espacial</td>
<td>/collections/ {collectionId}/items/{featureId}</td>
<td>Información acerca de un objeto espacial solo</td>
</tr>
</tbody>
</table>

Página de Aterrizaje

El punto final principal es la Página de destino. Desde esa página es posible navegar a todos los puntos finales de servicio disponibles. La página de destino debe proporcionar enlaces a

• la definición de API (ruta /api relaciones de enlace service-desc y service-doc),
• la declaración de conformidad (ruta /conformidad, relación de enlace conformidad), y
• las Colecciones (ruta /colecciones, relación de enlace datos).
Definición API

La Definición de API es una descripción compatible con OPENAPI de la API proporcionada por el servicio. En su representación HTML, es una página navegable donde todos los puntos finales y sus formatos de respuesta se enumeran y documentan con precisión. La ruta de este punto final es /api.

La definición de API proporciona una documentación completa y autorizada del servicio, incluidos todos los parámetros admitidos y los formatos devueltos.

Nota: Este punto final es análogo a GetCapabilities de WFS's

Lista de colecciones

El punto final de colecciones proporciona una lista de todas las colecciones disponibles en el servicio. Dado que el servicio «sirve» a un solo proyecto QGIS, las colecciones son las capas vectoriales del proyecto actual (si se publicaron como WFS en las propiedades del proyecto). La ruta de este punto final es /collections/.

Figura 3.23: Página de aterrizaje de Servidor WFS3

Figura 3.24: Página de lista de colecciones de servidor WFS3
Detalle de colección

Si bien el punto final de las colecciones no proporciona información detallada sobre cada colección disponible, esa información está disponible en los puntos finales `/collections/{collectionId}`). La información típica incluye la extensión, una descripción, SRC y otros metadatos.

La representación HTML también proporciona un mapa navegable con las funciones disponibles.

![Figura 3.25: Página de detalles de la colección del servidor WFS3](image)

Lista de objetos espaciales

Este punto final proporciona una lista de todas las funciones de una colección que conocen el ID de la colección. La ruta de este punto final es `/collections/{collectionId}/items`.

La representación HTML también proporciona un mapa navegable con las funciones disponibles.

Nota: Este punto final es análogo a `GetFeature` en WFS 1 y WFS 2.
Este punto final proporciona toda la información disponible sobre una única entidad, incluidos los atributos de la entidad y su geometría. La ruta de este punto final es /collections/{collectionId}/items/{itemId}.

La representación HTML también proporciona un mapa navegable con la geometría de la entidad.

Detalle de objeto espacial

Figura 3.26: Página de lista de características del servidor WFS3

Figura 3.27: Página de detalles de la entidad del servidor WFS3

3.6. WFS3 (Objetos API OGC)
3.6.3 Paginación

La paginación de una larga lista de características se implementa en la API de OGC a través de enlaces siguiente y anterior, el servidor QGIS construye estos enlaces agregando límite y compensación como parámetros de cadena de consulta.

URL ejemplo:

```
```

Nota: El valor máximo aceptable para límite se puede configurar con el ajuste de configuración del servidor QGIS_SERVER_API_WFS3_MAX_LIMIT (ver: Variables de entorno).

3.6.4 Filtrado de objetos espaciales

Las funciones disponibles en una colección se pueden filtrar/buscar especificando uno o más filtros.

Filtro de fecha y hora

Las colecciones con atributos de fecha y/o fecha y hora se pueden filtrar especificando un argumento fecha y hora en la cadena de consulta. De forma predeterminada, el primer campo de fecha/fecha y hora se utiliza para el filtrado. Este comportamiento se puede configurar estableciendo una dimensión de «Fecha» u «Hora» en Servidor QGIS -> Dimensión del cuadro de diálogo de propiedades del capa.

La sintaxis de filtrado de fecha y hora se describe completamente en Definición API y también admite rangos (se incluyen los valores de inicio y finalización) además de valores únicos.

URL ejemplos:

- Devuelve solo las funciones con coincidencia de dimensión de fecha 2019-01-01

  ```
  ```

- Devuelve solo las funciones con coincidencia de dimensión de fecha y hora 2019-01-01T01:01:01

  ```
  ```

- Devuelve solo las entidades con dimensión de fecha y hora en el rango 2019-01-01T01:01:01 - 2019-01-01T12:00:00

  ```
  http://localhost/qgisserver/wfs3/collection_one/items.json?datetime=2019-01-01T01:01:01/2019-01-01T12:00:00
  ```

Filtro de recuadro delimitador

Se puede especificar un filtro espacial de cuadro delimitador con el parámetro bbox:

El orden de los elementos separados por comas es:

- Esquina inferior izquierda, longitud WGS 84
- Esquina inferior izquierda, latitud WGS 84
- Esquina superior derecha, longitud WGS 84
- Esquina superior derecha, latitud WGS 84
Nota: Las especificaciones OGC también permiten un especificador bbox de 6 elementos donde el tercer y sexto elemento son los componentes Z, esto aún no es compatible con el servidor QGIS.

URL ejemplo:
```
http://localhost/qgisserver/wfs3/collection_one/items.json?bbox=-180,-90,180,90
```

Si el SRC del cuadro delimitador no es WGS 84, se puede especificar un SRC diferente utilizando el parámetro opcional bbox-crs. El identificador de formato SRC debe estar en el formato 'OGC URI <https://www.opengis.net/def/crs/>'

URL ejemplo:
```
```

Filtros de Atributos

Los filtros de atributos se pueden combinar con el filtro de cuadro delimitador y están en la forma general: `<attribute name>=<attribute value>`. Se pueden combinar varios filtros usando el operador «Y».

URL ejemplo:
```
http://localhost/qgisserver/wfs3/collection_one/items.json?attribute_one=my%20value
```

Coincidencias parciales también son soportadas usando el operador * («estrella»)

URL ejemplo:
```
http://localhost/qgisserver/wfs3/collection_one/items.json?attribute_one=*value
```

3.6.5 Ordenar Entidad

Es posible ordenar el conjunto de resultados por valor de campo utilizando el parámetro de consulta `sortby`.

Los resultados se ordenan en orden ascendente de forma predeterminada. Para ordenar los resultados en orden descendente, una bandera booleana (sortdesc) puede establecerse:

```
http://localhost/qgisserver/wfs3/collection_one/items.json?sortby=name&sortdesc=1
```

3.6.6 Selección de atributos

Los atributos de características devueltos por una llamada :ref:`ogc_api_features_features_list` se pueden limitar agregando una lista de nombres de atributos separados por comas en el argumento opcional de cadena de consulta `properties`.

URL ejemplo:
```
http://localhost/qgisserver/wfs3/collection_one/items.json?properties=name
```
3.6.7 Personaliza las páginas HTML

La representación HTML utiliza un conjunto de plantillas HTML para generar la respuesta. La plantilla es analizada por un motor de plantillas llamado **Inja**. Las plantillas se pueden personalizar reemplazándolas (consulte: [Sobreescritura de Plantilla](#)). La plantilla tiene acceso a los mismos datos que están disponibles para la representación JSON y algunas funciones adicionales están disponibles para la plantilla:

Funciones personalizadas de plantilla

- `path_append(path)`: adjunta una ruta de directorio a la actual url
- `path_chomp(n)`: borra el número especificado «n» de componentes del directorio de la ruta url actual
- `json_dump()`: imprime los datos JSON pasados a la plantilla
- `links_filter(links, key, value)`: Devuelve enlaces filtrados de una lista de enlaces
- `content_type_name(content_type)`: Devuelve un nombre corto de un tipo de contenido, por ejemplo «text/html» devolverá «HTML»

Sobreescritura de Plantilla

Las plantillas y los activos estáticos se almacenan en subdirectorios del directorio de recursos de API predeterminado del servidor QGIS (`/usr/share/qgis/resources/server/api/` en un sistema Linux), el directorio base se puede personalizar cambiando la variable de entorno `QGIS_SERVER_API_RESOURCES_DIRECTORY`.

Una instalación típica de Linux tendrá el siguiente árbol de directorios:

```
/usr/share/qgis/resources/server/api/
│   └── ogc
│       └── static
|           └── jsonFormatter.min.css
|           └── static
|                   └── jsonFormatter.min.js
|                        └── style.css
|                            └── templates
|                                └── wfs3
|                                       └── describeCollection.html
|                                               └── describeCollections.html
|                                                  └── footer.html
|                                                      └── getApiDescription.html
|                                                          └── getFeature.html
|                                                              └── getFeatures.html
|                                                                  └── getLandingPage.html
|                                                                      └── getRequirementClasses.html
|                                                                              └── header.html
|                                                                                   └── leaflet_map.html
|                                                                                       └── links.html
```

Para anular las plantillas, puede copiar todo el árbol a otra ubicación y señalar `QGIS_SERVER_API_RESOURCES_DIRECTORY` a la nueva ubicación.
The QGIS Server Catalog is a simple catalog that shows the list of QGIS projects served by the QGIS Server. It provides a user-friendly fully browsable website with basic mapping capabilities to quickly browse the datasets exposed through those QGIS projects.

The QGIS Server catalog uses the variables `QGIS_SERVER_LANDING_PAGE_PROJECTS_DIRECTORIES` and `QGIS_SERVER_LANDING_PAGE_PROJECTS_PG_CONNECTIONS` (see *Variables de entorno*)
You can consult the metadata associated to a project and the services that it provides. Links to those services are also given.

By browsing a project, it is listed the dataset that it serves.
Figura 4.3: Browsing a dataset served by a project in the Server Catalog

Use Right click on a layer to display the attribute table associated to it.

Figura 4.4: Attribute table associated to a layer

It is possible to consult information of the elements in the map as shown in the image below:
Figura 4.5: Consultando información de un elemento del mapa
5.1 Instalación

La instalación de un complemento de ejemplo HelloWorld para probar los servidores. Se puede crear un directorio para mantener los complementos del servidor. Esto se especificará en la configuración del host virtual y transmitirlo al servidor a través de una variable de entorno.

```bash
mkdir -p /var/www/qgis-server/plugins
cd /var/www/qgis-server/plugins
wget https://github.com/elpaso/qgis-helloserver/archive/master.zip
unzip master.zip
mv qgis-helloserver-master HelloServer
```

5.2 Configuración del servidor HTTP

5.2.1 Apache

Para poder usar complementos de servidor, FastCGI necesita saber dónde buscar. Entonces, tenemos que modificar el archivo de configuración de Apache para indicar la variable de entorno QGIS_PLUGINPATH a FastCGI:

```bash
FcgidInitialEnv QGIS_PLUGINPATH "/var/www/qgis-server/plugins"
```

Además, es necesaria una autorización HTTP básica para jugar con el complemento HelloWorld introducido anteriormente. Entonces tenemos que actualizar el archivo de configuración de Apache por última vez:

```bash
# Needed for QGIS HelloServer plugin HTTP BASIC auth
<IfModule mod_fcgid.c>
  RewriteEngine on
  RewriteCond %{HTTP:Authorization} .
  RewriteRule .* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]
</IfModule>
```

A continuación, reinicie Apache:

```bash
systemctl restart apache2
```
5.3 Como usar un complemento

Pruebe el servidor con el complemento HelloWorld:

```
wget -q -O - "http://localhost/cgi-bin/qgis_mapserv.fcgi?SERVICE=HELLO"
HelloServer!
```

Puede echar un vistazo a las GetCapabilities predeterminadas del servidor QGIS en:

```
http://localhost/cgi-bin/qgis_mapserv.fcgi?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities
```
6.1 Registro

Para registrar las solicitudes enviadas al servidor, debe configurar la siguiente variable de entorno:

- **QGIS_SERVER_LOG_STDERR**

Con las siguientes variables, el registro se puede personalizar aún más:

- **QGIS_SERVER_LOG_LEVEL**
- **QGIS_SERVER_LOG_PROFILE**

6.2 Variables de entorno

Puede configurar algunos aspectos de QGIS Server configurando **variables de entorno**.

Según el servidor HTTP y cómo ejecute QGIS Server, hay varias formas de definir estas variables. Esto se describe completamente en *Servidor HTTP Apache*.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Descripción</th>
<th>Predeterminado</th>
<th>Servicios</th>
</tr>
</thead>
<tbody>
<tr>
<td>QGIS_OPTIONS_PATH</td>
<td>Especifica la ruta al directorio con la configuración. Funciona de la misma manera que la opción --optionspath de la aplicación QGIS. Está buscando un archivo de configuración en <code><QGIS_OPTIONS_PATH>/QGIS/QGIS3.ini</code>.</td>
<td>""</td>
<td>Todo</td>
</tr>
<tr>
<td>QGIS_PLUGINPATH</td>
<td>Útil si está utilizando complementos de Python para el servidor, esto establece la carpeta en la que se buscan complementos de Python.</td>
<td>""</td>
<td>Todo</td>
</tr>
<tr>
<td>QGIS_PROJECT_FILE</td>
<td>El archivo de proyecto .qgs o .qgz, normalmente pasado como un parámetro en la cadena de consulta (con MAP), también puede configurarlo como una variable de entorno (por ejemplo, usando el módulo Apache mod_rewrite).</td>
<td>""</td>
<td>Todo</td>
</tr>
<tr>
<td>QGIS_SERVER_API_RESOURCES</td>
<td>DNS (DIRECT) para todos los recursos estáticos de la API OGC (como OAPIF / WFS3) (plantillas HTML, CSS, JS, …)</td>
<td>dependiente del empaquetado</td>
<td>WFS</td>
</tr>
<tr>
<td>QGIS_SERVER_API_WFS3_MAX_LAYERS</td>
<td>Maximum de límite en una solicitud de capas «malas».</td>
<td>10000</td>
<td>WFS</td>
</tr>
<tr>
<td>QGIS_SERVER_CACHE_DIRECTORY</td>
<td>Especifica el directorio de caché de red en el sistema de archivos.</td>
<td>cache en directorio de perfil</td>
<td>Todo</td>
</tr>
<tr>
<td>QGIS_SERVER_CACHE_SIZE</td>
<td>Establece el tamaño de la caché de la red en MB.</td>
<td>50 MB</td>
<td>Todo</td>
</tr>
<tr>
<td>QGIS_SERVER_DISABLE_GETPRINT</td>
<td>Una opción a nivel de proyecto para mejorar el tiempo de lectura del proyecto al deshabilitar la carga de diseños.</td>
<td>falso</td>
<td>WMS</td>
</tr>
<tr>
<td>QGIS_SERVER_IGNORE_BAD_LAYERS</td>
<td>Las capas «malas» son capas que no se pueden cargar. El comportamiento predeterminado de QGIS Server es considerar el proyecto como no disponible si contiene una capa incorrecta. El comportamiento predeterminado se puede anular estableciendo esta variable en 1 o verdadero. En este caso, las capas «malas» simplemente se ignorarán y el proyecto se considerará válido y disponible.</td>
<td>falso</td>
<td>Todo</td>
</tr>
<tr>
<td>QGIS_SERVER_LANDING_PAGE_PROJECTS_DIRECTORIES</td>
<td>Directorios utilizados por el servicio de página de destino para encontrar proyectos .qgs y .qgz</td>
<td>""</td>
<td>Todo</td>
</tr>
<tr>
<td>QGIS_SERVER_LANDING_PAGE_PROJECTS_PG_CONNECTIONS</td>
<td>Cadenas de conexión de PostgreSQL utilizadas por el servicio de página de destino para encontrar proyectos</td>
<td>""</td>
<td>Todo</td>
</tr>
<tr>
<td>QGIS_SERVER_LOG_FILE</td>
<td>Especifique la ruta y el nombre del archivo. Asegúrese de que el servidor tenga los permisos adecuados para escribir en el archivo. El archivo debe ser automáticamente, solo envíe algunas solicitudes al servidor. Si no está allí, verifique los permisos.</td>
<td>""</td>
<td>Todo</td>
</tr>
</tbody>
</table>
6.3 Resumen de configuración

Cuando QGIS Server se está iniciando, tiene un resumen de todos los parámetros configurables gracias a las variables de entorno. Además, también se muestra el valor utilizado actualmente y el origen.

Por ejemplo con spawn-fcgi:

```bash
export QGIS_OPTIONS_PATH=/home/user/.local/share/QGIS/QGIS3/profiles/default/
export QGIS_SERVER_LOG_STDERR=1
spawn-fcgi -f /usr/lib/cgi-bin/qgis_mapserv.fcgi -s /tmp/qgisserver.sock -U www-
          → data -G www-data -n
QGIS Server Settings:

- QGIS_OPTIONS_PATH / '' (Override the default path for user configuration): '/
  → home/user/.local/share/QGIS/QGIS3/profiles/default/' (read from ENVIRONMENT_  
  → VARIABLE)

- QGIS_SERVER_PARALLEL_RENDERING / '/qgis/parallel_rendering' (Activate/  
  → Deactivate parallel rendering for WMS getMap request): 'true' (read from INI_  
  → FILE)

- QGIS_SERVER_MAX_THREADS / '/qgis/max_threads' (Number of threads to use when_  
  → parallel rendering is activated): '4' (read from INI_FILE)

- QGIS_SERVER_LOG_LEVEL / '' (Log level): '2' (read from ENVIRONMENT_VARIABLE)

- QGIS_SERVER_LOG_STDERR / '' (Activate/Deactivate logging to stderr): '1'—  
  → (read from ENVIRONMENT_VARIABLE)

- QGIS_PROJECT_FILE / '' (QGIS project file): '' (read from DEFAULT_VALUE)

- MAX_CACHE_LAYERS / '' (Specify the maximum number of cached layers): '100'—  
  → (read from DEFAULT_VALUE)

- QGIS_SERVER_CACHE_DIRECTORY / '/cache/directory' (Specify the cache_  
  → directory): '/root/.local/share/QGIS/QGIS3/profiles/default/cache' (read from_  
  → DEFAULT_VALUE)

- QGIS_SERVER_CACHE_SIZE / '/cache/size' (Specify the cache size): '52428800'—  
  → (read from INI_FILE)

Ini file used to initialize settings: /home/user/.local/share/QGIS/QGIS3/profiles/  
          → default/QGIS/QGIS3.ini
```

En este caso particular, sabemos que QGIS_SERVER_MAX_THREADS y
QGIS_SERVER_PARALLEL_RENDERING los valores se leen del archivo ini que se encuentra en
QGIS_OPTIONS_PATH directorio (que se define a través de una variable de entorno). Las entradas
correspondientes en el archivo ini son /qgis/max_threads y /qgis/parallel_rendering y sus valores son true y 4 hilos.
6.4 Conexión a archivo servicio

Para que apache conozca el archivo de servicio PostgreSQL (consulte la sección :ref: `pg-service-file`), debe hacer que su archivo *.conf* tenga este aspecto:

```
SetEnv PGSERVICEFILE /home/web/.pg_service.conf

<Directory "/home/web/apps2/bin/">
  AllowOverride None
  ......
```

6.5 Agregar fuentes a su servidor linux

Tenga en cuenta que puede usar proyectos QGIS que apunten a fuentes que pueden no existir por defecto en otras máquinas. Esto significa que si comparte el proyecto, puede verse diferente en otras máquinas (si las fuentes no existen en la máquina de destino).

Para asegurarse de que esto no suceda, solo necesita instalar las fuentes que faltan en la máquina de destino. Hacer esto en sistemas de escritorio suele ser trivial (hacer doble clic en las fuentes).

Para Linux, si no tiene un entorno de escritorio instalado (o prefiere la línea de comandos), debe:

- En sistemas basados en Debian:

  ```
sudo su
  mkdir -p /usr/local/share/fonts/truetype/myfonts && cd /usr/local/share/fonts/
  --truetype/myfonts

  # copy the fonts from their location
  cp /fonts_location/* .

  chown root *
  cd .. && fc-cache -f -v
  ```

- En sistemas basados en Debian:

  ```
sudo su
  mkdir /usr/share/fonts/myfonts && cd /usr/share/fonts/myfonts

  # copy the fonts from their location
  cp /fonts_location/* .

  chown root *
  cd .. && fc-cache -f -v
  ```
CAPÍTULO 7

Servidor de desarrollo

Una instalación de producción e implementación de QGIS Server generalmente implica la configuración de un componente de servidor web (por ejemplo, Apache o Nginx) que puede reenviar las solicitudes HTTP provenientes de los clientes a la aplicación binaria QGIS Server FastCGI.

Si desea probar rápidamente QGIS Server en su máquina local sin configurar e instalar una pila de servidor web completa, puede usar el servidor independiente de desarrollo de QGIS.

Esta es una aplicación independiente que proporciona un servidor web muy simple listo para servir los archivos de su proyecto.

Advertencia: El Servidor de Desarrollo Independiente no se ha desarrollado con el propósito de ser utilizado en producción, no se revisó para detectar vulnerabilidades de seguridad u otras condiciones de estrés que normalmente ocurrirán en un servidor expuesto públicamente.

Para lanzar el servidor:

```
$ qgis_mapserver
```

El puerto predeterminado que escucha el servidor de desarrollo es 8000. Salida de ejemplo:

```
QGIS Development Server listening on http://localhost:8000
CTRL+C to exit
127.0.0.1 [lun gen 20 15:16:41 2020] 5140 103ms "GET /wfs3/?MAP=/tests/testdata/qgis_server/test_project.qgs HTTP/1.1" 200
127.0.0.1 [lun gen 20 15:16:41 2020] 3298 2ms "GET /wfs3/static/jsonFormatter.min.js HTTP/1.1" 200
127.0.0.1 [lun gen 20 15:16:41 2020] 1678 3ms "GET /wfs3/static/jsonFormatter.min.css HTTP/1.1" 200
127.0.0.1 [lun gen 20 15:16:41 2020] 1310 5ms "GET /wfs3/static/style.css HTTP/1.1" 200
127.0.0.1 [lun gen 20 15:16:43 2020] 4285 13ms "GET /wfs3/collections?MAP=/tests/testdata/qgis_server/test_project.qgs HTTP/1.1" 200
```

El servidor tiene algunas opciones que se pueden pasar como argumentos de línea de comando. Puede verlos todos invocando al servidor con --h.
Usage: qgis_mapserver [options] [address:port]

QGIS Development Server

Options:
- `-h, --help` Displays this help.
- `-v, --version` Displays version information.
- `-l <logLevel>` Sets log level (default: 0)
 0: INFO
 1: WARNING
 2: CRITICAL
- `-p <projectPath>` Path to a QGIS project file (*.qgs or *.qgz), if specified it will override the query string MAP argument and the QGIS_PROJECT_FILE environment variable

Arguments:
- `addressAndPort` Listen to address and port (default: "localhost:8000")
 address and port can also be specified with the environment variables QGIS_SERVER_ADDRESS and QGIS_SERVER_PORT
CAPÍTULO 8

Despliegue en contenedores

Hay muchas formas de utilizar aplicaciones en contenedores, desde las más simples (imágenes simples de Docker) hasta las más sofisticadas (Kubernetes, etc.).

Consejo: Docker ejecuta una aplicación preempaquetada (también conocida como imágenes) que se pueden recuperar como fuentes (Dockerfile y recursos) para compilar o ya compiladas a partir de registros (privados o públicos).

Nota: Las descargas del paquete QGIS Debian-Ubuntu necesitan una clave de autenticación gpg válida. Consulte las páginas de instalación para actualizar el siguiente Dockerfile con la última clave y su valor de huella digital.

8.1 Imágenes de simple docker

Como la imagen de la ventana acoplable no existe en un registro público, necesitarás construirlo. Para hacerlo, cree un directorio qgis-server y dentro de su directorio:

- cree un archivo Dockerfile con este contenido:

```bash
FROM debian:buster-slim
ENV LANG=en_EN.UTF-8
RUN apt-get update \
    && apt-get install --no-install-recommends --no-install-suggests --allow-unauthenticated -y \
    gnupg \n    ca-certificates \n    wget
```

(continúa en la próxima página)
locales \n"localedef -i en_US -f UTF-8 en_US.UTF-8"
Add the current key for package downloading - As the key changes every year...
Please refer to QGIS install documentation and replace it and its...
"wget -O - https://qgis.org/downloads/qgis-2021.gpg.key | gpg --armor
"echo "deb http://qgis.org/debian buster main" >> /etc/apt/sources.list.d/"
"apt-get update"
"apt-get install --no-install-recommends --no-install-suggests --allow-
"apt-get remove --purge -y
"rm -rf /var/lib/apt/lists/*
"useradd -m qgis"
"chmod +x /tini"
"chown qgis:qgis /home/qgis/cmd.sh"
"USER qgis"
"WORKDIR /home/qgis"
"ENTRYPOINT ["/tini", "--"]
"CMD ["/home/qgis/cmd.sh"]

• cree un archivo cmd.sh con este contenido:

```
#!/bin/bash

[[ $DEBUG == "1" ]] && env
exec /usr/bin/xvfb-run --auto-servernum --server-num=1 /usr/bin/spawn-fcgi -p 5555
--n -d /home/qgis -- /usr/lib/cgi-bin/qgis_mapserv.fcgi
```

• construya la imagen con:

```
docker build -f Dockerfile -t qgis-server ./
```
8.1.1 Primero ejecute

Para ejecutar el servidor, necesitará un archivo de proyecto QGIS. Puede usar uno de los suyos o elegir esta muestra. Para hacerlo, cree un directorio: archivo: datos dentro del directorio qgis-server y copie su archivo en él. Para cumplir con las siguientes explicaciones, cámbiele el nombre a osm.qgs.

Nota: Es posible que deba agregar direcciones URL anunciadas en la pestaña QGIS Server de Project ➤ Properties si las GetCapabilities están rotas. Por ejemplo, si su servidor está expuesto en el puerto 8080, colocará esto para la URL anunciada http://localhost:8080/qgis-server/. Más información disponible en la sección Configure su proyecto y posteriores.

Ahora, puede ejecutar el servidor con:

```
docker network create qgis
docker run -d --rm --name qgis-server --net=qgis --hostname=qgis-server \
    -v $(pwd)/data:/data:ro -p 5555:5555 \
    -e "QGIS_PROJECT_FILE=/data/osm.qgs" \
    qgis-server
```

Opciones usadas:

- `-d`: ejecuta en segundo plano
- `--rm`: borra el contenedor cuando es detenido
- `--name`: nombre del contenedor a crear
- `--net`: (creada previamente) subred
- `--hostname`: nombre de host del contenedor, para referencia posterior
- `-v`: directorio de datos local a montar en el contenedor
- `-p`: mapeo del puerto del host/contenedor
- `-e`: variable de entorno a usar en el contenedor

Para probar, escriba `docker ps | grep qgis-server` and you should see a line with qgis-server:

<table>
<thead>
<tr>
<th>CONTAINER ID</th>
<th>IMAGE</th>
<th>COMMAND</th>
<th>CREATED</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4de8192da76e</td>
<td>qgis-server</td>
<td>"/tini -- /home/qgis..."</td>
<td>3 seconds ago</td>
<td>Up 2 seconds...</td>
</tr>
<tr>
<td>0.0.0.0:5555-5555/tcp</td>
<td>qgis-server</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.1.2 Muestra utilizable

Como el servidor solo acepta conexiones fastcgi, necesita un servidor HTTP que maneje este protocolo. Para hacerlo, tenemos que crear un archivo de configuración Nginx simple e iniciar una imagen Nginx.

Cree un archivo nginx.conf en el directorio actual con este contenido:

```
server {
    listen 80;
    server_name _;
    location /
    {
        root /usr/share/nginx/html;
        index index.html index.htm;
    }
    location /qgis-server {
        proxy_buffers 16 16k;
        proxy_buffer_size 16k;
    }
```

(continué en la próxima página)
gzip off;
include fastcgi_params;
fastcgi_pass qgis-server:5555;
}

y escriba este comando:

docker run -d --rm --name nginx --net=qgis --hostname=nginx \
 -v $(pwd)/nginx.conf:/etc/nginx/conf.d/default.conf:ro -p 8080:80 \
 nginx:1.13

Para verificar la disponibilidad de capacidades, escriba un navegador
http://localhost:8080/qgis-server/?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities

8.1.3 Limpieza

Para limpiar las imágenes cargadas, escriba:

docker stop qgis-server nginx

8.2 Pilas de Docker

El método anterior es programable, pero no es fácil de empaquetar, estandarizar o administrar.

Para trabajar con un conjunto de imágenes de la ventana acoplable, puede usar una pila de la ventana acoplable
administrada por un orquestador. En una pila, las imágenes funcionan en la misma red privada y puede iniciar /
detener toda la pila o implementar la pila en otros trabajadores. Hay muchos orquestadores, por ejemplo Swarm,
Kubernetes y Mesos.

A continuación, presentaremos configuraciones simples con fines de prueba. No son aptos para la producción.

8.2.1 Swarm/docker-compose

Docker ahora tiene su propio orquestador: Swarm (compatible con archivos de composición de Docker). Tienes
que "habilitarlo <https://docs.docker.com/get-started/orchestration/#enable-docker-swarm>`_ (la versión para Mac
también funcionará con Linux).

Descripción de pila

Ahora que tiene Swarm funcionando, cree el archivo de servicio (consulte `Implementar en Swarm<https://docs.docker.com/get-started/swarm-deploy/>`_ qgis-stack.yaml:

```yaml
version: '3.7'
services:
  qgis-server:
    # Should use version with utf-8 locale support:
    image: qgis-server:latest
    volumes:
      - REPLACE_WITH_FULL_PATH/data:/data:ro
    environment:
      - LANG=en_EN.UTF-8
      - QGIS_PROJECT_FILE=/data/qsources
```

(continue en la próxima página)
Para implementar (o actualizar) la pila, escriba:

```bash
docker stack deploy --c qgis-stack.yaml qgis-stack
```

Verifique el estado de implementación de la pila hasta que obtenga 1/1 en la columna réplicas:

```bash
docker stack services qgis-stack
```

Algo como:

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>MODE</th>
<th>REPLICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>gmx7ewlwsgqt</td>
<td>qgis_nginx</td>
<td>replicated</td>
<td>1/1</td>
</tr>
<tr>
<td>nginx:1.13</td>
<td></td>
<td>*:8080->80/tcp</td>
<td></td>
</tr>
<tr>
<td>l0v2e7c143u3</td>
<td>qgis_qgis-server</td>
<td>replicated</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para verificar las capacidades de WMS, escriba un navegador web http://localhost:8080/qgis-server/?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities

Limpieza

Para limpiar, escriba:

```bash
docker stack rm qgis-stack
```

8.2.2 Kubernetes

Instalación

Si tiene una instalación de Docker Desktop, usar Kubernetes (también conocido como k8s) es bastante sencillo: habilitar k8s.

Si no, siga el tutorial de minikube o microk8s para Ubuntu.

Como la instalación de Kubernetes puede ser realmente compleja, solo nos centraremos en los aspectos utilizados por esta demostración. Para obtener más información / más detallada, consulte la documentación oficial.
microk8s

microk8s necesita pasos adicionales: debe habilitar el registro y etiquetar la imagen del servidor qgis para que Kubernetes encuentre las imágenes creadas.

Primero, habilite el registro:

microk8s enable dashboard dns registry

Luego, etiquete y envíe la imagen a su registro recién creado:

docker tag qgis-server 127.0.0.1:32000/qgis-server && docker push 127.0.0.1:32000/qgis-server

Finalmente, agregue o complete el `/etc/docker/daemon.json` para tener su registro **127.0.0.1:32000** enumerados en el campo `registros inseguros`:

```
{
    "insecure-registries": ["127.0.0.1:32000"]
}
```

Creando manifiestos

Kubernetes describe los objetos para implementar en manifiestos yaml. Hay muchos tipos diferentes, pero solo usaremos implementaciones (manejar pods, es decir, imágenes de Docker) y servicios para exponer las implementaciones a propósitos internos o externos.

Manifiestos de implementación

Cree un archivo `deployments.yaml` con este contenido:

```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: qgis-server
  namespace: default
spec:
  replicas: 1
  selector:
    matchLabels:
      myLabel: qgis-server
  template:
    metadata:
      labels:
        myLabel: qgis-server
    spec:
      containers:
      - name: qgis-server
        image: localhost:32000/qgis-server:latest
        imagePullPolicy: IfNotPresent
        env:
        - name: LANG
          value: en_EN.UTF-8
        - name: QGIS_PROJECT_FILE
          value: /data/osm.qgs
        - name: QGIS_SERVER_LOG_LEVEL
          value: "0"
        - name: DEBUG
          value: "1"
```

(continuado en la próxima página)
Manifiestos de servicio

Cree un archivo services.yaml con este contenido:

```yaml
apiVersion: v1
type: Service
metadata:
  name: qgis-server
spec:
  selector:
    myLabel: qgis-server 
  ports:
    - port: 5555
      targetPort: 5555
```

(continúa en la próxima página)
Implementar manifiesto

Para implementar las imágenes y los servicios en Kubernetes, se puede usar el panel (haga clic en + en la parte superior derecha) o la línea de comandos.

Nota: Cuando use la línea de comando con microk8s, tendrá que anteponer cada comando con microk8s.

Para implementar o actualizar sus manifiestos:

```
kubectl apply -k ./
```

Para verificar qué está implementado actualmente:

```
kubectl get pods, services, deployment
```

Debería obtener algo como:

```
NAME             READY  STATUS      RESTARTS AGE
pod/qgis-nginx-54845ff6f6-8skp9  1/1  Running  0   27m
pod/qgis-server-75df8dd89-c7t7s  1/1  Running  0   27m

NAME                    TYPE          CLUSTER-IP          EXTERNAL-IP     PORT(S)        AGE
service/Kubernetes      ClusterIP    10.152.183.1         <none>          443/TCP        5h51m
service/qgis-exec-server ClusterIP    10.152.183.218       <none>          5555/TCP       35m
service/qgis-nginx      NodePort     10.152.183.234       <none>          80:30080/TCP   27m
service/qgis-server     ClusterIP    10.152.183.132       <none>          5555/TCP       27m

NAME                    READY     UP-TO-DATE AVAILABLE  AGE
deployment.apps/qgis-nginx  1/1       1          1         27m
deployment.apps/qgis-server  1/1       1          1         27m
```

Para leer los registros de nginx / qgis, escriba:

```
kubectl logs -f POD_NAME
```

Para verificar las capacidades de WMS, escriba un navegador web http://localhost:30080/qgis-server/?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities
Limpieza

Para limpiar, escriba:

```
kubectl delete -n default service/qgis-server service/qgis-nginx deployment/qgis- --nginx deployment/qgis-server
```

8.3 Implementar nube

Administrar su propio clúster de servidores para manejar la implementación de aplicaciones en contenedores es un trabajo complejo. Tiene que manejar varios problemas, como hardware, ancho de banda y seguridad en diferentes niveles.

Las soluciones de implementación en la nube pueden ser una buena alternativa cuando no desea centrarse en la gestión de la infraestructura.

Una implementación en la nube puede utilizar mecanismos propietarios, pero también son compatibles con las etapas explicadas anteriormente. (docker images y stack management).

8.3.1 Caso de uso de AWS

Para usar Kubernetes, puede usar la consola web de AWS o la herramienta de línea de comandos `kubectl` y tener los permisos / roles adecuados. Luego, con un entorno `kubectl` bien configurado, puede reusar la Kubernetes manifests.
CAPÍTULO 9

FAQ Preguntas frecuentes

• ¿Cuál es la diferencia entre QGIS Desktop y QGIS Server?

El Escritorio de QGIS tiene una interfaz gráfica de usuario y le permite crear y modificar mapas. El Servidor QGIS es una aplicación servidor que sirve sus archivos de proyectos QGIS a usuarios finales de aplicaciones por medio de servicios web OGC como WMS, WFS, etc.

• ¿Qué es OGC?

El OGC (Open Geospatial Consortium) es una organización internacional sin ánimo de lucro is an international not for profit organization comprometida en hacer estándares abiertos de calidad para la comunidad geoespacial global.

• ¿Nombre de algunos otros servidores de mapas web?

ArcGIS server, Geoserver, Mapserver, Mapnik etc.

• ¿Cómo comparar QGIS Server con otros servidores de mapas web? (2021/01/01)

<table>
<thead>
<tr>
<th>Objetos espaciales</th>
<th>QGIS Server</th>
<th>GeoServer</th>
<th>ArcGIS Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desde</td>
<td>2006</td>
<td>2001</td>
<td>1999</td>
</tr>
<tr>
<td>Licencia</td>
<td>GPL</td>
<td>GPL</td>
<td>comercial</td>
</tr>
<tr>
<td>Soporte comercial</td>
<td>Multiplas empresas</td>
<td>Multiplas empresas</td>
<td>ESRI y su red de vendedores</td>
</tr>
<tr>
<td>Tecnología</td>
<td>C++/python</td>
<td>Java</td>
<td>C++</td>
</tr>
<tr>
<td>cache de Tesela</td>
<td>si</td>
<td>si</td>
<td>(via GeoWebCache)</td>
</tr>
<tr>
<td>3D</td>
<td>No</td>
<td>No</td>
<td>Sí</td>
</tr>
<tr>
<td>Consultando</td>
<td>Filtros FES (2.0) y OGC (1.0)</td>
<td>Filtros CQL y OGC</td>
<td>filtros OGC</td>
</tr>
<tr>
<td>Generación de informe</td>
<td>si</td>
<td>si</td>
<td>si</td>
</tr>
<tr>
<td>Administración del Servidor</td>
<td>si via terceros (LizMap, QWC2, etc.)</td>
<td>web + API REST</td>
<td>web + API REST</td>
</tr>
<tr>
<td>Capa del proyecto SIG/edición de simbología</td>
<td>Completa a través de la GUI dedicada</td>
<td>simple a través de la interfaz web</td>
<td>Completa a través de la GUI dedicada</td>
</tr>
</tbody>
</table>

• ¿Cuáles son las versiones de la especificación OGC implementadas en el servidor QGIS en comparación con otros servidores de mapas web?? (2021/01/01)
- ¿Qué es un cache de tesela?

Los mapas suelen ser estáticos. Como la mayoría de los clientes de mapeo procesan datos de WMS (Web Map Service) cada vez que son consultados, esto puede resultar en un procesamiento innecesario y mayores tiempos de espera.

La caché de teselas optimiza esta experiencia al guardar (almacenar en caché) imágenes de mapas, o teselas, a medida que se solicitan, actuando de hecho como un proxy entre el cliente (como OpenLayers o Google Maps) y el servidor (cualquier servidor compatible con WMS). A medida que se solicitan nuevos mapas y mosaicos, el servidor QGIS intercepta estas llamadas y devuelve mosaicos pre-renderizados si están almacenados, o llama al motor QGIS para generar nuevos mosaicos según sea necesario. Por lo tanto, una vez que se almacenan los mosaicos, la velocidad de representación del mapa aumenta muchas veces, creando una experiencia de usuario mucho mejor.

- ¿Qué es PostgreSQL?

`PostgreSQL <https://www.postgresql.org/>`_ es una poderosa, base de datos relacional de objetos de código abierto para QGIS.

- ¿Qué es PostGIS?

PostGIS es un extensor de base de datos espacial para la base de datos relacional de objetos PostgreSQL. Agrega soporte para objetos geográficos permitiendo que las consultas de ubicación se ejecuten en SQL.

- Continuará…