7.1 Mappa
- Layer
- Impostazioni
- Plugin
- Vettore
- Raster
- Database
- Web
- Mesh
- Processing
- Guida
- QGIS

7.2 Pannelli e Barre degli strumenti
- Barre degli strumenti
- Pannelli

7.3 Mappa
- Visualizzazione della mappa
- Impostazioni aggiuntive per la visualizzazione mappa
- Esportare la visualizzazione della mappa

7.4 Visualizzazione Mappa 3D
- Opzioni di navigazione
- Creare una animazione
- Impostazione della scena
- Layer vettoriali 3D

7.5 Barra di Stato
- Barra Localizzatore
- Azioni di reporting
- Gestione della mappa
- Messaggi

8 Il pannello Browser

8.1 Risorse che possono essere aperte / eseguite dal Browser
- Preferiti
- Segnalibri Spaziali
- Home
- /
- Geopackage
- SpatialLite
- PostGIS
- MSSQL
- DB2
- WMS/WMTS
- Vector Tile
- XYZ Tile
- WCS
- WFS / OGC API - Features
- OWS
- ArcGIS Map Service
- ArcGIS Features Service
- GeoNode

8.2 Voci di primo livello del pannello Browser

8.2.1 Preferiti
- Home

8.2.2 Segnalibri Spaziali

8.2.3 Home

8.2.4 /

8.2.5 Geopackage

8.2.6 SpatialLite

8.2.7 PostGIS

8.2.8 MSSQL

8.2.9 DB2

8.2.10 WMS/WMTS

8.2.11 Vector Tile

8.2.12 XYZ Tile

8.2.13 WCS

8.2.14 WFS / OGC API - Features

8.2.15 OWS

8.2.16 ArcGIS Map Service

8.2.17 ArcGIS Features Service

8.2.18 GeoNode

8.3 Risorse

9 Configurazione QGIS

9.1 Opzioni
- Impostazioni generali
- Impostazioni di sistema
- Impostazioni SR
<table>
<thead>
<tr>
<th>Capitolo</th>
<th>Titolo</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.1</td>
<td>Visualizzazione</td>
<td>134</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Zoom e Pan</td>
<td>136</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Segnalibri Spaziali</td>
<td>138</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Decorazioni</td>
<td>140</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Note testuali</td>
<td>147</td>
</tr>
<tr>
<td>11.4.6</td>
<td>Misurazioni</td>
<td>149</td>
</tr>
<tr>
<td>11.5</td>
<td>Interagire con gli elementi</td>
<td>151</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Selezionare elementi</td>
<td>151</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Informazione Elementi</td>
<td>154</td>
</tr>
<tr>
<td>11.6</td>
<td>Salvare e condividere le proprietà di un layer</td>
<td>159</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Gestione stili personalizzati</td>
<td>159</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Salvare gli stili in un File o in un Database</td>
<td>160</td>
</tr>
<tr>
<td>11.6.3</td>
<td>File di definizione Layer</td>
<td>162</td>
</tr>
<tr>
<td>11.7</td>
<td>Memorizzazione valori nelle Variabili</td>
<td>162</td>
</tr>
<tr>
<td>11.8</td>
<td>Autenticazione</td>
<td>163</td>
</tr>
<tr>
<td>11.9</td>
<td>Widget comuni</td>
<td>164</td>
</tr>
<tr>
<td>11.9.1</td>
<td>Scelta colore</td>
<td>164</td>
</tr>
<tr>
<td>11.9.2</td>
<td>Widget Simbolo</td>
<td>168</td>
</tr>
<tr>
<td>11.9.3</td>
<td>Selezione carattere</td>
<td>168</td>
</tr>
<tr>
<td>11.9.4</td>
<td>Selezione unità</td>
<td>169</td>
</tr>
<tr>
<td>11.9.5</td>
<td>Formattazione numeri</td>
<td>170</td>
</tr>
<tr>
<td>11.9.6</td>
<td>Metodi di fusione</td>
<td>171</td>
</tr>
<tr>
<td>11.9.7</td>
<td>Impostazione Sovrascrittura definita dai dati</td>
<td>171</td>
</tr>
<tr>
<td>12</td>
<td>La Libreria degli Stili</td>
<td>175</td>
</tr>
<tr>
<td>12.1</td>
<td>Il Gestore di Stile</td>
<td>175</td>
</tr>
<tr>
<td>12.1.1</td>
<td>La finestra di dialogo Gestore di Stile</td>
<td>175</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Impostazione di una Scala di Colori</td>
<td>181</td>
</tr>
<tr>
<td>12.2</td>
<td>Il Selettore dei Simboli</td>
<td>182</td>
</tr>
<tr>
<td>12.2.1</td>
<td>L'albero dei layer dei simboli</td>
<td>183</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Configurare un simbolo</td>
<td>184</td>
</tr>
<tr>
<td>12.3</td>
<td>Impostare una etichetta</td>
<td>193</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Formattare etichetta testuale</td>
<td>195</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Configurare l'interazione con le etichette</td>
<td>202</td>
</tr>
<tr>
<td>12.4</td>
<td>Creare Simboli 3D</td>
<td>210</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Layer puntuali</td>
<td>211</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Layer Lineari</td>
<td>212</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Layer Poligonali</td>
<td>213</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Esempio di applicazione</td>
<td>214</td>
</tr>
<tr>
<td>13</td>
<td>Gestione fonti dati</td>
<td>215</td>
</tr>
<tr>
<td>13.1</td>
<td>Accedere ai dati</td>
<td>215</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Il Pannello Browser</td>
<td>217</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Il DB Manager</td>
<td>220</td>
</tr>
<tr>
<td>13.1.3</td>
<td>Strumenti di caricamento per specifici provider di dati</td>
<td>221</td>
</tr>
<tr>
<td>13.1.4</td>
<td>Formati QGIS personalizzati</td>
<td>237</td>
</tr>
<tr>
<td>13.1.5</td>
<td>QLR - QGIS File Definizione Layer</td>
<td>237</td>
</tr>
<tr>
<td>13.1.6</td>
<td>Connessione a web services</td>
<td>238</td>
</tr>
<tr>
<td>13.2</td>
<td>Creare Layer</td>
<td>240</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Creare nuovi layer Vettore</td>
<td>240</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Creare nuovi layer da layer esistente</td>
<td>246</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Creazione di nuovi file DXF</td>
<td>249</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Creare nuovi layer dagli appunti</td>
<td>250</td>
</tr>
<tr>
<td>13.2.5</td>
<td>Creazione di layer virtuali</td>
<td>251</td>
</tr>
<tr>
<td>13.3</td>
<td>Esplorare i formati dati e i campi</td>
<td>253</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Dati Raster</td>
<td>253</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Dati vettoriali</td>
<td>254</td>
</tr>
</tbody>
</table>
14 Lavorare con i vettori

14.1 La finestra di dialogo Proprietà dei vettori

14.1.1 Proprietà Informazioni	263
14.1.2 Proprietà Sorgente	264
14.1.3 Proprietà Simbologia	264
14.1.4 Proprietà etichette	267
14.1.5 Proprietà Diagrammi	289
14.1.6 Proprietà Maschere	300
14.1.7 Proprietà Vista 3D	304
14.1.8 Proprietà Campi	305
14.1.9 Proprietà Modulo Attributi	306
14.1.10 Proprietà Join	307
14.1.11 Proprietà Dati Ausiliari	314
14.1.12 Proprietà Azioni	316
14.1.13 Proprietà Suggerimenti	325
14.1.14 Proprietà Visualizzazione	330
14.1.15 Scheda Variabili	331
14.1.16 Scheda Metadati	333
14.1.17 Proprietà Dipendenze	333
14.1.18 Proprietà Legenda	334
14.1.19 Proprietà Server QGIS	334
14.1.20 Proprietà Digitalizzazione	335

14.2 Espressioni

| 14.2.1 Il Calcolatore di campi | 338 |
| 14.2.2 Editor delle Funzioni | 343 |

14.3 Lista delle funzioni

14.3.1 Funzioni di Aggregazione	345
14.3.2 Funzioni Array	345
14.3.3 Funzioni colore	356
14.3.4 Funzioni Condizionali	364
14.3.5 Funzioni di conversione	370
14.3.6 Funzioni personalizzate	373
14.3.7 Funzioni di data e ora	378
14.3.8 Campi e Valori	379
14.3.9 Funzioni per i File e i Percorsi	389
14.3.10 Funzioni modulo	389
14.3.11 Funzioni varie di confronto	392
14.3.12 Funzioni Generali	392
14.3.13 Funzioni Geometria	394
14.3.14 Funzioni per il Layout	397
14.3.15 Layer della Mappa	417
14.3.16 Funzioni mappa	447
14.3.17 Funzioni Matematiche	448
14.3.18 Operatori	448
14.3.19 Funzioni di Processing	452
14.3.20 Funzioni Raster	461
14.3.21 Funzioni relative ai record e agli attributi	462
14.3.22 Relazioni	462
14.3.23 Funzioni Stringa	463
14.3.24 Espressioni utente	470
14.3.25 Variabili	470
14.3.26 Funzioni recenti	479

14.4 Lavorare con la tabella degli attributi

<p>| 14.4.1 Premessa: Tabelle spaziali e non spaziali | 483 |
| 14.4.2 Introduzione all’interfaccia della tabella degli attributi | 483 |
| 14.4.3 Interagire con gli elementi nella tabella degli attributi | 488 |
| 14.4.4 Usare le azioni sugli oggetti | 490 |
| 14.4.5 Modifica dei valori nella tabella degli attributi | 492 |</p>
<table>
<thead>
<tr>
<th>Capitolo</th>
<th>Titolo</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3.3</td>
<td>Esportare in formato SVG</td>
<td>641</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Esportare in formato PDF</td>
<td>642</td>
</tr>
<tr>
<td>18.3.5</td>
<td>Generazione Atlante</td>
<td>644</td>
</tr>
<tr>
<td>18.4</td>
<td>Creare un Report</td>
<td>649</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Che cos'è?</td>
<td>649</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Comincia da qui</td>
<td>649</td>
</tr>
<tr>
<td>18.4.3</td>
<td>Area di lavoro Layout Report</td>
<td>651</td>
</tr>
<tr>
<td>18.4.4</td>
<td>Impostazioni per l'esportazione</td>
<td>665</td>
</tr>
<tr>
<td>19</td>
<td>Lavorare con i protocolli OGC / ISO</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Client WMS/WMTS</td>
<td></td>
</tr>
<tr>
<td>19.1.1</td>
<td>Panoramica sul servizio WMS</td>
<td>668</td>
</tr>
<tr>
<td>19.1.2</td>
<td>Panoramica sul servizio WMTS</td>
<td>668</td>
</tr>
<tr>
<td>19.1.3</td>
<td>Selezionare server WMS/WMTS</td>
<td>669</td>
</tr>
<tr>
<td>19.1.4</td>
<td>Caricare layer WMS/WMTS</td>
<td>671</td>
</tr>
<tr>
<td>19.1.5</td>
<td>Impostazioni mattonelle</td>
<td>673</td>
</tr>
<tr>
<td>19.1.6</td>
<td>Uso dello strumento di identificazione</td>
<td>673</td>
</tr>
<tr>
<td>19.1.7</td>
<td>Mostra la legenda WMS nella lista dei layer e nel layout</td>
<td>675</td>
</tr>
<tr>
<td>19.1.8</td>
<td>Limitazioni del client WMS</td>
<td>675</td>
</tr>
<tr>
<td>19.2</td>
<td>Client WCS</td>
<td>676</td>
</tr>
<tr>
<td>19.3</td>
<td>Client WFS e WFS-T</td>
<td>676</td>
</tr>
<tr>
<td>20</td>
<td>Lavorare con i dati GPS</td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Plugin GPS</td>
<td></td>
</tr>
<tr>
<td>20.1.1</td>
<td>Cos'è un GPS?</td>
<td>681</td>
</tr>
<tr>
<td>20.1.2</td>
<td>Caricamento dei dati GPS da file</td>
<td>681</td>
</tr>
<tr>
<td>20.1.3</td>
<td>GPSBabel</td>
<td>682</td>
</tr>
<tr>
<td>20.1.4</td>
<td>Importare dati GPS</td>
<td>682</td>
</tr>
<tr>
<td>20.1.5</td>
<td>Scaricare dati GPS da un dispositivo</td>
<td>683</td>
</tr>
<tr>
<td>20.1.6</td>
<td>Caricare dati GPS sul dispositivo</td>
<td>683</td>
</tr>
<tr>
<td>20.1.7</td>
<td>Definire un nuovo tipo di dispositivo</td>
<td>684</td>
</tr>
<tr>
<td>20.1.8</td>
<td>Scaricare points/tracks dall'unità GPS</td>
<td>684</td>
</tr>
<tr>
<td>20.2</td>
<td>Tracciamento live GPS</td>
<td></td>
</tr>
<tr>
<td>20.2.1</td>
<td>Posizione e attributi aggiuntivi</td>
<td>686</td>
</tr>
<tr>
<td>20.2.2</td>
<td>Potenza del segnale GPS</td>
<td>687</td>
</tr>
<tr>
<td>20.2.3</td>
<td>Opzioni GPS</td>
<td>688</td>
</tr>
<tr>
<td>20.2.4</td>
<td>Connessione di un GPS Bluetooth GPS per tracciamento live</td>
<td>689</td>
</tr>
<tr>
<td>20.2.5</td>
<td>Usare GPSMAP 60cs</td>
<td>689</td>
</tr>
<tr>
<td>20.2.6</td>
<td>Usare BTGP-38KM datalogger (solo Bluetooth)</td>
<td>690</td>
</tr>
<tr>
<td>20.2.7</td>
<td>Usare BlueMax GPS-4044 datalogger (sia BT che USB)</td>
<td>690</td>
</tr>
<tr>
<td>21</td>
<td>Sistema di Autenticazione</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Panoramica del sistema di autenticazione</td>
<td></td>
</tr>
<tr>
<td>21.1.1</td>
<td>Database di autenticazione</td>
<td>691</td>
</tr>
<tr>
<td>21.1.2</td>
<td>Password master</td>
<td>692</td>
</tr>
<tr>
<td>21.1.3</td>
<td>Configurazioni di Autenticazione</td>
<td>693</td>
</tr>
<tr>
<td>21.1.4</td>
<td>Metodi di Autenticazione</td>
<td>695</td>
</tr>
<tr>
<td>21.1.5</td>
<td>Master Password ed Utilità di Auth Config</td>
<td>700</td>
</tr>
<tr>
<td>21.1.6</td>
<td>Usare le configurazioni di autenticazione</td>
<td>701</td>
</tr>
<tr>
<td>21.1.7</td>
<td>Collegamenti Python</td>
<td>702</td>
</tr>
<tr>
<td>21.2</td>
<td>Flussi di lavoro per l'autenticazione degli utenti</td>
<td></td>
</tr>
<tr>
<td>21.2.1</td>
<td>Autenticazione HTTP(S)</td>
<td>702</td>
</tr>
<tr>
<td>21.2.2</td>
<td>Autenticazione al Database</td>
<td>703</td>
</tr>
<tr>
<td>21.2.3</td>
<td>Autenticazione PKI</td>
<td>704</td>
</tr>
<tr>
<td>21.2.4</td>
<td>Gestire i layer scorretti</td>
<td>711</td>
</tr>
<tr>
<td>21.2.5</td>
<td>Cambiare l'ID di configurazione di autenticazione</td>
<td>712</td>
</tr>
<tr>
<td>21.2.6</td>
<td>Supporto QGIS Server</td>
<td>713</td>
</tr>
<tr>
<td>21.2.7</td>
<td>Eccezioni SSL server</td>
<td>713</td>
</tr>
<tr>
<td>21.3</td>
<td>Considerazioni sulla sicurezza</td>
<td>716</td>
</tr>
</tbody>
</table>
24 Fornitori di processing e algoritmi .. 799
24.1 Fornitore di algoritmo QGIS .. 799
24.1.1 Cartografia .. 799
24.1.2 Database .. 809
24.1.3 Strumenti file ... 815
24.1.4 Interpolazione .. 816
24.1.5 Strumenti Layer ... 828
24.1.6 Strumenti del modellatore .. 829
24.1.7 Analisi di rete ... 831
24.1.8 Grafici ... 842
24.1.9 Analisi raster ... 849
24.1.10 Creazione Raster ... 881
24.1.11 Analisi geomorfologica raster 894
24.1.12 Strumenti Raster .. 906
24.1.13 Analisi su vettori .. 911
24.1.14 Creazione di vettori ... 930
24.1.15 Vettore generalità .. 954
24.1.16 Geometria vettore ... 982
24.1.17 Sovrapposizione di vettori .. 1097
24.1.18 Selezione del vettore .. 1111
24.1.19 Tabella vettore ... 1124
24.2 Algoritmi GDAL .. 1139
24.2.1 Analisi raster ... 1139
24.2.2 Conversione Raster .. 1164
24.2.3 Estrazione Raster .. 1171
24.2.4 Raster miscellanea .. 1178
24.2.5 Proiezioni Raster .. 1193
24.2.6 Conversione vettoriale .. 1197
24.2.7 Geoprocessing sui vettori ... 1201
24.2.8 Vettore miscellanea .. 1209
24.3 Algoritmi LAStools .. 1218
24.3.1 blast2dem ... 1218
24.3.2 blast2iso .. 1220
24.3.3 las2dem ... 1222
24.3.4 las2iso ... 1224
24.3.5 las2las_filter .. 1225
24.3.6 las2las_project .. 1230
24.3.7 las2las_transform ... 1236
24.3.8 las2txt ... 1239
24.3.9 lasindex ... 1240
24.3.10 lasgrid ... 1241
24.3.11 lasinfo ... 1243
24.3.12 lasmerge ... 1246
24.3.13 lasprecision .. 1247
24.3.14 lasquery .. 1248
24.3.15 lasvalidate .. 1249
24.3.16 laszip ... 1249
24.3.17 txt2las .. 1250
24.4 Fornitore di algoritmi TauDEM 1254
24.4.1 Analisi di base della rete ... 1255
24.4.2 Analisi specializzata della griglia 1268
24.4.3 Analisi Rete di Flusso .. 1294
24.5 Applicazioni fornite da OTB .. 1314

<table>
<thead>
<tr>
<th>25 Plugin</th>
<th>1315</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1 Plugin di QGIS</td>
<td>1315</td>
</tr>
<tr>
<td>25.1.1 Plugin di Base e Plugin Esterni</td>
<td>1315</td>
</tr>
<tr>
<td>25.1.2 La finestra di dialogo Plugins</td>
<td>1316</td>
</tr>
<tr>
<td>25.2 Uso dei plugin di base di QGIS</td>
<td>1321</td>
</tr>
<tr>
<td>25.2.1 Plugin DB Manager</td>
<td>1321</td>
</tr>
<tr>
<td>25.2.2 Plugin Controllo Geometria</td>
<td>1324</td>
</tr>
<tr>
<td>25.2.3 Client Catalogo MetaSearch</td>
<td>1328</td>
</tr>
<tr>
<td>25.2.4 Plugin Offline Editing</td>
<td>1335</td>
</tr>
<tr>
<td>25.2.5 Plugin Validatore topologico</td>
<td>1337</td>
</tr>
<tr>
<td>25.3 Console python di QGIS</td>
<td>1339</td>
</tr>
<tr>
<td>25.3.1 La Console Interattiva</td>
<td>1339</td>
</tr>
<tr>
<td>25.3.2 L’Editor di Codice</td>
<td>1341</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>26 Aiuto e supporto</th>
<th>1343</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1 Le Mailing list</td>
<td>1343</td>
</tr>
<tr>
<td>26.1.1 QGIS Users</td>
<td>1343</td>
</tr>
<tr>
<td>26.1.2 QGIS Developers</td>
<td>1343</td>
</tr>
<tr>
<td>26.1.3 QGIS Community Team</td>
<td>1343</td>
</tr>
<tr>
<td>26.1.4 QGIS Translations</td>
<td>1344</td>
</tr>
<tr>
<td>26.1.5 QGIS Project Steering Committee (PSC)</td>
<td>1344</td>
</tr>
<tr>
<td>26.1.6 QGIS User groups</td>
<td>1344</td>
</tr>
<tr>
<td>26.2 IRC</td>
<td>1344</td>
</tr>
<tr>
<td>26.3 Supporto Commerciale</td>
<td>1344</td>
</tr>
<tr>
<td>26.4 BugTracker</td>
<td>1344</td>
</tr>
<tr>
<td>26.5 Blog</td>
<td>1345</td>
</tr>
<tr>
<td>26.6 Plugin</td>
<td>1345</td>
</tr>
<tr>
<td>26.7 Wiki</td>
<td>1345</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>27 Hanno contribuito</th>
<th>1347</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1 Autori</td>
<td>1347</td>
</tr>
<tr>
<td>27.2 Traduttori</td>
<td>1348</td>
</tr>
<tr>
<td>27.3 Statistics of translation</td>
<td>1349</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>28 Appendice</th>
<th>1351</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1 Appendix A: GNU General Public License</td>
<td>1351</td>
</tr>
<tr>
<td>28.2 Appendix B: GNU Free Documentation License</td>
<td>1355</td>
</tr>
<tr>
<td>28.3 Appendice C: File QGIS di Formato</td>
<td>1360</td>
</tr>
<tr>
<td>28.3.1 QGS/QGZ - Il File di Formato di Progetto QGIS</td>
<td>1360</td>
</tr>
<tr>
<td>28.3.2 QLR - Il file di definizione dei layer di QGIS</td>
<td>1362</td>
</tr>
<tr>
<td>28.3.3 QML - Il Formato FILE Stile QGIS</td>
<td>1363</td>
</tr>
<tr>
<td>28.4 Appendice D: Sintassi script R QGIS</td>
<td>1364</td>
</tr>
<tr>
<td>28.4.1 Input</td>
<td>1365</td>
</tr>
<tr>
<td>28.4.2 In uscita</td>
<td>1365</td>
</tr>
<tr>
<td>28.4.3 Sintesi sintassi per gli script QGIS R</td>
<td>1365</td>
</tr>
<tr>
<td>28.4.4 Esempi</td>
<td>1367</td>
</tr>
</tbody>
</table>

| 29 Letteratura e riferimenti web | 1371 |
CAPITOLO 1

Introduzione

Il contenuto di questo documento è stato scritto e verificato al meglio delle conoscenze degli autori e dei redattori. Tuttavia, possono esserci errori. Pertanto, gli autori, i redattori e gli editori non si assumono alcuna responsabilità per gli errori contenuti nel presente documento e per le loro possibili conseguenze. Vi invitiamo a segnalare eventuali errori.

Questo documento è stato realizzato con reStructuredText. È disponibile come codice sorgente reST via github <https://github.com/qgis/QGIS-Documentation> e online come HTML e PDF su https://www.qgis.org/en/docs/. Le versioni tradotte di questo documento possono essere visualizzate e scaricate attraverso l’area di documentazione del progetto QGIS.

Per ulteriori informazioni su come contribuire a questo documento e sulla sua traduzione, visitare il sito https://qgis.org/en/site/getinvolved/index.html.

Collegamenti presenti in questo documento

Questo documento contiene collegamenti interni ed esterni. Cliccando su un collegamento interno puoi spostarti all’interno del manuale, mentre cliccando su un collegamento esterno si aprirebbe un indirizzo internet.

Autori e Redattori della Documentazione

L’elenco delle persone che hanno contribuito a scrivere, rivedere e tradurre il seguente documento è disponibile al seguente link Hanno contribuito.

Copyright (c) 2004 - 2020 QGIS Development Team

Internet: https://www.qgis.org

Licenza di questo documento

È garantito il permesso di copiare, distribuire e/o modificare questo documento in base ai termini della GNU Free Documentation License, Versione 1.3 o ogni versione successiva pubblicata dalla Free Software Foundation; senza alcuna sezione non modificabile, senza testo di copertina e retro-copertina. Una copia della licenza è inclusa nell’appendice.
1.1 Novità in QGIS 3.16

Questa versione di QGIS include centinaia di correzioni di bug e molte nuove caratteristiche e miglioramenti, rispetto alla precedente LTR. Si consiglia di utilizzare questa versione rispetto alle versioni precedenti. Per un elenco delle nuove funzionalità, visitare i changelog visuali all'indirizzo https://qgis.org/en/site/forusers/visualchangelogs.html.
Benvenuti nel meraviglioso mondo dei Sistemi Informativi Geografici (GIS)!

QGIS è un Sistema Informativo Geografico Open Source. Il progetto è nato a maggio del 2002 ed è stato confermato come progetto su SourceForge a giugno dello stesso anno. Abbiamo lavorato sodo per creare un software GIS (che normalmente è software proprietario e molto costoso) disponibile per chiunque possieda un personal computer. QGIS attualmente funziona sulla maggior parte delle piattaforme Unix, Windows e OS X. QGIS viene sviluppato usando gli strumenti software Qt (https://www.qt.io) e il linguaggio C++. Questo significa che QGIS ha un’interfaccia utente (GUI) snella, piacevole e facile da usare.

QGIS vuole essere un GIS di facile utilizzo, che ha funzionalità e tratta entità di uso generale. L’obiettivo iniziale del progetto era quello di essere un visualizzatore di dati GIS. QGIS ha raggiunto l’obiettivo di essere utilizzato per le esigenze quotidiane di visualizzazione di dati GIS, per l’acquisizione di dati, per le analisi GIS avanzate e per le presentazioni sotto forma di mappe, atlanti e report sofisticati. QGIS supporta un’ampia gamma di formati di dati raster e vettoriali, con un nuovo supporto di formato che può essere facilmente aggiunto utilizzando l’architettura a plugin.

QGIS è rilasciato sotto la GNU General Public License (GPL). Lo sviluppo di QGIS con questa licenza significa che puoi ispezionare e modificare il codice sorgente e garantisce che tu, nostro utente, avrai sempre accesso a un programma GIS libero e privo di costi che potrai liberamente modificare. Insieme alla copia di QGIS dovresti aver ricevuto anche una copia completa del testo della licenza che puoi trovare anche nell’Appendice di questo manuale Appendix A: GNU General Public License.

Suggerimento: Documentazione aggiornata

La versione più recente di questo documento è sempre disponibile nell’area documentazione del sito web QGIS all’indirizzo https://www.qgis.org/en/docs/.
Capitolo 2. Premessa
Questo capitolo descrive le convenzioni e gli stili che verranno usati in questo manuale.

3.1 Convenzioni per l’interfaccia grafica

Le convenzioni stilistiche per l’interfaccia grafica hanno lo scopo di imitarne l’effettivo aspetto. In generale, lo stile presentato nel manuale fa riferimento a ciò che compare nell’interfaccia grafica e non ai messaggi che compaiono se il cursore del mouse si ferma sopra un pulsante.

- **Opzioni di menu**: Layer ➤ Aggiungi raster oppure Impostazioni ➤ Barre degli strumenti ➤ Digitalizzazione
- **Strumenti**: Aggiungi raster
- **Pulsante**: Salva come predefinito
- **Titolo finestra di dialogo**: Proprietà layer
- **Scheda (tab)**: Generale
- **Casella di controllo**: Visualizzatore
- **Pulsante di scelta**: Postgis SRID EPSG ID
- **Seleziona un numero**: 1.00
- **Seleziona una stringa**:
- **Cerca un file**:
- **Seleziona un colore**:
- **Cursores**:
- **Inserimento testo**: Display name lakes.shp

L’ombreggiatura caratterizza un componente dell’interfaccia grafica che è cliccabile.
3.2 Convenzioni per il Testo o la Tastiera

Questo manuale include anche convenzioni stilistiche relative al testo, a comandi da tastiera e a parti di codice che identificano costrutti diversi come classi o metodi. Questi stili non corrispondono all’attuale aspetto di nessun testo o codice presente in QGIS.

- Link ipertestuali: https://qgis.org
- Combinazioni di tasti: Ctrl+B significa premere il tasto B mentre si tiene premuto il tasto Ctrl.
- Nome di un file: lakes.shp
- Nome di una classe: NewLayer
- Metodo: classFactory
- Server: myhost.de
- Inserimento di testo utente: qgis --help

I frammenti di codice sono identificati con un carattere a spaziatura fissa:

```c
PROJCS["NAD_1927_Albers",
   GEOGCS["GCS_North_American_1927",
```

3.3 Istruzioni specifiche per un sistema operativo

Sequenze GUI e piccole quantità di testo possono essere formattate in linea: Click File QGIS Esci per chiudere QGIS. Ciò indica che su piattaforme Linux, Unix e Windows, è necessario prima fare clic sul menu File, quindi su Esci, mentre su piattaforme macOS, è necessario prima fare clic sul menu QGIS, quindi su Esci.

I testi di grandi dimensioni possono venire formattati come elenco:

- δ fai questo
- Ψ fai quello
- X o fai questo

o come paragrafi:

- Δ fai questo e questo e questo. Quindi fai questo e questo, e questo.
- ♂ fai questo. Poi fai questo e questo e questo, e ancora e ancora e ancora, e ancora e ancora e ancora, e ancora e ancora.

Gli screenshot che compaiono in tutta la guida utente sono stati creati su piattaforme diverse.
QGIS offre un’ampia gamma di funzioni GIS, fornite dalle funzionalità di base e dai plugin. La barra di ricerca rende facile la selezione di funzioni, di set di dati e altro ancora.

Di seguito viene presentato un breve riassunto delle sei tipologie generali di funzionalità e plugin, seguito dai primi approfondimenti sulla console Python integrata.

4.1 Visualizzazione dati

Puoi visualizzare una combinazione di dati vettoriali e raster (in 2D o 3D) in differenti formati e proiezioni senza convertirli in un formato interno o comune. I formati supportati includono:

- Tabelle e viste con dati spaziali che usano PostGIS, SpatiaLite e MS SQL Spatial, Oracle Spatial e vettori supportati dalla libreria OGR, inclusi GeoPackage, ESRI shapefile, MapInfo, SDTS, GML e molti molti altri. Vedi la sezione Lavorare con i vettori.
- Raster e immagini supportati dalla libreria GDAL (Geospatial Data Abstraction Library), come GeoTIFF, ERDAS IMG, ArcInfo ASCII GRID, JPEG, PNG e molti altri ancora, vedi la sezione Lavorare con i dati raster.
- Dati mesh (sono supportati i TIN e le griglie regolari). Vedi Lavorare con i dati Mesh.
- Tessere Vettoriali
- Raster e vettori GRASS dai relativi database (location/mapset), vedi la sezione Integrazione con GRASS GIS.
- I dati spaziali online resi disponibili come OGC Web Services, compresi WMS, WMTS, WCS, WFS e WFS-T. Vedere la sezione Lavorare con i protocolli OGC / ISO.

Il sistema di autenticazione QGIS aiuta a gestire utenti/password, certificati e chiavi per servizi web e altre risorse.

- Fogli di calcolo (ODS / XLSX)

Sono supportati i dati temporali.
4.2 Esplorare dati e comporre mappe

Puoi creare delle mappe ed esplorare i dati spaziali con un’interfaccia grafica molto facile da usare. L’interfaccia grafica ti mette a disposizione molti strumenti, fra cui:

- QGIS Browser
- Riproiezione al volo
- DB Manager
- Layout di stampa
- Report
- Pannello vista generale
- Segnalibri spaziali
- Note testuali
- Funzioni di identificazione/selezione
- Modifica/visualizzazione/ricerca degli attributi
- Etichettatura con dati definiti dall’utente
- Simbologia definita dall’utente per vettori e raster
- Creazione atlante
- Freccia nord, barra di scala ed etichetta di copyright per le mappe
- Supporto per il salvataggio e il ripristino di progetti

4.3 Creazione, modifica, gestione ed esportazione dati

Puoi creare, modificare, gestire e esportare i vettori e i raster in molti formati. QGIS offre quanto segue:

- Strumenti di digitalizzazione vettoriale
- Possibilità di creare e modificare molti formati di file e layer vettoriali GRASS
- Plugin georeferenziatore per geocodificare le immagini
- Strumenti GPS per importare ed esportare il formato GPX, e convertire altri formati GPS in GPX o scaricare/caricare direttamente su un’unità GPS (su Linux, usb: è stato aggiunto all’elenco dei dispositivi GPS).
- Supporto per la visualizzazione e la modifica di dati OpenStreetMap
- Possibilità di creare tabelle di database spaziali dai file con il plugin DB Manager
- Gestione delle tabelle di database spaziali migliorata
- Strumenti per gestire le tabelle degli attributi di un vettore
- Salvataggio di schermate come immagini georiferite
- DXF-Export strumento con avanzate capacità di esportare stili e plugins in grado di attivare funzioni tipo CAD.
4.4 Analisi dei dati

Puoi effettuare analisi di dati spaziali su banche dati spaziali e altri formati supportati da OGR. QGIS offre attualmente strumenti di analisi vettoriale, analisi raster, campionamento, geoprocessing, gestione delle geometrie e dei database. Puoi inoltre utilizzare gli strumenti integrati di GRASS, che comprendono le funzionalità complete di oltre 400 moduli di GRASS (vedi sezione Integrazione con GRASS GIS). Oppure, puoi lavorare con il plugin Processing, che fornisce un potente framework di analisi geospaziale per richiamare algoritmi nativi e di terze parti da QGIS, come GDAL, SAGA, GRASS, R e altri (vedi la sezione Introduzione). Tutte le funzioni di analisi vengono eseguite in background, consentendoti di continuare il tuo lavoro prima della fine dell'elaborazione.

Il modellatore grafico ti permette di combinare / concatenare funzioni in un flusso di lavoro completo in un ambiente grafico intuitivo.

4.5 Pubblicazione di mappe su internet

QGIS può essere utilizzato come client WMS, WMTS, WMS-C o WFS e WFS-T (vedi sezione Lavorare con i protocolli OGC / ISO), e il server QGIS (vedi QGIS-Server-manual) ti permette di pubblicare i tuoi dati attraverso i protocolli WMS, WCS e WFS su Internet utilizzando un webserver.

4.6 Estendi le funzionalità di QGIS attraverso i plugin

Puoi adattare QGIS ai tuoi scopi grazie all'architettura estensibile dei plugin e alle librerie che possono essere usate per la creazione di plugin. Ma puoi anche creare le tue nuove applicazioni con C++ o Python!

4.6.1 Plugin di base

I plugin di base includono:

1. DB Manager (scambia, modifica e visualizza layer e tabelle da/su database; esegue interrogazioni in SQL)
2. Validatore geometria (controlla gli errori delle geometrie)
3. Georeferenziatore raster (aggiunge ai raster informazioni sulla proiezione utilizzando GDAL)
4. Strumenti GPS (carica e importa dati GPS)
5. GRASS 7 (integra il GIS GRASS)
6. Client Catalogo MetaSearch (interfaccia con i servizi di catalogazione dei metadati che supportano lo standard OGC Catalog Service for the Web (CSW))
7. Editing Offline (permette la modifica offline e la sincronizzazione con i database)
8. Processing (il framework per l'elaborazione di dati spaziali di QGIS)
9. Validatore topologico (trova errori topologici nei layer vettoriali)
4.6.2 Plugin esterni in python

QGIS offre un crescente numero di plugin Python esterni creati dalla comunità. Questi plugin sono presenti all’interno del repository ufficiale dei plugin e possono essere facilmente installati usando l’installatore dei plugin python. Vedi Sezione La finestra di dialogo Plugins.

4.7 Console python

Per lo scripting, è possibile usufruire di una console Python integrata, che può essere aperta con: Plugins ➤ Python Console. La console si apre come finestra di utilità non modale. Per l’interazione con l’ambiente QGIS, c’è la variabile qgis.utils.iface, che è un’istanza di QgisInterface. Questa interfaccia fornisce l’accesso al canvas della mappa, ai menu, alle barre degli strumenti e ad altre parti dell’applicazione QGIS. Puoi creare uno script, quindi trascinarlo e rilasciarlo nella finestra di QGIS e verrà eseguito automaticamente.

Per ulteriori informazioni su come lavorare con la console Python e programmare i plugin e le applicazioni QGIS, fare riferimento a Console python di QGIS e PyQGIS-Developer-Cookbook.

4.8 Problemi noti

4.8.1 Limitazione numero di file aperti

Se stai aprendo un grande progetto di QGIS e sei sicuro che tutti i layer sono validi, ma qualche layer viene segnalato come corrotto, probabilmente ti stai scontrando con questo problema. Linux (e probabilmente anche altri sistemi operativi) hanno un limite di file aperti per ogni processo. I limiti delle risorse e per ogni processo vengono automaticamente ereditati. Il comando ulimit, preinstallato nella console dei comandi, cambia i limiti solo per il processo attuale; il nuovo limite viene ereditato da ogni altro processo.

Puoi vedere tutti gli ulimit attuali digitando:

```
$ ulimit -aS
```

Poi vedere l’attuale numero permesso di file aperti per ogni processo con questo comando da console:

```
$ ulimit -Sn
```

Per cambiare i limiti di una sessione esistente, potresti usare qualcosa del genere:

```
$ ulimit -Sn #number_of_allowed_open_files
$ ulimit -Sn
$ qgis
```

Risolverlo per sempre

Sulla maggior parte dei sistemi Linux, i limiti alle risorse sono impostati al momento del login tramite il modulo pam_limits in funzione delle impostazioni contenute in /etc/security/limits.conf o /etc/security/limits.d/*.conf. Dovresti modificare questi file sei hai i permessi di amministratore (anche tramite sudo), ma dovrai effettuare di nuovo il login prima che i cambiamento siano effettivi.

Maggiori informazioni:

Questo capitolo fornisce una rapida panoramica sull’installazione di QGIS, su dati campione scaricabili dal sito di QGIS e su come avviare una prima semplice sessione in cui visualizzare dati raster e dati vettoriali.

5.1 Installare QGIS

Il progetto QGIS fornisce differenti modi per installare QGIS in base alla tua piattaforma.

5.1.1 Installazione da eseguibile

Sono disponibili pacchetti di installazione standard per MS Windows e macOS. Pacchetti binari (rpm e deb) o repository software sono disponibili per molte versioni di GNU/Linux.

Per ulteriori informazioni e istruzioni per il tuo sistema operativo consulta https://download.qgis.org.

5.1.2 Installazione da codice sorgente

Se vuoi generare QGIS dal codice sorgente, fai riferimento alle istruzioni per l’installazione. Sono distribuite con il codice sorgente QGIS in un file chiamato INSTALL. Puoi anche trovarle online all’indirizzo https://github.com/qgis/QGIS/blob/master/INSTALL.md.

Se vuoi generare un particolare release e non la versione in sviluppo, dovresti sostituire master con il nome del release (comunemente nella versione release-X_Y) nel link di cui sopra (le istruzioni di installazione potrebbero essere differenti).
5.1.3 Installazione su supporti esterni

È possibile installare QGIS (con tutti i plugin e le impostazioni) su una flash drive. Questo si ottiene definendo un’opzione –profiles-path che sovrascrive il percorso predefinito user profile e costringe QSettings ad usare anche questa cartella. Vedere la sezione Impostazioni di sistema per ulteriori informazioni.

5.1.4 Installare dati campione

L’insieme di dati Alaska comprende tutti i dati GIS usati per gli esempi e le schermate nel manuale utente, e include anche un piccolo database GRASS. La proiezione per l’insieme di dati campione di QGIS è Alaska Albers Equal Area con unità in piedi. Il codice EPSG è 2964.

```
PROJCS["Albers Equal Area",
GEOGCS["NAD27",
DATUM["North_American_Datum_1927",
SPHEROID["Clarke 1866",6378206.4,294.978698213898,
AUTHORITY["EPSG","7008"]],
TOWGS84["-3,142,183,0,0,0,
AUTHORITY["EPSG","6267"]],
PRIMEM["Greenwich"],0,
AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9108"]],
AUTHORITY["EPSG","4267"]],
PROJECTION["Albers_Conic_Equal_Area"],
PARAMETER["standard_parallel_1",55],
PARAMETER["standard_parallel_2",65],
PARAMETER["latitude_of_center",50],
PARAMETER["longitude_of_center",-154],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["us_survey_feet",0.3048006096012192]]
```

Se vuoi usare QGIS come interfaccia grafica per GRASS, puoi trovare una selezione di dati di esempio (per esempio Spearfish o South Dakota) direttamente dal sito ufficiale GRASS GIS, https://grass.osgeo.org/download/sample-data/.

5.2 Avviare e uscire da QGIS

L’avvio di QGIS può essere fatto in modo analogo a quello che tu generalmente fai per altre applicazioni sul tuo sistema. Ciò significa che puoi avviare QGIS:

- usando il menu Applicazioni, il menu Start o il Dock
- doppio clic sull’icona nella tua cartella Applicazioni o sul collegamento sul desktop
- facendo doppio clic su un file di progetto QGIS esistente (con estensione .qgz o .qgs). Nota che questo aprirà anche il progetto.
- digitando qgis nel prompt dei comandi (supponendo che QGIS sia aggiunto al tuo PATH o che tu sia nella sua cartella di installazione)

Per uscire da QGIS, usa:

- l’opzione del menu Progetto ➤ Esci da QGIS o usa la scorciatoia Ctrl+Q
5.3 Sessione di esempio: caricare layer raster e vettoriali

Ora che hai QGIS installato e un sample dataset disponibile, mostreremo una prima sessione di esempio. In questo esempio, visualizzeremo un layer raster e un layer vettoriale. Useremo:

- il layer raster \text{landcover}(\text{qgis_sample_data/raster/landcover.img})
- e il layer vettoriale \text{lakes}(\text{qgis_sample_data/gml/lakes.gml})

Dove \text{qgis_sample_data} rappresenta il percorso del dataset decompresso.

1. Avvia QGIS come visto in \text{Avviare e uscire da QGIS}.
2. Per caricare i file in QGIS:
 1. Clicca sull'icona Apri Gestore della sorgente dati. Il Data Source Manager dovrebbe aprirsi in modalità Browser.
 2. Sfoglia la cartella \text{qgis_sample_data/raster/}
 3. Seleziona il file \text{IMG ERDAS landcover.img} e fai doppio clic su di esso. Il layer landcover viene aggiunto in background mentre la finestra Data Source Manager rimane aperta.

Fig. 5.1: Aggiungere dati a un nuovo progetto in QGIS
4. Per caricare i dati dei laghi, sfoglia la cartella qgis_sample_sample_data/gml/, e fai doppio clic sul file `lakes.gml` per aprirlo.

5. Si apre la finestra di dialogo Selettore Sistema di Riferimento delle Coordinate. Nel menu Filtro, digita 2964, si ottiene di seguito la lista filtrata dell’elenco dei sistemi di riferimento delle coordinate.

![Coordinate Reference System Selector](image)

Fig. 5.2: Seleziona il Sistema di Riferimento delle Coordinate

6. Seleziona il sistema NAD27 / Alaska Alberts

7. Fai clic su OK

8. Chiudi la finestra Gestore della sorgente dati.

Ora hai i due layer disponibili nel tuo progetto in alcuni colori casuali. Facciamo qualche personalizzazione sul layer laghi.

1. Seleziona lo strumento Ingrandisci sulla barra degli strumenti Gestisci la barra di navigazione

2. Fai zoom su un’area con alcuni laghi

3. Fai doppio click sul layer lakes nella legenda per aprire la finestra di dialogo Proprietà.

4. Per cambiare il colore dei laghi:

 1. Clicca sulla scheda Simbologia e seleziona blu come colore di riempimento.

 2. Seleziona blu come colore di riempimento
3. Premi OK. I laghi sono ora visualizzati in blu nella mappa.

5. Per visualizzare i nomi dei laghi:
 1. Riapri la finestra di dialogo Proprietà del layer lakes.
 2. Clicca sulla scheda Etichette
 3. Seleziona Etichette singole nel menu a discesa per abilitare l’etichettatura.
 4. Dalla lista Etichetta con, scegli il campo Nomi.

5.3. Sessione di esempio: caricare layer raster e vettoriali
5. Premi Applica. I nomi ora passeranno sopra i confini.

6. Puoi migliorare la leggibilità delle etichette aggiungendo un buffer bianco intorno ad esse:
 1. Clicca sulla scheda Buffer nella lista sulla sinistra
 2. Seleziona Disegna buffer del testo
 3. Scegli 3 come dimensione del buffer
 4. Fai clic su Applica
 5. Controlla se il risultato è buono e, se necessario, aggiorna il valore.
 6. Infine clicca OK per chiudere la finestra di dialogo Proprietà vettore e applicare le modifiche.

Aggiungiamo ora alcune decorazioni per migliorare la mappa ed esportarla da QGIS:

1. Seleziona il menu Visualizza ► Decorazioni ► Barra di scala

2. Nella finestra di dialogo che si apre, spunta l'opzione Attiva Barra di Scala

3. Personalizza le opzioni nella finestra di dialogo come preferisci

4. Premi Applica

5. Analogamente, dal menu decorazioni, aggiungi altre voci (freccia nord, copyright…) alla mappa con proprietà personalizzate.

6. Clicca Progetto ► Importa/Esporta ► Esporta Mappa come Immagine…

7. Premi Salva nella finestra di dialogo aperta

8. Seleziona il percorso del file, il formato e conferma cliccando Salva ancora.
9. Premi Progetto ➤ Salva per memorizzare le modifiche come file di progetto .qgz.

Ecco fatto! Puoi vedere quanto sia facile visualizzare i layer raster e vettoriali in QGIS, configurarli e generare la tua mappa in un formato immagine che puoi usare in altri software. Passiamo ad approfondire le funzionalità, le caratteristiche e le impostazioni disponibili e come usarle.

Nota: Per continuare ad imparare QGIS attraverso esercizi passo dopo passo, utilizza il Training manual.
CAPITOLO 6

Lavorare con i File di Progetto

6.1 Introduzione ai progetti QGIS

Lo stato della tua sessione QGIS si chiama progetto. QGIS lavora su un progetto alla volta. Una impostazione può essere per lo specifico progetto o una impostazione predefinita a livello di applicazione per i nuovi progetti (vedi la sezione Opzioni). QGIS può salvare lo stato del tuo spazio di lavoro in un file di progetto QGIS project file usando le opzioni di menu Progetto ► Salva o Progetto ► Salva Con Nome….

Nota: Se il progetto è stato modificato il simbolo * apparirà nella barra del titolo e QGIS, per default, ti chiederà se vuoi salvare le modifiche. Questo comportamento è controllato dall'impostazione Chiedi di salvare il progetto e cambia sorgente dati quando richiesto in Impostazioni ► Opzioni ► Generale.

Puoi caricare progetti esistenti in QGIS dal pannello Browser o attraverso Progetto ► Apri…, Progetto ► Nuovo da Modello o Progetto ► Apri Recenti ►.

All’avvio, viene visualizzata una lista di Modelli di Progetto e Progetti Recenti, che include screenshot, nomi e percorsi dei file (per un massimo di dieci progetti). La lista Progetti Recenti è utile per accedere ai progetti usati di recente. Fai doppio clic su una voce per aprire il progetto o il modello di progetto. Puoi anche aggiungere un layer per creare automaticamente un nuovo progetto. Le liste scompariranno quindi, lasciando il posto alla rappresentazione nell’area di disegno della mappa.

Se vuoi iniziare una nuova sessione, scegli Progetto ► Nuovo. In questo modo ti sarà chiesto di salvare il progetto esistente se sono state apportate modifiche da quando è stato aperto o salvato l’ultima volta.

Quando apri un nuovo progetto, la barra del titolo mostrerà Progetto Senza Titolo fino a quando non lo salvi.
Le informazioni salvate in un file di progetto includono:

- Layer aggiunti
- Quali layer sono interrogabili
- Proprietà dei layer, inclusi i simboli e gli stili associati
- Proiezione usata per la mappa
- Ultima estensione della mappa
- Layout di stampa
- Gli elementi del layout di stampa con le impostazioni
- Le impostazioni del layout di stampa dell’atlante
- Settaggi dei parametri di digitalizzazione
- Relazioni tra le tabelle
- Macro di progetto
- Stili predefiniti per il Progetto
- Settaggi dei Plugin
- Impostazioni del Server QGIS dalla scheda Impostazioni OWS nelle proprietà del Progetto
- Query memorizzate nel DB Manager

Nota: Per impostazione predefinita, QGIS ti avvertirà delle differenze di versione. Questo comportamento è controllato nella scheda Generale del Impostazioni ➤ Opzioni (Avvisa quando viene aperto un file di progetto salvato con una vecchia versione di QGIS).

Ogni volta che salvi un file di progetto .qgs in QGIS, viene creato un backup del file nella stessa directory del file di progetto, con l’estensione .qgs~.

L’estensione per i progetti QGIS è .qgs ma quando si salva da QGIS, il default è quello di salvare usando un formato compresso con l’estensione .qgz. Il file .qgs è incorporato nel file .qgz (un archivio in formato zip), insieme al suo database sqlite associato (.qgd) per auxiliary data. Puoi accedere a questi file decomprimendo il file .qgz.

Nota: Il meccanismo Proprietà Dati Ausiliari rende particolarmente utile un progetto zippato, poiché incorpora dati ausiliari.

I progetti possono anche essere salvati/caricati in/da un database PostgreSQL utilizzando le seguenti voci del menu Progetto:
- Progetto ➤ Apri da
- Progetto ➤ Salva su

Entrambe le voci di menu hanno un sotto-menu con una lista di implementazioni extra per la memorizzazione del progetto (PostgreSQL e GeoPackage). Cliccando sull’azione si aprirebbe una finestra di dialogo per scegliere una connessione GeoPackage e un progetto o una connessione PostgreSQL, schema e progetto.

I progetti memorizzati in Geopackage o PostgreSQL possono essere caricati anche attraverso il pannello del browser QGIS, sia facendo doppio clic su di essi che trascinandoli sulla visualizzazione della mappa.

6.2 Gestire i percorsi corrotti di file

Quando si apre un progetto, QGIS potrebbe non riuscire a raggiungere alcune fonti di dati a causa di servizio/base dati in non disponibile, o a causa di un file rinominato o spostato. QGIS apre quindi la finestra di dialogo Gestione Layer Non Disponibili, facendo riferimento ai layer non trovati. Puoi:
- Fare doppio clic nel campo Sorgente dati, aggiustare il percorso di ogni layer e cliccare Applica le modifiche;
- Selezionare una riga, premere Sfoglia per individuare la posizione corretta e cliccare su Applica Modifiche;
- Premere Auto-Ricerca per sfogliare le cartelle e provare a correggere automaticamente tutti i percorsi interrotti o quello(i) selezionato(i). Bisogna essere essere consapevoli del fatto che la ricerca può richiedere un certo tempo.
- Ignorare il messaggio e aprire il tuo progetto con il percorso (o i percorsi) interrotti cliccando su Mantieni Layer Non Disponibili. Il tuo layer viene quindi visualizzato nel pannello Layer, ma senza dati fino a quando non si fissa il percorso usando l’icona Layer non disponibile! accanto ad esso nel pannello Layer, o Ripara Sorgente Dati… nel menu contestuale del layer.

Con lo strumento Ripara Sorgenti Dati, una volta che un percorso di un layer è stato riparato, QGIS scansiona tutti gli altri percorsi interrotti e cerca di riparare automaticamente quelli che hanno lo stesso percorso di file interrotto.
- Rimuovi Layer Non Disponibili dal progetto.
6.3 Generazione output

Ci sono diversi modi per generare output dalla sessione QGIS. Abbiamo già discusso il salvataggio come file di progetto in *Introduzione ai progetti QGIS*. Altri modi per produrre file di output sono:

- **Creazione di immagini**: Progetto ➤ Importa/Esporta ➤ Esporta Mappa come Immagine… esporta la mappa in un formato immagine (PNG, JPG, TIFF…) in scala, risoluzione, dimensione personalizzate, … È possibile la georeferenziazione dell’immagine. Vedi *Esportare la visualizzazione della mappa* per maggiori dettagli.

- **Esportazione in file PDF**: Progetto ➤ Importa/Esporta ➤ Esporta Mappa in PDF… esporta la mappa in PDF in scala, risoluzione personalizzate e con alcune impostazioni avanzate (semplificazione, georeferenziazione, …). Vedi *Esportare la visualizzazione della mappa* per maggiori dettagli.

- **Esportare in file DXF**: Progetto ➤ Importa/Esporta ➤ Esporta Progetto in DXF… apre una finestra di dialogo dove puoi definire la “Modalità simbologia”, la “Scala simbologia” e i layer vettoriali che vuoi esportare in DXF. Attraverso la “Modalità simbologia”, i simboli della Simbologia originale di QGIS possono essere esportati con alta fedeltà (vedi la sezione create_dxf_f_files).

- **Stampare le mappe**: Progetto ➤ Nuovo Layout di Stampa… apre una finestra di dialogo dove è possibile impaginare e stampare l’area di disegno della mappa corrente (vedi sezione Layout di stampa).
L’interfaccia grafica utente (GUI) di QGIS è mostrata nella figura sottostante (i numeri da 1 a 5 in cerchi gialli indicano elementi importanti della GUI QGIS, e sono discussi di seguito).

Fig. 7.1: QGIS GUI con i dati di esempio Alaska

Nota: L’aspetto delle finestre (barra del titolo, ecc.) potrà apparire diverso a seconda del sistema operativo e dell’ambiente desktop.

L’interfaccia grafica principale (GUI) di QGIS (Fig. 7.1) è composta da cinque aree/parti diverse:

1. **Menu Bar**
2. **Toolbars**
3. **Panels**
4. **Map View**
5. **Status Bar**
Sfoglia di seguito per una spiegazione dettagliata di queste funzionalità.

7.1 Barra dei Menu

La barra dei Menu fornisce accesso alle varie funzioni di QGIS utilizzando un menu gerarchico standard. I Menu, le relative opzioni, le icone associate e le scorciatoie da tastiera sono descritti di seguito. Le scorciatoie da tastiera possono essere riconfigurate (Impostazioni ➤ Scorciatoie da Tastiera).

La maggior parte delle opzioni dei menu hanno uno strumento corrispondente e viceversa. Tuttavia, i menu non sono organizzati esattamente come le barre degli strumenti. Le posizioni delle opzioni di menu nelle barre degli strumenti sono indicate nella tabella seguente. I plugin possono aggiungere nuove opzioni ai menu. Per ulteriori informazioni sugli strumenti e le barre degli strumenti, vedi *Barre degli strumenti*.

Nota: QGIS è un’applicazione multipiattaforma. Gli strumenti siano disponibili su tutte le piattaforme, ma possono essere posizionati in menu differenti, a seconda dei diversi sistemi operativi. Gli elenchi che seguono mostrano le posizioni più comuni, comprese le variazioni note.

7.1.1 Progetto

Il menu **Progetto** fornisce le opzioni di accesso e di uscita del *project files*. Fornisce gli strumenti per:

- Creare un **Nuovo** file da zero o utilizzando un altro file di progetto come modello (vedi *Project files options* per la configurazione del modello)
- **Apri....** un progetto da un file, un GeoPackage o un database PostgreSQL
- **Chiudi** un progetto o riportalo al suo ultimo salvataggio
- **Salva** un progetto in formato .qgs o .qgz, o come file o all’interno di un GeoPackage o di un database PostgreSQL
- Esporta la mappa in diversi formati o utilizza un *print layout* per output più complessi.
- Imposta le proprietà del progetto e le opzioni di aggancio per la modifica della geometria.
Voce di Menu

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuovo</td>
<td>Ctrl+N</td>
<td>Progetto</td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>Nuovo da Modello</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apri…</td>
<td>Ctrl+O</td>
<td>Progetto</td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>Apri Da</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeoPackage…</td>
<td></td>
<td></td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>PostgreSQL…</td>
<td></td>
<td></td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>Apri Recenti</td>
<td>Alt+J+R</td>
<td></td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>Chiudi</td>
<td></td>
<td></td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>Salva</td>
<td>Ctrl+S</td>
<td>Progetto</td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>Salva come…</td>
<td>Ctrl+Shift+S</td>
<td>Progetto</td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>Salva su</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modelli…</td>
<td></td>
<td></td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>GeoPackage…</td>
<td></td>
<td></td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>PostgreSQL…</td>
<td></td>
<td></td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>Ripristina…</td>
<td>Ctrl+Shift+P</td>
<td></td>
<td>Proprietà progetto</td>
</tr>
<tr>
<td>Opzioni di aggancio…</td>
<td>Ctrl+Shift+P</td>
<td></td>
<td>Impostare la Tolleranza di Aggancio e il raggio di ricerca degli elementi</td>
</tr>
<tr>
<td>Importa/Esporta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esporta Mappa come Immagine…</td>
<td></td>
<td></td>
<td>Esportare la visualizzazione della mappa</td>
</tr>
<tr>
<td>Esporta Mappa come PDF…</td>
<td></td>
<td></td>
<td>Esportare la visualizzazione della mappa</td>
</tr>
<tr>
<td>Esporta Progetto in DXF…</td>
<td></td>
<td></td>
<td>Creazione di nuovi file DXF</td>
</tr>
<tr>
<td>Importa Vettori da DWG/DXF…</td>
<td></td>
<td></td>
<td>Importare file DXF o DWG</td>
</tr>
<tr>
<td>Nuovo Layout di Stampa…</td>
<td>Ctrl+P</td>
<td>Progetto</td>
<td>Layout di stampa</td>
</tr>
<tr>
<td>Nuovo Report…</td>
<td></td>
<td></td>
<td>Creare un Report</td>
</tr>
<tr>
<td>Gestore del Layout…</td>
<td></td>
<td></td>
<td>Layout di stampa</td>
</tr>
<tr>
<td>Esci da QGIS</td>
<td>Ctrl+Q</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In macOS, il comando Exit QGIS corrisponde a QGIS ➤ Esci da QGIS (Cmd+Q).

7.1.2 Modifica

Il menu Modifica fornisce la maggior parte degli strumenti nativi necessari per modificare gli attributi dei layer o la geometria (vedi Modifica per i dettagli).

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annulla</td>
<td>Ctrl+Z</td>
<td>Digitalizzazione</td>
<td>Annullare e rispristinare</td>
</tr>
<tr>
<td>Ripristina</td>
<td>Ctrl+Shift+Z</td>
<td>Digitalizzazione</td>
<td>Annullare e rispristinare</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 7.1 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taglia geometrie</td>
<td>Ctrl+X</td>
<td>Digitalizzazione</td>
<td>Tagliare, copiare ed incollare elementi</td>
</tr>
<tr>
<td>Copia geometrie</td>
<td>Ctrl+C</td>
<td>Digitalizzazione</td>
<td>Tagliare, copiare ed incollare elementi</td>
</tr>
<tr>
<td>Incolla geometrie</td>
<td>Ctrl+V</td>
<td>Digitalizzazione</td>
<td>Tagliare, copiare ed incollare elementi</td>
</tr>
<tr>
<td>Incolla Elementi Come</td>
<td></td>
<td></td>
<td>Lavorare con la tabella degli attributi</td>
</tr>
<tr>
<td>Crea Vettore…</td>
<td></td>
<td></td>
<td>Lavorare con la tabella degli attributi</td>
</tr>
<tr>
<td>Nuovo Vettore Temporaneo…</td>
<td>Ctrl+Alt+V</td>
<td></td>
<td>Lavorare con la tabella degli attributi</td>
</tr>
<tr>
<td>Seleziona</td>
<td></td>
<td></td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Seleziona Elemento(i)</td>
<td></td>
<td>Seleziona</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Seleziona Elementi con un Poligono</td>
<td></td>
<td>Seleziona</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Seleziona Elementi a Mano Libera</td>
<td></td>
<td>Seleziona</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Seleziona Elementi con un Cerchio</td>
<td></td>
<td>Seleziona</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Seleziona Elementi per Valore…</td>
<td>F3</td>
<td>Seleziona</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Seleziona Elementi con Espressione…</td>
<td>Ctrl+F3</td>
<td>Seleziona</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Deseleziona Elementi da Tutti i Layer</td>
<td>Ctrl+Alt+A</td>
<td>Seleziona</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Deseleziona Elementi dal Layer Attivo Attuale</td>
<td>Ctrl+Shift+A</td>
<td>Seleziona</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Riseleziona Elementi</td>
<td></td>
<td>Selezionare</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Seleziona Tutti gli Elementi</td>
<td>Ctrl+A</td>
<td>Seleziona</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Inverti Selezion Elementi</td>
<td></td>
<td>Seleziona</td>
<td>Selezionare elementi</td>
</tr>
<tr>
<td>Aggiungi elemento</td>
<td>Ctrl+.</td>
<td>Digitalizzazione</td>
<td>Aggiungere Elementi</td>
</tr>
<tr>
<td>Aggiungi Elemento Puntuale</td>
<td>Ctrl+.</td>
<td>Digitalizzazione</td>
<td>Aggiungere Elementi</td>
</tr>
<tr>
<td>Aggiungi Elemento Lineare</td>
<td>Ctrl+.</td>
<td>Digitalizzazione</td>
<td>Aggiungere Elementi</td>
</tr>
<tr>
<td>Aggiungi Elemento Poligonale</td>
<td>Ctrl+.</td>
<td>Digitalizzazione</td>
<td>Aggiungere Elementi</td>
</tr>
<tr>
<td>Aggiungi geometria circolare</td>
<td></td>
<td></td>
<td>Aggiungere arco circolare</td>
</tr>
<tr>
<td>Aggiungi geometria circolare dal raggio</td>
<td></td>
<td></td>
<td>Aggiungere arco circolare</td>
</tr>
<tr>
<td>Aggiungi Cerchio</td>
<td></td>
<td>Digitalizzare Forme</td>
<td>Disegnare cerchi</td>
</tr>
<tr>
<td>Aggiungi Cerchio da 2 Punti</td>
<td></td>
<td>Digitalizzare Forme</td>
<td>Disegnare cerchi</td>
</tr>
<tr>
<td>Aggiungi Cerchio da 3 Punti</td>
<td></td>
<td>Digitalizzare Forme</td>
<td>Disegnare cerchi</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 7.1 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Aggiungi Cerchio da 3 Tangenti</td>
<td>Digitalizzare Forme</td>
<td>Disegnare cerchi</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Cerchio da 2 Tangenti e un Punto</td>
<td>Digitalizzare Forme</td>
<td>Disegnare cerchi</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Cerchio da un Centro e un Altro Punto</td>
<td>Digitalizzare Forme</td>
<td>Disegnare cerchi</td>
<td></td>
</tr>
<tr>
<td>Aggiungi Rettangolo</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Rettangoli</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Rettangolo da Estensione</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Rettangoli</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Rettangolo da un Centro e un Punto</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Rettangoli</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Rettangolo da 3 Punti (Distanza dal 2° e 3° Punto)</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Rettangoli</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Rettangolo da 3 Punti (Distanza dal punto proiettato sul segmento p1 e p2)</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Rettangoli</td>
<td></td>
</tr>
<tr>
<td>Aggiungi Poligono Regolare</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Poligoni Regolari</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Poligono Regolare da un Centro e un Punto</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Poligoni Regolari</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Poligono Regolare da un Centro e un Angolo</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Poligoni Regolari</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Poligono Regolare da 2 Punti</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Poligoni Regolari</td>
<td></td>
</tr>
<tr>
<td>Aggiungi Ellisse</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Ellissi</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Ellisse da un Centro e 2 Punti</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Ellissi</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Ellisse da un Centro e un Punto</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Ellissi</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Ellisse da Estensione</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Ellissi</td>
<td></td>
</tr>
<tr>
<td>☑ Aggiungi Ellisse da Fuochi</td>
<td>Digitalizzare Forme</td>
<td>Disegnare Ellissi</td>
<td></td>
</tr>
<tr>
<td>Aggiungi Nota</td>
<td>Digitalizzare Forme</td>
<td>Note testuali</td>
<td></td>
</tr>
<tr>
<td>☑ Text Annotation</td>
<td>Attributi</td>
<td>Note testuali</td>
<td></td>
</tr>
<tr>
<td>☑ Form Annotation</td>
<td>Attributi</td>
<td>Note testuali</td>
<td></td>
</tr>
<tr>
<td>☑ HTML Annotation</td>
<td>Attributi</td>
<td>Note testuali</td>
<td></td>
</tr>
<tr>
<td>☑ SVG Annotation</td>
<td>Attributi</td>
<td>Note testuali</td>
<td></td>
</tr>
<tr>
<td>☑ Muovi geometria(e)</td>
<td>Digitalizzazione Avanzata</td>
<td>Ripostare Elemento(i)</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 7.1 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copia e Sposta Elemento(i)</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Elimina Selezionato</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Modifica Attributi Elementi Selezionati</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Ruota geometria(e)</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Semplifica geometria</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Aggiungi buco</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Aggiungi parte</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Riempire buco</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Elimina buco</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Elimina parte</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Modifica geometrie</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Curva di offset</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Dividi geometrie</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Dividi parti</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Unisci geometrie selezionate</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Fondi Attributi Elementi Selezionati</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Strumento Vertice (per tutti i vettori)</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Strumento Vertice (Layer attivo)</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Ruota i simboli per i punti</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
<tr>
<td>Offset simboli punti</td>
<td></td>
<td>Digitalizzazione</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Gli strumenti che dipendono dalla tipologia di geometria del layer selezionato, cioè punto, polilinea o poligono, vengono attivati di conseguenza:

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertire Linea</td>
<td>Digitalizzazione Avanzata</td>
<td>Inversione linea</td>
<td></td>
</tr>
<tr>
<td>Tronca/estendi Elemento</td>
<td>Digitalizzazione Avanzata</td>
<td>Troncare/Estendere Elemento</td>
<td></td>
</tr>
</tbody>
</table>

7.1.3 Mappa

La mappa viene visualizzata nell’area mappa. Puoi interagire con queste visualizzazioni utilizzando gli strumenti Visualizza (vedi Lavorare sulla mappa per maggiori informazioni). Per esempio, puoi:

- Creare nuove visualizzazioni di mappe 2D o 3D accanto all’area di disegno della mappa principale
- Zoom or pan in una zona
- Interrogare gli attributi o le geometria degli elementi visualizzati
- Migliorare la visualizzazione della mappa con le modalità di anteprima, le annotazioni o le decorazioni
- Accedere ai diversi pannelli o barre degli strumenti

Il menu ti permette anche di riorganizzare l’interfaccia QGIS stessa utilizzando azioni come:

- Attiva schermo intero: copre l’intero schermo nascondendo la barra del titolo.
- Attiva Visibilità Pannello: mostra o nasconde pannelli attivi panels - utile per la digitalizzazione di elementi (per la massima visibilità della mappa) così come per presentazioni (proiettate/registrate) utilizzando la mappa principale di QGIS
- Attiva solo la Mappa: nasconde pannelli, barre degli strumenti, menu e barra di stato e mostra solo la mappa. In combinazione con l’opzione a schermo intero, visualizza sul tuo schermo solo la mappa
<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rimpicciolisci</td>
<td>Ctrl+Alt+-</td>
<td>Navigazione Mappa</td>
<td>Zoom e Pan</td>
</tr>
<tr>
<td>Informazione elementi</td>
<td>Ctrl+Shift+I</td>
<td>Atributi</td>
<td>Informazione Elementi</td>
</tr>
<tr>
<td>Misura</td>
<td></td>
<td>Atributi</td>
<td>Misurazioni</td>
</tr>
<tr>
<td>Misura linea</td>
<td>Ctrl+Shift+M</td>
<td>Atributi</td>
<td>Misurazioni</td>
</tr>
<tr>
<td>Misura area</td>
<td>Ctrl+Shift+J</td>
<td>Atributi</td>
<td>Misurazioni</td>
</tr>
<tr>
<td>Misura angolo</td>
<td></td>
<td>Atributi</td>
<td>Misurazioni</td>
</tr>
<tr>
<td>Sintesi delle statistiche</td>
<td></td>
<td>Atributi</td>
<td>Pannello Statistiche</td>
</tr>
<tr>
<td>Zoom completo</td>
<td>Ctrl+Shift+F</td>
<td>Navigazione Mappa</td>
<td>Zoom e Pan</td>
</tr>
<tr>
<td>Zoom alla selezione</td>
<td>Ctrl+J</td>
<td>Navigazione Mappa</td>
<td>Zoom e Pan</td>
</tr>
<tr>
<td>Zoom sul layer</td>
<td>Ctrl+J</td>
<td>Navigazione Mappa</td>
<td>Zoom e Pan</td>
</tr>
<tr>
<td>Zoom alla risoluzione originale (100%)</td>
<td></td>
<td>Navigazione Mappa</td>
<td>Zoom e Pan</td>
</tr>
<tr>
<td>Ultimo zoom</td>
<td></td>
<td>Navigazione Mappa</td>
<td>Zoom e Pan</td>
</tr>
<tr>
<td>Zoom successivo</td>
<td></td>
<td>Navigazione Mappa</td>
<td>Zoom e Pan</td>
</tr>
<tr>
<td>Proprietà</td>
<td>Alt+V + D</td>
<td>Decorazioni</td>
<td>Decorazioni</td>
</tr>
<tr>
<td>Reticolo...</td>
<td></td>
<td>Reticolo</td>
<td></td>
</tr>
<tr>
<td>Barra di Scala...</td>
<td></td>
<td>Barra di Scala</td>
<td></td>
</tr>
<tr>
<td>Immagine...</td>
<td></td>
<td>Decorazione Immagine</td>
<td></td>
</tr>
<tr>
<td>Freccia Nord...</td>
<td></td>
<td>Freccia Nord</td>
<td></td>
</tr>
<tr>
<td>Titolo Etichetta...</td>
<td></td>
<td>Etichetta Titolo</td>
<td></td>
</tr>
<tr>
<td>Etichetta Copyright...</td>
<td></td>
<td>Etichetta Copyright</td>
<td></td>
</tr>
<tr>
<td>Estensione del Layout...</td>
<td></td>
<td>Estensione del Layout</td>
<td></td>
</tr>
<tr>
<td>Modalità anteprima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simula Fotocopia (Scala di grigi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simula Fax (Monocolore)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simula il daltonismo (Protanopia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simula il daltonismo (Deuteronopia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mostra Suggerimenti Mappa</td>
<td></td>
<td>Atributi</td>
<td>Proprietà Suggerimenti</td>
</tr>
<tr>
<td>Nuovo Segnalibro Spaziale...</td>
<td>Ctrl+B</td>
<td>Navigazione Mappa</td>
<td>Segnalibri Spaziali</td>
</tr>
<tr>
<td>Mostra Segnalibri Spaziali</td>
<td>Ctrl+Shift+B</td>
<td>Navigazione Mappa</td>
<td>Segnalibri Spaziali</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 7.2 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scocciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mostra Gestore Segnalibri Spaziali</td>
<td></td>
<td></td>
<td>Segnalibri Spaziali</td>
</tr>
<tr>
<td>Aggiorna</td>
<td>F5</td>
<td>Barra degli Strumenti</td>
<td>Navigazione Mappa</td>
</tr>
<tr>
<td>Mostra tutti i layers</td>
<td>Ctrl+Shift+U</td>
<td></td>
<td>Pannello dei Layer</td>
</tr>
<tr>
<td>Nascondi tutti i layers</td>
<td>Ctrl+Shift+H</td>
<td></td>
<td>Pannello dei Layer</td>
</tr>
<tr>
<td>Mostra layer selezionati</td>
<td></td>
<td></td>
<td>Pannello dei Layer</td>
</tr>
<tr>
<td>Nascondi layer selezionati</td>
<td></td>
<td></td>
<td>Pannello dei Layer</td>
</tr>
<tr>
<td>Mostra Layer Selezionati</td>
<td></td>
<td></td>
<td>Pannello dei Layer</td>
</tr>
<tr>
<td>Mostra Layer Selezionati in modo indipendente</td>
<td></td>
<td></td>
<td>Pannello dei Layer</td>
</tr>
<tr>
<td>Nascondi layer non selezionati</td>
<td></td>
<td></td>
<td>Pannello dei Layer</td>
</tr>
<tr>
<td>Pannelli</td>
<td></td>
<td></td>
<td>Pannelli e Barre degli strumenti</td>
</tr>
<tr>
<td>► Digitalizzazione Avanzata</td>
<td></td>
<td></td>
<td>Il Pannello di Digitalizzazione Avanzata</td>
</tr>
<tr>
<td>► Browser</td>
<td></td>
<td></td>
<td>Il Pannello Browser</td>
</tr>
<tr>
<td>► Browser (2)</td>
<td></td>
<td></td>
<td>Il Pannello Browser</td>
</tr>
<tr>
<td>► Informazioni sul GPS</td>
<td></td>
<td></td>
<td>Tracciamento live GPS</td>
</tr>
<tr>
<td>► Strumenti GRASS</td>
<td></td>
<td></td>
<td>Integrazione con GRASS GIS</td>
</tr>
<tr>
<td>► Ordine Layer</td>
<td></td>
<td></td>
<td>Pannello Ordine dei Layer</td>
</tr>
<tr>
<td>► Stile Layer</td>
<td></td>
<td></td>
<td>Pannello Stile Layer</td>
</tr>
<tr>
<td>► Layer</td>
<td></td>
<td></td>
<td>Pannello dei Layer</td>
</tr>
<tr>
<td>► Messaggi di log</td>
<td></td>
<td></td>
<td>Pannello Messaggi di Log</td>
</tr>
<tr>
<td>► Panoramica</td>
<td></td>
<td></td>
<td>Pannello Panoramica</td>
</tr>
<tr>
<td>► Strumenti di Processing</td>
<td></td>
<td></td>
<td>Gli Strumenti di Processing</td>
</tr>
<tr>
<td>► Visualizzatore risultati</td>
<td></td>
<td></td>
<td>Gli Strumenti di Processing</td>
</tr>
<tr>
<td>► Opzioni di Aggancio e Digitalizzazione</td>
<td></td>
<td></td>
<td>Impostare la Tolleranza di Aggancio e il raggio di ricerca degli elementi</td>
</tr>
<tr>
<td>► Gestore Segnalibri Spaziali</td>
<td></td>
<td></td>
<td>Segnalibri Spaziali</td>
</tr>
<tr>
<td>► Statistiche</td>
<td></td>
<td></td>
<td>Pannello Statistiche</td>
</tr>
<tr>
<td>► Scala dei Tasselli</td>
<td></td>
<td></td>
<td>Impostazioni mattonelle</td>
</tr>
<tr>
<td>► Annulla/Ripristina</td>
<td></td>
<td></td>
<td>Pannello Annulla/Ripristina</td>
</tr>
<tr>
<td>Barre degli strumenti</td>
<td></td>
<td></td>
<td>Pannelli e Barre degli strumenti</td>
</tr>
<tr>
<td>► Barra degli strumenti di Digitalizzazione Avanzata</td>
<td></td>
<td></td>
<td>Digitalizzazione avanzata</td>
</tr>
<tr>
<td>► Barra degli strumenti relativi agli Attributi</td>
<td></td>
<td></td>
<td>Gestione fonti dati</td>
</tr>
<tr>
<td>► Barra degli strumenti per la Gestione delle Sorgenti Dati</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Barra del Database</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
7.1.4 Layer

Il menu Layer fornisce un ampio set di strumenti per create nuove fonti dati, per add a un progetto o per save modifications. Usando le stesse fonti di dati, puoi anche:

- **Duplica** un layer per generare una copia dove puoi modificare il nome, lo stile (simbologia, etichette, …), i collegamenti, … La copia utilizza la stessa fonte dati dell’originale.
- **Copia e Incolla** layer o gruppi da un progetto all’altro come una nuova istanza le cui proprietà possono essere modificate in modo indipendente. Come per Duplica, i layer sono ancora basati sulla stessa fonte dati.
- **o Layer e Gruppi Incorporati**… da un altro progetto, come copie di sola lettura che non è possibile modificare (vedi Progetti nidificati)

Il menu Layer contiene anche strumenti per configurare, copiare o incollare le proprietà del layer (stile, scala, SR…).

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestore della sorgente dati</td>
<td>Ctrl+L</td>
<td>Gestore della sorgente dati</td>
<td>Opening Data</td>
</tr>
<tr>
<td>Crea Layer</td>
<td></td>
<td></td>
<td>Crea nuovi layer Vettore</td>
</tr>
<tr>
<td>Nuova Layer GeoPackage…</td>
<td>Ctrl+Shift+N</td>
<td>Gestore della sorgente dati</td>
<td>Crea un nuovo vettore GeoPackage</td>
</tr>
<tr>
<td>Nuovo Shapefile…</td>
<td></td>
<td></td>
<td>Crea un nuovo layer Shapefile</td>
</tr>
</tbody>
</table>

In Linux KDE, Pannelli Barra degli strumenti e Attiva schermo intero sono nel menu Impostazioni.
<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuovo Layer SpatiaLite…</td>
<td>Ctrl+Shift+L</td>
<td>Gestore della sorgente dati</td>
<td>Creare un nuovo layer SpatiaLite</td>
</tr>
<tr>
<td>Nuovo Vettore Temporaneo…</td>
<td>Ctrl+Shift+V</td>
<td>Gestore della sorgente dati</td>
<td>Creare un nuovo Vettore Temporaneo</td>
</tr>
<tr>
<td>Nuovo Layer Virtuale…</td>
<td>Ctrl+Shift+T</td>
<td>Gestore della sorgente dati</td>
<td>Creazione di layer virtuali</td>
</tr>
<tr>
<td>Aggiungi Layer ▶</td>
<td></td>
<td></td>
<td>Accedere ai dati</td>
</tr>
<tr>
<td>Aggiungi Layer……</td>
<td>Ctrl+Shift+V</td>
<td>Gestione Layer</td>
<td>Caricare un layer da un file</td>
</tr>
<tr>
<td>Aggiungi Raster…</td>
<td>Ctrl+Shift+R</td>
<td>Gestione Layer</td>
<td>Caricare un layer da un file</td>
</tr>
<tr>
<td>Aggiungi Mesh…</td>
<td>Ctrl+Shift+L</td>
<td>Gestione Layer</td>
<td>Caricare un layer mesh</td>
</tr>
<tr>
<td>Aggiungi Layer Testo Delimitato…</td>
<td>Ctrl+Shift+T</td>
<td>Gestione Layer</td>
<td>Importare file di testo delimitato</td>
</tr>
<tr>
<td>Aggiungi Layer PostGIS…</td>
<td>Ctrl+Shift+D</td>
<td>Gestione Layer</td>
<td>Strumenti riferiti ai Database</td>
</tr>
<tr>
<td>Aggiungi Layer SpatiaLite…</td>
<td>Ctrl+Shift+L</td>
<td>Gestione Layer</td>
<td>Layer SpatiaLite</td>
</tr>
<tr>
<td>Aggiungi Layer MSSQL Spatial…</td>
<td>Ctrl+Shift+2</td>
<td>Gestione Layer</td>
<td>Strumenti riferiti ai Database</td>
</tr>
<tr>
<td>Aggiungi Layer Oracle Spatial…</td>
<td>Ctrl+Shift+2</td>
<td>Gestione Layer</td>
<td>Strumenti riferiti ai Database</td>
</tr>
<tr>
<td>Aggiungi Layer DB2 Spatial…</td>
<td>Ctrl+Shift+2</td>
<td>Gestione Layer</td>
<td>Creazione di layer virtuali</td>
</tr>
<tr>
<td>Aggiungi/Modifica Layer Virtuale…</td>
<td>Ctrl+Shift+W</td>
<td>Gestione Layer</td>
<td>Caricare layer WMS/WMTS</td>
</tr>
<tr>
<td>Aggiungi Layer WMS/WMTS…</td>
<td>Ctrl+Shift+W</td>
<td>Gestione Layer</td>
<td>Usare i servizi di Tasselli XYZ</td>
</tr>
<tr>
<td>Aggiungi Layer ArcGIS Map Service…</td>
<td>Ctrl+Shift+W</td>
<td>Gestione Layer</td>
<td></td>
</tr>
<tr>
<td>Aggiungi Layer WCS…</td>
<td>Ctrl+Shift+W</td>
<td>Gestione Layer</td>
<td>Client WCS</td>
</tr>
<tr>
<td>Aggiungi Layer WFS…</td>
<td>Ctrl+Shift+W</td>
<td>Gestione Layer</td>
<td>Client WFS e WFS-T</td>
</tr>
<tr>
<td>Aggiungi Layer ArcGIS Feature Service…</td>
<td>Ctrl+Shift+W</td>
<td>Gestione Layer</td>
<td></td>
</tr>
<tr>
<td>Includi Layers e Gruppi…</td>
<td></td>
<td></td>
<td>Progetti nidificati</td>
</tr>
<tr>
<td>Aggiungi da un file di definizione del layer…</td>
<td></td>
<td></td>
<td>File di definizione Layer</td>
</tr>
<tr>
<td>Copia Stile</td>
<td></td>
<td></td>
<td>Salvare e condividere le proprietà di un layer</td>
</tr>
<tr>
<td>Incolla Stile</td>
<td></td>
<td></td>
<td>Salvare e condividere le proprietà di un layer</td>
</tr>
<tr>
<td>Copia Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incolla Layer/Gruppo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 7.3 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Apri tabella attributi]</td>
<td>F6</td>
<td>AttrIBUTI</td>
<td>Lavorare con la tabella degli attributi</td>
</tr>
<tr>
<td>![Attiva modifiche]</td>
<td></td>
<td>DigitalizzAZIONE</td>
<td>Modifica di un layer esistente</td>
</tr>
<tr>
<td>![Salva modifiche vettore]</td>
<td></td>
<td>DigitalizzAZIONE</td>
<td>Salvare i layer modificati</td>
</tr>
<tr>
<td>![Modifiche in uso ►]</td>
<td></td>
<td>DigitalizzAZIONE</td>
<td>Salvare i layer modificati</td>
</tr>
<tr>
<td>![Salva Vettore(i) Selezionato(i)]</td>
<td></td>
<td>DigitalizzAZIONE</td>
<td>Salvare i layer modificati</td>
</tr>
<tr>
<td>![Rollback per il(i) Vettore(i) selezionato(i)]</td>
<td></td>
<td>DigitalizzAZIONE</td>
<td>Salvare i layer modificati</td>
</tr>
<tr>
<td>![Annulla per il Vettore(i) Selezionato(i)]</td>
<td></td>
<td>DigitalizzAZIONE</td>
<td>Salvare i layer modificati</td>
</tr>
<tr>
<td>![Salva per tutti i Vettori]</td>
<td></td>
<td>DigitalizzAZIONE</td>
<td>Salvare i layer modificati</td>
</tr>
<tr>
<td>![Rollback per tutti i Vettori]</td>
<td></td>
<td>DigitalizzAZIONE</td>
<td>Salvare i layer modificati</td>
</tr>
<tr>
<td>![Annulla per tutti i Vettori]</td>
<td></td>
<td>DigitalizzAZIONE</td>
<td>Salvare i layer modificati</td>
</tr>
<tr>
<td>![Salva con nome…]</td>
<td></td>
<td></td>
<td>Creare nuovi layer da layer esistente</td>
</tr>
<tr>
<td>![Elimina Layer/Gruppo]</td>
<td>Ctrl+D</td>
<td></td>
<td>File di definizione Layer</td>
</tr>
<tr>
<td>![Duplica Layer(s)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definisci la scala di visibilità dei/dei Layer(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>![Imposta SR del/dei Layer(s)]</td>
<td>Ctrl+Shift+C</td>
<td>Sistemi di Riferimento delle coordinate e layer</td>
<td></td>
</tr>
<tr>
<td>![Imposta SR del Progetto dal Layer]</td>
<td></td>
<td>Sistemi di Riferimento delle coordinate e Progetti</td>
<td></td>
</tr>
<tr>
<td>Proprietà vettore…</td>
<td></td>
<td>La finestra di dialogo Proprietà dei vettori, Proprietà raster, Proprietà del Dataset Mesh</td>
<td></td>
</tr>
<tr>
<td>Filtra…</td>
<td>Ctrl+F</td>
<td>Costruttore di interrogazioni</td>
<td></td>
</tr>
<tr>
<td>![Etichettatura]</td>
<td></td>
<td>Proprietà etichette</td>
<td></td>
</tr>
<tr>
<td>![Mostra nella Panoramica]</td>
<td></td>
<td>Pannello Panoramica</td>
<td></td>
</tr>
<tr>
<td>![Mostra tutto nella Panoramica]</td>
<td></td>
<td>Pannello Panoramica</td>
<td></td>
</tr>
<tr>
<td>![Nascondi tutto dalla Panoramica]</td>
<td></td>
<td>Pannello Panoramica</td>
<td></td>
</tr>
</tbody>
</table>

7.1.5 Impostazioni

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profili Utente ►</td>
<td>Lavorare con i Profili Utente</td>
</tr>
<tr>
<td>![default]</td>
<td>Lavorare con i Profili Utente</td>
</tr>
<tr>
<td>![Apri la Cartella del Profilo Attivo]</td>
<td>Lavorare con i Profili Utente</td>
</tr>
<tr>
<td>![Nuovo Profilo…]</td>
<td>Lavorare con i Profili Utente</td>
</tr>
<tr>
<td>![Gestore di stile…]</td>
<td>Il Gestore di Stile</td>
</tr>
<tr>
<td>![Proiezione personalizzata…]</td>
<td>Sistemi di riferimento personalizzati</td>
</tr>
<tr>
<td>![Scorciatoia da tastiera…]</td>
<td>Tasti di scelta rapida</td>
</tr>
<tr>
<td>![Personalizzazione interfaccia…]</td>
<td>Personalizzazione</td>
</tr>
<tr>
<td>![Opzioni…]</td>
<td>Opzioni</td>
</tr>
</tbody>
</table>
In Linux KDE, troverai altri strumenti nel menu Impostazioni come Panelli ➤, Barre degli strumenti ➤ e Attiva modalità schermo intero.

7.1.6 Plugin

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestire e installare Plugin…</td>
<td></td>
<td></td>
<td>La finestra di dialogo Plugins</td>
</tr>
<tr>
<td>Console Python</td>
<td>Ctrl+Alt+P</td>
<td>Plugin</td>
<td>Console python di QGIS</td>
</tr>
</tbody>
</table>

Quando si avvia QGIS per la prima volta non tutti i plugin di base verranno caricati.

7.1.7 Vettore

Questo è ciò che appare nel menu Vettore se tutti i plugin di base sono abilitati.

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Controllo Geometrie…</td>
<td></td>
<td></td>
<td>Plugin Controllo Geometria</td>
</tr>
<tr>
<td>Strumenti GPS</td>
<td>Alt+O+G</td>
<td>Vettore</td>
<td>Plugin GPS</td>
</tr>
<tr>
<td>Validatore Topologico</td>
<td></td>
<td>Vettore</td>
<td>Plugin Validatore topologico</td>
</tr>
<tr>
<td>Strumenti di Geoprocessing ►</td>
<td>Alt+O+G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Buffer…</td>
<td></td>
<td></td>
<td>Buffer</td>
</tr>
<tr>
<td>► Ritaglia…</td>
<td></td>
<td></td>
<td>Clip (Ritaglio)</td>
</tr>
<tr>
<td>► Poligono Convesso…</td>
<td></td>
<td></td>
<td>Poligono convesso</td>
</tr>
<tr>
<td>► Differenza…</td>
<td></td>
<td></td>
<td>Differenza</td>
</tr>
<tr>
<td>► Dissolvi…</td>
<td></td>
<td></td>
<td>Dissolvere</td>
</tr>
<tr>
<td>► Intersezione…</td>
<td></td>
<td></td>
<td>Intersezione</td>
</tr>
<tr>
<td>► Differenza Simmetrica…</td>
<td></td>
<td></td>
<td>Differenza simmetrica</td>
</tr>
<tr>
<td>► Unione…</td>
<td></td>
<td></td>
<td>Unione</td>
</tr>
<tr>
<td>► Elimina i poligoni selezionati…</td>
<td></td>
<td></td>
<td>Eliminate poligoni selezionati</td>
</tr>
<tr>
<td>Strumenti di Geometria ►</td>
<td>Alt+O+E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Centroidi…</td>
<td></td>
<td></td>
<td>Centroidi</td>
</tr>
<tr>
<td>► Raggruppa geometrie…</td>
<td></td>
<td></td>
<td>Riassumere geometrie</td>
</tr>
<tr>
<td>► Estrai Vertici…</td>
<td></td>
<td></td>
<td>Estrazione vertici</td>
</tr>
<tr>
<td>► Da parti multiple a parti singole…</td>
<td></td>
<td></td>
<td>Da multi parte a parti singole</td>
</tr>
<tr>
<td>► Da Poligoni a Linee…</td>
<td></td>
<td></td>
<td>Da poligoni a linee</td>
</tr>
<tr>
<td>► Semplifica…</td>
<td></td>
<td></td>
<td>Semplificazione</td>
</tr>
<tr>
<td>► Controlla validità…</td>
<td></td>
<td></td>
<td>Controllo validità</td>
</tr>
<tr>
<td>► Triangolazione di Delaunay…</td>
<td></td>
<td></td>
<td>Triangolazione di Delaunay</td>
</tr>
<tr>
<td>► Infittisci secondo un conteggio…</td>
<td></td>
<td></td>
<td>Addensare in base al numero</td>
</tr>
<tr>
<td>► Aggiungi Attributi alla Geometria…</td>
<td></td>
<td></td>
<td>Aggiungere gli attributi della geometria</td>
</tr>
<tr>
<td>► Da Linee a Poligoni…</td>
<td></td>
<td></td>
<td>Da linee a poligoni</td>
</tr>
<tr>
<td>► Poligoni di Voronoi…</td>
<td></td>
<td></td>
<td>Poligoni di Voronoi</td>
</tr>
<tr>
<td>Strumenti di Analisi ►</td>
<td>Alt+O+A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Intersezioni Linee…</td>
<td></td>
<td></td>
<td>Intersezione di linee</td>
</tr>
<tr>
<td>► Media coordinate…</td>
<td></td>
<td></td>
<td>Coordinata(e) media</td>
</tr>
<tr>
<td>► Statistiche elementari per campi…</td>
<td></td>
<td></td>
<td>Statistiche di base sui campi</td>
</tr>
</tbody>
</table>

7.1. Barradei Menu 35

continues on next page
Tabella 7.4 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conta i punti nel poligono…</td>
<td>Conta i punti nel poligono</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrice di Distanza…</td>
<td>Matrice di distanze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lista valori univoci…</td>
<td>Elenco dei valori univoci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analisi vicino più prossimo…</td>
<td>Analisi del vicino più vicino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somma lunghezze linee…</td>
<td>Somma delle lunghezze delle linee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strumenti di Gestione Dati ➤</td>
<td>Alt+O+D</td>
<td>Fondere layer vettoriali</td>
<td></td>
</tr>
<tr>
<td>Fondi vettori (Merge)…</td>
<td>Layer riproiettato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riproietta Layer…</td>
<td>Crea indice spaziale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crea indice spaziale…</td>
<td>Unisci attributi per posizione…</td>
<td>Unire gli attributi per luogo</td>
<td></td>
</tr>
<tr>
<td>Unisci attributi per posizione…</td>
<td>Dividere layer vettoriale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dividi vettore…</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strumenti di Ricerca ➤</td>
<td>Alt+O+R</td>
<td>Seleziona per posizione</td>
<td></td>
</tr>
<tr>
<td>Seleziona per posizione…</td>
<td>Estrazione estensione layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrai estensione del Layer…</td>
<td>Punti casuali nell’estensione</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punti casuali nell’estensione…</td>
<td>Punti casuali nei confini del layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punti casuali nella estensione del Layer…</td>
<td>Punti casuali all’interno di poligoni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punti casuali dentro poligoni…</td>
<td>Seleziona casuale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seleziona casuale…</td>
<td>Seleziona casuale all’interno di sottoinsiemi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seleziona casuale con un sottoinsieme…</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punti regolari…</td>
<td>Punti regolari</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Per impostazione predefinita, QGIS aggiunge algoritmi Processing al menu Vettore, raggruppati per sotto-menu. Questo fornisce scorciatoie per molte comuni operazioni sui dati GIS vettoriali provenienti dalle diverse fonti. Se non tutti questi sotto-menu sono disponibili, abilita il plugin Processing in Plugins ➤ Gestisci e installa Plugins…. Da notare che l’elenco degli strumenti del menu Vettore può essere esteso con altri algoritmi di Processing o tramite algoritmi esterni plugins.

7.1.8 Raster

Questo è ciò che appare nel menu Raster se tutti i plugin di base sono abilitati.

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcolatore Raster…</td>
<td>Calcolatore raster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allinea Raster…</td>
<td>Allineamento Raster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georeferenziatore</td>
<td>Georeferenziatore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alt+R+G</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 7.5 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Asperità…</td>
<td></td>
<td></td>
<td>rugosità</td>
</tr>
<tr>
<td>➤ Filtro…</td>
<td></td>
<td></td>
<td>setaccio</td>
</tr>
<tr>
<td>➤ Pendenza…</td>
<td></td>
<td></td>
<td>pendenza</td>
</tr>
<tr>
<td>➤ Indice di Posizione Topografica (TPI)…</td>
<td></td>
<td></td>
<td>Topographic Position Index (TPI)</td>
</tr>
<tr>
<td>➤ Indice di Asperità Terreno (TRI)…</td>
<td></td>
<td></td>
<td>Indice di rugosità del terreno (TRI)</td>
</tr>
<tr>
<td>Proiezioni ➤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Assegna proiezione…</td>
<td></td>
<td></td>
<td>Assegna una proiezione</td>
</tr>
<tr>
<td>➤ Estrai proiezione…</td>
<td></td>
<td></td>
<td>Estrazione proiezione</td>
</tr>
<tr>
<td>➤ Warp (Riproiezione)…</td>
<td></td>
<td></td>
<td>Trasformazione (riproiezione)</td>
</tr>
<tr>
<td>Miscellanea ➤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Crea raster virtuale…</td>
<td></td>
<td></td>
<td>Costruire raster virtuale</td>
</tr>
<tr>
<td>➤ Informazioni del raster…</td>
<td></td>
<td></td>
<td>Informazioni Raster</td>
</tr>
<tr>
<td>➤ Fondi (merge)…</td>
<td></td>
<td></td>
<td>Fuso</td>
</tr>
<tr>
<td>➤ Crea panoramiche (piramidi)…</td>
<td></td>
<td></td>
<td>Costruire panoramiche (piramidi)</td>
</tr>
<tr>
<td>➤ Indice dei tasselli…</td>
<td></td>
<td></td>
<td>Indice tassello</td>
</tr>
<tr>
<td>Estrazione ➤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Ritaglia Raster da Estensione…</td>
<td></td>
<td></td>
<td>Ritagliare raster per estensione</td>
</tr>
<tr>
<td>➤ Ritaglia il Raster con Maschera…</td>
<td></td>
<td></td>
<td>Ritagliare raster con layer maschera</td>
</tr>
<tr>
<td>➤ Curve di livello…</td>
<td></td>
<td></td>
<td>Curve di livello</td>
</tr>
<tr>
<td>Conversione ➤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ da PCT a RGB…</td>
<td></td>
<td></td>
<td>Da PCT a RGB</td>
</tr>
<tr>
<td>➤ Poligonizzazione (da raster a vettore)…</td>
<td></td>
<td></td>
<td>Poligonizzare (da raster a vettore)</td>
</tr>
<tr>
<td>➤ Rasterizza (da vector a raster)…</td>
<td></td>
<td></td>
<td>Rasterizzare (da vettore a raster)</td>
</tr>
<tr>
<td>➤ da RGB a PCT…</td>
<td></td>
<td></td>
<td>Da RGB a PCT</td>
</tr>
<tr>
<td>➤ Translate (converti formato)…</td>
<td></td>
<td></td>
<td>Trasformare (convertire il formato)</td>
</tr>
</tbody>
</table>

Per impostazione predefinita, QGIS aggiunge gli algoritmi *Processing* al menu *Raster*, raggruppati per sotto-menu. Questo fornisce una scorciatoia per molti comuni compiti di diversi fornitori GIS riferiti ai raster. Se non tutti questi sotto-menu sono disponibili, abilita il plugin *Processing* in **Plugins ➤ Gestisci e installa Plugins….**

Nota che l’elenco degli strumenti del menu *Raster* può essere esteso con qualsiasi algoritmo di *Processing* o con alcuni algoritmi esterni *plugins*.

7.1.9 Database

Questo è ciò che appare nel menu *Database* se tutti i plugin di base sono abilitati. Se non sono abilitati i plugin del database, non ci sarà il menu *Database*.

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editing Offline…</td>
<td>Alt+B+C</td>
<td></td>
<td>Plugin Offline Editing</td>
</tr>
<tr>
<td>➤ 🛠 Converti a Progetto Offline…</td>
<td></td>
<td></td>
<td>Database</td>
</tr>
<tr>
<td>➤ ⚙ Sincronizza</td>
<td></td>
<td></td>
<td>Database</td>
</tr>
<tr>
<td>📝 DB Manager…</td>
<td></td>
<td></td>
<td>Database</td>
</tr>
</tbody>
</table>

Quando si avvia QGIS per la prima volta non tutti i plugin di base verranno caricati.
7.1.10 Web

Questo è ciò che appare nel menu **Web** se tutti i plugin di base sono abilitati. Se non sono abilitati i plugin **Web**, non ci sarà il menu **Web**.

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>MetaSearch ➤</td>
<td>Alt+W + M</td>
<td></td>
<td>Client Catalogo MetaSearch</td>
</tr>
<tr>
<td>Metasearch ➤</td>
<td></td>
<td>Web</td>
<td>Client Catalogo MetaSearch</td>
</tr>
<tr>
<td>Help ➤</td>
<td></td>
<td></td>
<td>Client Catalogo MetaSearch</td>
</tr>
</tbody>
</table>

Quando si avvia QGIS per la prima volta non tutti i plugin di base verranno caricati.

7.1.11 Mesh

Il menu **Mesh** fornisce gli strumenti necessari per manipolare i *mesh layers*.

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcolatore Mesh…</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.1.12 Processing

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barra strumenti Processing</td>
<td>Ctrl+Alt+T</td>
<td></td>
<td>Gli Strumenti di Processing</td>
</tr>
<tr>
<td>Modellatore grafico…</td>
<td>Ctrl+Alt+G</td>
<td></td>
<td>Il modellatore grafico</td>
</tr>
<tr>
<td>Storico</td>
<td>Ctrl+Alt+H</td>
<td></td>
<td>Il gestore della cronologia di Processing</td>
</tr>
<tr>
<td>Visualizzatore Risultati</td>
<td>Ctrl+Alt+R</td>
<td></td>
<td>Configurazione di applicazioni esterne</td>
</tr>
<tr>
<td>Modifica geometrie sul posto</td>
<td></td>
<td></td>
<td>Il processamento di modifiche al layer sul posto</td>
</tr>
</tbody>
</table>

Quando si avvia QGIS per la prima volta non tutti i plugin di base verranno caricati.
7.1.13 Guida

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenuti della Guida</td>
<td>F1</td>
<td>Guida</td>
<td></td>
</tr>
<tr>
<td>Documentazione sulle API</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plugin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segnala un problema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serve supporto commerciale?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Page di QGIS</td>
<td>Ctrl+H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verifica versione di QGIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informazioni</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membri sostenitori di QGIS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.1.14 QGIS

Questo menu è disponibile solo in macOS e contiene alcuni comandi relativi a tale sistema operativo.

<table>
<thead>
<tr>
<th>Voce di Menu</th>
<th>Scorciatoia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferenze</td>
<td></td>
</tr>
<tr>
<td>Aiuto su QGIS</td>
<td></td>
</tr>
<tr>
<td>Nascondi QGIS</td>
<td></td>
</tr>
<tr>
<td>Mostra tutto</td>
<td></td>
</tr>
<tr>
<td>Nascondi gli altri</td>
<td></td>
</tr>
<tr>
<td>Esci da QGIS</td>
<td>Cmd+Q</td>
</tr>
</tbody>
</table>

Preferences corrisponde a Impostazioni ➤ Opzioni. About QGIS corrisponde a Guida ➤ Informazioni e Quit QGIS corrisponde a Progetto ➤ Esci da QGIS nelle altre piattaforme.

7.2 Pannelli e Barre degli strumenti

Dal menu Visualizza (o Impostazioni), puoi attivare e disattivare i widget QGIS (Pannelli ➤) e le barre degli strumenti (Barre degli strumenti ➤). Per (dis)attivare uno qualsiasi di essi, clicca con il tasto destro del mouse sulla barra dei menu o sulla barra degli strumenti e scegli la voce che vuoi. I pannelli e le barre degli strumenti possono essere spostati e posizionati dove preferisci all'interno dell'interfaccia QGIS. La lista può anche essere estesa con l'attivazione di Core or external plugins.

7.2.1 Barre degli strumenti

La barra degli strumenti permette di accedere alla maggior parte delle funzioni dei menu, oltre a strumenti aggiuntivi per interagire con la mappa. Ogni voce della barra degli strumenti ha a disposizione un aiuto a comparsa. Passa il mouse sopra lo strumento e una breve descrizione dello scopo dello strumento verrà visualizzata.

Puoi spostare a piacimento ogni barra in funzione delle tue esigenze. Inoltre puoi disattivare ogni barra cliccando con il tasto destro sulla barra degli strumenti disattivando la voce relativa nel menu.
Suggerimento: Ripristinare le barre degli strumenti

Se involontariamente hai nascosto una barra degli strumenti, puoi riattivarla utilizzando pristinarla utilizzando **Visualizza ➤ Barre degli strumenti ➤** (o **Impostazioni ➤ Barre degli strumenti ➤**). Se, per qualsiasi causa, una barra degli strumenti (o qualsiasi altro widget) scompare completamente dall'interfaccia, puoi trovare suggerimenti per recuperarla in *restoring initial GUI*.

Fig. 7.2: Il menu Barra degli strumenti
7.2.2 Pannelli

QGIS ha a disposizione molti pannelli. I pannelli sono widget speciali con cui è puoi interagire (selezionando opzioni, selezionando caselle di controllo, inserendo dati…) per eseguire operazioni più complesse.

![Fig. 7.3: Il menu Pannelli](image)

Di seguito è riportato un elenco dei pannelli predefiniti di QGIS:

- il **Advanced Digitizing Panel**
- il **Browser Panel**
7.3 Mappa

7.3.1 Visualizzazione della mappa

La visualizzazione della mappa (chiamata anche area della mappa) è il «business end» di QGIS — le mappe sono visualizzate in quest’area, in 2D. La mappa visualizzata in questa finestra rifletterà il rendering (simbologia, etichettatura, visibilità…) che hai applicato ai layer che hai caricato. Dipende anche dai layer e dal Sistema di Riferimento delle Coordinate (SR) del progetto.

Quando aggiungi un layer (vedi ad esempio Accedere ai dati), QGIS cerca automaticamente il suo sistema di riferimento delle coordinate. Se un diverso CRS è impostato di default per il progetto (vedi Sistemi di Riferimento delle coordinate e Progetti) allora il layer è «al volo» trasformato in quel CRS, e la vista della mappa viene ingrandita alla massima estensione nell’area di visualizzazione mappa se hai iniziato con un progetto QGIS vuoto. Se ci sono già dei layer nel progetto, non viene eseguito alcun ridimensionamento della mappa, quindi solo le feature che rientrano nell’estensione corrente della mappa saranno visibili.

Clicca sulla mappa visualizzata e dovresti essere in grado di interagire con essa:

- la mappa può essere spostata, traslando la visualizzazione in un’altra zona della mappa: questo viene realizzato usando lo strumento Pan Map, i tasti freccia, muovendo il mouse mentre viene tenuto premuto uno qualsiasi dei tasti Space, il tasto centrale del mouse o la rotellina del mouse.

- può essere ingrandita e rimpicciolita, con gli strumenti dedicati e . Tieni premuto il tasto Alt per passare da uno strumento all’altro. Lo zoom viene eseguito facendo scorrere la rotellina del mouse in avanti per ingrandire e indietro per rimpicciolire. Lo zoom è centrato sulla posizione del cursore del mouse.

Puoi personalizzare il Fattore di zoom nel menu Impostazioni ➤ Opzioni ➤ Strumenti Mappa.

- può essere ingrandita fino all’estensione completa di tutti i layer caricati , fino all’estensione del layer o fino all’estensione degli elementi selezionati .

- puoi spostarti avanti/indietro nella cronologia della visualizzazione della mappa con i pulsanti e , o usando i pulsanti del mouse avanti/indietro.
Clicca con il tasto destro sulla mappa e dovresti essere in grado di **Copia le coordinate** del punto cliccato nel SR della mappa, in WGS84 o in un SR personalizzato. Le informazioni copiate possono poi essere incollate in un'espessione, uno script, un editor di testo o un foglio di calcolo…

Per default, QGIS apre una singola vista di mappa (chiamata «mappa principale»), che è strettamente legata al pannello Layer; la mappa principale riflette **automaticamente** le modifiche che fai nell'area del pannello Layer. Ma è anche possibile aprire viste aggiuntive della mappa il cui contenuto potrebbe divergere dallo stato corrente del pannello Layer. Possono essere in 2D o in 3D, mostrare una scala o un'estensione diversa, o visualizzare un diverso insieme di layer caricati grazie a **map themes**.

7.3.2 Impostazioni aggiuntive per la visualizzazione mappa

Per aggiungere una nuova visualizzazione mappa, vai in **Visualizza ▶ Nuova Mappa**. Un nuovo widget fluttuante, che imita la visualizzazione della mappa principale, viene aggiunto a QGIS. Puoi aggiungere tutte le visualizzazioni di mappa che vuoi. Possono essere mantenute fluttuanti, affiancate o sovrapposte.

![Fig. 7.4: Visualizzazioni di più mappe con diverse impostazioni](image)

Nella parte superiore di una mappa aggiunta, c'è una barra degli strumenti con le seguenti funzionalità:

- **Zoom Completo** e **Zoom alla Selezione** per navigare all'interno della vista
- **Impostazione Tema di visualizzazione** per selezionare il **map theme** da utilizzare nella visualizzazione mappa. Se impostato su *(nessuna)*, la visualizzazione seguirà i cambiamenti del pannello Layer.
- **Impostazioni di visualizzazione** per configurare la visualizzazione della mappa:
 - **Sincronizza il Centro della Vista con la Mappa Principale:** sincronizza il centro della vista della mappa senza cambiare la scala. Questo permette di avere uno sguardo d'insieme o una mappa ingrandita che segue il centro della mappa principale.
 - **Sincronizza Vista con la Selezione:** equivalente a zoom alla selezione
 - **Scala**
– Rotazione
– Ingrandimento

– Sincronizza scala con la scala della mappa principale. Si può quindi applicare un Fattore di scala che permette di avere una vista che è ad esempio sempre 2x la scala della mappa principale.

– Mostra Annotazioni
– Mostra Posizione Cursore
– Mostra Estensione Mappa Principale

– Mostra etichette; permette di nascondere le etichette indipendentemente dal fatto che siano impostate nelle proprietà dei layer visualizzati
– Cambia SR della Mappa...
– Rinomina Vista...

7.3.3 Esportare la visualizzazione della mappa

Le mappe realizzate possono essere impaginate ed esportate in vari formati utilizzando le funzionalità avanzate del print layout or report. È anche possibile esportare direttamente la visualizzazione corrente, senza layout. Questo rapido «screenshot» della visualizzazione della mappa ha alcune utili opzioni.

Per esportare la mappa con la rappresentazione corrente:

1. Vai su Progetto ➤ Importa/Esporta
2. A seconda del formato di output, seleziona

 • Esporta Mappa come Immagine...
 • o Esporta Mappa come PDF...

I due strumenti hanno in comune diverse opzioni. Nella finestra di dialogo che si apre:

2. Inserisci la Scala della mappa o selezionala dal predefined scales: cambiando la scala si ridimensionerà l’estensione di esportazione (dal centro).

3. Imposta la Risoluzione dell’output

4. Puoi controllare la Larghezza e l’Altezza dell’output dell’immagine in pixel : in base alla risoluzione e all’estensione attuali, possono essere personalizzati e ridimensioneranno l’estensione della mappa (dal centro). Il rapporto delle proporzioni può essere bloccato, il che può essere particolarmente opportuno quando si modifica l’estensione sulla mappa.

5. Disegna le decorazioni attive: in uso decorations (barra di scala, titolo, griglia, freccia nord…) vengono esportate con la mappa

6. Scrivi annotazioni per esportare le annotation

7. Aggiunge informazioni georiferimento (includendolo o via world file): a seconda del formato di output, un world file con lo stesso nome (con estensione PNGW per le immagini PNG, JPGW per JPG, …) viene salvato nella stessa cartella della tua immagine. Il formato PDF incorpora le informazioni nel file PDF.

8. Quando si esporta in PDF, sono disponibili altre opzioni nella finestra di dialogo Salva Mappa come PDF…:
• **Esporta RDF metadata** del documento come il titolo, l’autore, la data, la descrizione…

• **Crea PDF Geospaziale (GeoPDF):** Genera un file PDF georeferenziato https://gdal.org/drivers/raster/pdf.html (richiede GDAL versione 3 o successiva). Puoi:
 - Scegli il **Formato GeoPDF**.
 - **Includi informazioni sulle caratteristiche dei vettori** nel file GeoPDF: includerà tutte le informazioni sulla geometria e sugli attributi delle caratteristiche dei vettori visibili all’interno della mappa nel file di output GeoPDF.

Nota: A partire da QGIS 3.10, anche un file GeoPDF può essere utilizzato come fonte di dati. Per ulteriori informazioni sul funzionamento di GeoPDF in QGIS, vedere https://north-road.com/2019/09/03/qgis-3-10-loves-geopdf/.

• **Rasterizza mappa**

• **Semplifica geometrie per ridurre le dimensioni del file in uscita:** Le geometrie saranno semplificate durante l’esportazione della mappa rimuovendo i vertici che non sono distinguibili alla risoluzione di esportazione (ad esempio, se la risoluzione di esportazione è di 300 dpi, verranno rimossi i vertici che sono a meno di 1/600 pollici distanti tra loro). Questo può ridurre la dimensione e la complessità del file di esportazione (file molto grandi possono non riuscire a caricarsi in altre applicazioni).
• Imposta l’Esportazione testo: controlla se le etichette di testo vengono esportate come oggetti di testo propriamente detti (Esporta Sempre Testo come Oggetti Testo) o solo come percorsi (Esporta Sempre Testo come Percorso). Se vengono esportati come oggetti di testo, allora possono essere modificati in applicazioni esterne (p.e. Inkscape) come testo normale. MA l’effetto collaterale è che la qualità della restituzione risulta inferiore. E ci sono problemi con la restituzione quando certe impostazioni di testo come i buffer sono al loro posto. Questo è il motivo per cui si raccomanda di esportare come percorsi.

9. Fai clic su **Salva** per selezionare la posizione, il nome e il formato del file.

Quando si esporta come immagine, il risultato atteso delle impostazioni di cui sopra può essere salvato in **Copia negli appunti** per incollare la mappa in un’altra applicazione come LibreOffice, GIMP…

7.4 Visualizzazione Mappa 3D

Il servizio di rappresentazione 3D è offerto attraverso la visualizzazione della mappa in 3D. Si crea e si apre una vista della mappa 3D tramite **Visualizza ▶ Nuova Mappa 3D**. Apparirà un pannello QGIS fluttuante. Il pannello può essere ancorato.

Per cominciare, la visualizzazione della mappa 3D ha la stessa estensione e la stessa visualizzazione della mappa principale 2D. Sono disponibili una serie di strumenti di navigazione per trasformare la visualizzazione in 3D.

![Fig. 7.7: La finestra di dialogo visualizzazione Mappa 3D](image)

I seguenti strumenti sono disponibili nella parte superiore del pannello di visualizzazione della mappa 3D:

- **Controllo fotocamera**: sposta la visualizzazione, mantenendo lo stesso angolo e la stessa direzione della telecamera
- **Zoom Completo**: ridefinisce la visualizzazione all’estensione di tutti i layer
• **Ativa navigazione su schermo**: mostra/nasconde il widget di navigazione (che ha lo scopo di facilitare il controllo della visualizzazione della mappa)

• **Informazioni**: restituisce informazioni sul punto del terreno cliccato o sul(sugli) oggetto(i) 3D cliccato(i) – Maggiori dettagli in *Informazione Elementi*

• **Linea di Misura**: misura la distanza orizzontale tra i punti

• **Animazioni**: mostra/nasconde il widget *animation player*

• **Salva come immagine**: esporta la vista corrente in un formato file immagine

• **Esporta scena 3D**: esporta la vista corrente come scena 3D (*file:*.obj file), permettendo il post-processing in applicazioni come Blender… Il terreno e gli elementi del vettore vengono esportati come oggetti 3D. Le impostazioni di esportazione, sovrascrivendo layer proprietà o visualizzazione mappa configuration, includono:

 – **Nome scena e destinazione Cartella**
 – **Risoluzione terreno**
 – **Risoluzione trama del terreno**
 – **Scala del modello**
 – **Bordi smussati**
 – **Esporta normali**
 – **Esporta trame**

• **Imposta il tema della vista**: ti permette di selezionare l'insieme dei layer da visualizzare nella visualizzazione mappa dai temi predefiniti *mappa*.

• **Configura la vista mappa settings**

7.4.1 Opzioni di navigazione

Per esplorare la vista della mappa in 3D:

• **Inclina il terreno** (ruotandolo attorno ad un asse orizzontale che passa attraverso il centro della finestra)
 – Premi gli strumenti Inclina in alto e Inclina in basso.
 – Premi **Shift** e usa i tasti su/giù.
 – Trascina il mouse avanti/indietro con il pulsante centrale del mouse premuto
 – Premi **Shift** e trascina il mouse avanti/indietro con il pulsante sinistro del mouse premuto.

• **Ruota il terreno** (intorno ad un asse verticale che passa attraverso il centro della finestra)
 – Ruota la bussola del widget di navigazione verso la direzione di osservazione
 – Premi **Shift** e usa i tasti sinistra/destra.
 – Trascina il mouse a destra/sinistra con il pulsante centrale del mouse premuto
 – Premi **Shift** e trascina il mouse a destra/sinistra con il pulsante sinistro del mouse premuto.

• **Cambia la posizione della telecamera** (e il centro della visuale), spostandola in un piano orizzontale
 – Trascina il mouse con il tasto sinistro del mouse premuto e il tasto **Controll Fotocamera** abilitato
 – Premi le frecce direzionali del widget di navigazione
– Utilizza i tasti su/giù/sinistra/destra per spostare la telecamera rispettivamente in avanti, indietro, destra e sinistra

• Modificare la quota della telecamera: premi i tasti Page Up/Page Down

• Cambia l’orientamento della telecamera (la telecamera viene mantenuta nella sua posizione ma il punto centrale di vista si sposta)
 – Premi Ctrl e usa i tasti freccia per ruotare la telecamera in alto, in basso, a sinistra e a destra
 – Premi Ctrl e trascina con il tasto sinistro del mouse premuto

• Ingrandisci e rimpicciolisci
 – Premi gli strumenti Rimpicciolisci e Ingrandisci del widget di navigazione
 – Muovi la rotellina del mouse (tenendo premuto Ctrl si ottengono zoom più precisi)
 – Trascina il mouse con il tasto destro del mouse premuto per ingrandire (trascina verso il basso) e ridurre (trascina verso l’alto)

Per ripristinare la visualizzazione della fotocamera, fai clic sul pulsante Zoom ad estensione massima nella parte superiore del pannello della mappa 3D.

7.4.2 Creare una animazione

Una animazione si basa su una serie di fotogrammi chiave - le posizioni della telecamera in determinati momenti. Per creare un’animazione:

1. Attiva lo strumento Animazioni, per visualizzare il widget del generatore dell’animazione

2. Fai clic sul pulsante Tempo fotogramma chiave e inserisci un Tempo in secondi. La casella combinata Fotogramma chiave visualizza ora il tempo impostato.

3. Utilizzando gli strumenti di navigazione, sposta la telecamera nella posizione da associare all’attuale tempo del fotogramma chiave.

4. Ripeti i passi precedenti per aggiungere tanti fotogrammi chiave (con tempo e posizione) nella quantità voluta.

5. Fai clic sul pulsante per visualizzare l’anteprima dell’animazione. QGIS genererà le scene utilizzando le posizioni/rotazioni della telecamera agli orari prestabiliti e interpolandole tra questi fotogrammi chiave. Sono disponibili varie modalità di Interpolazione per le animazioni (ad esempio, lineari, inQuad, inQuad, outQuad, inCirc… – maggiori dettagli su https://doc.qt.io/qt-5/qeasingcurve.html#EasingFunction-typedef)

L’animazione può anche essere visualizzata in anteprima spostando il cursore del tempo. Mantenendo premuto il pulsante Ripeti, l’animazione verrà eseguita ripetutamente, mentre cliccando su si ferma un’animazione in esecuzione.

È possibile esplorare le diverse viste della telecamera, utilizzando l’elenco Keyframe. Ogni volta che un orario è attivo, cambiando la vista della mappa si aggiorna automaticamente la posizione associata. Puoi anche gestire con Aggiungi fotogramma chiave (solo tempo) e Rimuovi fotogramma chiave.

Fai clic su Esporta fotogrammi di animazione per generare una serie di immagini che rappresentano la scena. Oltre al nome del file Modello e alla Cartella di uscita, puoi impostare il numero di Frame per secondo, l’Larghezza di uscita e l’Altezza di uscita.

7.4. Visualizzazione Mappa 3D

49
7.4.3 Impostazione della scena

La vista della mappa 3D si apre con alcune impostazioni predefinite che è possibile personalizzare. Per farlo, fai clic sul pulsante Configura nella parte superiore del pannello dell’area di disegno 3D per aprire la finestra Configurazione 3D.

![Configurazione 3D](image)

Fig. 7.8: La finestra di dialogo Configurazione 3D

Nella finestra di Configurazione 3D ci sono diverse opzioni per mettere a punto la scena 3D:

Terreno

- **Terreno**: Prima di immergersi nei dettagli, vale la pena notare che il terreno in una vista 3D è rappresentato da una gerarchia di tasselli di terreno e, man mano che la macchina fotografica si avvicina al terreno, i tasselli esistenti che non hanno sufficienti dettagli vengono sostituiti da tasselli più piccoli con più dettagli. Ogni tassello ha una geometria a maglie derivata dal layer di elevazione raster e dalla trama dei layer della mappa 2D.
 - **Tipo** di terreno in elevazione può essere:
 - un **Terreno pianeggiante**
 - un layer **DEM (Raster)**
 - un servizio **Online**, che carica le elevation tiles prodotte dagli strumenti Mapzen – maggiori dettagli su https://registry.opendata.aws/terrain-tiles/
 - un dataset caricato in formato **Mesh**
 - **Altitudine**: Layer raster o mesh da usare per la generazione del terreno. Il layer raster deve contenere una banda che rappresenti l’elevazione. Per un layer mesh, vengono usati i valori Z dei vertici.
 - **Scala verticale**: fattore di scala per l’asse verticale. Aumentando la scala si esagera l’altezza del terreno.
 - **Risoluzione tassello**: quanti campionamenti del layer raster del terreno vanno utilizzate per ogni tassello. Un valore di 16px significa che la geometria di ogni tassello sarà composto da campionamenti di elevazione 16x16. Numeri più alti creano tasselli del terreno più dettagliati a scapito di una maggiore complessità di rappresentazione.
– **Altezza bordo:** A volte è possibile vedere piccole crepe tra i tasselli del terreno. Aumentando questo valore si aggiungono pareti verticali («bordi») intorno ai tasselli del terreno per nascondere le crepe.

- Quando un layer mesh è usato come terreno, puoi configurare le impostazioni *Levigatura triangoli* (visualizzazione wireframe, triangoli lisci) e le impostazioni *Stile di visualizzazione* (come uniforme o in base al livello del terreno). Maggiori dettagli nella sezione *Mesh layer properties* section.

- **Ombreggiatura del terreno:** Ti permette di scegliere come visualizzare il terreno:
 - Ombreggiatura disabilitata - il colore del terreno è determinato solo dalla tessitura raster della mappa
 - Ombreggiatura abilitata - il colore del terreno è determinato utilizzando il modello di ombreggiatura di Phong, tenendo conto della texture della mappa, del vettore normale del terreno, della(e) luce(e) della scena e del colore del terreno *Ambiente e Speculare e Lucentezza*.

Luci

Dalla scheda *Luci*, premi il menu su per aggiungere

- fino a otto *Punti luce*: emette luce in tutte le direzioni, come una sfera di luce che riempie un’area. Gli oggetti più vicini alla luce saranno più luminosi, e gli oggetti più lontani saranno più scuri. Una luce puntiforme ha impostata una posizione (*X*, *Y* e *Z*), un *Colore*, una *Intensità* e una *Attenuazione*

- fino a quattro *Luci direzionali*: imita l’illuminazione che si otterrebbe da una luce flash di dimensioni gigantesche molto lontana dai vostri oggetti, sempre centrata e che non si spegne mai (per esempio il sole). Emette dei raggi di luce paralleli in una sola direzione, ma la luce si estende all’infinito. Una luce direzionale può essere ruotata impostando un *Azzimuth*, avere una *Altitudine*, un *Colore* e una *Intensità*.

![Fig. 7.9: La finestra di dialogo Luci della Configurazione 3D della Mappa](image)
Ombreggiatura

Seleziona □ Mostra Ombreggiatura per mostrare l’ombra nella tua scena, dato:

• una **Luce direzionale**
• una **Distanza massima di visualizzazione delle ombre**: per evitare la visualizzazione dell’ombra di oggetti troppo distanti, per esempio quando la telecamera si alza lungo l’orizzonte
• un livello di **Bias ombra**: per evitare effetti di auto-ombra che potrebbero restituire alcune aree più scure di altre, a causa delle differenze nelle dimensioni della mappa. Più basso è, meglio è
• una **Risoluzione della mappa delle ombre**: per rendere le ombre più nitide. Può portare a problemi nelle prestazioni se il parametro di risoluzione è troppo alto.

Camera & Skybox

• Camera **Campo di vista**: permette di creare scene panoramiche. Il valore predefinito è 45°.
• Seleziona □ Mostra Sybox per abilitare la visualizzazione dello skybox nella scena. Il tipo di skybox può essere:
 – **Trama Panoramica**, con un singolo file che fornisce la vista su 360°
 – **Facce Distinte**, con un file trama per ciascuno dei sei lati di una scatola contenente la scena

I file di trama possono essere file sul disco, URL remoti o incorporati nel progetto (*more details*).

Avanzato

• **Risoluzione tasselli Mappa**: Larghezza e altezza delle immagini della mappa 2D usate come suddivisione in tasselli del terreno. 256px significa che ogni tassello sarà visualizzato in un’immagine di 256x256 pixel. Un numero più alto crea tasselli di terreno più dettagliati a scapito di una maggiore complessità di visualizzazione.
• **Max. errore di schermo**: Determina la soglia per sostituire i tasselli del terreno con altri più dettagliati (e viceversa) - cioè quanto tempo la vista 3D utilizzerà tasselli di qualità superiore. Un numero inferiore significa maggiori dettagli della scena a scapito di una maggiore complessità di visualizzazione.
• **Max. errore al suolo**: La risoluzione dei tasselli del terreno in cui si interrompe la divisione delle tasselli in tasselli più dettagliati (dividerli non introdurrebbe comunque alcun dettaglio in più). Questo valore limita la profondità della gerarchia dei tasselli: valori più bassi rendono la gerarchia profonda, aumentando la complessità di visualizzazione.
• **Livelli di zoom**: Mostra il numero di livelli di zoom (dipende dalla risoluzione dei tasselli della mappa e dall’errore massimo al suolo).
• □ Mostra etichette: Attiva/disattiva le etichette della mappa
• □ Mostra le info sui tasselli della mappa: Include i numeri dei tasselli di confine e dei tasselli del terreno (utile per la soluzione delle tematizzazioni del terreno)
• □ Mostra i perimetri di delimitazione: Mostra i perimetri di delimitazione 3D dei tasselli del terreno (utile per la soluzione delle tematizzazioni del terreno)
• □ Mostra il centro di vista della camera
• □ Mostra sorgenti luminose: mostra una sfera come origine delle fonti di luce, permettendo un più facile riposizionamento e posizionamento delle fonti di luce rispetto ai contenuti della scena
7.4.4 Layer vettoriali 3D

Un layer vettoriale con valori di elevazione può essere mostrato nella mappa 3D controllando Configura nella scheda Nuova mappa 3D delle proprietà del layer vettoriale. Sono disponibili diverse opzioni per controllare la visualizzazione del layer vettoriale 3D.

7.5 Barra di Stato

La barra di stato ti fornisce informazioni generali sulla visualizzazione della mappa e sulle azioni elaborate o disponibili e ti offre strumenti per gestire la visualizzazione della mappa.

7.5.1 Barra Localizzatore

Sul lato sinistro della barra di stato, la barra di localizzazione, un widget di ricerca rapida, ti aiuta a trovare ed eseguire qualsiasi elemento o opzione in QGIS:

1. Clicca nel widget di testo per attivare la barra di ricerca del localizzatore o premi Ctrl+K.
2. Digita un testo associato all’elemento che stai cercando (nome, tag, parola chiave, …). Per impostazione predefinita, i risultati vengono restituiti per i filtri di localizzazione abilitati, ma puoi limitare la ricerca ad un certo ambito facendo precedere il testo dal prefisso locator filters, ad esempio digitando l cad’ verranno restituiti solo i layer il cui nome contiene cad.

 Il filtro può anche essere selezionato con un doppio clic nel menu che appare quando si accede al widget del localizzatore.
3. Clicca su un risultato per eseguire l’azione corrispondente, a seconda del tipo di elemento.

Suggerimento: Limitare la ricerca a un campo del layer attivo

Per impostazione predefinita, una ricerca con il filtro «active layer features» (af) scorre l’intera tabella degli attributi del layer. Puoi limitare la ricerca ad un campo particolare usando il prefisso @. Per esempio, af @name sal o @name sal sostituisce solo le caratteristiche il cui attributo «name» contiene “sal”. Il completamento automatico del testo è attivo durante la scrittura e il suggerimento può essere applicato usando il tasto Tab.

La ricerca è gestita utilizzando i thread, in modo che i risultati siano sempre disponibili il più rapidamente possibile, anche se sono installati filtri di ricerca lenti. Inoltre appaiono non appena vengono incontrati da un filtro, il che significa che, ad esempio, un filtro di ricerca di file mostrerà i risultati uno per uno man mano che l’albero dei file viene analizzato. Questo assicura che l’interfaccia utente sia sempre reattiva, anche se è presente un filtro di ricerca molto lento (per esempio uno che usa un servizio online).

Suggerimento: Accesso rapido alla configurazione del Localizzatore

Fai clic sull’icona all’interno del widget del localizzatore sulla barra di stato per visualizzare la lista dei filtri che puoi usare e una voce Filtro che apre la scheda Localizzatore del menu Impostazioni ➤ Opzioni.…
7.5.2 Azioni di reporting

Nell’area accanto alla barra di localizzazione, quando necessario ti verrà mostrato un riepilogo delle azioni eseguite (come la selezione di elementi in un layer, la rimozione del layer) o una completa descrizione dello strumento su cui si passa sopra (non disponibile per tutti gli strumenti).

In caso di lunghe operazioni, come l’acquisizione di statistiche in layer raster, l’esecuzione di algoritmi di elaborazione o la visualizzazione di più layer nella mappa, nella barra di stato viene visualizzata una barra dello stato di avanzamento.

7.5.3 Gestione della mappa

L’opzione Coordinate mostra la posizione corrente del mouse, seguendolo durante lo spostamento sulla mappa. Puoi impostare le unità di misura (e la precisione) nella scheda Progetto ➤ Proprietà… ➤ Generale. Clicca sul piccolo pulsante a sinistra della casella di testo per passare dall’opzione Coordinate all’opzione Estensioni che mostra le coordinate in unità mappa degli attuali angoli in basso a sinistra e in alto a destra della mappa.

Accanto al display delle coordinate si trova il display Scala. Mostra la scala della visualizzazione della mappa. C’è un selettore di scala, che permette di scegliere tra predefined and custom scales.

Sul lato destro del display della scala, premi il pulsante per bloccare la scala e utilizza la lente di ingrandimento per ingrandire o ridurre lo zoom. La lente d’ingrandimento consente di ingrandire una mappa senza alterare la scala della mappa, rendendo più facile modificare con precisione la posizione delle etichette e dei simboli. Il livello di ingrandimento è espresso in percentuale. Se Livello di ingrandimento ha un livello del 100%, allora la mappa corrente non viene ingrandita. Inoltre, un valore di ingrandimento predefinito può essere impostato all’interno di Impostazioni ➤ Opzioni… ➤ Visualizzazione ➤ Livello ingrandimento, che è molto utile per schermi ad alta risoluzione per ingrandire simboli piccoli.

A destra della scala puoi definire la rotazione corrente in gradi in senso orario della mappa.

Sul lato destro della barra di stato, c’è una piccola casella di controllo che può essere usata temporaneamente per impedire che i layer vengano aggiornati nella visualizzazione mappa (vedi la sezione Visualizzazione).

A destra delle funzioni di visualizzazione, trovi il pulsante EPSG:code che mostra il SR del progetto corrente. Cliccando su questo pulsante si apre la finestra di dialogo Proprietà progetto e ti consente di applicare un altro SR alla visualizzazione della mappa.

Suggerimento: Calcolare la scala corretta della mappa

Quando avvi QGIS, il SR predefinito è WGS 84 (EPSG 4326) e le unità di misura sono i gradi. Ciò significa che QGIS interpreterà qualsiasi coordinata del layer come specificato in gradi. Per ottenere valori di scala corretti, è possibile modificare manualmente questa impostazione nella scheda Generale sotto Progetto ➤ Proprietà… (ad es. ai metri), oppure è possibile utilizzare l’icona EPSG:code vista sopra. In quest’ultimo caso, le unità sono impostate a quanto specificato dalla proiezione del progetto (ad esempio, +units=us-ft).

Da notare che la scelta del sistema SR di partenza può essere fatta in Impostazioni ➤ Opzioni ➤ SR.
7.5.4 Messaggi

Il pulsante **Messaggi** accanto ad esso apre il pannello *Messaggi di Log* che contiene informazioni sui processi in corso (attivazione di QGIS, caricamento di plugin, strumenti di processing…).

A seconda delle impostazioni di *Plugin Manager settings*, la barra di stato può a volte mostrare delle icone a destra per informare sulla disponibilità di plugin nuovi () o aggiornabili (). Fai clic sull'icona per aprire la finestra di dialogo di Plugin Manager.
Il pannello Browser

Il pannello QGIS Browser è un ottimo strumento per la navigazione, la ricerca, la consultazione, la copia e il caricamento delle risorse QGIS. Solo le risorse che QGIS sa come gestire sono mostrate nel browser.

Utilizzando il pannello Browser è possibile individuare, visualizzare e aggiungere dati, come descritto in Il Pannello Browser. Inoltre, il pannello Browser supporta il drag and drop di molte risorse QGIS, come file di progetto, script Python, script di Processing e modelli di Processing.

Gli script Python, gli script di Processing e i modelli di Processing possono anche essere aperti per l’editing in un editor esterno e nel modellatore grafico.

Puoi trascinare e rilasciare i layer dal pannello Layer al pannello Browser, ad esempio in un GeoPackage o in un database PostGIS.
Il pannello del browser (Fig. 8.1) è organizzato in una gerarchia espandibile con alcune voci fisse al primo livello che organizzano le risorse gestite dal browser. Le voci di primo livello vengono espanse cliccando su a sinistra del nome della voce. Un ramo viene collassato cliccando su . Il pulsante fa collassare tutte le voci al primo livello.

In Impostazioni è possibile disabilitare le risorse. Se, per esempio, non vuoi mostrare script Python nel browser, puoi deselezionare la voce Browser ➤ py, e se vuoi eliminare la cartella home nel browser, puoi deselezionare la voce Browser ➤ special:Home.

Un filtro può essere utilizzato per la ricerca in base ai nomi delle voci (sia le voci delle foglie che quelle dei nodi nella gerarchia). Utilizzando il menu a tendina accanto al campo di testo del filtro, puoi

- attivare/disattivare l’opzione Maiusc/minusc
- impostare Filtra sintassi del pattern su una di queste opzioni
 - Normale
 - Carattere(i) jolly
 - Espressione Regolare
Il widget *Proprietà*, che mostra informazioni utili su alcune voci / risorse, può essere abilitato / disabilitato usando il pulsante

Abilita/disabilita le proprietà del widget.
Quando è abilitato, si apre in fondo al pannello del browser, come mostrato in Fig. 8.2.

Fig. 8.2: Il widget proprietà

Un secondo pannello browser può essere aperto attivando il pannello *Browser (2)* in **Visualizza ➤ Panelli**. Avere due pannelli browser può essere utile quando si copiano i layer tra le risorse che si trovano in profondità in diversi rami della gerarchia del browser.

8.1 Risorse che possono essere aperte / eseguite dal Browser

Molto si può fare nel pannello Browser:

- Aggiungere layer vettoriali, raster e mesh alla mappa facendo doppio clic, trascinandolo sull’area della mappa o cliccando sul pulsante **Aggiungi Layer selezionati** (dopo aver selezionato i layer)
- Eseguire script Python (inclusi gli algoritmi di Processing) facendo doppio clic o trascinandoli sull’area della mappa
- Eseguire modelli facendo doppio clic o trascinandoli nell’area della mappa
• Estrai simboli… dai file di progetto QGIS utilizzando il menu contestuale
• Apriare file con le loro applicazioni predefinite (Open <file type> Externally… nel menu contestuale). Ad esempio: file HTML, fogli di calcolo, immagini, PDF, file di testo, …
• Copiare voci

Le azioni specifiche per le risorse sono elencate per i diversi gruppi di risorse ordinate sotto le voci di primo livello elencate qui di seguito.

8.2 Voci di primo livello del pannello Browser

8.2.1 Preferiti

Spesso le posizioni del file system utilizzate possono essere etichettate come preferite. Quelle che hai etichettato appariranno qui.

Oltre alle operazioni descritte in Home, il menu contestuale ti permette di impostare Rinomina Preferito… e Rimuovi Preferito.

8.2.2 Segnalibri Spaziali

Qui troverai i tuoi segnalibri spaziali, organizzati in Segnalibri Progetto e Segnalibri Utente.

Dal menu contestuale di livello superiore, puoi creare un segnalibro (Nuovo Segnalibro Spaziale…), Mostra Gestore Segnalibri Spaziali, Importa Segnalibri Spaziali… e Esporta Segnalibri Spaziali….

Per le voci dei segnalibri puoi Zoom a Segnalibro, Modifica Segnalibro Spaziale… e Elimina Segnalibro Spaziale.

8.2.3 Home

La directory/cartella home del tuo file system. Cliccando con il tasto destro del mouse su una voce, e scegliendo Aggiungi come Preferito, la posizione verrà aggiunta a Preferiti. Dal menu contestuale, puoi anche

• aggiungere una cartella, un Geopackage o un ESRI Shapefile (Nuovo)
• nascondere la cartella (Nascondi dal Browser)
• attivare/disattivare Scansiona Velocemente questa cartella.
• aprire la cartella nel tuo file manager (Apri Cartella…)
• aprire la cartella in una finestra del terminale (Apri nel Terminale…)
• ispezionare le proprietà (Proprietà…, Proprietà Cartella…)

8.2.4 /

La tua directory / cartella principale del file system.
8.2.5 Geopackage

File Geopackage / database. Dal menu contestuale di livello superiore, puoi creare un file / database Geopackage (Crea Database...) o aggiungere un file / database Geopackage esistente (Nuova Connessione...).

Il menu contestuale di ogni Geopackage ti permette di rimuoverlo dalla lista (Rimuovi connessione...), aggiungere un nuovo layer o una nuova tabella al Geopackage (Crea nuovo layer o tabella...), cancellare il Geopackage (Cancella <name of geopackage>) e Compatta Database (VACUUM).

Per le voci di layer/tabella puoi
- rinominarlo (Rinominare Layer <layer name>...)
- esportarlo (Esporta Layer ► Su File...)
- aggiungerlo al progetto Aggiungi Layer al Progetto
- eliminarlo (Elimina File...)
- consultare le proprietà (Proprietà del Layer..., Proprietà File...)

8.2.6 SpatiaLite

Connessioni al database SpatiaLite.

Dal menu contestuale di livello superiore, puoi creare un file / database SpatiaLite (Crea Database...) o aggiungere un file / database SpatiaLite esistente (Nuova Connessione...).

Il menu contestuale di ogni file SpatiaLite ti permette di cancellarlo (Elimina).

Per le voci di layer/tabella puoi
- esportarlo (Esporta Layer ► Su File...)
- aggiungerlo al progetto Aggiungi Layer al Progetto
- eliminarlo (Elimina File...)
- consultare le proprietà (Proprietà Layer...)

8.2.7 PostGIS

Connessioni al database PostGIS.

Dal menu contestuale di livello superiore, puoi aggiungere una nuova connessione (Nuova Connessione...).

Il menu contestuale di ogni connessione ti permette di Aggiornare, modificare Modifica connessione..., cancellare (Rimuovi connessione) o Creare Schema....

Il menu contestuale di ogni schema ti permette di Aggiornare, Rinominare Schema... o Eliminare Schema.

Per layer/tabelle tu puoi
- rinominarlo (Rinomina Tabella...)
- rimuovere il suo contenuto (Truncate Tabella...)
- esportarlo (Esporta Layer ► Su File...)
- aggiungerlo al progetto (Aggiungi Layer al Progetto)
- eliminarlo (Elimina File...)
- visualizzare le sue proprietà (Proprietà Layer...)
8.2.8 MSSQL

Connessioni Microsoft SQL Server.
Dal menu contestuale di livello superiore, puoi aggiungere una nuova connessione (Nuova Connessione…).
Il menu contestuale di ogni connessione ti permette di Aggiornare, modificare Modifica connessione…, cancellare (Rimuovi connessione) o Creare Schema….
Per layer/tabelle tu puoi
 • rinominarlo (Rinomina Tabella…)
 • rimuovere il suo contenuto (Truncate Tabella…)
 • esportarlo (Esporta Layer ► Su File…)
 • aggiungerlo al progetto (Aggiungi Layer al Progetto)
 • eliminarlo (Elimina File…)
 • visualizzare le sue proprietà (Proprietà Layer…)

8.2.9 DB2

Connessioni al database IBM DB2.
Dal menu contestuale di livello superiore, puoi aggiungere una nuova connessione (Nuova Connessione…).
Il menu contestuale di ogni connessione ti permette di Aggiornare, modificare Modifica connessione…, cancellare (Rimuovi connessione) o Creare Schema….
Per layer/tabelle tu puoi
 • rinominarlo (Rinomina Tabella…)
 • rimuovere il suo contenuto (Truncate Tabella…)
 • esportarlo (Esporta Layer ► Su File…)
 • aggiungerlo al progetto (Aggiungi Layer al Progetto)
 • eliminarlo (Elimina File…)
 • visualizzare le sue proprietà (Proprietà Layer…)

8.2.10 WMS/WMTS

Web Map Services (WMS) e Web Map Tile Services (WMTS)
Dal menu contestuale di livello superiore, puoi aggiungere una nuova connessione (Nuova Connessione…).
Il menu contestuale di ogni servizio WSM/WMTS ti permette di Aggiornare, Modificare… e cancellare (Elimina).
Layer in gruppo possono essere aggiunti trascinandoli sull’area della mappa.
Per i layer WMS/WMTS puoi
 • esportarlo (Esporta Layer ► Su File…)
 • aggiungerlo al progetto (Aggiungi Layer al Progetto)
 • consultare le proprietà (Proprietà Layer…)
8.2.11 Vector Tile

Servizi Vector tile
Dal menu contestuale di livello superiore, aggiungi un servizio esistente (Nuova Connessione...), e puoi Salva Connessione... o Carica Connessione... a / da file XML.

8.2.12 XYZ Tile

Servizi XYZ tile
Dal menu contestuale di livello superiore, aggiungi un servizio esistente (Nuova Connessione...), e puoi Salva Connessione... o Carica Connessione... a / da file XML.
Per i servizi XYZ tile puoi
 • modificarlo (Modifica...)
 • eliminarlo (Elimina)
 • esportarlo (Esporta Layer ► Su File...)
 • aggiungerlo al progetto Aggiungi Layer al Progetto
 • consultare le proprietà (Proprietà Layer...)

8.2.13 WCS

Web Coverage Services
Dal menu contestuale di livello superiore, puoi aggiungere una nuova connessione (Nuova Connessione...).
Il menu contestuale di ogni WCS ti permette di Aggiornare, Modificare... e cancellare (Eliminare).
Per i layer WCS puoi
 • esportarlo (Esporta Layer ► Su File...)
 • aggiungerlo al progetto (Aggiungi Layer al Progetto)
 • consultare le proprietà (Proprietà Layer...)

8.2.14 WFS / OGC API - Features

Web Feature Services (WFS) e OGC API - Features services (alias WFS3)
Dal menu contestuale di livello superiore, puoi aggiungere una nuova connessione (Nuova Connessione...).
Il menu contestuale di ogni WFS ti permette Aggiornare, Modificare... e cancellare (Eliminare).
Per i layer WFS puoi
 • esportarlo (Esporta Layer ► Su File...)
 • aggiungerlo al progetto (Aggiungi Layer al Progetto)
 • consultare le proprietà (Proprietà Layer...)
8.2.15 OWS

 Qui trovi una lista in solo lettura di tutti i tuoi Open Web Services (OWS) - WMS / WCS / WFS / WFS / …

8.2.16 ArcGIS Map Service

8.2.17 ArcGIS Features Service

8.2.18 GeoNode

Dal menu contestuale di livello superiore, puoi aggiungere una nuova connessione (Nuova Connessione…).

Il menu contestuale di ogni servizio ti permette di Aggiornare, Modificare… e cancellare (Eliminare).

Con le voci di gestione dei layer puoi

- esportarlo (Esporta Layer ➤ Su File…)
- aggiungerlo al progetto (Aggiungi Layer al Progetto)
- consultare le proprietà (Proprietà Layer…)

8.3 Risorse

- File di progetto. Il menu contestuale per i file di progetto QGIS ti permette di:
 - caricarlo (Apri Progetto)
 - estrarre simboli (Estrai Simboli…) - apre il gestore di stili che permette di esportare simboli in un file XML, aggiungere simboli allo stile predefinito o esportarli come PNG o SVG.
 - consultare proprietà (Proprietà File…)

Puoi espandere il file di progetto per vederne i layer. Il menu contestuale di un layer offre le stesse opzioni come nelle altre funzionalità del browser.

- File di definizione dei Layer QGIS (QLR). Le seguenti azioni sono disponibili dal menu contestuale:
 - esportarlo (Esporta Layer ➤ Su File…)
 - aggiungerlo al progetto (Aggiungi Layer al Progetto)
 - consultare le proprietà (Proprietà Layer…)

- Modelli di elaborazione (.modello3). Le seguenti azioni sono disponibili dal menu contestuale:
 - (Esegui Modello…)
 - (Modifica Modello…)

- Modelli di compositore di stampa QGIS (QPT). La seguente azione è disponibile dal menu contestuale:
 - (Nuovo Layout da Modello)

- Script Python (.py). Le seguenti azioni sono disponibili dal menu contestuale:
 - (Esegui script…)
 - (Apri in un editor esterno)

- Formati raster riconosciuti. Le seguenti azioni sono disponibili dal menu contestuale:
 - eliminarlo (Elimina File <dataset name>)
 - esportarlo (Esporta Layer ➤ Su File…)
 - aggiungerlo al progetto (Aggiungi Layer al Progetto)
- consultare le proprietà (Proprietà del Layer…, Proprietà File…)

Per alcuni formati puoi anche Apri <file type> Esternamente…

- Formati vettoriali riconosciuti. Le seguenti azioni sono disponibili dal menu contestuale:
 - eliminarlo (Elimina File <dataset name>)
 - esportarlo (Esporta Layer ► Su File…)
 - aggiungerlo al progetto (Aggiungi Layer al Progetto)
 - consultare le proprietà (Proprietà del Layer…, Proprietà File…)

Per alcuni formati puoi anche Apri <file type> Esternamente…
QGIS è altamente configurabile. Tramite il menu Impostazioni, fornisce diversi strumenti per:

- **Gestore Stile…**: crea e gestisce symbols, styles and color ramps.
- **Proiezione personalizzata…**: crea il tuo coordinate reference systems.
- **Scocciatoie da Tastiera…**: definisce il tuo set di keyboard shortcuts. Inoltre le stesse possono essere sovrascritte nel corso di ogni sessione QGIS dalle project properties (accessibili nel menu Project).
- **Personalizzazione interfaccia…**: configura application interface, nascondendo finestre di dialogo o strumenti di cui non hai bisogno.
- **Opzioni…**: impostazioni globali options da applicare in diverse aree del software. Queste preferenze vengono salvate nelle impostazioni del profilo attivo User profile e applicate di default ogni volta che si apre un nuovo progetto con questo profilo.

9.1 Opzioni

Le schede in cui puoi personalizzare le tue opzioni sono descritte di seguito.

Nota: I plugin possono gestire proprie impostazioni nella finestra di dialogo Opzioni

Mentre solo le impostazioni di base sono presentate di seguito, si noti che questa lista può essere estesa da installed plugins implementando proprie opzioni nella finestra di dialogo Opzioni standard. Questo evita che ogni plugin abbia la propria finestra di dialogo di configurazione con voci di menu extra solo per loro….
9.1.1 Impostazioni generali

Definizioni sostitutive nazionali

Per impostazione predefinita, QGIS si basa sulla configurazione del tuo sistema operativo per impostare la lingua e manipolare i valori numerici. L’abilitazione di questo gruppo ti permette di personalizzare il comportamento.

- Seleziona in Traduzione interfaccia utente la lingua da applicare alla GUI
- Seleziona in Localizzazione (formato per numeri, data e valuta) il formato di immissione e visualizzazione dei valori numerici e delle date
- Mostra separatore delle migliaia

Nella parte inferiore della scheda viene visualizzato un riepilogo delle impostazioni selezionate e della loro riproduzione.

Applicazione

- Seleziona lo Stile (Riavvio di QGIS necessario) ad esempio come i widget appaiono e si posizionano nelle finestre di dialogo. I valori possibili dipendono dal sistema operativo.
- Definisci la Dimensione delle icone.
- Definisci il Carattere e la sua Dimensione. Il font può essere Qt predefinito o uno definito dall’utente
- Cambia il Timeout per messaggi o dialoghi a tempo.
- Nascondi schermata iniziale all’avvio
- Mostra il feed di notizie QGIS sulla pagina di benvenuto: ti mostra un feed di notizie aggiornate su QGIS nella pagina di benvenuto, dandoti un modo diretto per essere a conoscenza delle notizie del progetto (data e sommario degli incontri utente/sviluppatore, sondaggi della comunità, annunci di rilascio, suggerimenti vari…)
- Controlla la versione QGIS all’avvio per tenerti informato se è stata rilasciata una versione più recente
- Utilizza le finestre di dialogo per la scelta dei colori nativi (vedi Scelta colore)
- Finestra non modale di gestione delle sorgenti dati per mantenere aperta la finestra di dialogo data source manager e consentire l’interazione con l’interfaccia QGIS mentre si aggiungono layer al progetto

File Progetto

- Apri un progetto all’apertura di QGIS
 - “Pagina di Benvenuto” (opzione predefinita): puoi visualizzare il feed «News», il/i modello/i di progetto e i progetti più recenti (con le miniature) del :ref:`user profile <user_profiles>` . Per impostazione predefinita nessun progetto viene aperto.
 - “Nuovo”: apre un nuovo progetto, basato sul modello predefinito
 - “Più recente”: riapre l’ultimo progetto salvato
 - e “Specifico”: apre un progetto particolare. Usa il pulsante … ` per definire il progetto da utilizzare come predefinito.
- Crea un nuovo progetto dal progetto predefinito. Puoi scegliere Definisce il progetto attuale come predefinito oppure Ripristina il predefinito. Sfoglia fra i tuoi file e specifica la cartella in cui sono presenti i progetti da usare come modello. Se hai spuntato la casella di controllo Crea un nuovo progetto dal progetto predefinito e hai salvato un progetto nella cartella dei modelli, comparrà la nuova voce Progetto ➤ Nuovo da modello.
- Chiedi di salvare il progetto e cambia sorgente dati quando richiesto per evitare di perdere le modifiche apportate.
• **Chiedi conferma quando si vuole rimuovere un layer**

• **Avvisa quando si apre un file di progetto salvato con una vecchia versione di QGIS.** Puoi sempre aprire progetti creati con una versione precedente di QGIS, ma una volta che il progetto viene salvato, provare ad aprirlo con una versione precedente potrebbe fallire a causa di caratteristiche non disponibili in quella versione.

• **Enable macros [] .** This option was created to handle macros that are written to perform an action on project events. You can choose between “Never”, “Ask”, “For this session only” and “Always (not recommended)”.

• **Formato predefinito del file di progetto**
 - **Formato file Archivio QGZ, include i dati ausiliari (vedi auxiliary data)**
 - **QGS Il progetto salvato in testo in chiaro, non incorpora i dati ausiliari**; i dati ausiliari sono memorizzati in un separato file . qgd insieme al file di progetto.

9.1.2 Impostazioni di sistema

Percorsi SVG

Aggiungi o Rimuovi Percorso(i) dove cercare i simboli SVG (Scalable Vector Graphic). Questi file SVG sono quindi disponibili per simboleggiare o etichettare gli elementi o decorare la mappa nel compositore di stampe.

Quando utilizzi un file SVG in un simbolo o in un’etichetta, QGIS ti permette di:

- caricare il file dal file system: il file viene identificato attraverso il percorso del file e QGIS deve trovare il percorso per poter visualizzare l’immagine corrispondente
- caricare il file da un URL remoto: come sopra, l’immagine sarà caricata solo dopo aver recuperato con successo la risorsa remota
- incorporare il file SVG nell’oggetto: il file è incorporato all’interno del progetto corrente, del database degli stili o del modello di layout di stampa. Il file SVG viene poi sempre reso come parte dell’oggetto. Questo è un modo conveniente per creare progetti autononi con simboli SVG personalizzati che possono essere facilmente condivisi tra diversi utenti e installazioni di QGIS.

È anche possibile estrarre il file SVG incorporato da un simbolo o da un’etichetta e salvarlo su disco.

Nota: Le opzioni sopra menzionate per il caricamento e la memorizzazione di un file SVG in un progetto sono applicabili anche alle immagini raster che vuoi utilizzare per la personalizzazione di simboli, etichette o decorazioni.

Percorsi per i plugin

Aggiungi o rimuovi Percorsi per cercare ulteriori librerie plugin C++.

Percorsi della Documentazione

Aggiungi o rimuovi Percorsi della documentazione da usare per l’help di QGIS. Per impostazione predefinita, viene aggiunto un link al Manuale Utente online ufficiale corrispondente alla versione utilizzata. Puoi comunque aggiungere altri link e dar loro priorità dall’alto verso il basso: ogni volta che clicchi su un pulsante Help in una finestra di dialogo, viene controllato il link più in alto e se non viene trovata alcuna pagina corrispondente, viene provata quella successiva, e così via.

Nota: La documentazione è versionata e tradotta solo per QGIS Long Term Releases (LTR), il che significa che se stai utilizzando un rilascio regolare (es. QGIS 3.0), il pulsante help aprire di default la prossima pagina del manuale LTR (es. 3.4 LTR), che può contenere la descrizione delle caratteristiche delle nuove versioni (3.2 e 3.4). Se non è disponibile documentazione LTR viene utilizzata la documentazione della versione di test, con le funzionalità delle versioni più recenti e di sviluppo.

Impostazioni

9.1. Opzioni 69
Ripristina l'interfaccia utente alle impostazioni predefinite (riavvio richiesto) ti aiuta se hai fatto qualche personalizzazione.

Ambiente

Le variabili di ambiente di sistema possono essere visualizzate, e molte configurate, nel gruppo **Ambiente**. Questo è utile per piattaforme, come Mac, dove un'applicazione GUI non eredita necessariamente l'ambiente shell dell'utente. È utile anche per impostare e visualizzare le variabili d'ambiente per gli strumenti esterni controllati dal Toolbox di processing (ad esempio, SAGA, GRASS), e per attivare l'output di debug per specifiche sezioni del codice sorgente.

Usa variabili utente (necessario il riavvio - includi i separatori). Puoi attivare Aggiungi nuova variabile e Rimuovi variabile. Le variabili d'ambiente già definite vengono visualizzate in Variabili di ambiente attuali, e puoi filtrarle attivando **Mostra le solo le variabili specifiche di QGIS.**
9.1.3 Impostazioni SR

Nota: Per maggiori informazioni su come QGIS gestisce la proiezione dei layer, leggi la sezione dedicata in Lavorare con le proiezioni.

![Fig. 9.2: Impostazioni SR in QGIS](image)

SR per i Progetti

Esiste un'opzione per impostare automaticamente il SR per il nuovo progetto:

- [] **Usa il SR dal primo layer aggiunto**: il CRS del progetto sarà impostato sul SR del primo layer caricato in esso
- [] **Usa SR predefinito**: un SR predefinito viene applicato di default a qualsiasi nuovo progetto e viene lasciato invariato quando si aggiungono layer al progetto.

La scelta sarà salvata per l'uso nelle successive sessioni di QGIS. Il Sistema di Riferimento delle Coordinate del progetto può ancora essere sovrascritto da Progetto ► Proprietà... ► scheda SR.

SR per i Layer

- **Usa SR del layer predefinito**: seleziona un SR predefinito da usare quando si crea un layer

Puoi anche definire l'azione da intraprendere quando viene creato un nuovo layer, o quando viene caricato un layer senza SR.

- [] **Lascia come SR sconosciuto (nessuna azione)**
- [] **Richiedi SR**
- [] **Usa il SR del progetto**
- [] **Usa SR predefinito**

- **Misure planimetriche**: imposta il default per le «misure planimetriche» per i progetti di nuova creazione.
9.1.4 Impostazioni Trasformazioni

La scheda **Trasformazioni** ti aiuta a impostare le trasformazioni di coordinate e le operazioni da applicare quando si carica un layer su un progetto o si riproietta un layer.

![Fig. 9.3: Impostazioni Trasformazioni](image)

Trasformazioni datum predefinite

In questo gruppo puoi controllare se la riproiezione dei layer in un altro SR debba essere:

- processata automaticamente usando le impostazioni di trasformazione predefinite di QGIS;
- e/o meglio controllata da te con preferenze personalizzate come:
 - **Chiedi la trasformazione del datum se disponibili più di uno.**
 - un elenco predefinito di trasformazioni del datum da applicare per impostazione predefinita. Vedi **Trasformazioni Datum** per maggiori dettagli.
9.1.5 Impostazioni sorgenti dati

Fig. 9.4: Impostazioni Sorgente Dati in QGIS

Attributi delle geometrie e tabelle

- **Apri le nuove tabelle degli attributi agganciate alla finestra**

- **Copia elementi come** “Testo normale, nessuna geometria”, “Testo normale, geometria WKT”, o “GeoJSON” quando si incollano le geometrie in altre applicazioni.

- **Impostazioni tabella degli attributi** : imposta il filtro sulla tabella degli attributi all’apertura. Sono presenti tre possibilità: ‘Mostra Tutti gli elementi’, ‘Mostra Elementi selezionati’ e ‘Mostra Elementi Visibili nella mappa’.

- **Vista predefinita**: definisce la modalità di visualizzazione della tabella degli attributi ad ogni apertura. Può essere “Ricorda Ultima Vista”, “Vista tabella” o “Vista Modulo”.

- **Cache riga attributi tabella**. La cache permette di salvare le ultime N righe degli attributi caricate: in questo modo il lavoro con la tabella degli attributi risulterà essere molto più veloce. La cache verrà cancellata alla chiusura della tabella degli attributi.

- **Mostra i valori NULL come**. Puoi definire un attributo con cui verranno visualizzati i valori NULL (nessun valore).

Suggerimento: Migliorare l’apertura della tabella degli attributi con grandi quantità di dati
Quando si lavora con layer con una grande quantità di record, l’apertura della tabella degli attributi potrebbe essere lenta nel mostrare tutte le righe. Impostando Imposta Tabella degli attributi su Mostra Elementi Visibili nella mappa richiede l’elenco solo per le geometrie visibili nella mappa corrente, consentendo un rapido caricamento dei dati.

Nota che i dati con questa modalità della tabella degli attributi saranno sempre legati all’area di visualizzazione, il che significa che selezionando Mostra tutte gli elementi all’interno di tale tabella non verranno visualizzate nuove geometrie. Puoi comunque aggiornare il set di geometrie visualizzate cambiando l’estensione della mappa e selezionando l’opzione Mostra gli elementi visibili nella mappa nella tabella degli attributi.

Gestione Sorgenti Dati

- **Ricerca elementi validi nella finestra del browser**. Puoi scegliere fra ‘Controlla estensione’ e ‘Controlla il contenuto del file’.

- **Ricerca contenuto dei file compressi (.zip) nella finestra del browser** definisce quanto dettagliato è il widget informativo nella parte inferiore del pannello Browser quando si cercano tali file. Le possibili opzioni sono “No”, “Scansionedi base” e “Scansionecompleta”.

- **Richiedi i sublayer all’apertura**. Alcuni raster supportano i sublayer, chiamati subdataset in GDAL. Un esempio sono i file netCDF: se sono presenti diverse variabili netCDF, GDAL riconosce ogni variabile come un subdataset. L’opzione permette di gestire i sublayer quando uno di questi viene aperto. Puoi scegliere fra:
 - “Sempre”: chiede sempre (se sono presenti sublayer)
 - “Se necessario”: chiede se il layer non ha bande, ma ha sublayer
 - “Mai”: non chiede mai e non carica niente
 - “Carica tutto”: non chiede, ma carica tutti i sublayer

- **Ignora la dichiarazione di codifica per lo shapefile**. Se lo shapefile ha informazioni sulla sua codifica, queste verranno Ignorate.

- **Esegui le espressioni lato-server se possibile**. Quando si richiedono elementi da una sorgente dati, QGIS cercherà di ottimizzare le richieste inviando i criteri di filtro direttamente al server e scaricherà solo gli elementi che corrispondono ai criteri. Per esempio, se per una lista sull’interfaccia utente devono essere elencati solo gli agricoltori che vivono a Berna, QGIS invierà un `WHERE "hometown" = 'Bern'` al database. In alcuni casi, i criteri di filtro sono troppo complessi per essere tradotti dal calcolatore di campi QGIS in formato SQL compatibile con il database. In questi casi, QGIS scaricherà tutti i dati e filtrerà in modo più affidabile localmente, il che è però molto meno performante.

 Disattivando questa opzione, QGIS può essere costretto a scaricare sempre tutti i dati e a filtrare localmente, a scapito di una penalità di performance. Questa opzione è intesa come un’interruzione di sicurezza e deve essere disattivata solo se si identifica un comportamento scorretto del motore di traduzione delle espressioni di QGIS.

Percorsi Browser nascosti

Questo widget elenca tutte le cartelle che hai scelto di nascondere al pannello Browser. Rimuovendo una cartella dall’elenco, essa sarà disponibile nel pannello Browser.

Percorso Dati Localizzato

È possibile utilizzare percorsi localizzati per qualsiasi tipo di sorgente dati basata su file. Sono una lista di percorsi che vengono usati per parametrizzare la posizione dell’origine dati. Per esempio, se `C:\my_maps` è elencato nei percorsi localizzati, un layer che ha `C:\my_maps\my_countryortho.tif` come sorgente dati sarà salvato nel progetto usando `localized:my_countryortho.tif`.

I percorsi vengono elencati in ordine di preferenza, in altre parole QGIS cercherà il file prima nel primo percorso, poi nel secondo, ecc.
9.1.6 Impostazioni di visualizzazione

Fig. 9.5: Scheda Visualizzazione della finestra di dialogo Proprietà progetto

Opzioni di visualizzazione

- Per impostazione predefinita i nuovi layer aggiunti alla mappa vengono visualizzati subito: deselezionare questa opzione può essere utile quando si caricano più layer per evitare che ogni nuovo layer si avvisi in mappa e rallenti il processo
• **Usa il caching del disegno quando possibile per velocizzare la visualizzazione**

• **Visualizza i layer in parallelo usando più processori della CPU**

• **Numero massimo di core da utilizzare**

• **Intervallo di aggiornamento della mappa (predefinito a 250 ms)**

• **Abilita la semplificazione delle geometrie in modo predefinito per i nuovi layer aggiunti**

• **Semplifica dal lato provider se possibile**

 Algoritmo di semplificazione: Questa opzione esegue una semplificazione locale «on-the-fly» sulle geometrie e accelera la visualizzazione della stessa. Non modifica la geometria originaria. Questo è importante quando hai espressioni che si riferiscono alla geometria (ad esempio il calcolo dell'area) assicurando che questi calcoli vengano eseguiti sulla geometria originale, non su quella semplificata. A tale scopo, QGIS fornisce tre algoritmi: “Distanza” (predefinito), “SnapToGrid” e “Visvalingam”.

• **Semplificazione dal lato provider se possibile**: le geometrie vengono semplificate dal provider (PostGIS, Oracle…) e, a differenza della semplificazione lato locale, i calcoli basati sulla geometria possono essere modificati.

• **Scala massima alla quale il layer dovrebbe essere semplificato**

• **Livello ingrandimento (vedi magnifier)**

Nota: Oltre all'impostazione globale, la semplificazione delle geometrie può essere impostata per qualsiasi layer specifico dal menu **Proprietà vettore**: **Visualizzazione**.

Impostazioni di visualizzazione

• **Rendi le linee meno irregolari a spese delle prestazioni**

Segmentazione curva

• **Tolleranza di segmentazione**: questa impostazione controlla il modo in cui gli archi di cerchio sono visualizzati.

 Definendo più piccolo l'angolo massimo (tra i due vertici consecutivi e il centro della curva, in gradi) o la differenza massima (distanza tra il segmento dei due vertici e la linea della curva, in unità di mappa), i segmenti **più dritti** verranno utilizzati durante la visualizzazione.

 Tipo di tolleranza: può essere Angolo massimo o Differenza massima tra approssimazione e curva.

Raster

• Con **Selezione banda RGB** puoi scegliere il numero di bande rosse, verdi e blu.

• Possono essere definiti i metodi **Ricampionamento quando ingrandisco** e **Ricampionamento quando rimpicciolisco**. Per **Ricampionamento quando ingrandisco** puoi scegliere tra tre metodi di ricampionamento: “Vicino più prossimo”, “Bilineare” e “Cubico”. Per **Ricampionamento quando rimpicciolisco** puoi scegliere tra “Vicino più prossimo” e “Average”. Puoi anche impostare il valore di **Sovracampionamento** (tra 0.0 e 99.99 - un valore grande significa più lavoro per QGIS - il valore predefinito è 2.0).

Miglioramento contrasto

Le opzioni di miglioramento del contrasto possono essere applicate a **Banda singola grigia**, **Colore multibanda (byte/band)** o **Colore multibanda (>byte/band)**. Per ognuna di queste, è possibile impostare:

• L' **Algoritmo** da usare, i cui valori possono essere “Nessuno stiramento”, “Stira a MinMax”, “Stira e taglia a MinMax” o “Taglia a MinMax”

• i **Limiti** (minimo/massimo) da applicare, con valori come “Taglio del conteggio cumulativo pixel”, “Minimo/Massimo”, “Media +/- deviazione standard”.

Per la visualizzazione dei raster, puoi anche definire le seguenti opzioni:

• **Limiti di taglio del conteggio cumulativo pixel**
• **Moltiplicatore deviazione standard**

Debugging

• **Aggiornamento della visualizzazione della mappa** per visualizzare il debugging nel pannello *Messaggi di Log*.

9.1.7 Impostazioni Mappa e Legenda

![Impostazioni Mappa e Legenda](image)

Fig. 9.6: Impostazioni Mappa e Legenda

Queste proprietà ti consentono di impostare:

- **Aspetto della mappa (modificato dalle proprietà di progetto)**: il *Colore della selezione* e il *Colore di sfondo*.

- **Interazione Legenda Layer**:
 - Visualizza attributi di classificazione nei titoli del layer, ad esempio quando si applica una visualizzazione categorizzata o basata su regole (vedi *Proprietà Simbologia* per maggiori informazioni).
 - la *Risoluzione getLegendGraphic del WMS*
 - Dimensione minima simbolo legenda e Dimensione massima simbolo legenda per controllare la visualizzazione delle dimensioni dei simboli nel pannello *Layer*

- il *Ritardo (in millisecondi)* della visualizzazione dei layer *map tips*
9.1.8 Impostazioni Strumenti Mappa

Fig. 9.7: Impostazioni Strumenti mappa in QGIS

Questa scheda ti permette di scegliere alcune opzioni sul comportamento di Identify tool.

- **Raggio di ricerca per identificare gli elementi e visualizzare le relative informazioni sulla mappa** è una distanza di tolleranza entro la quale lo strumento di identificazione mostrerà i risultati se clicchi entro questa tolleranza.

- **Colore di evidenziazione** ti permette di scegliere con quale colore le caratteristiche identificate devono essere evidenziate.

- **Buffer** determina una distanza di buffer da visualizzare dal contorno dell’evidenziazione di identificazione.

- **Larghezza minima** determina di quale spessore deve essere il contorno di un oggetto evidenziato.

Strumenti di misura

- Definisce il **Colore elastico** per gli strumenti di misura

- Definisce le **Posizioni decimali**

- **Mantieni le unità di base** per non convertire automaticamente numeri grandi (ad esempio, metri a chilometri)

- **Preferred area units**: options are “Square meters”, “Square kilometers”, “Square feet”, “Square yards”, “Square miles”, “Hectares”, “Acres”, “Square nautical miles”, “Square centimeters”, “Square millimeters”, “Square degrees” or “Map Units”

- **Unità preferite per gli angoli**: le opzioni sono “Gradi”, “Radianti”, “Gon/gradianti”, “Minuti di arco”, “Secondi di arco”, “Rotazioni/rivoluzioni”, “Milliradianti (definizione SI)” o “Mil (NATO/definizione/militare)”

Visualizzazione Coordinate in Gradi

- Define **Formato bussola predefinito per nuovi progetti**: utilizzato per visualizzare le coordinate del mouse nella barra di stato durante la navigazione sulla mappa. Può essere sovrascritto nella finestra di dialogo proprietà del progetto.

Ingrandimento

- Definire un **Fattore di zoom** per strumenti di zoom o rotella del mouse

Scale Predefinite

Qui trovi una lista di scale predefinite. Con i pulsanti puoi aggiungere o rimuovere le scale personali. Puoi anche importare o esportare le scale da/un file .XML. Nota che puoi ancora avere la possibilità di rimuovere le tue modifiche e ripristinare l’elenco predefinito.

9.1.9 Impostazioni colori

![Fig. 9.8: Impostazioni colori](image)

Questo menu ti consente di creare o aggiornare le tavolozze di colori utilizzati in tutta l’applicazione nel color selector widget. Puoi scegliere tra:

- **Colori recenti** che mostra i colori usati di recente
- **Colori standard**, la tavolozza predefinita dei colori
- **Colori del progetto**, un insieme di colori specifici per il progetto corrente (vedi Proprietà Progetto - Stili predefiniti per maggiori dettagli).
- **Colori per nuovi layer**, un insieme di colori da usare di default quando nuovi layer vengono aggiunti a QGIS.
- o puoi creare o importare tavolozza(i) personalizzata(e) usando il pulsante …. accanto alla casella combinata della tavolozza.
Per impostazione predefinita, *Colori recenti*, *Colori standard* e *Colori del progetto* non possono essere rimossi e sono impostati per apparire nel menu a discesa del pulsante colori. Le tavolozze personalizzate possono anche essere aggiunte a questo widget grazie all'opzione *Mostra bottoni colore*.

Per ogni tavolozza, puoi gestire l'elenco dei colori utilizzando l'insieme di strumenti accanto al riquadro, ad esempio:

- Aggiungi colore o Elimina colore
- Copia i colori o Incolla colori
- Importa colori da file o Esporta colori l'impostazione dei colori da/per .gpl file.

Fai doppio clic su un colore nell'elenco per modificarlo o sostituirlo nella finestra di dialogo *Color Selector*. Puoi anche rinominarlo facendo doppio clic nella colonna *Etichetta*.
9.1.10 Impostazioni digitalizzazione

Fig. 9.9: Impostazioni Digitalizzazione in QGIS

Questa scheda ti aiuta a configurare le impostazioni generali quando sei in *modifica layer vettoriale* (attributi e geometria).

Creazione elemento

- Non aprire il modulo dopo la creazione di ogni elemento: questa scelta può essere annullata in ogni finestra di dialogo delle proprietà layer.
• **Ripeti i valori degli attributi usati per ultimi**: ricorda l’ultimo valore usato di ogni attributo e lo usa come predefinito per il prossimo elemento da digitalizzare. Funziona per layer.

• **Verifica le geometrie**. Modificare linee/poligoni con molti nodi può portare a una visualizzazione molto lenta. Questo succede perché la procedura di verifica delle geometrie in QGIS richiede molto tempo. Per velociizzare la visualizzazione è possibile selezionare GEOS (a partire da GEOS 3.3) oppure disattivare del tutto la verifica. La verifica effettuata da GEOS è molto più rapida, ma ha lo svantaggio di comunicare solamente il primo problema geometrico riscontrato.

Da notare che a seconda della selezione, i report degli errori di geometria possono essere diversi (vedi Tipi di messaggi di errore e loro significati)

• **Valore Z predefinito** da usare quando si creano nuovi elementi 3D.

Elastico

• Definisce le proprietà dell’elastico Spessore linea, Colore della linea e Colore di riempimento.

• **Non aggiornare linea elastico durante la modifica dei vertici**.

Aggancio

• **Abilita sempre l’aggancio** attiva l’aggancio quando un progetto viene aperto

• **Imposta la Modalità di aggancio predefinita** (Vertice”, “Vertice e segmento”, ”Segmento”) (Vertice”, “Vertice e segmento”, ”Segmento”)

• **Imposta la Tolleranza di aggancio predefinita** in unità di mappa o pixel

• **Imposta il Raggio di ricerca per le modifiche dei vertici** in unità di mappa o in pixel

• **Mostra finestra principale come (richiesto riavvio)**: imposta se la finestra di dialogo di Aggancio in Digitalizzazione Avanzata deve essere visualizzata come “Finestra” o “Finestra agganciabile”.

• **Colore del simbolo di aggancio**

• **Mostra suggerimenti sull’aggancio** come il nome del layer su cui stai operando l’aggancio. Utile quando più elementi sono sovrapposti.

• **Abilita l’aggancio su elementi invisibili (non mostrati sulla mappa)**

Indicatori di vertice

• **Utilizza simboli solo per gli elementi selezionati**

• **Definisce vertice Stile simbolo** (‘Croce’ (predefinito), ‘Cerchio semitrasparente’ o ‘Nessuno’)

• **Definisce vertice Dimensione simbolo** (in millimetri)

Strumento per la curva di offset

Le 3 opzioni successive si riferiscono allo strumento Curva di offset in Digitalizzazione avanzata. Attraverso i vari settaggi è possibile influenzare la forma della linea di offset. Queste opzioni sono possibili a partire da GEOS 3.3.

• **Stile unione**: “Tondo”, “Seghettato” o “Smussato”

• **Segmenti di quadrante**

• **Limite di smusso**

Ricalco

Attivando **Converti tracciato in curva** puoi creare tratti di curva durante la digitalizzazione. Tieni presente che la tua fonte dati deve supportare questa funzione.
9.1.11 Impostazioni Layout

Fig. 9.10: Impostazioni delle stampe in QGIS

Opzioni predefinite del layout
Puoi scegliere il Carattere predefinito da usare nel print layout.

Reticolo
- Scegli lo Stile reticolo ("Pieno", "Punti", "Croci")
- Scegli il Colore reticolo

Opzioni predefinite delle guide e del reticolo
- Specifica la Spaziatura reticolo
- Definisci l’Offset reticolo per X e Y
- Definisci la Tolleranza di aggancio

Percorsi Layout
- Definisci il Percorso(i) per cercare modelli di stampa aggiuntivi: un elenco di cartelle con modelli di layout personalizzati da utilizzare quando se ne crea uno nuovo.

9.1.12 Impostazioni GDAL

GDAL è una libreria di scambio dati per dati geospaziali che supporta un gran numero di formati vettoriali e raster. Fornisce driver per leggere e (spesso) scrivere dati in questi formati. La scheda GDAL riporta i driver per i formati raster e vettoriali con le loro funzionalità.
Opzioni Driver Raster

Questa scheda fornisce modi per personalizzare il comportamento dei driver raster che supportano l’accesso in lettura e scrittura:

- **Modifica le opzioni di creazione**: ti permette di modificare o aggiungere diversi profili di trasformazione dei file, cioè un insieme di combinazioni predefinite di parametri (tipo e livello di compressione, dimensione dei blocchi, panoramica, colorimetria, alfa…) da utilizzare per l’output di file raster. I parametri dipendono dal driver.

![Esempio di creazione di un profilo di opzioni (per GeoTiff)](image)

La parte superiore della finestra di dialogo elenca i profili correnti e ti consente di aggiungerne di nuovi o rimuoverne alcuni di essi. Puoi inoltre ripristinare il profilo ai suoi parametri predefiniti se sono stati modificati. Alcuni driver (ad esempio GeoTiff) hanno alcuni esempi di profili con cui è possibile lavorare.

Nella parte inferiore della finestra di dialogo:

- Il pulsante **+** ti permette di aggiungere righe da riempire con il nome e il valore del parametro
- Il pulsante **-** cancella il parametro selezionato
- Fai clic sul pulsante *Validate* per verificare che le opzioni di creazione inserite per il formato specificato siano valide
- Utilizza il pulsante *Guida* per trovare i parametri da utilizzare, oppure fai riferimento alla documentazione GDAL raster drivers.

- **Modifica crea opzioni Piramidi**
Fig. 9.12: Esempio di profilo delle piramidi

Driver GDAL raster e vettoriali

Le opzioni *Driver Raster e Driver Vettoriali* (in una scheda separata) permettono di definire quale driver GDAL è abilitato a leggere e/o scrivere file, poiché in alcuni casi è disponibile più di un driver GDAL.
Suggerimento: Facendo doppio clic su un driver raster che permette l’accesso in lettura e scrittura (\(rw+\)) si apre la finestra di dialogo *Edit Create options*.

9.1.13 Impostazioni variabili

La scheda *Variabili* elenca tutte le variabili disponibili a livello globale.

Permette inoltre all’utente di gestire variabili di livello globale. Fai clic sul pulsante + per aggiungere una nuova variabile personalizzata a livello globale. Allo stesso modo, selezionare una variabile personalizzata a livello globale dall’elenco e fare clic su - pulsante per rimuoverla.

Maggiori informazioni sulle variabili nella sezione *Memorizzazione valori nelle Variabili*.
9.1.14 Impostazioni di autenticazione

Nella scheda Autenticazione puoi impostare le configurazioni di autenticazione e gestire i certificati PKI. Vedi Sistema di Autenticazione per maggiori dettagli.
9.1.15 Impostazioni di rete

Generale

- Imposta il Timeout per le richieste di rete (ms) - il valore predefinito è 60000
- Imposta il Periodo di scadenza predefinito per capabilities WMS (ore) - l'impostazione predefinita è 24
- Definisci il Periodo di scadenza predefinito per tasselli WMS-C/WMTS (ore) - il valore predefinito è 24
- Definisci il Numero massimo di tentativi in caso di errore nella richiesta del tassello o dell'elemento
- Definisci l’”User-Agent"

Fig. 9.16: Impostazione proxy in QGIS

Impostazioni della cache

Definisci la Cartella e una Dimensione per la cache. Offre anche strumento Pulisce automaticamente la cache di accesso all'autenticazione di rete quando si verificano errori SSL (raccomandato).

Proxy per l'accesso web

- Usa Proxy per Accesso al Web
• Imposta *Tipo proxy* in base alle tue necessità e definisci “Host” e “Porta”. I tipi di proxy disponibili sono:

 – *Default Proxy*: Il Proxy è determinato in base al proxy di sistema

 – *Socks5Proxy*: Proxy generico per ogni tipo di connessione. Supporta TCP, UDP, associazione a una porta (connessione in entrata) e autenticazione.

 – *HttpCachingProxy*: Realizzato usando normali comandi HTTP, è utile solamente nel contesto di richieste HTTP.

 – *FtpCachingProxy*: Realizzato usando un proxy FTP, è utile solamente nel contesto di richieste FTP.

Le credenziali del proxy vengono impostate usando il *authentication widget*.

L’esclusione di alcuni URL può essere aggiunta alla casella di testo sotto le impostazioni del proxy (vedi Fig. 9.16). Nessun proxy verrà utilizzato se l'url di destinazione inizia con una delle stringhe elencate in questa casella di testo.

Se hai bisogno di informazioni più dettagliate sulle diverse impostazioni del proxy, fai riferimento al manuale della seguente documentazione della libreria QT all’indirizzo https://doc.qt.io/qt-5.9/qnetworkproxy.html#ProxyType-enum

Suggerimento: Utilizzo proxy

L’utilizzo dei proxy a volte può essere complicato. È utile procedere con “tentativo e errore” con i suddetti tipi di proxy, per verificare se hanno successo nel tuo caso.

9.1.16 Impostazioni Localizzatore

La scheda *Localizzatore* ti permette di configurare la barra *Locator bar*, un widget di ricerca rapida disponibile sulla barra di stato per aiutarti a eseguire ricerche nell’applicazione. Fornisce alcuni filtri predefiniti (con prefisso) da utilizzare:

![Locator Filters](image)

Fig. 9.17: Impostazioni Localizzatore in QGIS

• Layer del Progetto (1): trova e seleziona un layer nel pannello *Layer*.
• Impaginazioni del Progetto (p.1): trova ed apre un layout di stampa.

• Azioni (.): trova ed esegue un’azione QGIS; le azioni possono essere qualsiasi strumento o menu in QGIS, aprire un pannello…

• Funzioni del layer attivo (f’): cerca gli attributi corrispondenti in qualsiasi campo del layer attivo corrente e zooma sull’elemento selezionato. Premi impostazioni per configurare il numero massimo di risultati.

• Elementi in tutti i Vettori (af): cerca gli attributi corrispondenti nel display name di ogni searchable layers e zooma sull’elemento selezionato. Premi 🌱 per configurare il numero massimo di risultati e il numero massimo di risultati per layer.

• Calcolatore (=): permette di calcolare qualsiasi espressione di QGIS e, se valida, dà la possibilità di copiare il risultato negli appunti.

• Segnalibrispaziali (b): trova ed effettua lo zoom sull’estensione del segnalibro.

• Impostazioni (set): sfoglia e apre le finestre di dialogo delle proprietà del progetto e dell’applicazione.

• Vai alle Coordinate (go): sposta la mappa su una posizione definita da una coppia di coordinate x e y separate da virgola o spazio o da un URL formatato (ad esempio, OpenStreetMap, Leaflet, OpenLayer, Google Maps, …). Le coordinate sono espresse in WGS 84 (epsg:4326) e/o in SR della mappa.

• Algoritmi di Processing (a): cerca e apre una finestra di dialogo di algoritmi di processing.

• Modifica le geometrie selezionate (ef): fornisce un accesso rapido ed esegue un algoritmo di elaborazione compatibile modify-in-place sul layer attivo.

Nella finestra di dialogo, puoi

• personalizzare il filtro Prefisso, cioè la parola chiave da usare per attivare il filtro

• imposta se il filtro è Abilitato: il filtro può essere usato nelle ricerche e una scorciatoia è disponibile nel menu della barra del localizzatore.

• imposta se il filtro è Predefinito: una ricerca che non prevede un filtro restituisce risultati solo dalle categorie dei filtri predefiniti.

• Alcuni filtri forniscono un modo per configurare il numero di risultati in una ricerca.

L’insieme dei filtri di localizzazione predefiniti può essere esteso dai plugin, ad esempio per ricerche OSM nominativi, ricerca diretta nel database, ricerche nel catalogo dei layer, …
9.1.17 Impostazioni avanzate

Tutte le impostazioni relative a QGIS (UI, strumenti, fonti dati, configurazioni di elaborazione, valori e percorsi predefiniti, opzioni dei plugin, espressioni, controlli della geometria…) sono salvate in un file QGIS/QGIS3.ini nella cartella del profilo attivo user profile. Le configurazioni possono essere condivise copiando questo file in altre installazioni.

In QGIS, la scheda Avanzato offre un modo per gestire queste impostazioni attraverso il Editor Impostazioni Avanzate. Dopo che hai promesso di fare attenzione, il widget viene popolato con un albero di tutte le impostazioni esistenti, e puoi modificare il loro valore. Cliccando con il tasto destro del mouse su un’impostazione o un gruppo puoi eliminarlo (per aggiungere un’impostazione o un gruppo, devi modificare il file QGIS3.ini). Le modifiche vengono salvate automaticamente nel file QGIS3.ini.

Avvertimento: Evita di utilizzare ciecamente le impostazioni della scheda Avanzate

Fai attenzione quando modifichi gli elementi in questa finestra di dialogo dato che le modifiche vengono applicate automaticamente. Fare cambiamenti senza consapevolezza può corrompere l’installazione di QGIS in vari modi.
9.1.18 Impostazioni Accelerazione

Impostazioni accelerazioni OpenCL

Fig. 9.19: Scheda Accelerazione

A seconda del tuo hardware e software, potresti dover installare librerie aggiuntive per abilitare l’accelerazione OpenCL.

9.1.19 Impostazioni Processing

La scheda Processing ti fornisce le impostazioni generali degli strumenti e delle sorgenti dati utilizzati nel framework QGIS Processing. Maggiori informazioni su ambiente Processing di QGIS.
9.1.20 Impostazioni Console Python

Le impostazioni di 🛋️ Python Console ti aiutano a gestire e controllare il comportamento degli editor (interactive console, code editor, project macros, custom expressions, …). Vi si può arrivare anche usando il pulsante Opzioni… da:

- la barra degli strumenti di Python console
- il widget contestuale della Python console
- e dal menu contestuale del Editor Codice.
Puoi specificare:

- **Auto completamento**: Abilita il completamento del codice. Puoi ottenere il completamento automatico dal documento corrente, dai file API installati o da entrambi.
 - **Soglia autocompletamento**: Imposta la soglia per la visualizzazione del complemento automatico (in caratteri)

- **in Digitazione**
 - **Inserimento automatico delle parentesi**: Abilita l’inserimento automatico delle parentesi
 - **Inserimento automatico della stringa “import” su “from xxx”**: Abilita l’inserimento di “import” quando si specificano le importazioni

- **in Esegui e Correggi**
 - **Abilita ispettore oggetto (il passaggio tra pannelli potrebbe essere lento)**
 - **Salvataggio automatico dello script prima dell’esecuzione**: Salva automaticamente lo script quando viene eseguito. Questa azione memorizzerà un file temporaneo (nella cartella temporanea di sistema) che verrà cancellato automaticamente dopo l’esecuzione.

Per API puoi specificare:

- **In uso il file delle API preinstallato**: Puoi scegliere se vuoi usare i file API precaricati. Se questa opzione non è selezionata puoi aggiungere file API e puoi anche scegliere se vuoi usare file API preparati (vedi opzione successiva).
• **In uso il file delle API preparato**: Se selezionato, il file *.pap scelto sarà usato per il completamento del codice. Per generare un file API preparato devi caricare almeno un file *.api e poi compilarlo cliccando il pulsante **Compila API**…

• In **Token di Accesso GitHub**, puoi generare un token personale che ti permette di condividere frammenti di codice dall’interno dell’editor di codice Python. Maggiori dettagli sull’autenticazione su [GitHub authentication](#).

9.1.21 Impostazioni Editor Codice

Nella scheda **Editor Codice**, puoi controllare l’aspetto e il comportamento dei widget dell’editor di codice (console interattiva ed editor di Python, widget di espressione ed editor di funzioni, …).

![Fig. 9.22: Scheda Impostazioni Editor Codice](#)

Nella parte superiore della finestra di dialogo, un widget fornisce un’anteprima online delle impostazioni correnti, in vari linguaggi di codifica (Python, espressione QGIS, HTML, SQL, JavaScript). Un modo comodo per regolare le impostazioni.

- Seleziona **Sostituisci Carattere Editor di Codice** per modificare la tipologia predefinita di **Carattere** e **Dimensione**.

- Nel gruppo **Colori** puoi:
 - selezionare uno **Schema colore**: le impostazioni predefinite sono **Predefinito**, **Solarizzato (Scuro)** e **Solarizzato (Luce)**. Uno schema **Personalizzato** viene attivato non appena si modifica un colore e può essere annullato selezionando uno schema predefinito.
 - cambiare il **color** di ogni elemento nella scrittura del codice, come i colori da usare per i commenti, le virgolette, le funzioni, lo sfondo, …
9.2 Lavorare con i Profili Utente

Il menu Impostazioni ➤ Profili utente fornisce funzioni per impostare e accedere ai profili utente. Un profilo utente è una configurazione unificata dell’applicazione che permette di memorizzare in una singola cartella:

- tutte le global settings incluse proiezioni locali, impostazioni di autenticazione, tavolette di colori, scorciatoie…
- Configurazione GUI e customization
- file reticolo e altri file di aiuto proj installati per la trasformazione dei dati
- plugins installati e loro configurazioni
- modelli di progetto e cronologia del progetto salvato con la loro immagine di anteprima
- processing settings, log, script, modelli.

Per impostazione predefinita, un’installazione QGIS contiene un solo profilo utente denominato default. Ma puoi creare tutti i profili utente che vuoi:

1. Fai clic sulla voce Nuovo Profilo…..
2. Ti verrà chiesto di fornire un nome di profilo, creando una cartella con lo stesso nome sotto ~/<UserProfiles>/ dove:
 - ~ rappresenta la HOME directory, che in Windows è solitamente qualcosa come C:\Users\(user)\.
 - e <UserProfiles> rappresenta la cartella principale del profilo, ad esempio:
 - .local/share/QGIS/QGIS3/profiles/
 - \AppData\Roaming\QGIS\QGIS3\profiles\
 - \Library/Application Support/QGIS/QGIS3/profiles/

La cartella del profilo utente può essere aperta da QGIS utilizzando Apri la Cartella del Profilo Attivo.

3. Viene avviata una nuova istanza di QGIS, utilizzando una configurazione pulita. Puoi quindi impostare le tue configurazioni personalizzate.

Se nella tua installazione QGIS hai più di un profilo, il nome del profilo attivo è indicato nella barra del titolo dell’applicazione tra parentesi quadre.

Poiché ogni profilo utente contiene impostazioni separate, plugin e cronologia possono essere ottimizzati per diversi flussi di lavoro, demo, utenti della stessa macchina, o impostazioni di test, ecc. E puoi passare dall’uno all’altro selezionandoli nel menu Impostazioni ➤ Profili utente. Puoi anche eseguire QGIS con un profilo utente specifico da command line.

Se non viene modificato, il profilo dell’ultima sessione chiusa di QGIS verrà utilizzato nelle successive sessioni QGIS.

Suggerimento: Esegui QGIS sotto un nuovo profilo utente per verificare la persistenza dei bug

Quando incontri uno strano comportamento con alcune funzioni in QGIS, crea un nuovo profilo utente ed esegui nuovamente i comandi. A volte, i bug sono correlati ad alcune sporcizie sul profilo utente corrente e la creazione di un nuovo profilo utente può correggerli quando si riavvia QGIS con il nuovo profilo (pulito).
9.3 Proprietà progetto

Nella finestra delle proprietà del progetto sotto Progetto -> Proprietà progetto, puoi impostare le opzioni specifiche per il progetto. Le opzioni specifiche del progetto sovrascrivono il loro equivalente nella finestra di dialogo Opzioni sopra descritta.

9.3.1 Proprietà Progetto - Generale

Nella scheda Generale, le Impostazioni generali ti permettono di:

• vedere la posizione del file di progetto
• impostare la cartella home del progetto (disponibile nella voce visualizzata Home del progetto). Il percorso può essere relativo alla cartella del file di progetto (digitare in) o assoluto. La home del progetto può essere utilizzata per memorizzare dati e altri contenuti utili per il progetto.
• dare un titolo al progetto accanto al percorso del file di progetto
• scegliere il colore da usare per le geometrie quando vengono selezionate
• scegliere il colore di sfondo: il colore da usare per l'area della mappa
• scegliere se il percorso dei layer nel progetto deve essere salvato come assoluto (completo) o come relativo al percorso del file di progetto. Puoi preferire il percorso relativo quando sia i layers che i file di progetto possono essere spostati o condivisi o se si accede al progetto da computer su piattaforme diverse.
• scegliere di evitare artefatti quando il progetto viene reso come tessere mappa. Nota che il controllo con questa opzione può comportare un peggioramento delle prestazioni.

Calcolare le aree e le distanze è un’esigenza comune in GIS. Tuttavia, questi valori sono in realtà legati alle impostazioni di proiezione sottostanti. La scheda Misura ti consente di controllare questi parametri. Puoi infatti scegliere:

• l’ *Ellissoide*, su cui si basano interamente i calcoli di distanza e superficie; può essere:
 – *Nessuno/Planimetrico*: i valori restituiti sono in questo caso misure cartesiane.
 – uno *Personalizzato*: devi impostare i valori del semiasse maggiore e del semiasse minore.
 – o uno esistente nella lista predefinita (Clarke 1866, Clarke 1880 IGN, New International 1967, WGS 84…).
• le *unità di misura per le distanze* per la lunghezza e il perimetro e le *unità di misura per le aree*. Queste impostazioni, i cui valori preimpostati sono nelle opzioni QGIS ma che poi sostituisi per il progetto corrente, vengono utilizzate in:
 – Barra di aggiornamento del campo della tabella degli attributi
 – Calcoli del calcolatore di campo
 – Identifica la lunghezza, il perimetro e i valori dell’area derivati dallo strumento
 – Unità predefinita mostrata nella finestra di dialogo delle misure

Il Formato Bussola ti permette di scegliere e personalizzare la bussola e il formato delle unità da utilizzare per visualizzare le coordinate del mouse nella barra di stato e le coordinate ricavate tramite lo strumento di identificazione.

Infine, puoi definire una lista di Scale predefinite per il Progetto, che sostituisce le scale globali predefinite.
9.3.2 Proprietà Progetto - Metadati

La scheda *Metadati* permette di definire metadati dettagliati, includendo (tra gli altri): autore, data di creazione, lingua, abstract, categorie, parole chiave, contatti, link, storia. C’è anche una funzionalità di validazione che controlla se i campi specifici sono stati compilati, in ogni caso questo non è vincolante. Vedi *vector layer metadata properties* per altri dettagli.
9.3.3 Proprietà Progetto - SR

Nota: Per maggiori informazioni su come QGIS gestisce la proiezione di progetti, puoi consultare la sezione dedicata in Lavorare con le proiezioni.

La scheda SR ti aiuta a impostare il sistema di riferimento delle coordinate da utilizzare in questo progetto. Può essere:

- Nessun Sistema di Coordinate (o proiezione sconosciuta/non terrestre): i layer vengono rappresentati in base alle loro coordinate non elaborate
- o un sistema di riferimento di coordinate esistente che può essere geografico, proiettato o definito dall’utente. I Layer aggiunti al progetto vengono tradotti al volo in questo SR per sovrapporli indipendentemente dal loro SR originale.

9.3.4 Proprietà Progetto - Trasformazioni

La scheda Trasformazioni ti aiuta a controllare le impostazioni di riproiezione dei layer configurando le regole di trasformazione dei dati da applicare nel progetto corrente. Come al solito, queste sovrascrivono qualsiasi impostazione globale corrispondente. Vedi Trasformazioni Datum per maggiori dettagli.

9.3.5 Proprietà Progetto - Stili predefiniti

La scheda Stili predefiniti ti consente di controllare come saranno disegnati nuovi layer nel progetto quando non hanno uno file di stile .qml definito. Puoi:

- Impostare i simboli di default (Simbolo, Linea, Riempimento) da applicare a seconda del tipo di geometria del layer come anche il default della Scala di colori.
- Applicare un valore di default per l’ Opacità ai nuovi layer
- Assegnare colori casuali ai simboli, modificando il riempimento dei colori dei simboli, evitando così la stessa visualizzazione per tutti i layer.
Utilizzando il pulsante Gestore di stile, puoi anche accedere rapidamente alla finestra di dialogo Style Manager e configurare simboli e scale di colori.

C'è anche un'altra sezione dove è possibile definire colori specifici per il progetto in esecuzione. Analogamente con global colors, puoi:

- **Aggiungi colore** o **Elimina colore**
- **Copia i colori** o **Incolla colori**
- **Importa colori da file** o **Esporta colori** l'impostazione dei colori da/ per .gpl file.

Fai doppio clic su un colore nell'elenco per modificarlo o sostituirlo nella finestra di dialogo Color Selector. Puoi anche rinominarlo facendo doppio clic nella colonna Etichetta.

Questi colori sono identificati come **Colori del Progetto** ed elencati come parte di **color widgets**.

Suggerimento: Utilizzare i colori del progetto per assegnare e aggiornare rapidamente i widget dei colori

I colori del progetto possono essere riferiti all'uso delle loro etichette e i widget di colore in cui sono usati sono correlati alle stesse. Questo significa che invece di impostare ripetutamente lo stesso colore per molte proprietà e, per evitare un aggiornamento impegnativo, puoi:

1. Definire colori come Colori del Progetto
2. Fai clic su data defined override widget che si trova a fianco della proprietà colore che vuoi impostare
3. Sposta il mouse sul menu Colore e seleziona il colore del progetto. Alla proprietà viene quindi attribuita l'espressione project_color('color_label') e il widget del colore riflette quel colore.
4. Ripeti i passi 2 e 3 tante volte quanto ti è necessario
5. Aggiorna il colore del progetto una volta e il cambiamento si riflette OVUNQUE sia in uso.
9.3.6 Proprietà Progetto - Sorgenti Dati

Nella scheda Sorgenti dati puoi:

- Crea automaticamente la transizioni dei gruppi se possibile: Quando questa modalità è attivata, tutti i layer dello stesso database sono sincronizzati nel loro stato di modifica, cioè quando un layer è messo in stato di modifica, lo sono tutti, quando un layer è in uso o un layer è rollback, lo sono anche gli altri. Inoltre, invece di bufferizzare le modifiche localmente, esse sono direttamente inviate ad una transazione nel database che viene impegnata quando l'utente clicca su save layer. Nota che puoi (de)attivare questa opzione solo se nessun layer viene modificato nel progetto.

- Valutazione dei valori predefiniti lato provider: Quando si aggiungono nuovi elementi in una tabella PostgreSQL, i campi con vincolo di valori predefiniti sono valutati e popolati all'apertura del modulo e non al momento del commit. Ciò significa che invece di un'espressione come `nextval('serial')`, il campo nel modulo Aggiungi elemento mostrerà il valore atteso (ad esempio, 25).

- Fidati del progetto quando il sorgente non possiede metadati: Per accelerare il caricamento del progetto saltando i controlli dei dati. Utile nel contesto di QGIS Server o in progetti con enormi viste di database/viste materializzate. L'estensione dei layer sarà letta dal file del progetto QGIS (invece che dalle fonti di dati) e quando si utilizza il provider PostgreSQL l'unicità della chiave primaria non sarà controllata per le viste e le viste materializzate.

- Configurare le Capabilities dei Layer, ad esempio:
 - Abilitare (o disabilitare) quali layer sono identificabili, cioè risponderanno a identify tool. Per impostazione predefinita, i layer sono interrogabili.
 - Definire se un layer deve essere di Sola lettura, il che significa che non può essere modificato dall'utente, indipendentemente dai vincoli della sorgente dati. Anche se questa è una protezione debole, rimane una configurazione rapida e pratica per evitare che gli utenti finali modifichino i dati quando lavorano con layer definiti in file
 - Definire quali layer sono Ricercabili, cioè potrebbero essere interrogati usando il locator widget. Per impostazione predefinita, i layer sono ricercabili.
 - Definire quali layer sono definiti come Obbligatori. I layer selezionati in questa lista sono protetti dalla rimozione accidentale dal progetto.

La tabella Capabilities dei Layer fornisce alcuni strumenti utili:

- Selezionare più celle e premere Inverti selezione per farle cambiare lo stato di modalità di comportamento;
- Mostra solo layer spaziali, filtra i layer non spaziali dalla lista dei layer;
- Filtra layer... e rapidamente seleziona un particolare layer da configurare.
9.3.7 Proprietà Progetto - Relazioni

La scheda *Relazioni* è usata per definire le relazioni 1: n. Le relazioni sono definite nella finestra di dialogo delle proprietà del progetto. Una volta che le relazioni esistono per un layer, un nuovo elemento dell’interfaccia utente nella vista modulo (ad es. quando si identifica una geometria e si apre il suo modulo) elencherà le entità correlate. Questo fornisce un modo efficace per esprimere per es. lo storico delle ispezioni su una lunghezza del gasdotto o del segmento stradale. Puoi trovare ulteriori informazioni sul supporto delle relazioni 1:n nella Sezione *Creare una relazione uno a molti o molti a molti*.

![Fig. 9.25: Scheda Sorgenti Dati](image)

![Fig. 9.26: Scheda Relazioni](image)
9.3.8 Proprietà Progetto - Variabili

La scheda **Variabili** elenca tutte le variabili disponibili a livello di progetto (che include tutte le variabili globali). Inoltre, consente anche all’utente di gestire variabili a livello di progetto. Fai clic sul pulsante per aggiungere una nuova variabile personalizzata a livello di progetto. Allo stesso modo, selezionare una variabile a livello di progetto personalizzata dall’elenco e fare clic sul pulsante per rimuoverlo. Maggiori informazioni sull’utilizzo delle variabili nella sezione Strumenti generali **Memorizzazione valori nelle Variabili**.

9.3.9 Proprietà Progetto - Macro

La scheda **Macro** è usata per modificare le macro Python per i progetti. Attualmente sono disponibili solo tre macro: `openProject ()`, `saveProject ()` e `closeProject ()`.

![Fig. 9.27: Impostazioni delle macro in QGIS](image)

9.3. Proprietà progetto 103
9.3.10 Proprietà QGIS Server

La scheda *QGIS Server* ti permette di configurare il tuo progetto per pubblicarlo online. Qui puoi definire le informazioni sulle capabilities di QGIS Server WMS e WFS, l'estensione e le restrizioni SR. Maggiori informazioni sono disponibili nella sezione *Creating wms from project* e successive.

![Fig. 9.28: Scheda impostazioni QGIS Server](image)

9.3.11 Proprietà Temporali

La scheda *Opzione Temporale* viene usata per impostare l’intervallo temporale del tuo progetto, sia usando l’immissione manuale che calcolandolo dai layer temporanei del progetto corrente.
9.4 Personalizzazione

La finestra di dialogo di personalizzazione consente di (dis)attivare quasi tutti gli elementi dell’interfaccia utente di QGIS. Questo può essere molto utile se vuoi fornire ai tuoi utenti finali una versione «leggera» di QGIS, contenente solo le icone, i menu o i pannelli di cui hanno bisogno.

Nota: Prima che le modifiche trovino applicazione, è necessario riavviare QGIS.
Spuntando la casella di controllo Abilita personalizzazione è il primo passo verso la personalizzazione di QGIS. Ciò abilita la barra degli strumenti e il pannello dei widget da cui è possibile deselezionare e quindi disabilitare alcuni elementi della GUI.

Gli elementi configurabili possono essere:

- un Menu o alcuni dei suoi sotto-menu da Barra dei Menu
- un intero Pannello (vedi Pannelli e Barre degli strumenti)
- la Barra di stato descritta in Barra di Stato o qualcuno dei suoi strumenti
- una Barra degli strumenti: per intero o per alcune sue icone
- o ogni widget di ogni finestra di dialogo in QGIS: etichette, pulsanti, caselle combinate…

Con Passa ai widget per la cattura nell'applicazione principale, puoi cliccare su un elemento dell'interfaccia di QGIS che vuoi nascondere e QGIS automaticamente deseleziona la voce corrispondente nella finestra di dialogo della personalizzazione. Puoi anche usare la casella Cerca per trovare gli elementi in base al loro nome o alla loro etichetta.
Una volta impostata la configurazione, fai clic su Applica o OK per convalidare le modifiche. Questa configurazione diventa quella utilizzata di default da QGIS all’avvio successivo.

Le modifiche possono essere salvate in un file .ini usando il pulsante Salva su file. Questo è un modo pratico per condividere una interfaccia comune QGIS fra più utenti. Basta fare click su Carica da file dal computer di destinazione per importare il file .ini. Puoi anche utilizzare opzioni della riga dei comandi e salvare varie impostazioni anche per casi d’uso diversi.

Suggerimento: Ripristinare in modo semplice lo stato predefinito di QGIS

La configurazione iniziale della GUI di QGIS può essere ripristinata in uno dei seguenti modi:

- deselectionando l’opzione Abilita personalizzazione nella finestra di dialogo Personalizzazione o fare clic su Verifica tutto
- premendo il pulsante Annulla nel riquadro Impostazioni nel menu Impostazioni ➤ Opzioni, scheda Sistema
- lanciando QGIS al prompt dei comandi con la seguente riga di comando qgis --nocustomization
- impostando a false il valore della variabile UI -> Personalizzazione -> Abilitato nel menu Impostazioni ➤ Opzioni, scheda Avanzato (vedi warning).

In quasi tutti i metodi esposti per rendere operativo il ripristino è necessario riavviare QGIS.

9.5 Tasti di scelta rapida

QGIS fornisce scorciatoie da tastiera predefinite per molte funzionalità. Puoi trovarle nella sezione Barra dei Menu. Inoltre, l’opzione del menu Impostazioni ➤ Configura scorciatoie … ti consente di modificare le scorciatoie da tastiera predefinite e aggiungere nuove scorciatoie da tastiera alle funzioni di QGIS.
Fig. 9.31: Definire le opzioni di scelta rapida

La configurazione è molto semplice. Usa la casella di ricerca in cima alla finestra di dialogo per trovare una particolare azione, selezionala dall'elenco e clicca su:

- **Cambia** e premi la nuova combinazione che vuoi assegnare come nuova scorciatoia
- **Cancella impostazione** per eliminare la scorciatoia assegnata
- **o Selezione predefinita** per ripristinare la scorciatoia ai suoi valori di default.

Procedi come sopra per tutti gli altri strumenti che vuoi personalizzare. Una volta terminata la configurazione, semplicemente **Chiudi** la finestra di dialogo per applicare le modifiche. Puoi anche fare **Salva**… i cambiamenti come file `.XML` e **Carica**… in un'altra installazione di QGIS.
9.6 Esecuzione di QGIS con impostazioni avanzate

9.6.1 Linea di comando e variabili di ambiente

Abbiamo visto che lanciare QGIS è fatto come per qualsiasi applicazione sul tuo sistema operativo. QGIS fornisce opzioni a riga di comando per casi d’uso più avanzati (in alcuni casi puoi utilizzare una variabile d’ambiente invece dell’opzione a riga di comando). Per ottenere una lista delle opzioni, inserisci qgis --help sulla riga di comando, che restituisce:

QGIS is a user friendly Open Source Geographic Information System.
Usage: /usr/bin/qgis [OPTION] [FILE]

OPTION:
- [version] display version information and exit
- [snapshot filename] emit snapshot of loaded datasets to given file
- [width width] width of snapshot to emit
- [height height] height of snapshot to emit
- [lang language] use language for interface text (changes existing)

--override
- [project projectfile] load the given QGIS project
- [extent xmin,ymin,xmax,ymax] set initial map extent
- [nologo] hide splash screen
- [noversioncheck] don’t check for new version of QGIS at startup
- [nocustomization] don’t apply GUI customization
- [customizationfile path] use the given ini file as GUI customization
- [globalseettingsfile path] use the given ini file as Global Settings

--(defaults)
- [authdbdirectory path] use the given directory for authentication

--database
- [code path] run the given python file on load
- [defaultui] start by resetting user ui settings to default
- [hide-browser] hide the browser widget
- [dxf-export filename.dxf] emit dxf output of loaded datasets to

--given file
- [dxf-extent xmin,ymin,xmax,ymax] set extent to export to dxf
- [dxf-symbology-mode none|symbollayer|feature] symbology mode for dxf

--output
- [dxf-scale-denom scale] scale for dxf output
- [dxf-encoding encoding] encoding to use for dxf output
- [dxf-map-theme maptheme] map theme to use for dxf output
- [take-screenshots output_path] take screen shots for the user

--documentation
- [screenshots-categories categories] specify the categories of
- screenshot to be used (see QgsAppScreenShots::Categories).
- [profile name] load a named profile from the user's profiles

--folder.
- [profiles-path path] path to store user profile folders. Will create
- [version-migration] force the settings migration from older version if
- [openclprogramfolder] path to the folder containing the sources

--for OpenCL programs.
- [help] this text
- [-] treat all following arguments as FILES

FILE:
Files specified on the command line can include rasters, vectors, and QGIS project files (.qgs and .qgz):
1. Rasters - supported formats include GeoTiff, DEM and others supported by GDAL
2. Vectors - supported formats include ESRI Shapefiles

(continues on next page)
and others supported by OGR and PostgreSQL layers using the PostGIS extension

Suggerimento: Esempi di uso degli argomenti delle righe di comando

Puoi avviare QGIS specificando uno o più file di dati sulla riga di comando. Per esempio, supponendo di essere nella directory `qgis_sample_data`, puoi avviare QGIS con un layer vettoriale e un file raster da caricare all'avvio usando il seguente comando: `qgis ./raster/landcover.img ./gml/lakes.gml`

`--version`

Questa opzione restituisce informazioni sulla versione di QGIS.

`--snapshot`

Questa opzione ti permette di creare un'istantanea in formato PNG dalla vista corrente. Questa opzione è utile quando si hanno molti progetti e si desidera generare istantanee dai propri dati, o quando è necessario creare istantanee dello stesso progetto con dati aggiornati.

Attualmente, genera un file PNG con 800x600 pixel. La dimensione può essere regolata usando gli argomenti `--width` e `--height`. Il nome del file può essere aggiunto dopo `--snapshot`. Ad esempio:

```
qgis --snapshot my_image.png --width 1000 --height 600 --project my_project.qgs
```

`--width`

Questa opzione restituisce la larghezza dello scatto da emettere (usato con `--snapshot`).

`--height`

Questa opzione restituisce l'altezza dello scatto da emettere (usato con `--snapshot`).

`--lang`

In base alla tua zona, QGIS seleziona la localizzazione corretta. Se vuoi cambiare la lingua, è possibile specificare un codice lingua. Per esempio, `qgis --lang` inizia QGIS in localizzazione italiana.

`--project`

È anche possibile avviare QGIS con un file di progetto esistente. Basta aggiungere l'opzione della riga di comando `--progetto` seguita dal nome del progetto e QGIS si aprirà con tutti i layer del file caricato.
--extent
Per iniziare con una determinata estensione della mappa, utilizza questa opzione. Devi aggiungere il rettangolo di delimitazione della tua estensione nel seguente ordine separato da una virgola:

```
--extent xmin,ymin,xmax,ymax
```

Questa opzione ha probabilmente più senso se abbinata all’opzione --project per aprire uno specifico progetto nella estensione desiderata.

--nologo
Questa opzione nasconde la schermata iniziale quando si avvia QGIS.

--noveresioncheck
Salta il controllo per nuova versione di QGIS all’avvio.

--noplugin
Se hai problemi all’avvio con i plugin, puoi evitare di caricarli all’avvio con questa opzione. In seguito saranno ancora disponibili nel Plugins Manager.

--nocustomization
Usando questa opzione, qualsiasi esistente GUI customization non sarà applicata all’avvio. Questo significa che tutti i pulsanti nascosti, le voci di menu, le barre degli strumenti e così via, appariranno all’avvio di QGIS. Questo non è un cambiamento permanente. La personalizzazione verrà applicata di nuovo se QGIS viene lanciato senza questa opzione.

Questa opzione è utile per consentire l’accesso temporaneo agli strumenti che sono stati rimossi tramite personalizzazione.

--customizationfile
Utilizzando questa opzione, puoi definire un file di personalizzazione dell’interfaccia utente, che verrà utilizzato all’avvio.

--globalsettingsfile
Utilizzando questa opzione, puoi specificare il percorso di un file di impostazioni globali (.ini), noto anche come Impostazioni predefinite. Le impostazioni nel file specificato sostituiscono quelle originali predefinite in linea, ma le impostazioni dei profili utente saranno impostate sopra di esse. Le impostazioni globali predefinite si trovano in `your_QGIS_PKG_PKG_path/resources/qgis_global_settings.ini`

Attualmente, non c’è modo di specificare un file su cui scrivere le impostazioni; pertanto, è possibile creare una copia di un file di impostazioni originale, rinominarlo e adattarlo.

Impostando il percorso `qgis_global_setting.ini` in una cartella condivisa in rete, permette ad un amministratore di sistema di cambiare le impostazioni globali e le impostazioni predefinite in diverse macchine modificando un solo file.

La variabile d’ambiente equivalente è `QGIS_GLOBAL_SETTINGS_FILE`.

9.6. Esecuzione di QGIS con impostazioni avanzate
--authdbdirectory

Questa opzione è simile a **--globalsettingsfile**, ma definisce il percorso della directory dove sarà memorizzato e caricato il database di autenticazione.

--code

Questa opzione può essere usata per eseguire un dato file python direttamente dopo l’avvio di QGIS.

Per esempio, quando si ha un file python chiamato `load_alaska.py` con il seguente contenuto:

```python
from qgis.utils import iface
raster_file = "/home/gisadmin/Documents/qgis_sample_data/raster/landcover.img"
layer_name = "Alaska"
iface.addRasterLayer(raster_file, layer_name)
```

Supponendo che sei nella directory dove si trova il file `load_alaska.py`, puoi avviare QGIS, caricare il file raster `landcover.img` e dare al layer il nome “Alaska” usando il seguente comando:

```
qgis --code load_alaska.py
```

--defaultui

Al caricamento, **resetta permanentemente** l’interfaccia utente (UI) alle impostazioni predefinite. Questa opzione ripristina la visibilità, la posizione e le dimensioni dei pannelli e delle barre degli strumenti. A meno che non venga modificata di nuovo, le impostazioni predefinite dell’interfaccia utente verranno utilizzate nelle sessioni successive.

Nota che questa opzione non ha alcun effetto su **GUI customization**. Gli elementi nascosti dalla personalizzazione dell’interfaccia grafica (ad esempio la barra di stato) rimarranno nascosti anche utilizzando l’opzione **--defaultui**. Vedi anche l’opzione `--nocustomization`.

--hide-browser

Al caricamento, nasconde il pannello **Browser** dall’interfaccia utente. Il pannello può essere abilitato cliccando con il tasto destro del mouse su uno spazio nella barra degli strumenti o usando la voce **Visualizza ► Pannelli (Impostazioni)** in Linux KDE).

A meno che non sia di nuovo abilitato, il pannello Browser rimarrà nascosto nelle sessioni successive.

--dxf-*

Questa opzione può essere utilizzata per esportare un progetto QGIS in un file DXF. Sono disponibili diverse opzioni:

- **--dxf-export**: il nome del file DXF in cui esportare i layer;
- **--dxf-extent**: l’estensione del file DXF finale;
- **--dxf-symbology-mode**: qui è possibile utilizzare diversi valori: `none` (nessuna simbologia), `symbollayer` (simbologia a livello simbolo), `feature` (simbologia dell’elemento);
- **--dxf-scale-deno**: il denominatore della scala della simbologia;
- **--dxf-encoding**: la codifica del file;
- **--dxf-map-theme**: sceglie un map theme dalla lista della configurazione layer.
--take-screenshots

Acquisisce schermate per la documentazione utente. Può essere usato insieme a --screenshots-categories per filtrare quali categorie o sezioni delle schermate della documentazione dovrebbero essere create (vedi QgsAppScreenShots::Categories).

--profile

Carica QGIS utilizzando un profilo specifico dalla cartella del profilo dell’utente. Se non viene modificato, il profilo selezionato verrà utilizzato nelle seguenti sessioni QGIS.

--profiles-path

Con questa opzione, puoi scegliere un percorso per caricare e salvare i profili (impostazioni utente). Crea profili all’interno di una cartella {path}\profiles, che include impostazioni, plugin installati, modelli di elaborazione e script, e così via.

Questa opzione ti permette, ad esempio, di memorizzare tutti i plugin e le impostazioni in un’unità flash o, ad esempio, di condividere le impostazioni tra computer diversi utilizzando un servizio di condivisione file.

La variabile d’ambiente equivalente è QGIS_CUSTOM_CONFIG_PATH.

--version-migration

Se vengono trovate le impostazioni di una versione precedente (e.g., la cartella .qgis2 da QGIS 2.18), questa opzione le importerà nel profilo QGIS predefinito.

--openclprogramfolder

Utilizzando questa opzione, puoi specificare un percorso alternativo per i programmi OpenCL. Questo è utile per gli sviluppatori mentre testano nuove versioni dei programmi senza dover sostituire quelle esistenti.

La variabile d’ambiente equivalente è QGIS_OPENCL_PROGRAM_FOLDER.

9.6.2 Distribuzione di QGIS all’interno di un’organizzazione

Se devi installare QGIS all’interno di un’organizzazione con un file di configurazione personalizzato, devi prima copiare/incollare il contenuto del file delle impostazioni predefinite che si trova in your_QGIS_PKG_PKG_path/resources/qgis_global_settings.ini. Questo file contiene già alcune sezioni predefinite identificate da un blocco che inizia con []. Consigliamo di mantenere questi valori predefiniti e di aggiungere le proprie sezioni in fondo al file. Se una sezione è duplicata nel file, QGIS prenderà l’ultima dall’alto verso il basso.

Puoi cambiare allowVersionCheck=false per disabilitare il controllo della versione di QGIS.

Se non vuoi visualizzare la finestra di migrazione dopo una nuova installazione, devi usare la seguente sezione:

```
[migration]
fileVersion=2
settings=true
```

Se vuoi aggiungere una variabile personalizzata a livello globale:

```
[variables]
organisation="Your organization"
```
Per scoprire le possibili impostazioni del file `INI`, vi suggeriamo di impostare la configurazione che vuoi in QGIS Desktop e poi di cercarla nel tuo file `INI` che si trova nel tuo profilo utilizzando un editor di testo. Molte impostazioni possono essere definite usando il file `INI` come WMS/WMTS, connessioni PostGIS, impostazioni proxy, maptips…

Infine, devi impostare la variabile d’ambiente `QGIS_GLOBAL_SETTINGS_FILE` al percorso del tuo file personalizzato.

Inoltre, puoi anche installare file come macro Python, tavolozze di colori, modelli di layout, modelli di progetto… nella cartella di sistema QGIS o nel profilo utente QGIS

- I modelli di layout devono essere installati nella cartella `composer_templates`.
- I modelli di progetto devono essere installati nella cartella `project_templates`.
- Le macro Python personalizzate devono essere installate nella cartella `python`.

114 Capitolo 9. Configurazione QGIS
CAPITOLO 10

Lavorare con le proiezioni

Un Sistema di Riferimento delle Coordinate, o SR, è un metodo per associare coordinate numeriche ad una posizione sulla superficie terrestre. QGIS supporta circa 7.000 SR standard, ognuno con diversi casi d’uso, pro e contro! Scegliere un sistema di riferimento appropriato per i tuoi progetti e dati QGIS può essere un compito complesso, ma fortunatamente QGIS ti aiuta ad orientarti in questa scelta e rende il lavoro con i diversi SR il più trasparente e accurato possibile.

10.1 Panoramica sul supporto alle proiezioni

I SR personalizzati creati dall’utente sono memorizzati in un database SR utente. Vedi la sezione Sistemi di riferimento personalizzati per informazioni sulla gestione dei tuoi Sistemi di Riferimento delle coordinate personalizzate.

10.2 Sistemi di Riferimento delle coordinate e layer

Per proiettare correttamente i dati in uno specifico SR di destinazione, o i tuoi dati devono contenere informazioni sul loro sistema di riferimento delle coordinate o dovrai assegnare manualmente il SR corretto al layer. Per i layer PostGIS, QGIS usa l’identificatore di riferimento spaziale che è stato specificato quando il layer PostGIS è stato creato. Per i dati supportati da OGR o GDAL, QGIS si basa sulla presenza di un mezzo riconosciuto per specificare il SR. Per esempio, per il formato Shapefile questo è un file contenente una rappresentazione ESRI Well-Known Text (WKT) del SR del layer. Questo file di proiezione ha lo stesso nome base del file .shp e un’estensione .prj. Per esempio, alaska.shp avrebbe un file di proiezione corrispondente chiamato alaska.prj.

Ogni volta che un layer viene caricato in QGIS, QGIS cerca di determinare automaticamente il corretto SR per quel layer. In alcuni casi questo non è possibile, per esempio quando un layer è stato fornito senza conservare questa informazione. Puoi configurare il comportamento di QGIS quando non può determinare automaticamente il corretto SR per un layer:

1. Apri Impostazioni ➔ Opzioni… ➔ SR
2. Nel gruppo **SR per i Layer**, imposta l’azione da realizzare **Quando si crea un nuovo layer, o quando si carica un layer privo di SR**. Uno tra:

- **Lascia come SR sconosciuto (nessuna azione)**: non esegue nessuna richiesta di selezione del SR quando viene caricato un layer senza SR, rimandando la scelta del SR ad un secondo momento. Utile quando si caricano molti layer in una volta sola. Questi layer saranno identificabili nel pannello **Layer** con l'icona vicina. Saranno anche non georeferenziati, con le coordinate del layer trattate come puramente numeriche, non come valori coerenti con coordinate terrestri, i.e. lo stesso comportamento di tutti i layer quando a project is set to have no CRS.

- **Richiedi SR**: richiede di selezionare manualmente il SR. Selezionare la scelta corretta è cruciale, poiché una scelta errata posizionerà il tuo layer nel punto sbagliato sulla Terra! Talvolta, i metadati associati descrivono il corretto SR di un layer, in altri casi avrai bisogno di contattare l’autore del data per determinare il corretto SR da associare.

- **Usa SR del Progetto**

- **Usa SR del layer predefinito**, come impostato nel menu a tendina **SR predefinito per i layer**.

Suggerimento: Per assegnare lo stesso SR a più layer che non hanno un SR o ne hanno uno errato in un’unica operazione:

1. Seleziona i layer nel pannello **Layer**.

2. Premi Ctrl+Shift+C. Puoi anche cliccare con il tasto destro del mouse su uno dei layer selezionati o andare su **Layer ➤ SR del vettore**

3. Trovare e selezionare il giusto SR da utilizzare

4. E premi **OK**. Puoi confermare che è stato impostato correttamente nella finestra di dialogo **Sorgente** delle proprietà dei layer.

Nota che cambiare il SR in questa impostazione non altera in alcun modo l’origine dati sottostante, piuttosto cambia solo il modo in cui QGIS interpreta le coordinate grezze del layer nel progetto QGIS corrente.
10.3 Sistemi di Riferimento delle coordinate e Progetti

Anche ogni progetto in QGIS ha un sistema di riferimento di coordinate associato. Il SR del progetto determina il modo in cui i dati vengono proiettati dalle coordinate grezze sottostanti alla mappa piana rappresentata nella tua mappa QGIS.

QGIS supporta la trasformazione SR «al volo» sia per i dati raster che vettoriali. Questo significa che indipendentemente dal SR sottostante di particolari layer di mappe nel tuo progetto, essi saranno sempre trasformati automaticamente nel SR comune definito per il tuo progetto. Dietro le quinte, QGIS riproietta in modo trasparente tutti i layer contenuti nel tuo progetto nel SR del progetto, così che saranno tutti resi nella posizione corretta l’uno rispetto all’altro!

È importante fare una scelta appropriata di SR per i tuoi progetti QGIS. La scelta di un SR inappropriato può causare distorsioni delle mappe e riflettere in modo inadeguato le dimensioni e le posizioni degli oggetti rispetto al mondo reale. Di solito, mentre si lavora in aree geografiche più piccole, ci sarà un certo numero di SR standard utilizzati all’interno di un particolare paese o area amministrativa. È importante cercare quali SR sono scelte appropriate o standard per l’area che si sta mappando e assicurarsi che il progetto QGIS seguì questi standard.

Per default, QGIS inizia ogni nuovo progetto usando una proiezione globale predefinita. Questo SR di default è EPSG:4326 (conosciuto anche come «WGS 84»), ed è un sistema di riferimento globale basato su latitudine/longitudine. Questo SR di default può essere cambiato tramite l'impostazione Usare SR predefinito nella scheda SR in Impostazioni ► Opzioni… (vedi Fig. 10.1). C’è un’opzione per impostare automaticamente il SR del progetto in modo che corrisponda al SR del primo layer caricato in un nuovo progetto, o in alternativa può selezionare un diverso SR di default da usare per tutti i nuovi progetti creati. Questa scelta sarà salvata per l’uso nelle sessioni successive di QGIS.

Il SR del progetto può anche essere impostato attraverso la scheda SR della finestra di dialogo Progetto ► Proprietà…. Sarà anche mostrato in basso a destra nella barra di stato di QGIS.

Sono disponibili le opzioni:

![Fig. 10.2: Finestra di dialogo Proprietà del progetto](image-url)
Nessun Sistema di Coordinate (o proiezione sconosciuta/non terrestre): Selezionando questa impostazione si disabilita TUTTA la gestione delle proiezioni all'interno del progetto QGIS, facendo sì che tutti i layer e le coordinate della mappa siano trattati come semplici coordinate cartesiane 2D, senza alcuna relazione con le posizioni sulla superficie terrestre. Può essere usato per cercare il SR di uno layer (basato sulle sue coordinate grezze o quando si usa QGIS per usi non terrestri come mappe di giochi di ruolo, mappatura di edifici o roba simile. In questo caso:

- Nessuna riproiezione viene fatta durante la visualizzazione dei layer: gli elementi sono semplicemente disegnati usando le loro coordinate grezze.
- L’ellissoide è disattivato e forzato a Nessuno/Planimetrico.
- Le unità di distanza e di area, e la visualizzazione delle coordinate sono bloccate e forzate a «unità sconosciute»; tutte le misurazioni sono fatte in unità di mappa sconosciute, e nessuna conversione è possibile.

o un sistema di riferimento di coordinate esistente che può essere geografico, proiettato o definito dall’utente.

Viene visualizzata un’anteprima dell’estensione del SR sulla Terra per aiutarti a selezionare quello appropriato. I layer aggiunti al progetto sono trasformati al volo in questo SR per poterli sovrapporre indipendentemente dal loro SR originale. L’uso delle unità e l’impostazione dell’ellissoide sono disponibili e hanno senso e si possono eseguire i relativi calcoli.

Ogni volta che selezioni un nuovo SR per il progetto QGIS, le unità di misura verranno automaticamente modificate nella scheda Generale della finestra di dialogo delle Proprietà progetto (Progetto ➤ Proprietà…) per corrispondere al SR selezionato. Ad esempio, alcuni SR definiscono le loro coordinate in piedi invece che in metri, pertanto, impostando il progetto QGIS su uno di questi SR, il tuo progetto verrà anche impostato per utilizzare i piedi come default per le misure.

Suggerimento: Impostazione del SR del progetto da un layer
Puoi assegnare un SR al progetto usando un SR di un layer:

1. Nel pannello Layer, clicca con il tasto destro del mouse sul layer dal quale vuoi prelevare il SR
2. Seleziona Imposta SR del Progetto da Layer.

Il SR del progetto viene ridefinito usando il SR del layer. L’estensione della mappa, la visualizzazione delle coordinate sono aggiornate di conseguenza e tutti i layer nel progetto sono tradotti on-the-fly al nuovo SR del progetto.

10.4 Scelta del sistema di riferimento delle coordinate

Questa finestra di dialogo consente di assegnare un sistema di riferimento di coordinate a un progetto o a un layer, a condizione che siano disponibili database di sistemi di proiezione. Gli elementi nella finestra di dialogo sono:

- **Filtro**: se conosci il codice EPSG, l’identificatore o il nome del SR che vuoi impostare, puoi utilizzare questa area di ricerca per trovarlo nell’elenco. Inserisci il codice EPSG, l’identificatore o il nome.
- **Sistemi di riferimento usati di recente**: se hai certi SR che usi frequentemente nel tuo lavoro GIS quotidiano, questi verranno visualizzati in questa sezione della finestra di dialogo. Clicca su una di queste voci per impostare il SR associato.
- **Sistemi di riferimento mondiali**: questa è una lista di tutti i SR supportati da QGIS, compresi quelli geografici, proiettati e personalizzati. Per specificare un SR, selezionalo dalla lista espandendo la lista dallo specifico raggruppamento. Il SR attivo è preselezionato.
- **PROJ in formato testo**: Questa è la stringa SR usata dal motore di proiezione PROJ. Questo testo è di soli lettura ed è dato a scopo informativo.

Il selettore del SR mostra anche un’anteprima approssimativa dell’area geografica per la quale un SR selezionato è valido per l’uso. Molti SR sono progettati solo per l’uso in piccole aree geografiche e non devono essere utilizzati al di fuori dell’area per cui sono stati progettati. L’anteprima della mappa ombreggia un’area di utilizzo approssimativa.
ogni volta che si seleziona un SR dall'elenco. Inoltre, questa mappa di anteprima mostra anche una indicazione dell'estensione della mappa principale corrente.

10.5 Sistemi di riferimento personalizzati

Se QGIS non ha le informazioni sul sistema di riferimento di cui hai bisogno, puoi crearne uno personalizzato. Per farlo, seleziona Proiezioni Personalizzate... dal menu Impostazioni. I SR personalizzati vengono salvati nel tuo database utente di QGIS. Oltre ai SR personalizzati, questo database contiene anche i segnalibri geospaziali e altri dati utente.

Questo manuale descrive l'uso di proj e delle relative utilità da riga di comando. I parametri cartografici usati da proj sono descritti nel manuale e sono identici a quelli usati da QGIS.

La finestra di dialogo Definizione Sistema Riferimento Spaziale Personalizzato richiede solamente due parametri per definire un SR personalizzato:

1. Il nome
2. I parametri cartografici in formato PROJ o WKT

Per creare un nuovo SR:

1. Fai clic sul pulsante Aggiungi nuovo SR
2. Inserisci un nome descrittivo
3. Seleziona il formato: può essere Proj String o WKT.
4. Aggiungi i Parametri del SR.

Nota: Preferite la memorizzazione della definizione del SR in formato WKT

Anche se sono supportati entrambi i formati Proj String e WKT, si raccomanda vivamente di memorizzare le definizioni di proiezione nel formato WKT. Quindi, se la definizione disponibile è nel formato proj, seleziona quel formato, inserisci i parametri e poi passa al formato WKT. QGIS convertirà la definizione nel formato WKT che potrai salvare in seguito.

5. Fai clic su Valida per verificare se la definizione del SR è una definizione di proiezione accettabile.
Puoi testare i parametri del SR per vedere se danno risultati corretti. Per fare questo, inserisci i valori noti di latitudine e longitudine WGS 84 rispettivamente nei campi Nord e Est. Fai clic su Calcola, e confronta i risultati con i valori noti nel tuo sistema di riferimento delle coordinate.

10.5.1 Inserire una trasformazione NTv2 in QGIS

Per inserire un file di trasformazione NTv2 in QGIS devi fare un ulteriore passo:

1. Mettere il file NTv2 (.gsb) nella cartella SR/Proj che utilizza QGIS (ad esempio. C:\OSGeo4W64\share\proj per gli utenti Windows)
2. Aggiungere nadgrids (+nadgrids=nomeofthefile.gsb) alla definizione Proj nel campo Parametri del Definizione Sistema Riferimento Personalizzato delle coordinate (Impostazioni ➤ Proiezioni personalizzate…).

Fig. 10.3: Finestra di dialogo SR personalizzato

Fig. 10.4: Impostazione di una trasformazione Ntv2
10.6 Trasformazioni Datum

In QGIS, la trasformazione SR “on-the-fly” è abilitata di default, il che significa che ogni volta che si usano layer con diversi sistemi di coordinate QGIS li riproietta in modo trasparente al SR del progetto. Per alcuni SR, ci sono un certo numero di possibili trasformazioni disponibili per riproiettare al SR del progetto!

Per impostazione predefinita, QGIS cercherà di usare la trasformazione più accurata disponibile. Tuttavia, in alcuni casi questo potrebbe non essere possibile, ad esempio quando sono necessari ulteriori file di supporto per utilizzare una trasformazione. Ogni volta che una trasformazione più accurata è disponibile, ma non è attualmente utilizzabile, QGIS mostrerà un messaggio informativo di avvertimento che ti avvisa della trasformazione più accurata e di come abilitarla sul tuo sistema. Di solito, questo richiede il download di un pacchetto esterno di file di supporto alla trasformazione, e l’estrazione di questi nella cartella proj nella tua cartella QGIS user profile.

Se vuoi, QGIS ti può anche richiedere ogni volta che si possono fare più trasformazioni possibili tra due SR, e ti permette di fare una selezione informata di quale sia la trasformazione più appropriata da usare per i tuoi dati.

- usando Chiedi la trasformazione di datum se disponibili: quando esiste più di una trasformazione di datum appropriata per una combinazione SR sorgente/destinazione, si aprirà automaticamente una finestra di dialogo che chiede agli utenti di scegliere quale di queste trasformazioni di datum usare per il progetto. Se la casella di controllo Make default è spuntata quando si seleziona una trasformazione da questa finestra di dialogo, allora la scelta viene ricordata e applicata automaticamente a qualsiasi progetto QGIS appena creato.

- o definendo una lista di trasformazioni di datum appropriata da usare come default quando si carica un layer in un progetto o si riproietta un layer.

Usa il pulsante per aprire la finestra di dialogo Selezione le trasformazioni del datum. Poi:

1. Scegli il SR sorgente del layer, usando il menu a tendina o il widget Selezione SR.

2. Definisci il SR destinazione allo stesso modo.

3. Un elenco di trasformazioni disponibili dall’origine alla destinazione sarà mostrato nella tabella. Cliccando su una riga vengono mostrati i dettagli sulle impostazioni applicate e la corrispondente accuratezza e l’area di utilizzo della trasformazione.
Fig. 10.5: Seleziona una trasformazione di default di datum

In alcuni casi una trasformazione potrebbe non essere disponibile per l’uso sul tuo sistema. In questo caso, la trasformazione sarà ancora mostrata (in grigio) in questa lista, ma non può essere scelta fino a quando non si installa il pacchetto richiesto di supporto alla trasformazione. Di solito, viene fornito un pulsante per scaricare e installare la trasformazione corrispondente, che viene poi memorizzata sotto la cartella `proj` nel profilo attivo `user profile`.

4. Trova la tua trasformazione preferita e selezionala.

5. Imposta se lo vuoi ☑ Consenti trasformazioni alternative se l’operazione preferita dovesse fallire.

6. Fai clic su OK.

Viene aggiunta una riga alla tabella sotto Trasformazioni Datum Predefinite con informazioni sul SR sorgente, il SR destinazione, l’ Operazione applicata per la trasformazione e se Consenti Trasformazioni Alternative è abilitato.

D’ora in poi, QGIS usa automaticamente le trasformazioni di datum selezionate per ulteriori trasformazioni tra questi due CRS fino a quando non lo si rimuove (—) dalla lista o si cambia la voce (✍️) nella lista.

Le trasformazioni di Datum impostate nella scheda Impostazioni ➤ Opzioni ➤ Trasformazioni saranno ereditate da tutti i nuovi progetti QGIS creati nel sistema. Inoltre, un particolare progetto può avere il suo specifico insieme di trasformazioni specificato tramite la scheda SR della finestra di dialogo Proprietà Progetto (Progetto ➤ Proprietà…). Queste impostazioni si applicano solo al progetto corrente.
11 Strumenti generali

11.1 Guide contestuali

Ogni volta che hai bisogno di aiuto su un argomento specifico, puoi accedere alla pagina corrispondente nel manuale utente corrente tramite il pulsante Guida disponibile nella maggior parte delle finestre di dialogo - tieni presente che i plugin di terze parti possono puntare a pagine web dedicate.

11.2 Pannelli

Per impostazione predefinita, QGIS fornisce molti pannelli con cui lavorare. Alcuni di questi pannelli sono descritti di seguito, mentre altri possono essere trovati in diverse parti del documento. Un elenco completo dei pannelli predefiniti forniti da QGIS è disponibile tramite il menu Visualizza ► Panelli ► e descritto in Pannelli.

11.2.1 Pannello dei Layer

Il pannello Layer (chiamato anche la legenda della mappa) elenca tutti i layer del progetto e aiuta a gestire la loro visibilità. Puoi mostrarlo o nasconderlo premendo Ctrl+i. Un layer può essere selezionato e trascinato su o giù nella legenda per cambiare l’ordinamento secondo Z. Ordinamento secondo Z significa che i layer elencati più vicino alla parte superiore della legenda sono disegnati sopra i layer elencati più in basso nella legenda.

Nota: Questo comportamento di default può essere cambiato tramite il pannello Layer Order.

In cima al Pannello dei Layer, una barra degli strumenti ti permette di:

- Apri il pannello Stile layer (F7): attiva e disattiva il pannello Stile layer.
- Aggiungi gruppo
- Gestisci Temi Mappa: controlla la visibilità dei layer e li organizzai in differenti temi mappa.
- Filtra la legenda in base al contenuto della mappa, solo i layer che ricadono nell’area in visualizzazione vengono elencati in modo completo, gli altri restano ma hanno simbologia nulla, in questo modo viene evidenziato quali sono i layer di interesse nella zona visualizzata.
• Filtra legenda tramite espressione: applica un'espressione per rimuovere gli stili dall'albero dei layer selezionati che non hanno elementi che soddisfano la condizione. Questo può essere usato per evidenziare gli elementi che si trovano all'interno di una area/elemento di un altro layer. Dall'elenco a discesa, è possibile modificare e cancellare l'espressione attualmente applicata.

• Espandi tutti o Racchiudi tutti layer e gruppi nel pannello Layer.

• Elimina Layer/Gruppo attualmente selezionato.

Fig. 11.1: Barra degli strumenti nel pannello Layer

Nota: Strumenti per la gestione del pannello layer sono anche disponibili per gli oggetti mappa e legenda nei layout di stampa.

Gestisci Viste Mappa

Il pulsante a discesa Gestisci Viste Mappa fornisce l'accesso a comode scorciatoie per manipolare la visibilità dei layer nel pannello Layer:

- Mostra tutti i layer
- Nascondi tutti i layer
- Mostra i layer selezionati
- Nascondi i layer selezionati
- Mostra / Nascondi Layer Selezionati: cambia la visibilità del primo layer selezionato nel pannello, e applica questo stato agli altri layer selezionati. Accessibile anche tramite la scorciatoia Space.
- Mostra / Nascondi Layer Selezionati in modo indipendente: cambia lo stato di visibilità di ogni layer selezionato
- Nascondi layer non selezionati

Oltre al semplice controllo della visibilità dei layer, il menu Gestisci Viste Mappa permette di configurare Viste mappa nella legenda e passare da una vista mappa ad un'altra. Una vista della mappa è una fotografia della legenda della mappa corrente che registra:

- i layer impostati come visibili nel pannello Layer
- e per ogni layer visibile:
 - il riferimento allo style applicato al layer
 - le classi visibili dello stile, ad esempio gli oggetti nodo del layer selezionati nel pannello Layer. Questo si applica a symbologies oltre che alla visualizzazione del singolo simbolo
 - lo stato collascato/espanso del/i nodo(i) del layer e del gruppo(i) che si trova all'interno di esso

Per creare una nuova Vista Mappa:

1. Seleziona un layer che vuoi venga mostrato
2. Configura le proprietà del layer (simbologia, diagramma, etichette…..) come al solito
3. Espandi il menu in basso Stile ➤ e clicca su Aggiungi... per memorizzare le impostazioni come a new style embedded in the project.

Nota: Una vista mappa non memorizza i dettagli attuali delle proprietà: viene salvato solo un riferimento al nome dello stile, quindi ogni volta che si applicano modifiche al layer mentre questo stile è abilitato (ad esempio, si cambia la visualizzazione della simbologia), la vista mappa viene aggiornata con nuove informazioni.

4. Se necessario ripeti i passaggi precedenti per altri layer

5. Se applicabile, espandi o comprimi gruppi o nodi layer visibili nel pannello Layer

6. Clicca sul pulsante Gestisci Viste Mappa nella parte superiore del pannello, e Aggiungi Vista...

7. Inserisci il nome della vista mappa e clicca su OK

La nuova vista è in elenco nella parte inferiore del menu a discesa.

Puoi creare tutte le viste mappa di cui hai bisogno: ogni volta che la combinazione corrente nella legenda della mappa (layer visibili, il loro stile attivo, i gruppi della legenda della mappa) non corrisponde a nessuna vista mappa esistente come definito sopra, clicca su :guilabel: Aggiungi Vista... per creare una nuova vista mappa, o usa Sostituisci Vista ➤ per aggiornare una vista mappa. Puoi rinominare la vista mappa attiva con Rinomina Vista Attuale... o usare il pulsante Rinomina Vista Attuale per cancellarla.

Le viste mappa sono utili per passare rapidamente da una combinazione preconfigurata all’altra: selezionare una vista mappa nell’elenco per ripristinare la sua combinazione. Tutti le viste configurate sono accessibili anche nel layout di stampa, consentendo di creare diversi elementi di mappa basati su temi specifici e indipendenti dall’attuale visualizzazione della mappa principale (vedi Map item layers).

Panoramica del menu di scelta rapida del pannello Layer

Nella parte inferiore della barra degli strumenti, il componente principale del pannello Layer è il riquadro che elenca i layer vettoriali o raster aggiunti al progetto, eventualmente organizzati in gruppi. A seconda dell’oggetto selezionato nel pannello, con il tasto destro del mouse viene mostrato un insieme dedicato di opzioni presentate di seguito.

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Vettore</th>
<th>Layer</th>
<th>Raster</th>
<th>Gruppo</th>
</tr>
</thead>
<tbody>
<tr>
<td>❚ Zoom su Layer/Gruppo</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Zoom alla selezione</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>✚ Mostra nella panoramica</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Mostra totale elementi</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Copia Layer/Gruppo</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Rinomina Layer/Gruppo</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Zoom alla risoluzione nativa (100%)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Stira usando l’estensione attuale</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Aggiorna SQL Layer…</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Aggiungi Gruppo</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Duplica</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Rimuovi Layer/Gruppo…</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Elimina dal Gruppo</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Sposta al primo posto</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>❚ Sposta in fondo</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 11.1 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Vettore</th>
<th>Layer Raster</th>
<th>Gruppo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seleziona con tutti i genitori</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gruppi Selezionati</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Apri tabella degli attributi</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Attiva modifiche</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Modifiche in uso ➤</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Filtra…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cambia Sorgente Dati…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ripristina Sorgente Dati…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Azioni sui selezionati ➤ (in modadilità modifica)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Duplica</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Duplica e Digitalizza</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Imposta la visibilità del layer in funzione della scala…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Zoom alla scala di visibilità</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Imposta SR ➤</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Imposta SR del Layer/Gruppo…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Imposta SR del Progetto dal Layer</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Imposta proprietà WMS per il Gruppo</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Visualizza un solo gruppo per volta</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seleziona e mostra tutti i suoi figli (Ctrl-click)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Deseleziona e nascondi tutti i suoi figli (Ctrl-click)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rendi permanente</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Esporta ➤</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Salva come…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Salva Elementi come…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Salva Elementi Selezionati come…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Salva come File di Definizione del Layer…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Salva come File di Stile QGIS…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Stili ➤</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Copia Stile</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Incolla Stile</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Aggiungi…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Rinomina Corrente…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Modifica Simbolo…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Copia Simbolo</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>➤ Incolla Simbolo</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Proprietà…</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Tabella: Menu contestuale degli oggetti nel Pannello Layer

Per i layer vettoriali GRASS, Attiva modifiche non è disponibile. Vedi la sezione Digitalizzare e modificare layer vettoriali GRASS per informazioni su modifiche dei layer vettoriali GRASS.
Interagire con gruppi e layer

I layer presenti nella finestra della legenda possono essere organizzati in gruppi. Ciò può essere fatto in due modi:

1. Premi l'icona per aggiungere un nuovo gruppo. Digita un nome per il gruppo e premi Enter. Ora clicca su un layer esistente e trascinalo nel gruppo.
2. Seleziona alcuni layer, fai clic con il tasto destro del mouse nella finestra di legenda e scegli Gruppo selezionato. I layer selezionati verranno automaticamente inseriti in un nuovo gruppo.

Per togliere un layer da un gruppo, trascinalo fuori, o fai clic destro su di esso e scegli Muovi fuori dal gruppo: il layer viene spostato dal gruppo e posizionato sopra di esso. I layer possono anche essere annihilati all'interno di altri gruppi. Se un layer è inserito in un gruppo annidiato, Muovi fuori dal gruppo sposterà il layer da tutti i gruppi annidiati.

Per spostare un gruppo o un layer in cima al pannello dei layer, trascinalo in cima o scegli :guilabel: Sposta in Cima. Se usa questa opzione su un layer nidificato in un gruppo, il layer viene spostato in cima al suo gruppo corrente. L'opzione Sposta in Fondo segue la stessa logica per spostare i layer e i gruppi verso il basso.

La casella di controllo di un gruppo mostrerà o nasconderà i layer selezionati nel gruppo con un clic. Con Ctrl premuto, la casella di controllo attiverà o disattiverà anche i layer nel gruppo e nei suoi sottogruppi.

Abilitare l'opzione Gruppo Esclusivo significa che ti è possibile rendere visibile in un gruppo un solo layer alla volta. Ogni volta che un layer all'interno di un gruppo è impostato come visibile, gli altri non saranno visibili.

Puoi selezionare più di un layer o gruppo allo stesso tempo tenendo premuto il tasto Ctrl mentre fai clic su layer aggiuntivi. Puoi quindi spostare tutti i layer selezionati in un nuovo gruppo allo stesso tempo.

Puoi anche eliminare più di un layer o gruppo alla volta selezionando diversi elementi con il tasto Ctrl e poi premendo Ctrl+D: tutti i layer o gruppi selezionati saranno rimossi dalla lista dei layer.

Maggiori informazioni sui layer e sui gruppi utilizzando l'icona indicatore

In alcune circostanze, le icone appaiono accanto al layer o al gruppo nel pannello Layer per dare maggiori informazioni sul layer/gruppo. Questi simboli sono:

- per indicare che il layer è in modalità di modifica e puoi modificare i dati.
- per indicare che il layer in fase di modifica ha delle modifiche non salvate.
- per indicare a filter applicato al layer. Passa il mouse sull'icona per vedere l'espressione del filtro e fai doppio clic per aggiornare le impostazioni.
- per identificare i layer che sono required nel progetto, quindi non rimovibili.
- per identificare un embedded group o layer e il percorso del loro file di progetto originale.
- per identificare un layer la cui sorgente dati non era disponibile all'apertura del file di progetto (vedi Gestire i percorsi corrotti di file). Fai clic sull'icona per aggiornare il percorso della sorgente o seleziona la voce Ripara Sorgente Dati... dal menu contestuale del layer.
- per ricordarti che il layer è un layer temporary scratch layer e il suo contenuto verrà eliminato quando si chiude il progetto. Per evitare la perdita di dati e rendere il layer permanente, fai clic sull'icona per memorizzare il layer in uno qualsiasi dei formati vettoriali OGR supportati da QGIS.
- per identificare un layer che non ha/ha un SR sconosciuto.
- per identificare un layer temporaneo controllato da interazioni sulla mappa.
Modificare lo stile dei layer vettoriali

Dal pannello Layer, sono disponibili scorciatoie per cambiare la visualizzazione dei layer in modo rapido e semplice. Clicca con il tasto destro del mouse su un layer vettoriale e seleziona **Stile** nella lista per poterlo fare:

- vedi gli *styles* attualmente applicati al layer. Se sono stati definiti molti stili per il layer, puoi passare da uno all'altro e la visualizzazione del layer verrà aggiornata automaticamente nell'area di disegno della mappa.
- copia una parte o tutto lo stile corrente e, quando applicabile, incolla uno stile copiato da un altro layer.

Suggerimento: Condividere rapidamente lo stile di un layer

Dal menu contestuale, copia lo stile di un layer e incollalo in un gruppo o una selezione di layer: lo stile viene applicato a tutti i layer che sono dello stesso tipo (vettore/raster) del layer originale e, per i layer vettoriali, che hanno lo stesso tipo di geometria (punto, linea o poligono).

- rinomina lo stile corrente, aggiungi un nuovo stile (che in realtà è una copia di quello corrente) o elimina lo stile corrente (quando sono disponibili più stili).

Nota: Le opzioni precedenti sono disponibili anche per i layer raster o mesh.

- **aggiorna il symbol color** utilizzando una **Ruota dei colori**. Per comodità, i colori usati di recente sono disponibili anche in fondo alla ruota dei colori.
- **Modifica Simbolo...**: apre la finestra di dialogo **Symbol Selector** e cambia la simbologia (simbolo, dimensione, colore...).

Quando si utilizza una di simbologia di classificazione (basata su categorized, graduated o rule-based), le suddette opzioni simbologia-livello sono presenti nel menu contestuale della classificazione. Vengono inoltre fornite le voci **Mostra / Nascondi Layer Selezionati**, guilabel: Mostra Tutti i Layer e **Nascondi Tutti i Layer** per cambiare la visibilità di tutte le classificazioni degli elementi. Queste evitano di (de)selezionare gli elementi uno per uno.

Suggerimento: Facendo doppio clic su una voce di classe in foglia si apre anche la finestra di dialogo **Selettore Simbolo**.

11.2.2 Pannello Stile Layer

Il pannello **Stile Layer** (attivato anche con **Ctrl+3**) è un collegamento ad alcune delle opzioni della finestra di dialogo **Proprietà Layer**. Fornisce un modo semplice e veloce per definire la visualizzazione e il comportamento di un layer e per visualizzare i suoi effetti senza dover aprire la finestra di dialogo delle proprietà del layer.

Oltre ad evitare la finestra di dialogo delle proprietà di blocco (o «modale») dei layer, il pannello di stile dei layer evita anche di ingombrare lo schermo con finestre di dialogo e contiene la maggior parte delle opzioni dello stile (selettore colore, proprietà degli effetti, modifica regole, sostituzione etichette...): ad esempio, facendo clic sui pulsante colore all'interno del pannello di stile del layer, la finestra di selezione colore viene aperta all'interno del pannello di stile del layer stesso piuttosto che come finestra di dialogo separata.

Dall’elenco a discesa dei layer presenti nel Pannello Layer, seleziona un elemento e:

- A seconda del tipo di layer, imposta:
 - **Simbologia**, **Trasparenza**, e **Istogramma** proprietà per il layer raster. Queste opzioni sono le stesse della **Proprietà raster**.
 - **Simbologia**, **Etichette**, **Maschere** e **Vista 3D** proprietà per il layer vettoriale. Queste opzioni sono le stesse del **La finestra di dialogo Proprietà dei vettori** e possono essere estese da proprietà personalizzate introdotte da plugin di terze parti.
- **Simbologia** e **Vista 3D** per layer mesh. Queste opzioni sono le stesse della *Proprietà del Dataset Mesh*.

- Gestisci lo stile(i) associato nel **Gestore di Stili** (maggiori dettagli in *Gestione stili personalizzati*).

- Vedi lo **Storico** dei cambiamenti che hai applicato allo stile dei layer nel progetto corrente: puoi quindi cancellare o ripristinare qualsiasi stato selezionandolo nell’elenco e cliccando su **Applica**.

Per i layer Vector Tile c’è un’opzione per mostrare **Solo regole visibili**. Questo è molto utile se vuoi lavorare solo con le regole che rientrano nell’attuale livello di zoom della mappa.

Un’altra potente opzione di questo pannello è la casella di controllo **Aggiornamento immediato**. Spunta e le tue modifiche vengono automaticamente visualizzate in modo continuo nella mappa. Non è più necessario premere il pulsante **Applica**.
Fig. 11.2: Definizione della simbologia di un layer dal pannello di stile del layer.
11.2.3 Pannello Ordine dei Layer

Per impostazione predefinita, i layer mostrati nell’area di disegno della mappa QGIS sono disegnati seguendo il loro ordine nel pannello Layer: più alto è il layer nel pannello, più alto (quindi, più visibile) sarà nella visualizzazione della mappa.

Puoi definire un ordine di disegno per i layer indipendente dall’ordine nel pannello dei layer con il pannello Ordine dei layer attivato nel menu Visualizza ► Pannelli ► o con Ctrl+9. Seleziona Controllo ordine di visualizzazione sotto la lista dei layer e riorganizza i layer nel pannello come vuoi. Questo ordine diventa quello applicato alla visualizzazione della mappa. Per esempio, in Fig. 11.3, puoi vedere che gli aeroporti sono visualizzati sopra il poligono dell’alaska nonostante il posizionamento di questi layer nel pannello Layer.

Deselezionando Controllo ordine di visualizzazione tornerà al comportamento predefinito.

![Fig. 11.3: Definire un ordine dei layer indipendente dalla legenda](image)

11.2.4 Pannello Panoramica

Il pannello Panoramica (Ctrl+8) visualizza una mappa con una vista completa di alcuni dei layer. La mappa panoramica è riempita con i layer usando l’opzione Mostra nella panoramica dal menu Layer o nel menu contestuale dei layer. All’interno della vista, un rettangolo rosso mostra l’estensione della mappa corrente, aiutandoti a determinare rapidamente quale area dell’intera mappa state visualizzando. Se clicchi e trascini il rettangolo rosso nel riquadro panoramico, l’estensione della visualizzazione della mappa principale si aggiornera di conseguenza.

Da notare che le etichette non vengono visualizzate nella panoramica della mappa anche se i layer utilizzati nella panoramica della mappa sono stati impostati per l’etichettatura.
11.2.5 Pannello Messaggi di Log

Durante il caricamento o l’elaborazione di alcune operazioni, puoi tracciare e seguire i messaggi che appaiono in diverse schede utilizzando il Pannello Messaggi di Log. Può essere attivato utilizzando l’icona più a destra nella barra di stato in basso.

11.2.6 Pannello Annulla/Ripristina

Per ogni layer in fase di modifica, il pannello Annulla/Ripristina (Ct rl +5) mostra l’elenco delle azioni effettuate, consentendoti di annullare rapidamente un insieme di azioni selezionando l’azione elencata. Maggiori dettagli in Undo and Redo edits.

11.2.7 Pannello Statistiche

Il pannello Statistiche (Ct rl +6) fornisce informazioni riassuntive su qualsiasi layer vettoriale. Questo pannello ti permette di selezionare:

- il layer vettoriale su cui calcolare le statistiche
- la colonna da usare, o una espressione.
- le statistiche da restituire utilizzando il pulsante a discesa a destra nella finestra di dialogo. A seconda del tipo di campo (o dei valori dell’espressione), le statistiche disponibili sono:

<table>
<thead>
<tr>
<th>Statistiche</th>
<th>Stringa</th>
<th>Inter</th>
<th>Numero reale</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conteggio</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Conteggio Distinti</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Conteggio Mancanti</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Somma</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Deviazione Standard</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Deviazione Standard su un Campione</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Valore Minimo</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Valore Massimo</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Intervallo</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Minoranza</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Maggioranza</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Varietà</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Primo Quartile</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Terzo Quartile</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Scarto interquartile</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Lunghezza Minima</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Lunghezza Massima</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Lunghezza Media</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

Tabella: Statistiche disponibili per ciascun tipo di campo

Il riepilogo statistico può essere:
• il risultato di tutto il layer o di

• ricalcolato usando il pulsante quando i dati originari sottostanti cambiano (per esempio, elementi/campi nuovi o rimossi, modifica di attributi)

• copiato negli appunti e incollato come tabella in un’altra applicazione.

Fig. 11.4: Mostrare statistiche su un campo

11.3 Progetti nidificati

A volte, ti piacerebbe mantenere un insieme di layer con lo stesso stile in diversi progetti. Puoi o creare un default style per questi layer o incorporarli da un altro progetto per risparmiare tempo e fatica.

Layer e Gruppi nidificati da un progetto esistente presenta alcuni vantaggi rispetto alla gestione dello stile:

• Possono essere aggiunti tutti i tipi di layer (vettoriali o raster, locali o online…)

• Nel recupero di gruppi e layer, puoi mantenere la stessa struttura ad albero dei layer di «sfondo» nei tuoi diversi progetti

• Mentre i layer incorporati sono modificabili, non puoi modificare le loro proprietà come simbologia, etichette, moduli, valori predefiniti e azioni, garantendo la consistenza in tutti i progetti.

• Modificare gli oggetti nel progetto originale e le modifiche vengono propagate a tutti gli altri progetti.

Se vuoi incorporare il contenuto di file di un altro progetto nel tuo progetto, seleziona Layer ► Includi Layer e Gruppi…:
1. Clicca il pulsante … per cercare un progetto: puoi vedere il contenuto del progetto (vedi Fig. 11.5)
2. Premi Ctrl (o X Cmd) e fai click sui layer e sui gruppi che vuoi recuperare.
3. Fai clic su OK

I layer e i gruppi selezionati sono incorporati nel pannello Layer e visualizzati sulla mappa. Un'icona viene aggiunta accanto al loro nome per il riconoscimento e passandovi sopra viene visualizzato un suggerimento con il percorso originale del file di progetto.

![Select layers and groups to embed](image1)

Fig. 11.5: Selezionare layer e gruppi da nidificare

Come qualsiasi altro layer, un layer incorporato può essere rimosso dal progetto facendo clic con il tasto destro del mouse sul layer e scegliendo **Elimina layer/gruppo**.

Suggerimento: Cambiare la visualizzazione di un layer nidificato

Non è possibile modificare la visualizzazione di un layer nidificato, a meno che non si apportino le modifiche nel file di progetto originale. Tuttavia, se fai clic con il tasto destro su un layer e selezioni: **Duplica** si crea un layer che è completo e non dipende dal progetto originario. Puoi quindi rimuovere in sicurezza il layer collegato.

11.4 Lavorare sulla mappa

11.4.1 Visualizzazione

In modo predefinito, QGIS visualizza tutti i layer visibili ogni volta che la mappa viene aggiornata. La mappa viene aggiornata ogni volta che:

- aggiungi un layer
- sposti o ingrandisci
- ridimensiona la finestra QGIS
- cambia la visibilità di uno o più layer

QGIS consente di controllare il processo di visualizzazione in diversi modi.
Visualizzazione in funzione della scala

La visualizzazione in funzione della scala permette di specificare la scala minima e massima alla quale il layer (raster o vettore) verrà visualizzato. Per impostare la visualizzazione in funzione della scala apri la finestra Proprietà con un doppio click sul layer in legenda. Nella scheda Visualizzazione, clicca sulla casella di controllo Visualizzazione dipendente dalla scala e immetti i valori Minimo (escluso) e Massimo (incluso).

Puoi anche impostare la visualizzazione dipendente dalla scala per un layer dal Pannello Layer. Fai clic con il tasto destro sul layer e nel menu contestuale seleziona Imposta la scala di visibilità del layer…

Il pulsante Imposta alla scala corrente dell'estensione di mappa ti aiuta a usare la scala di rappresentazione corrente della mappa come limite della visibilità.

Nota: Quando un layer non viene visualizzato nell’area di disegno della mappa a causa della scala della mappa al di fuori del suo intervallo di visibilità, nel Pannello Layer il file del layer viene oscurato e nel menu di scelta rapida del layer viene visualizzata una nuova opzione Zoom alla Scala Visibile. Selezionala e la mappa viene ingrandita sulla scala di visibilità più vicina al limite previsto per il layer.

Controllare la visualizzazione della mappa

Puoi controllare la visualizzazione della mappa in molti modi diversi, come descritto di seguito.

Sospensione della visualizzazione

Per interrompere la visualizzazione, clicca sulla casella di controllo Visualizza in basso a destra della barra di stato. Quando Visualizza non è spuntata, QGIS non aggiorna la vista quando si verifica uno degli eventi precedentemente descritti nella sezione Visualizzazione. Alcuni casi in cui potresti voler sospendere la visualizzazione sono:

- aggiunta di molti layer e simbologia predefinita prima della visualizzazione
- aggiunta di uno o più layer di grosse dimensioni e impostazione di una scala prima della visualizzazione
- aggiunta di uno o più layer di grossa dimensione e zoom ad un’area specifica prima della visualizzazione
- ogni combinazione delle opzioni sopracitate

Se la casella di controllo Aggiorna è spuntata, la visualizzazione e l’aggiornamento della mappa saranno immediati.

Controllare la visibilità dei layer quando sono caricati

Puoi scegliere l’opzione di caricare sempre i nuovi layer senza che questi vengano visualizzati sulla mappa. Ciò significa che i layer vengono aggiunti alla mappa, ma la loro casella di controllo per la visibilità nella legenda risulterà disabilitata. Per impostare questa opzione, apri il menu Impostazioni ► Opzioni ► e clicca sulla scheda Visualizzazione. Deseleziona la casella di controllo Per impostazione predefinita i nuovi layer aggiunti alla mappa vengono visualizzati subito. Ogni layer aggiunto alla mappa risulterà essere quindi spento (invisibile).
Fermare la visualizzazione

Per fermare la visualizzazione della mappa primi il tasto ESC. In questo modo l’aggiornamento della mappa verrà bloccato e la mappa rimarrà parzialmente disegnata. Dopo aver premuto il tasto ESC potrebbe passare un po’ di tempo affinché l’interruzione della visualizzazione della mappa diventi effettiva.

Modificare la qualità della visualizzazione

QGIS ha una opzione per modificare la qualità della restituzione nella visualizzazione della mappa. Nel menu Impostazioni ▶ Opzioni, fai clic sulla scheda Visualizzazione e seleziona o deseleziona Rendi le linee meno irregolari a spese delle prestazioni.

Velocizzare la visualizzazione

Ci sono alcune opzioni che ti permettono di velocizzare la visualizzazione. Apri la finestra di dialogo di QGIS Impostazioni ▶ Opzioni, vai alla scheda Visualizzazione e seleziona o deseleziona le seguenti caselle di controllo:

- ✔️ Usa il caching del disegno quando possibile per velocizzare la visualizzazione
- ✔️ Visualizza i layer in parallelo usando più processori della CPU e poi imposta ✔️ Numero massimo di processori da utilizzare.
- ✔️ La costruzione della mappa avviene in background su un’immagine separata e ad ogni ✔️ Intervallo di aggiornamento della mappa, il contenuto di questa immagine (fuori schermo) verrà utilizzato per aggiornare la rappresentazione della visualizzazione sullo schermo. Tuttavia, se la costruzione termina più velocemente di questa durata, la visualizzazione avverrà immediatamente.
- ✔️ Con ✔️ Attiva la semplificazione delle geometrie in modo predefinito per i nuovi layer aggiunti, semplifichi le geometrie (meno nodi) e quindi hai una più veloce visualizzazione. Da tener presente però che potrebbero essere introdotte incongruenze.

11.4.2 Zoom e Pan

Ci sono diversi modi per zoomare e spostarsi su un’area di interesse. Puoi usare la barra degli strumenti Barra Navigazione Mappa, il mouse e la tastiera sull’area di visualizzazione della mappa e anche le opzioni del menu Visualizza e il menu contestuale dei layer nel pannello Layer.

<table>
<thead>
<tr>
<th>Icona</th>
<th>Etichetta</th>
<th>Utilizzo</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>Sposta Mappa</td>
<td>Quando attivato, clicca con il tasto sinistro del mouse su un punto qualsiasi della mappa per spostare la mappa nella posizione del cursore. Puoi anche spostare la mappa tenendo premuto il tasto sinistro del mouse e trascinando la mappa.</td>
</tr>
<tr>
<td>✔️</td>
<td>Zoom In</td>
<td>Quando è attivato, clicca con il tasto sinistro del mouse su un punto qualsiasi dell’area mappa per ingrandire di un livello. La posizione del cursore del mouse sarà il centro dell’area di interesse ingrandita. Puoi anche ingrandire un’area trascinando un rettangolo sulla mappa con il pulsante sinistro del mouse.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 11.2 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Icona</th>
<th>Etichetta</th>
<th>Utilizzo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zoom Out</td>
<td>Quando è attivato, clicca con il tasto sinistro del mouse su un punto qualsiasi dell’area della mappa per rimpicciolire di un livello. La posizione del cursore del mouse sarà il centro dell’area di interesse ingrandita. Puoi anche zoomare fuori da un’area trascinando un rettangolo sulla mappa con il pulsante sinistro del mouse.</td>
</tr>
<tr>
<td></td>
<td>Sposta Mappa sulla Selezione</td>
<td>Sposta la mappa sugli elementi selezionati del layer attivo.</td>
</tr>
<tr>
<td></td>
<td>Zoom alla Selezione</td>
<td>Zoom sugli elementi selezionati del layer attivo.</td>
</tr>
<tr>
<td></td>
<td>Zoom al Layer</td>
<td>Zoom all’estensione del layer attivo.</td>
</tr>
<tr>
<td></td>
<td>Zoom Completo</td>
<td>Zoom all’estensione di tutti i layer del progetto.</td>
</tr>
<tr>
<td></td>
<td>Zoom Precedente</td>
<td>Effettua lo zoom della mappa fino all’estensione precedente nella cronologia.</td>
</tr>
<tr>
<td></td>
<td>Zoom Successivo</td>
<td>Effettua lo zoom della mappa fino all’estensione successiva nella cronologia.</td>
</tr>
<tr>
<td></td>
<td>Zoom alla Risoluzione Originale</td>
<td>Zooma la mappa ad un livello in cui un pixel del layer raster attivo copre un pixel dello schermo.</td>
</tr>
</tbody>
</table>

Un **Fattore di zoom** può essere impostato sotto il menu **Impostazioni ► Opzioni ► Strumenti mappa** per definire il comportamento della scala durante lo zoom. Lì, puoi anche impostare una lista di **Scale Predefinite** che saranno disponibili nella parte inferiore della mappa.

Con il Mouse sulla Mappa

Oltre ad usare gli strumenti ![Sposta Mappa](icon) ![Ingrandisci](icon) ![Rimpicciolisci](icon) descritti sopra, puoi tenere la rotella del mouse all’interno della mappa e trascinare il cursore del mouse (su macOS, potresti dover tenere premuto il tasto cmd). Puoi anche ruotare la rotella del mouse per ingrandire o ridurre la mappa. La posizione del cursore del mouse sarà il centro dell’area di interesse ingrandita. Tenendo premuto Ctrl mentre si ruota la rotella del mouse si ottiene uno zoom più preciso.

Con la tastiera sulla mappa

Tenendo premuto **spacebar** sulla tastiera e muovendo il cursore del mouse si farà una panoramica della mappa nello stesso modo in cui lo fa il trascinamento sulla mappa con ![Sposta Mappa](icon).

La navigazione sulla mappa è possibile con i tasti freccia. Posiziona il cursore del mouse all’interno della mappa e premi i tasti freccia per spostarti in alto, in basso, a sinistra e a destra.

I tasti PgUp e PgDown sulla tastiera causeranno l’ingrandimento o il ridimensionamento della mappa secondo il fattore di zoom impostato. Premendo Ctrl++ o Ctrl+- si esegue anche uno zoom immediato in/out sulla mappa.

Quando alcuni strumenti mappa sono attivi (Informazioni, Misura ...), puoi eseguire uno zoom tenendo premuto Shift e trascinando un rettangolo sulla mappa per ingrandire quell’area. Questa modalità non è attiva per gli strumenti di selezione (poiché usano Shift per l’aggiunta alla selezione) né per gli strumenti di modifica.

11.4. Lavorare sulla mappa
11.4.3 Segnalibri Spaziali

I segnalibri spaziali ti permettono di «mettere un segnalibro» su una posizione geografica e di ritornarci in seguito. Per impostazione predefinita, i segnalibri sono salvati nel profilo dell'utente (come Segnalibri Utente), il che significa che sono disponibili da qualsiasi progetto che l'utente apre. Possono anche essere salvati per un singolo progetto (chiamato Segnalibri Progetto) e memorizzati all'interno del file del progetto, il che può essere utile se il progetto deve essere condiviso con altri utenti.

Creazione di un segnalibro

Per creare un segnalibro:

1. Attiva lo zoom e spostati nell'area di interesse.

![Editor Segnalibro](image)

Fig. 11.6: La finestra di dialogo Editor Segnalibro

3. Immetti un nome descrittivo per il segnalibro

4. Inserisci o seleziona un nome di gruppo in cui memorizzare i relativi segnalibri

5. Seleziona l'estensione dell'area che vuoi salvare, usando il selettore di estensione; l'estensione può essere calcolata da un'estensione del layer caricato, dalla visualizzazione della mappa corrente o disegnata sopra la visualizzazione della mappa corrente.

6. Indica il SR da usare per l'estensione

7. Seleziona se il segnalibro sarà Salvato in Segnalibri Utente o Segnalibri Progetto.

8. Premi Salva per aggiungere il segnalibro alla lista

Nota che puoi avere più di un segnalibro con lo stesso nome.
Uso e gestione dei segnalibri

Per usare e gestire i segnalibri, puoi usare il pannello Segnalibri Spaziali o Browser.

Seleziona **Visualizza ➤ Mostra Segnalibri Spaziali** o premi **Ctrl+7** per aprire il pannello **Gestore Segnalibri Spaziali**. Seleziona **menuselection: Visualizza ➔ Mostra segnalibri** o **Ctrl+Shift+B** per mostrare la voce **Segnalibri Spaziali** nel pannello **Browser**.

Puoi eseguire i seguenti processi:

<table>
<thead>
<tr>
<th>Processo</th>
<th>Gestore Segnalibri Spaziali</th>
<th>Browser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoom a un segnalibro</td>
<td>Fai doppio clic su di esso, o seleziona il segnalibro e premi il pulsante Zoom a Segnalibro.</td>
<td>Fai doppio clic su di esso, trascinalo e rilascialo sulla mappa, oppure fai clic con il tasto destro sul segnalibro e seleziona Zoom a Segnalibro.</td>
</tr>
<tr>
<td>Eliminare un segnalibro</td>
<td>Seleziona il segnalibro e clicca sul pulsante Elimina Segnalibro Spaziale. Conferma la tua scelta.</td>
<td>Fai clic destro sul segnalibro e seleziona Elimina Segnalibro Spaziale. Conferma la tua scelta.</td>
</tr>
<tr>
<td>Esporare segnalibri in formato XML</td>
<td>Clicca sul pulsante Importa/Esporta Segnalibri e seleziona Esporta. Tutti i segnalibri (utente o progetto) vengono salvati in un file xml.</td>
<td>Seleziona una o più cartelle (utente o progetto) o sottocartelle (gruppi), poi clicca con il tasto destro e seleziona Esporta segnalibri spaziali... Il sottoinsieme di segnalibri selezionato viene salvato.</td>
</tr>
<tr>
<td>Importare segnalibri da file in formato XML</td>
<td>Clicca sul pulsante Importa/Esporta Segnalibri e seleziona Importa. Tutti i segnalibri nel file XML vengono importati come segnalibri utente.</td>
<td>Fai clic con il tasto destro del mouse sulla voce :guilabel: Segnalibri Spaziali o su una delle sue cartelle (Utente o Progetto) o sottocartelle (gruppi) per determinare dove importare i segnalibri, quindi seleziona Importa Segnalibri Spaziali. Se eseguito sulla voce Segnalibri Spaziali, i segnalibri vengono aggiunti a Segnalibri Utente.</td>
</tr>
<tr>
<td>Modificare segnalibro</td>
<td>Puoi modificare un segnalibro cambiando i valori nella tabella. Puoi modificare il nome, il gruppo, l’estensione e se è memorizzato nel progetto o no.</td>
<td>Fai clic con il tasto destro del mouse sul segnalibro desiderato e seleziona Modifica segnalibri spaziali... Il Editor segnalibro si apri, permettendoti di ridefinire ogni aspetto del segnalibro come se lo stessi creando per la prima volta. Puoi anche trascinare il segnalibro tra le cartelle (Utente e Progetto) e le sottocartelle (Gruppi).</td>
</tr>
</tbody>
</table>

Puoi anche zoomare sui segnalibri digitando il nome del segnalibro nel **locator**.
11.4.4 Decorazioni

Le decorazioni includono Reticolo, Etichetta del Titolo, Etichetta Copyright, Immagine, Freccia Nord, Barra di Scala e Estensione Layout. Sono utilizzati per “decorare” la mappa aggiungendo elementi cartografici.

Reticolo

i Reticolo ti permette di aggiungere un reticolo di coordinate e annotazioni di coordinate alla mappa.

1. Seleziona l'opzione del menu Visualizza ➔ Decorazioni ➔ Reticolo… per aprire la finestra di dialogo.

![Fig. 11.7: Finestra di dialogo Reticolo](image)

2. Spunta _Abilita Reticolo_ e imposta le definizioni del reticolo in base ai layer caricati nella mappa:
 - Il _Tipo Reticolo_: può essere _Linea_ o _Simbolo_.
 - L’associato _Line symbol_ o _marker symbol_ usato per rappresentare il reticolo
 - L’_Intervallo X_ e l’_Intervallo Y_ tra i segni del reticolo, in unità di mappa
 - Una distanza _Offset X_ e _Offset Y_ dei segni del reticolo dall’angolo inferiore sinistro della mappa, in unità di mappa
 - I parametri di intervallo e di offset possono essere impostati in base al:
 - _Estensione della Mappa_: genera un reticolo con un intervallo che è approssimativamente 1/5 della larghezza della mappa
 - _risoluzione Raster Attivo_

3. Spunta _Scrivi Annotazione_ per visualizzare le coordinate dei segni del reticolo e imposta:
 - La _Direzione annotazione_, cioè come le etichette verranno posizionate rispetto alla loro linea del reticolo.
 - Può essere:
– **Orizzontale** o **Verticale** per tutte le etichette
– **Orizzontale e Verticale**, cioè ogni etichetta è parallela al segno del reticolo a cui si riferisce
– **Direzione del bordo**, cioè ogni etichetta segue il bordo della mappa, ed è perpendicolare al segno della griglia a cui si riferisce

* Il **Carattere annotazione** (formattazione del testo, buffer, ombra…) usando il font selector widget
* La **Distanza dal bordo della mappa**, margine tra le annotazioni e i limiti della mappa. Comodo quando exporting the map canvas ad esempio in un formato immagine o PDF, ed evitare che le annotazioni siano sui limiti della «carta».
* La **Precisione coordinate**

4. Fai clic su **Applica** per verificare che appaia come previsto o **OK** se sei soddisfatto.

Etichetta Titolo

Etichetta Titolo ti permette di decorare la tua mappa con un **Titolo**.

Per aggiungere una decorazione Etichetta Titolo:

1. Seleziona l'opzione del menu **Visualizza ➤ Decorazioni ➤ Etichetta Titolo**… per aprire la finestra di dialogo.

2. Assicurati che **Abilita Etichetta Titolo** sia selezionato

3. Inserisci il testo del titolo che vuoi mettere sulla mappa. Puoi renderlo dinamico usando il pulsante **Inserisci o Modifica un Espressione**…

4. Scegli il **Carattere** per l'etichetta usando font selector widget con accesso completo alle opzioni text formatting di QGIS. Imposta quindi facilmente il colore e l'opacità del carattere facendo clic sulla freccia nera a destra della casella combinata del carattere.

5. Seleziona il **color** da applicare al **Colore Sfondo della Barra** del titolo.

6. Scegli la **Posizione** dell'etichetta nella mappa: le opzioni sono **In Alto a Sinistra**, **In Alto al Centro** (predefinito), **In Alto a Destra**, **In Basso a Sinistra**, **In Basso al Centro**, e **In Basso a Destra**

7. Puoi affinar la posizione dell'oggetto impostando un margine orizzontale e/o verticale dal bordo Margine dal bordo. Questi valori possono essere immessi come distanza in **Millimetri** o **Pixels** o impostati come **Percentuale** della larghezza o altezza dell’area di stampa.

8. Fai clic su **Applica** per verificare che appaia come previsto o **OK** se sei soddisfatto.

11.4. **Lavorare sulla mappa**
Etichetta Copyright

Etichetta Copyright può essere utilizzata per decorare la tua mappa con una etichetta Copyright.

Per aggiungere questa decorazione:

1. Seleziona l'opzione del menu Visualizza ► Decorazioni ► Etichetta Copyright… per aprire la finestra di dialogo.

Fig. 11.9: La finestra di dialogo Decorazione Copyright

2. Assicurati che Abilita Etichetta Copyright sia selezionata.

3. Inserisci il testo del copyright che vuoi mettere sulla mappa. Puoi renderlo dinamico usando il pulsante Inserisci o Modifica un'Espressione…

4. Scegli il Carattere per l'etichetta usando font selector widget con accesso completo alle opzioni text formatting di QGIS. Imposta quindi facilmente il colore e l'opacità del carattere facendo clic sulla freccia nera a destra della casella combinata del carattere.

5. Scegli la Posizione dell'etichetta nella mappa: le opzioni sono In Alto a Sinistra, In Alto al Centro, In Alto a Destra, In Basso a Sinistra, In Basso al Centro e In Basso a Destra (predefinito per la decorazione Copyright).

6. Puoi affinare la posizione dell'oggetto impostando un margine orizzontale e/o verticale dal bordo Margine dal bordo. Questi valori possono essere immessi come distanza in Millimetri o Pixels o impostati come Percentuale della larghezza o altezza dell'area di stampa.

7. Fai clic su Applica per verificare che appaia come previsto o OK se sei soddisfatto.
Decorazione Immagine

Immagine ti permette di aggiungere un’immagine (logo, legenda, ...) sulla mappa.

Per aggiungere una immagine:

![Fig. 11.10: La finestra di dialogo Decorazione Immagine](image)

2. Assicurati che *Abilita Immagine* sia selezionato
3. Seleziona un’immagine bitmap (ad esempio png o jpg) o SVG usando il pulsante *Sfoglia* ...
4. Se hai scelto un SVG abilitato ai parametri, allora puoi anche impostare un colore di *Riempimento* o un *Tratto* (contorno). Per le immagini bitmap, le impostazioni di colore sono disabilitate.
5. Imposta una *Dimensione* dell’immagine in mm. La larghezza scelta per l’immagine viene usata per ridimensionarla alla *Dimensione* specificata.
6. Scegli dove vuoi posizionare l’immagine sulla mappa con la casella combinata *Posizionamento*. La posizione predefinita è *In Alto a Sinistra*.
7. Imposta i valori di *Orizzontale* e *Verticale* dal Margine dal Bordo (della mappa). Questi valori possono essere impostati in *Millimetri*, *Pixel* o come *Percentuale* della larghezza o altezza della mappa.
8. Fai clic su *Applica* per verificare che appaia come previsto o *OK* se sei soddisfatto.

Freccia Nord

Freccia Nord ti permette di aggiungere una freccia a nord sulla mappa.

Per aggiungere una freccia nord:

11.4. Lavorare sulla mappa
2. Assicurati che Abilita Freccia Nord sia spuntata.
3. Cambiare opzionalmente il colore e la dimensione, o scegliere un SVG personalizzato.
4. Opzionalmente cambia l’angolo o scegli Automatico per permettere a QGIS di determinare la direzione.
5. Facoltativamente scegli il posizionamento dalla casella combinata Posizione.
6. Facoltativamente perfeziona il posizionamento della freccia impostando un Margine da bordo mappa orizzontale e/o verticale. Questi valori possono essere in Millimetri o Pixel o Percentuale della larghezza o dell’altezza della mappa.
7. Fai clic su Applica per verificare che appaia come previsto o OK se sei soddisfatto.

Barra di Scala

Barra di scala aggiunge una semplice barra di scala alla mappa. Puoi controllare lo stile e il posizionamento, così come l'etichettatura della barra.

QGIS supporta solamente la visualizzazione della scala nella stessa unità di misura della mappa. Così se l’unità nel SR del tuo progetto è il metro, non potrai creare una barra di scala in piedi. Allo stesso modo, se usi i gradi decimali, non potrai creare una barra di scala che mostri le distanze in metri.

Per aggiungere una barra di scala:

1. Seleziona l'opzione del menu Visualizza ► Decorazioni ► Barra di Scala... per aprire la finestra di dialogo.
2. Assicurati che Abilita barra di scala sia selezionata.

5. Seleziona il carattere per la barra della scala dalla casella a scelta multipla Font of bar.

7. Facoltativamente spunta Arrotonda automaticamente il numero durante il ridimensionamento per visualizzare valori di facile lettura.

8. Scegli la posizione dell’etichetta dal menu a tendina Posizionamento.

9. Puoi affinare il posizionamento dell’oggetto impostando un Margine dal bordo orizzontale e/o verticale. Questi valori possono essere in Millimetri o Pixel oppure impostati come Percentuale della larghezza o altezza della mappa.

10. Fai clic su Applica per verificare che appaia come previsto o OK se sei soddisfatto.

Estensione del Layout

Estensione del Layout... aggiunge le estensioni di map item(s) nei layout di stampa. Quando è abilitato, le estensioni di tutti gli elementi della mappa all’interno di tutti i layout di stampa sono mostrate utilizzando un bordo leggermente tratteggiato etichettato con il nome del layout di stampa e dell’elemento della mappa. Puoi controllare lo stile e l’etichettatura delle estensioni del layout visualizzato. Questa decorazione è utile quando si sta modificando il posizionamento degli elementi della mappa, come le etichette, e si ha bisogno di conoscere l’effettiva regione visibile dei layout di stampa.
Fig. 11.13: Esempio estensioni layout visualizzati in un progetto QGIS con due layout di stampa. Il layout di stampa denominato “Sights” contiene due oggetti nella mappa, mentre l’altro layout di stampa contiene un oggetto nella mappa.

Per aggiunge l’estensione(i) del Layout:

![Layout Extents Properties](image)

Fig. 11.14: Finestra di dialogo estensione Layout

2. Assicurati che Mostra Estensione Layout sia selezionato.
3. Cambia opzionalmente il simbolo e l’etichettatura delle estensioni.
4. Fai clic su *Applica* per verificare che appaia come previsto o *OK* se sei soddisfatto.

Suggerimento: Impostazioni Decorazioni

Quando salvi un file di progetto QGIS, tutte le modifiche apportate a Reticolo, Freccia Nord, Barra di scala, Copyright ed Estensioni di layout verranno salvate nel progetto e ripristinate la prossima volta che carichi il progetto.

11.4.5 Note testuali

Le annotazioni sono informazioni aggiunte all’area di disegno della mappa e mostrate all’interno di un fumetto. Queste informazioni possono essere di diversi tipi e le annotazioni vengono aggiunte utilizzando gli strumenti corrispondenti nella barra degli strumenti *Barra degli strumenti relativa agliAttributi*:

- **Nota Testuale** per testo formattato personalizzato
- **Nota HTML** per posizionare il contenuto di un file *html*
- **Nota SVG** per aggiungere un simbolo *SVG*.
- **Nota con Modulo** utile per visualizzare gli attributi di un layer vettoriale in un file personalizzato *ui* (vedi custom attribute forms. Questo è simile alle custom attribute forms, ma visualizzato in un articolo di annotazione. Vedi anche questo video https://www.youtube.com/watch?v=0pDBuSbQ02o&feature=youtu.be&t=2m25s di Tim Sutton per maggiori informazioni.

![Fig. 11.15: Modulo personalizzato annotazione Qt Designer](image)

Per aggiungere un’annotazione, seleziona lo strumento corrispondente e fai clic sull’area di disegno della mappa. Viene aggiunto un fumetto vuoto. Fai doppio clic su di esso e si apre una finestra di dialogo con varie opzioni. Questa finestra di dialogo è quasi la stessa per tutti i tipi di annotazione:

- Nella parte superiore, un selettore di file da riempire con il percorso di un *html*, *svg* o *ui* a seconda del tipo di annotazione. Per l’annotazione di testo, puoi inserire il tuo messaggio in una casella di testo e impostarne la visualizzazione con i normali strumenti per i font.
• **Marcatore sulla mappa**: quando non spuntato, il posizionamento del fumetto si basa su una posizione sullo schermo (invece che sulla mappa), il che significa che viene sempre mostrato indipendentemente dall’estensione della visualizzazione mappa.

• **Layer collegato**: associa l’annotazione ad un layer della mappa, rendendola visibile solo quando quel layer è visibile.

• **Simbolo della mappa**: usando simboli QGIS, imposta il simbolo da visualizzare nella posizione di ancoraggio del fumetto (mostrato solo quando viene scelto Marcatore sulla mappa).

• **Stile cornice**: imposta il colore di sfondo della cornice, la trasparenza, il colore del tratto o la larghezza del fuetto utilizzando i simboli QGIS.

• **Margini Contenuti**: imposta i margini interni della cornice dell’annotazione.

Le annotazioni possono essere selezionate quando è abilitato uno strumento di annotazione. Possono poi essere spostate in base alla posizione della mappa (trascinando il marcatore della mappa) o spostando solo il fumetto. Lo strumento **Move Annotation** permette anche di spostare il fumetto sulla mappa.

Per eliminare un’annotazione, selezionala e premi il pulsante Del o Backspace, oppure fai doppio clic su di essa e premi il pulsante Elimina nella finestra di dialogo delle proprietà.
Nota: Se premi Ctrl+T mentre è attivo lo strumento *Annotazione* (sposta annotazione, annotazione del testo, annotazione del modulo), gli stati di visibilità degli oggetti sono invertiti.

Suggerimento: Layout mappa con annotazioni

Puoi stampare o esportare le annotazioni con la tua mappa in vari formati utilizzando:

- strumenti per l'esportazione delle rappresentazioni cartografiche disponibili nel menu *Project*
- *stampa il layout*, nel quale caso devi selezionare *Disegna gli oggetti della mappa* nelle corrispondenti proprietà degli oggetti della mappa.

11.4.6 Misurazioni

Informazioni generali

QGIS effettua misure delle geometrie vettoriali in quattro modi:

- tramite gli strumenti di misura interattiva
- tramite formule generate con il *Calcolatore di campi*
- misure generate con lo strumento *Informazione Elementi*,
- e tramite funzioni di analisi vettoriale: *Vettore ➤ Strumenti di geometria ➤ Esporta/Aggiungi colonne geometriche* ...

La misurazione opera nei sistemi di coordinate proiettate piane (ad esempio UTM) e con coordinate geografiche. I primi tre metodi di misura si comportano nello stesso modo con riferimento ai settaggi globali di proiezione.

- A differenza della maggior parte degli altri GIS, la metrica di misura predefinita è ellissoidale, utilizzando l'ellissoide definito in *Progetto ➤ Proprietà... ➤ Generale*. Questo è vero sia quando per il progetto vengono definiti i sistemi di coordinate geografiche che i sistemi di coordinate proiettate.

- Se vuoi calcolare l'area proiettata/planimetrica o la distanza usando la matematica cartesiana, l'ellissoide di misura deve essere impostato su «None/Planimetric» (Progetto ➤ Proprietà... ➤ Generale). Tuttavia, con un SR geografico (cioè non proiettato) definito per i dati e il progetto, la misura dell'area e della distanza sarà ellissoidale.

Comunque, sia le misure ottenute tramite le formule generate con il Calcolatore di campi che le misure che derivano dalla funzione Informazioni elementi non trasformano i dati per il SR del progetto prima della misurazione. Se si vuole raggiungere questo obiettivo è necessario utilizzare lo strumento di analisi Vettoriale *Vettore ➤ Geometria strumenti ➤ Esporta/Aggiungi colonne geometriche*. Qui, la misura è di default planimetrica, tranne se si sceglierà di misurare con quella ellissoidale.

Misurare lunghezze, aree ed angoli in modo interattivo

Per iniziare le misurazioni fai clic sull'icona nella barra degli strumenti Attributo. La freccia rivolta verso il basso vicino all'icona ti aiuta a passare al pratico strumento per misurare lunghezza, area o angolo. L’unità predefinita utilizzata nella finestra di dialogo è quella impostata nel menu *Progetto ➤ Proprietà Progetto... ➤ Generale*.

Nota: Configurazione dello strumento di misura

Mentre stai misurando la lunghezza o l’area, fai clic sul pulsante *Configurazione* nella parte inferiore del widget che apre il menu *Impostazioni ➤ Opzioni ➤ Strumenti mappa* dove puoi scegliere il colore dell’elastico, la precisione delle misurazioni e il settaggio delle unità di misura. Puoi anche scegliere le unità di misura o degli angoli che preferisci.
ma tieni presente che tali valori vengono sostituiti nel progetto corrente dalle opzioni effettuate in Progetto ➤ Proprietà Progetto… ➤ Generale.

Tutti gli strumenti di misurazione utilizzano le impostazioni di aggancio dal modulo di digitalizzazione (vedi la sezione Impostare la Tolleranza di Aggancio e il raggio di ricerca degli elementi). Quindi, se vuoi misurare esattamente lungo una geometria lineare o una geometria poligonale devi prima definire la tolleranza di aggancio e poi selezionare il vettore. In questo modo, quando vengono usati gli strumenti di misura, ogni click del mouse (all’interno della tolleranza definita) si aggancerà a quel punto del layer.

Per impostazione predefinita, Misura Linea misura le distanze reali tra punti dati secondo un ellissoide definito. Lo strumento permette poi di cliccare sui punti della mappa. Ogni lunghezza di segmento, così come il totale, appare nella finestra di misura. Per interrompere la misurazione, cliccate sul tasto destro del mouse. Ora è possibile copiare tutte le vostre misure di linee in una volta sola negli appunti usando il pulsante Copia Tutto.

La sezione Informazioni nella finestra di dialogo spiega come vengono effettuati i calcoli in base alle impostazioni SR disponibili.

![Measure](image)

Fig. 11.17: Misurare Distanza

Misura angolo: Puoi anche misurare gli angoli. Il cursore diventa a forma di croce. Fai clic per disegnare il primo segmento dell’angolo che vuoi misurare, quindi sposta il cursore per disegnare l’angolo desiderato. La misura viene visualizzata in una finestra di dialogo a comparsa.

11.5 Interagire con gli elementi

11.5.1 Selezionare elementi

QGIS fornisce diversi strumenti per selezionare gli elementi sulla mappa. Gli strumenti di selezione sono disponibili nel menu Modifica ► Seleziona o nella Barra degli strumenti di selezione.

Nota: Gli strumenti di selezione funzionano con il layer correntemente attivo.

Selezionare manualmente nell’area della mappa

Per selezionare una o più geometrie con il mouse, puoi utilizzare uno dei seguenti strumenti:

- Seleziona Elementi con un rettangolo o con un singolo click
- Seleziona Elementi con un Poligono
- Seleziona Elementi a Mano Libera
- Seleziona Elementi con un Cerchio

Nota: Tranne lo strumento Seleziona Elementi con un Poligono, questi strumenti di selezione manuale ti permettono di selezionare un elemento(i) rappresentato in mappa con un solo click.
Nota: Usa lo strumento Seleziona Elementi con un Poligono per utilizzare una poligono esistente (da qualsiasi layer) per selezionare gli elementi sovrapposti nel layer attivo. Fai clic con il tasto destro del mouse sul poligono e scegilo dal menu contestuale che mostra un elenco di tutti i poligoni che contengono il punto cliccato. Tutte gli elementi sovrapposti del layer attivo vengono selezionati.

Suggerimento: Usa lo strumento Modifica ⊸ Seleziona ⊸ Riseleziona Elementi per rifare la tua ultima selezione. Molto utile quando hai faticosamente fatto una selezione, e poi clicchi accidentalmente da qualche altra parte e cancelli la tua selezione.

Mentre si utilizza lo strumento Seleziona geometria(e), tenendo premuto Shift o Ctrl si commuta la selezione della geometria (ad esempio, si aggiunge alla selezione corrente o si rimuove da essa).

Per gli altri strumenti, è possibile eseguire diversi comportamenti tenendo premuto:

- **Shift**: aggiungi elementi alla selezione corrente
- **Ctrl**: sottrae elementi dalla selezione corrente
- **Ctrl + Shift**: intersezione con la selezione corrente, ad esempio si mantengono solo le geometrie sovrapposte dalla selezione corrente
- **Alt**: seleziona le geometrie che sono totalmente all'interno della forma della selezione. Combinato con i tasti Shift o Ctrl, puoi aggiungere o sottrarre geometrie alla/dalla selezione corrente.

Selezionamento automatico

Gli altri strumenti di selezione, la maggior parte dei quali disponibili dalla Attribute table, eseguono una selezione basata sull’attributo di un elemento o sul suo stato di selezione (si noti che la tabella degli attributi e la mappa mostrano le stesse informazioni, quindi se si seleziona un elemento nella tabella degli attributi, sarà selezionato anche sulla mappa):

- Seleziona con espressione… consente di selezionare geometrie tramite una finestra di dialogo.
- Seleziona Elementi per Valore… o premi F 3
- Deseleziona Elementi da Tutti i Layer o premi Ctrl+Alt+A per deselezionare tutti gli elementi selezionati in tutti i layer
- Deseleziona Elementi da Layer Attivo Attuale o premi Ctrl+Shift+A
- Seleziona Tutti gli Elementi o premi Ctrl+A per selezionare tutti gli elementi del layer corrente.
- Inverto Sezione Elementi per invertire la selezione nel layer corrente.
- StalgoritmoSelectLocation Selezione per posizione per selezionare gli elementi in base alla loro relazione spaziale con altri elementi (nello stesso o in un altro layer - vedi Selezione per posizione)

Per esempio, se vuoi trovare le regioni che sono boroughs da regions.shp dei dati campione di QGIS, puoi:

1. Usa l'icona Seleziona Elementi con Espressione…
2. Espandi il gruppo :guilabel: Campi e valori
3. Fai doppio clic sul campo sul quale vuoi fare la ricerca («TYPE_2»)
4. Clicca su :guilabel: Tutti i Valori Unifici nel pannello che appare a destra
5. Dall’elenco, fai doppio clic su “Borough”. Nel campo dell’editor :guilabel: Espressione, scrivi la seguente query:
6. Fai clic su *Seleziona Elementi*

Dalla finestra di dialogo del generatore di espressioni, per effettuare una selezione che hai usato prima è anche possibile utilizzare *Cerca ➤ Recent (Selezione)*. La finestra di dialogo ricorda le ultime 20 espressioni utilizzate Vedi sezione *Espressioni* per ulteriori informazioni e qualche esempio.

Suggerimento: Salva la selezione in un nuovo file

Gli utenti possono salvare le geometrie selezionate in un **Nuovo layer temporaneo Scratch** o in un **Nuovo layer Vettoriale** utilizzando il menu *Modifica ➤ Copia geometrie e Modifica ➤ Incolla geometrie come* nel formato desiderato.

Seleziona Elementi per Valore

Questo strumento di selezione apre il modulo geometria del layer che consente all’utente di scegliere, per ciascun campo, quale valore cercare, se la ricerca deve essere sensibile al maiuscolo e al minuscolo e l’operatore da utilizzare. Lo strumento effettua anche l’autocompletamento, riempiendo automaticamente la casella di ricerca con i valori esistenti.

![Select Features by Value](image)

Fig. 11.20: Filtro/Selezionare elementi tramite finestra di dialogo

A fianco di ciascun campo c’è un menu a discesa con le opzioni degli operatori da utilizzare per la ricerca.
Per il confronto tra stringhe, è anche possibile utilizzare l’opzione Case sensitive.

Dopo aver impostato tutte le opzioni di ricerca, fai clic su Seleziona elementi per selezionare le geometrie corrispondenti. Le opzioni nel menu a discesa sono:

- **Seleziona elementi**
- **Aggiungi alla Selezione Corrente**
- **Rimuovi dalla Selezione Corrente**
- **Filtra la Selezione Attuale**

Puoi anche annullare tutte le opzioni di ricerca con il pulsante Ripristina modulo.

Una volta impostate le condizioni, puoi anche:

- **Zoom agli elementi** sulla mappa senza la necessità di una preselezione.
- **Lampeggia elementi**, evidenziando le geometrie corrispondenti. Questo è un modo pratico per identificare una geometria senza fare una selezione o utilizzare lo strumento Identifica. Si noti che il flash non cambia l’estensione della mappa e sarà visibile solo se la geometria si trova entro i limiti della visualizzazione corrente della mappa.

11.5.2 Informazione Elementi

Lo strumento Informazione elementi ti permette di interagire con la mappa e ottenere informazioni sulle caratteristiche delle geometrie in una finestra pop-up. Per avere informazione sulle geometrie usa:

- **Visualizza ▶ Informazioni elementi**
- **Ctrl+Shift+I (o X Cmd+Shift+I),**
- Informazioni elementi sulla barra degli Attributi
Usare lo strumento Informazioni elementi

QGIS offre diversi modi per avere informazioni sugli elementi con lo strumento "Informazioni elementi".

- **click sinistro** identifica gli elementi in base alla modalità di selezione *selection mode* e la impostazione *selection mask* nel pannello *Informazioni Risultati*.

- **clic destro** con *Informazione elementi* con impostato *selection mode* nel pannello *Informazioni Risultati* trova tutti gli elementi rilevati in tutti i layer visibili. Questo apre un menu contestuale, permettendo all’utente di scegliere più precisamente gli elementi da identificare o l’azione da eseguire su di essi.

- **clic destro** con *Seleziona Elementi con un Poligono* con *selection mode* nel pannello *Informazioni Risultati* identifica gli elementi che si sovrappongono al poligono esistente scelto, in accordo all’impostazione *selection mask* nel pannello *Informazioni Risultati*.

Suggerimento: Filtra i layer su cui effettuare una query con lo strumento Informazioni Elementi

Sotto *Capabilities dei Layer in Progetto ➔ Proprietà..... ➔ Sorgenti Dati*, deseleziona la colonna *Interrogabile* accanto a un layer per evitare che venga interrogato quando si usa lo strumento "Informazioni elementi" in una modalità diversa da *Layer in uso*. Questo è un modo pratico per restituire gli elementi dai soli layer che sono di tuo interesse.

Se fai click su uno o più elementi, la finestra di dialogo *Informazioni risultati* elenca le informazioni sugli elementi selezionati. La vista predefinita è una vista ad albero in cui il primo elemento è il nome del layer e i suoi figli sono le sue geometrie identificate. Ogni elemento è descritto dal nome di un campo insieme al suo valore. Questo campo è quello impostato in *Proprietà vettore -> Visualizzato come*. Quindi seguono tutte le altre informazioni sull’elemento.

Informazioni sugli elementi

La finestra di dialogo Informazioni risultati può essere personalizzata in modo da visualizzare determinati campi, ma in modo predefinito vengono mostrati le seguenti informazioni:

- **Il display name** dell’elemento;

- **Azioni**: le azioni possono essere aggiunte alle finestre delle identificazione dell’elemento. L’azione viene eseguita facendo clic sull’etichetta azione. Per impostazione predefinita, viene aggiunta una sola azione, vale a dire *Visualizza modulo elemento* per effettuare modifiche. Puoi definire più azioni nella finestra di dialogo delle proprietà del layer (vedi *Proprietà Azioni*).

- **Derivato**: questa informazione viene calcolata o derivata da altre informazioni. Include:
 - informazioni generali sulla geometria dell’elemento:
 - a seconda del tipo di geometria, le misure cartesiane di lunghezza, perimetro o area nelle unità SR del layer. Per i vettori lineari in 3D è disponibile la lunghezza cartesiana della linea.
 - a seconda del tipo di geometria e se nella finestra di dialogo delle proprietà del progetto è impostato un ellissoide per *Misure*, i valori ellissoidali di lunghezza, perimetro o area utilizzando le unità specificate.
 - il conteggi delle geometrie e il numero della geometria cliccata
 - il numero di vertici nell’elemento
 - informazioni sulle coordinate, utilizzando le impostazioni *Visualizzazione Coordinate* nelle proprietà del progetto:
 - coordinate X e Y del punto cliccato
 - il numero del vertice più vicino al punto cliccato
 - Valori delle coordinate X e Y del vertice più vicino (e Z/M se applicabile)
 - se fai clic su un tratto curvo, viene visualizzato anche il raggio di tale parte.
• **Attributi dei dati**: questo è l’elenco dei campi e dei valori degli attributi per la geometria su cui è stato fatto click.

• informazioni sull’”elemento figlio correlato se hai definito una *relation*:

 – il nome della relazione

 – la voce nel campo di riferimento, per esempio il nome dell’”elemento figlio correlato

 – **Azioni**: elenca le azioni definite nella finestra di dialogo delle proprietà del layer (vedi azioni_menu) e l’azione predefinita è **Visualizza Modulo Elemento**.

 – **Attributi elemento**: Questa è la lista dei campi degli attributi e dei valori dell’”elemento figlio correlato.

Nota: I collegamenti negli attributi della geometria sono selezionabili dal pannello *Informazioni Risultati* e si apriranno nel tuo browser Web predefinito.
La finestra di dialogo Informazioni risultati

Nella parte superiore della finestra, hai una serie di strumenti:

- Apri Modulo della geometria corrente
- Espandi albero
- Collapsa albero
Comportamento per definire se le informazioni sulle successiva geometria selezionata dovranno essere compresse o espanse.

Cancella risultati

Copia geometrie selezionate negli appunti

Stampa il risposto HTML selezionato

• scelta modalità da utilizzare per cercare le geometrie da identificare:
 - Seleziona Elementi con un rettangolo o con un singolo clic
 - Seleziona Elementi con un Poligono
 - Seleziona Elementi a Mano Libera
 - Seleziona Elementi con un Cerchio

Nota: Quando usi Seleziona Elementi con un Poligono, puoi fare clic con il tasto destro del mouse su qualsiasi poligono esistente e usarlo per identificare le geometrie sovrapposte in un altro layer.

Nella parte inferiore della finestra ci sono le caselle combinate Modalità e Vista. Modalità definisce da quali layer gli elementi dovrebbero essere identificati:

• Layer in uso: solo le geometrie del layer selezionato vengono identificate. Il layer può non essere visibile sulla mappa.

• Il primo attivo: per le sole geometrie del layer visibile in alto.

• Tutti i livelli: per tutte le geometrie dei layer visibili. I risultati vengono mostrati nel pannello.

• Selezionare layer: apre un menu contestuale dove l'utente seleziona il layer per il quale vuole identificare le geometrie, in modo simile a un clic con il tasto destro del mouse. Solo le geometrie scelte verranno visualizzate nel pannello dei risultati.

La Visualizzazione può essere impostata a Albero, Tabella o Grafica. Le visualizzazioni “Tabella” e “Grafica” possono essere impostate solo per i layer raster.

Lo strumento di identificazione consente di Apri automaticamente il modulo per risultati su singolo elemento, che si trova sotto Informazioni risultati. Se selezionato, ogni volta che un singolo elemento viene identificato, si apre un modulo che mostra i suoi attributi. Questo è un modo pratico per modificare rapidamente gli attributi di un elemento.

Puoi trovare altre opzioni nel menu contestuale dell'elemento identificato. Per esempio, dal menu contestuale puoi:

• Visualizzare il modulo dell'elemento

• Zoom all'elemento

• Copiare elementi: Copiare tutte le geometrie dell'elemento e gli attributi

• Attiva selezione geometria: aggiunge le geometrie identificate alla selezione

• Copiare un valore di un attributo: copiare solo il valore dell'attributo identificato

• Copia attributi geometria: copia gli attributi della geometria

• Cancellare risultati: verranno cancellati i risultati nella finestra

• Cancellare evidenziati: verranno cancellate le geometrie evidenziate sulla mappa

• Evidenziare tutto

• Evidenziare vettore

• Attivare un vettore: scegliere un vettore che deve essere attivato
• Proprietà del vettore: apri la finestra delle proprietà del vettore
• Espandi tutto
• Racchiudi tutto

11.6 Salvare e condividere le proprietà di un layer

11.6.1 Gestione stili personalizzati

Quando un layer vettoriale viene aggiunto alla mappa, QGIS utilizza per default un simbolo/colore casuale per visualizzare le sue caratteristiche. Tuttavia, è possibile impostare un simbolo predefinito in Progetto ▶ Proprietà progetto ▶ Stili predefiniti che verranno applicati a ogni nuovo layer aggiunto in base al tipo di geometria.

Nella maggior parte dei casi, preferiresti piuttosto avere uno stile personalizzato e più complesso da applicare automaticamente o manualmente (con meno sforzo) ai layer. Puoi raggiungere questo obiettivo usando il menu Stile in basso nella finestra di dialogo Proprietà Layer. Questo menu ti fornisce le opzioni per creare, caricare e gestire stili.

Uno stile memorizza le diverse informazioni nella finestra di dialogo delle proprietà del layer per la visualizzazione o l'interazione con le geometrie (include le impostazioni di simbologia, etichettatura, azione, diagramma …) per il layer di tipo vettoriale o i pixel (rappresentazione di banda o colore, trasparenza, piramidi, istogramma …) per i layer di tipo raster.

[Image: Fig. 11.22: Opzioni del menu a tendina dello stile layer per i vettori]

Per impostazione predefinita, lo stile applicato ad un layer caricato si chiama predefinito. Una volta che hai ottenuto il risultato ideale e appropriato per il tuo layer, puoi salvarlo cliccando sul menu a tendina menuselection: Stile e scegliendo:
• **Rinomina l’elemento corrente**: Lo stile attivo viene rinominato e aggiornato con le opzioni correnti

• **Aggiungi**: Viene creato un nuovo stile utilizzando le opzioni correnti. Per impostazione predefinita, verrà salvato nel file di progetto QGIS. Vedere in seguito come salvare lo stile in un altro file o in un database

• **Rimuovi l’elemento corrente**: elimina lo stile corrente indesiderato, nel caso tu avessi definito più di uno sytile per il layer.

Nella parte inferiore dell’elenco a discesa dello Stile, puoi vedere gli stili impostati per il layer con quello attivo selezionato.

Nota che ogni volta che convalidi la finestra di dialogo delle proprietà del layer, lo stile attivo viene aggiornato con le modifiche che hai apportato.

Puoi creare più stili per un layer, ma solo uno alla volta può essere attivo. Combinato con **Map Themes**, questo offre un modo rapido e potente per gestire progetti complessi senza che tu debba duplicare alcun layer nella legenda della mappa.

Nota: Dato che ogni volta che applichi modifiche alle proprietà del layer, le modifiche vengono memorizzate nello stile attivo, assicurati sempre di aver modificato lo stile giusto per evitare di alterare erroneamente uno stile utilizzato in un map theme.

Suggerimento: Gestire gli stili dal menu contestuale del layer

Fai clic destro sul layer nel pannello *Layer* per copiare, incollare, aggiungere o rinominare gli stili del layer.

11.6.2 Salvare gli stili in un File o in un Database

Anche se gli stili creati dalla casella combinata *Style* sono salvati di default all’interno del progetto e possono essere copiati e incollati da un layer all’altro nel progetto, è anche possibile salvarli fuori dal progetto in modo che possano essere caricati in un altro progetto.

Salvare come file di testo

Cliccando [Stile ► Salva stile](#), puoi salvare lo stile come:

- QGIS file di stile del layer (.*qml*)
- file SLD (.*sld*), formato disponibile solo per layer vettoriali.

Utilizzato su layer di formattazione basati su file (.*shp, .tab*), *Salva come predefinito* genera un *.qml* collegato al vettore (con lo stesso nome). I file SLD possono essere esportati da qualsiasi tipo di visualizzazione - singolo simbolo, suddiviso in categorie, graduato o basato su regole - ma quando si importa un SLD viene creato un singolo simbolo o una visualizzazione basata su regole. Ciò significa che gli stili classificati o graduati vengono convertiti in regole. Se vuoi conservare queste visualizzazioni, devi attenerti al formato QML. D’altra parte, può a volte essere molto utile avere questo modo semplice di convertire gli stili basati su regole.
Salvare in un database

Lo stile di un layer vettoriale può anche essere memorizzato in un database se l'origine dati del layer proviene da un database. I formati supportati sono PostGIS, GeoPackage, SpatiaLite, MSSQL e Oracle. Lo stile del layer viene salvato all'interno di una tabella (denominata `layer_styles`) del database. Fai click su `Salva stile ➤ Salva nel database`, quindi compila la finestra di dialogo per definire un nome di stile, aggiungi una descrizione, un file .ui se applicabile e verifica se lo stile deve essere lo stile predefinito.

Puoi salvare diversi stili per una singola tabella nel database. Tuttavia, ogni tabella può avere un solo stile predefinito. Gli stili predefiniti possono essere salvati nel database dei layer o in `qgis.db`, un database SQLite locale nella cartella attivo `user profile`.

![Salvare lo stile nella finestra di dialogo database](Fig.11.23: Salvare lo stile nella finestra di dialogo database)

Suggerimento: Condivisione di file di stile tra database

Puoi salvare il tuo stile in un database solo se il layer proviene da tale database. Non puoi combinare database (ad esempio layer in Oracle e stile in MSSQL). Usa invece un file di testo normale se vuoi che lo stile sia condivisso tra i database.

| Nota: Puoi riscontrare problemi per ripristinare la tabella Stili layer da un backup del database PostgreSQL. Vedi [Stili di default dei layer QGIS e backup del database](#) per risolvere il problema. |

Carica lo stile

Quando si carica un layer in QGIS, se esiste già uno stile predefinito per questo layer, QGIS carica il layer con questo stile. Inoltre `Stile ➤ Ripristina predefinito` cerca e carica quel file quando premuto, sostituendo lo stile corrente del layer.

Il `Stile ➤ Carica stile` ti aiuta ad applicare qualsiasi stile salvato ad un layer. Mentre lo stile di file di testo semplice (.sld o .qml) può essere applicato a qualsiasi layer indipendentemente dal suo formato, il caricamento degli stili memorizzati nel database è possibile solo se il layer proviene dallo stesso database o lo stile è memorizzato nel database locale di QGIS.

La finestra di dialogo `Load Style from Database` visualizza un elenco di stili correlati al layer trovato nel database e tutti gli altri stili salvati in esso, con il nome e la descrizione.

Suggerimento: Condividere rapidamente uno stile di layer all’interno del progetto

Puoi anche condividere gli stili dei layer all'interno di un progetto senza importare lo stile di un file o di un database: fai clic con il tasto destro del mouse sul layer nel `Pannello Layer` e, dalla casella combinata `guilabel: Stili`, copia lo stile.
di un layer e incollalo su un gruppo o una selezione di layer: lo stile viene applicato a tutti i layer che sono dello stesso tipo (vettoriale o raster) del layer originale e, nel caso di layer vettoriali, hanno lo stesso tipo di geometria (punto, linea o poligono).

11.6.3 File di definizione Layer

Le definizioni dei layer possono essere salvate come Layer Definition File (.qlr) usando Export ➤ Save As Layer Definition File... nel menù contestuale dei layer attivi. Un file di definizione dei layer (.qlr) include riferimenti alla fonte dati dei layer e ai loro stili. I file .qlr sono mostrati nel Pannello Browser e possono essere usati per aggiungere i layer (con lo stile salvato) al Pannello Layer. Puoi anche trascinare e rilasciare il file .qlr dal file manager di sistema nell’area della mappa.

11.7 Memorizzazione valori nelle Variabili

In QGIS, puoi utilizzare le variabili per memorizzare dati utili con valori ricorrenti (ad esempio il titolo del progetto o il nome completo dell’utente) che possono essere utilizzati nelle espressioni. Le variabili possono essere definite a livello globale dell’applicazione, a livello di progetto, a livello di layer, a livello di layout e a livello di oggetto del layout. Proprio come le regole CSS a cascata, le variabili possono essere sovrascritte, ad esempio una variabile a livello di progetto sovrascrive le variabili di livello globale di qualsiasi applicazione impostate con lo stesso nome. Puoi utilizzare queste variabili per creare stringhe di testo o altre espressioni personalizzate utilizzando il carattere @ prima del nome della variabile. Ad esempio, nel layout di stampa creando un’etichetta con questo contenuto:

```plaintext
This map was made using QGIS [% @qgis_version %]. The project file for this map is: [% @project_path %]
```

Visualizzerà l’etichetta in questo modo:

```plaintext
This map was made using QGIS 3.4.4-Madeira. The project file for this map is:
/gis/qgis-user-conference-2019.qgs
```

Oltre alle preset read-only variables, puoi definire le tue variabili personalizzate per ognuno dei layer menzionati sopra. Puoi gestire:

- **variabili globali** dal menu Impostazioni ➤ Opzioni
- **variabili di progetto** dalla finestra di dialogo Proprietà del progetto (vedi Proprietà progetto);
- **variabili di layer vettoriali** dalla finestra di dialogo Proprietà vettore (vedi La finestra di dialogo Proprietà dei vettori);
- **variabili del compositore** dal pannello Compositore nel compositore di stampa (vedi Il Pannello Layout);
- **e variabili di oggetti del compositore** dal pannello Proprietà oggetto nel compositore di stampa (vedi Opzioni comuni degli Oggetti del Layout).

Per differenziarsi dalle variabili modificabili, i nomi e i valori delle variabili in sola lettura sono enfatizzati in corsivo. Peraltro le variabili di livello più elevato sovrascritte da quelle di livello inferiore vengono cancellate.
Nota: Puoi leggere di più sulle variabili e trovare alcuni esempi in Nyall Dawson’s Exploring variables in QGIS 2.12, part 1, part 2 e part 3 blog posts.

11.8 Autenticazione

QGIS ha la possibilità di archiviare/recuperare le credenziali di autenticazione in modo sicuro. Gli utenti possono salvare in modo sicuro le credenziali nelle configurazioni di autenticazione, che sono memorizzate in un database portatile, possono essere applicate a connessioni di server o database e referenziate in modo sicuro con i propri token ID nei file di progetto o delle impostazioni. Per maggiori informazioni vedi Sistema di Autenticazione.

Una password master deve essere impostata durante l'inizializzazione del sistema di autenticazione e del relativo database portatile.
11.9 Widget comuni

In QGIS, ci sono alcune opzioni con cui dovrai spesso lavorare. Per comodità, QGIS ti fornisce widget speciali che sono di seguito presentati.

11.9.1 Scelta colore

La finestra di dialogo colore

La finestra di dialogo Colori apparirà ogni volta che premi l'icona per scegliere un colore. Le caratteristiche di questa finestra di dialogo dipendono dallo stato della casella di controllo Usa le finestre di dialogo native della selezione del colore nel menu Impostazioni ➤ Opzioni ➤ Generale. Se selezionato, la finestra di dialogo del colore utilizzata è quella del sistema operativo in uso. In caso contrario, QGIS usa il selettore di colori personalizzato.

La finestra di dialogo del selettore del colore personalizzato ha quattro diverse schede che consentono di selezionare i colori tramite Scale di colori, Ruota di colori, Campioni di colore, Selettore del colore. Con le prime due schede, è possibile sfogliare tutte le possibili combinazioni di colori e applicare la propria scelta all’elemento.

![Fig. 11.25: Scheda selezione scala dei colori](image)

Nella scheda Campioni di colore, puoi scegliere da un elenco di tavolozze di colori (vedi Impostazioni colori per i dettagli). Tutta la tavolozza Colori recenti può essere modificata con il pulsante Aggiungi colore corrente e Rimuovi il colore selezionato nella parte inferiore della cornice.

Il pulsante ... accanto alla casella combinata scelta colori offre anche diverse opzioni per:

- copia, incolla, importa o esporta colori
- crea, importa o rimuovi le tavolozze di colori
- aggiungere la tavolozza personalizzata al widget del selettore di colore con la voce Mostra Bottoni Colore (vedere Fig. 11.27)
Un'altra opzione è usare il Selettore del colore, che ti consente di campionare un colore sotto il puntatore del mouse in qualsiasi parte dell'interfaccia utente di QGIS o anche da un'altra applicazione: premi la barra spaziatrice mentre la scheda è attiva, sposta il mouse sul colore desiderato e clicca su di esso o premi nuovamente la barra spaziatrice. Puoi anche fare clic sul pulsante Colore campione per attivare il selettore del colore.

Qualsiasi metodo usi, il colore scelto viene sempre definito tramite i cursori dei colori per HSV (Tonalità, Saturazione, Valore) e RGB (Rosso, Verde, Blu). Il colore è anche identificabile tramite notazione HTML.

La modifica di un colore è semplice basta fare clic sulla Ruota colori o sulla Scala di colori o su uno qualsiasi dei cursori dei parametri di colore. Puoi regolare tali parametri con la casella di selezione a lato o scorrendo la rotella del mouse sopra il cursore corrispondente. Puoi inoltre impostare la notazione HTML colore. Infine, c'è un cursore Opacità per impostare il livello di trasparenza.

La finestra di dialogo fornisce anche un confronto visivo tra il colore Vecchio (finora applicato) e quello Attuale (selezionato), se va bene bisogna confermare la scelta. Usando il drag-and-drop o premendo il pulsante Aggiungi colore al campione, ognuno di questi colori può essere salvato in uno slot per un facile accesso.

Suggerimento: Modifica veloce del colore

Trascinare e rilasciare un widget di selezione del colore su un altro widget per applicare il colore.
Il menu di scelta rapida del colore

Fai clic sulla freccia a discesa a destra del pulsante per visualizzare un widget per una rapida selezione del colore. Questa scorciatoia fornisce l'accesso a:

- una ruota dei colori da cui prendere un colore
- un cursore alfa per cambiare l'opacità del colore
- le tavolozze di colori precedentemente impostate su Mostra nei Pulsanti Colore.
- copia il colore corrente e incolla in un altro widget
- scegli un colore da qualsiasi punto dello schermo del computer
- scegli un colore dalla finestra di dialogo di selezione colore
- trascinare il colore da un widget all'altro per una rapida modifica

Nota: Quando il widget colore è impostato su un *project color* attraverso le proprietà di sovrascrittura definita dai dati, le funzioni di cui sopra per cambiare il colore non sono disponibili. Dovresti prima attivare sulla definizione *Rimuovi colore o Annulla*.

![Menu di scelta veloce del colore](image)

Fig. 11.27: Menu di scelta veloce del colore
Il menu di scelta rapida scala di colori

Le scale di colori sono un modo pratico per applicare una serie di colori ad una o più geometrie. La loro creazione è descritta nella sezione **Impostazione di una Scala di Colori**. Per quanto riguarda i colori, premendo il pulsante **scala di colori** si apre la corrispondente finestra di dialogo del tipo di scala di colore che ti permette di modificarne le proprietà.

![Color Browser Ramp](image)

Fig. 11.28: Personalizzare una scala di colori

Il menu a discesa a destra del pulsante consente di accedere rapidamente a una serie più ampia di scale di colori e opzioni:

- **Inverti scala di colori**
- un'anteprima del **gradiente o catalogo**: **cpt-city** scale di colori segnalate come **Preferite** nel dialogo **Gestore Stili**
- **Tutte le scale di colori** per accedere al database di scale di colori
- **Crea Nuova Scala di Colori**… di qualsiasi tipo supportato che potrebbe essere usata nel widget corrente (notare che questa scala di colori non sarà disponibile altrove a meno che non venga salvata nella libreria)
- **Modifica Scala di Colori**… lo stesso che fare clic sul pulsante scala di colori
- **Salva Scala di Colori**…, per salvare la scala di colori corrente con le sue personalizzazioni nella libreria degli stili

![Invert Color Ramp](image)

Fig. 11.29: Widget di selezione rapida della scala di colori
11.9.2 Widget Simbolo

Il widget selettore Symbol è una comoda scorciatoia quando vuoi impostare le proprietà del simbolo di un elemento. Facendo clic sulla freccia a discesa, vengono mostrate le seguenti opzioni di simbolo, insieme alle funzionalità del widget a discesa color:

- Modifica Simbolo…: è come premere il widget di selezione dei simboli. Apri una finestra di dialogo per impostare i symbol parameters.
- Copia Simbolo dall’oggetto corrente
- Incolla Simbolo all’oggetto corrente, velocizzando la configurazione

11.9.3 Selezionecarattere

Il widget selezione Carattere è una comoda scorciatoia quando vuoi impostare le proprietà del carattere per le informazioni testuali (etichette degli elementi, etichette delle decorazioni, testo della legenda della mappa, …). Facendo clic sulla freccia a discesa si possono visualizzare alcune o tutte le seguenti opzioni:

![Menu a tendina selezione carattere](image)

- Dimensione carattere nell’unità associata
- Caratteri recenti ➤ menu con il carattere attivo selezionato (in alto)
- Configura Formato…: uguale alla pressione del widget del selettore carattere. Apri una finestra di dialogo per impostare i parametri del formato del testo. A seconda del contesto, può essere la finestra di dialogo predefinita del sistema operativo Formato testo o la finestra di dialogo personalizzata di QGIS con opzioni di formattazione avanzate (opacità, orientamento, buffer, sfondo, ombra, …) come descritto nella sezione Formattare etichetta testuale.
- Copia Formato del testo
- Paste Format to the text, speeding configuration
- il color widget pèr l’impostazione rapida del colore
11.9.4 Selezione unità

Le proprietà di dimensione degli elementi (etichette, simboli, elementi di layout, …) in QGIS non sono necessariamente legate alle unità del progetto o alle unità di un particolare layer. Per un grande insieme di proprietà, il menu a tendina del selettore `guilabel: Unità` ti permette di modificare i loro valori in base alla rappresentazione che desideri (in base alla risoluzione dello schermo, alle dimensioni della carta o al terreno). Le unità disponibili sono:

- **Millimetri**
- **Punti**
- **Pixel**
- **Pollici**

Scala i metri: Questo permette di impostare sempre la dimensione in metri, indipendentemente da quali siano le unità di misura della mappa sottostante (ad esempio possono essere in pollici, piedi, gradi geografici, …). La dimensione in metri è calcolata sulla base dell'impostazione corrente dell'ellissoide del progetto e di una proiezione delle distanze in metri al centro dell'estensione corrente della mappa.

e Unità di mappa: La dimensione viene modificata secondo la scala della visualizzazione della mappa. Poiché questo può portare a valori troppo grandi o troppo piccoli, usa il pulsante `%` accanto alla voce per limitare la dimensione a un intervallo di valori basato su:

- La **Scala minima** e la **Scala massima**: Il valore viene scalato in base alla scala della visualizzazione della mappa fino a raggiungere uno di questi limiti di scala. Fuori dall'intervallo di scala, viene mantenuto il valore al limite di scala più vicino.

- e/o la **Dimensione minima** e la **Dimensione massima** in **mm**: Il valore viene modificato in base alla scala della visualizzazione della mappa finché non raggiunge uno di questi limiti; poi la dimensione limite viene mantenuta.

![Fig. 11.31: Finestra di dialogo per la regolazione dell'intervallo di scala](image-url)
11.9.5 Formattazione numeri

La formattazione dei numeri permette la formattazione di valori numerici per la visualizzazione, usando una varietà di tecniche di formattazione diverse (per esempio notazione scientifica, valori di valuta, valori percentuali, ecc.) Un uso di questo è quello di impostare il testo in una barra di scala del layout o in una preffissa tabella.

Sono supportate diverse categorie di formati. Per la maggior parte di esse, puoi impostare parte o tutte le seguenti opzioni numeriche:

- **Mostra separatore di migliaia**
- **Mostra il segno più**
- **Mostra gli zeri iniziali**

Ma possono anche avere le loro impostazioni personalizzate. Le categorie previste sono:

- **Generali**, la categoria predefinita: nessuna impostazione e visualizza i valori come impostati nelle proprietà del widget padre o usando le impostazioni globali.

- **Numero**
 - Il valore può essere :guilabel: *Arrotondato a* un numero autodefinito di **Posizioni decimali** o le loro **Cifre significative**.
 - personalizzare il **Separatore di migliaia** e **Separatore decimale**

- **Orientamento** per una rappresentazione testuale di una direzione/orientamento usando:
 - **Formato**: possibili intervalli di valori sono da 0 a 180°, con suffisso E/W, da -180 a +180° e da 0 a 360°
 - numero di **Posizioni decimali**

- **Currency** for a text representation of a currency value.
 - **Prefisso**
 - **Suffisso**
 - numero di **Posizioni decimali**

- **Frazione** per una popolare rappresentazione frazionario di un valore decimale (per esempio 1/2 invece di 0,5)
 - **Usa unicode super/subscript** per la visualizzazione. Per esempio 1/2 invece di 1/2
 - **Usa caratteri Unicode dedicati**
 - personalizzare il **Separatore di migliaia**.

- **Percentuale** - aggiunge % ai valori, con impostazione di:
 - numero di **Posizioni decimali**
 - **Scaling** per indicare se i valori presenti rappresentano già delle percentuali (allora saranno mantenuti così come sono) o delle frazioni (allora saranno convertiti)

- **Notazione scientifica** nella forma 2.56e+03. Il numero di **Posizioni decimali** può essere impostato.

Un’anteprima dal vivo delle impostazioni viene visualizzata sotto la sezione **Esempio**.
11.9.6 Metodi di fusione

QGIS offre molte opzioni per realizzare effetti speciali di visualizzazione con strumenti che precedentemente hai avuto a disposizione solo nei programmi specializzati in elaborazioni grafiche. I metodi di fusione possono essere applicati ai layer e agli elementi, e anche agli elementi di un Layout di stampa:

- **Normale**: Questa è la modalità di fusione predefinita che usa il canale alpha del pixel più in alto fondendolo con quello sotto. I colori non sono quindi mescolati.

- **S chiarisci**: Questo seleziona il valore massimo di ogni componente dal basso verso l’alto. Fai attenzione che il risultato può apparire frastagliato e duro.

- **S colorisci**: I pixel chiari provenienti dal vettore sorgente vengono dipinti sopra la destinazione, mentre i pixel più scuri no. Questa modalità è molto utile per mescolare le trame di un vettore con un altro (per esempio puoi usare una ombreggiatura come trama su un altro layer).

- **Scherma**: Scherma schiarirà e saturerà i pixel sottostanti in base a quanto sono chiari i pixel di sopra. In questo modo, i pixel più chiari in cima aumenteranno la saturazione e schiariranno i pixel sottostanti. Otterrai il miglior risultato se i pixel in cima non sono troppo chiari. Altrimenti l’effetto sarà troppo estremo.

- **Addizione**: Aggiunge i valori dei pixel di un elemento all’altro. In caso di valori superiori al valore massimo (nel caso di RGB), viene visualizzato il bianco. Questa modalità è adatta per evidenziare i particolari.

- **Scurisci**: Mantiene i valori più bassi di ogni componente dei pixel di primo piano e di sfondo. Come per la modalità chiarisci, il risultato tende a essere irregolare e non gradevole.

- **Moltiplica**: I valori dei pixel dell’elemento superiore vengono moltiplicati con i valori corrispondenti dell’elemento sottostante. Il risultato tende quindi a essere piuttosto scuro.

- **Brucia**: I colori più scuri nell’elemento superiore causano l’oscuramento degli elementi sottostanti. Questa modalità è utile per aggiustare e colorare i layer sottostanti.

- **Sovrapponi**: Combina le modalità moltiplica e colorisci. Le parti chiare diventano più chiare e le parti scure diventano più scure.

- **Luce diffusa**: Molto simile alla modalità sovrapponi, ma invece di combinare le modalità moltiplica/colorisci, combina brucia/scherma. Questo dovrebbe emulare una luce soffusa sull’immagine.

- **Luce intensa**: Questa modalità è simile alla modalità sovrapponi. Proietta una luce molto intensa su tutta l’immagine.

- **Differenza**: Sottrae il pixel superiore dal pixel sul fondo, oppure al contrario, ma in modo da ottenere sempre un valore positivo. La fusione con il nero non produce alcun cambiamento, poiché la differenza con tutti i colori è zero.

- **Sottrai**: Sottrae i valori dei pixel di un elemento dall’altro. In caso di valori negativi, viene visualizzato il nero.

11.9.7 Impostazione Sovrascrittura definita dai dati

Accanto a molte opzioni nella finestra di dialogo delle Proprietà vettore o nelle impostazioni del Compositore di stampa, puoi trovare un’icona [Sovrascrittura definita dai dati](#). Questo strumento ti consente di impostare un valore dinamico per il parametro interessato grazie a espressioni basate sugli attributi del vettore o sulle impostazioni dell’elemento, funzioni e variabili preimpostate o personalizzate. Se abilitato, il valore restituito da questo widget viene applicato al parametro indipendentemente dal suo valore normale (casella di controllo, casella di testo, cursore ...).
Widget Sovrascrittura definita dai dati

Facendo clic sull'icona Sovrascrittura definita dai dati vengono visualizzate le seguenti voci:

- **Descrizione**... che indica se l'opzione è abilitata, quale input è previsto, il tipo di input valido e la definizione corrente. Passando con il mouse sul widget compare anche questa informazione.
- **Memorizzare i dati nel progetto**: un pulsante che permette di memorizzare la proprietà utilizzando il meccanismo *Proprietà Dati Ausiliari*.
- **Tipo di campo**: una voce da selezionare tra i campi del layer che corrispondono al tipo di input valido.
- **Colore**: quando il widget è collegato a una proprietà di colore, questo menu dà accesso ai colori definiti come parte dello schema corrente *project's colors*.
- **::guilabel: Variabile**: un menu per accedere alle variables disponibili definite dall'utente
- **Modifica...** pulsante per creare o modificare l'espressione da applicare, utilizzando la finestra di dialogo *Expression String Builder*. Per aiutarti a compilare correttamente l'espressione, nella finestra di dialogo viene fornito un promemoria del formato di output previsto.
- pulsanti Incolla e Copia.
- **Pulisci** per rimuovere l'impostazione.
- **Per le proprietà numeriche e cromatiche, Assistente...** per ridefinire come i dati delle caratteristiche sono applicati alla proprietà (maggiori dettagli below)

Suggerimento: Usare click destro del mouse per (dis)attivare la modalità di sovrascrittura dati

Quando l'opzione di sovrascrittura definita dai dati è impostata correttamente, l'icona è gialla o . Se è errata, l'icona è rossa o .

Puoi abilitare o disabilitare una scelta del pulsante Sovrascrittura definita dai dati semplicemente facendo clic sul widget con il pulsante destro del mouse.

Usare l'interfaccia assistente definizione dati

Quando il pulsante Sovrascrittura definita dai dati è associato ad un parametro numerico o colore, ha un'opzione *Assistente...* che permette di cambiare come i dati vengono applicati al parametro per ogni caratteristica. L'assistente ti permette di:

- **Definire i dati di Input**, ad esempio:
 - l'attributo da rappresentare, utilizzando la lista Campo o la funzione Imposta espressione per la colonna (vedi *Expressioni*)
 - l'intervallo di valori da rappresentare: puoi inserire manualmente i valori o usare il pulsante Ricava la gamma di valori dal layer per riempire automaticamente questi campi con i valori minimi e massimi restituiti dall'attributo scelto o dall'espressione applicata ai tuoi dati

- **Applicare la curva di trasformazione**: per impostazione predefinita, i valori di uscita (vedi di seguito per l'impostazione) vengono applicati agli oggetti in input seguendo una scala lineare. Puoi sovrascrivere questa logica: abilita l'opzione di trasformazione, fai clic sul grafico per aggiungere uno o più punti di interruzioni e trascina il punto o i punti per applicare una distribuzione personalizzata.

- **Definire i valori di Output**: le opzioni variano a seconda del parametro da definire. Puoi impostare globalmente:
 - i valori minimi e massimi da applicare alla proprietà selezionata (nel caso di un'impostazione del colore, dovrai fornire una scala di colori :ref:`color ramp`)
– il * Metodo scala* di rappresentazione che può essere Flannery, Esponente, Superficie o Raggio
– l’* Esponente* da utilizzare per la scalatura dei dati
– il valore risultante o *color* per rappresentare oggetti con valori NULL

Quando compatibile con la proprietà, sul lato destro della finestra di dialogo viene visualizzata un’anteprima di aggiornamento in tempo reale per aiutare l’utente a controllare la scala dei valori.

![Fig. 11.32: L’assistente dimensione definita dai dati](image)

I valori presentati per le varie dimensioni di cui sopra nell’assistente imposteranno la dimensione “Sovrascrittura definita dai dati” con:

```python
coalesce(scale_exp(Importance, 1, 20, 2, 10, 0.57), 1)
```
La Libreria degli Stili

12.1 Il Gestore di Stile

12.1.1 La finestra di dialogo Gestore di Stile

Il Gestore di Stile è il luogo dove puoi gestire e creare oggetti di stile generali. Questi sono simboli, scale di colore, formati di testo o impostazioni di etichette che possono essere usati per simbolizzare elementi, layer o layout di stampa. Sono memorizzati nel database symbology-style.db sotto il profilo attivo user profile e condivisi con tutti i file di progetto aperti con quel profilo. Gli oggetti di stile possono anche essere condivisi con altri grazie alle funzioni di esportazione/importazione della finestra di dialogo Gestore di Stile.

Puoi aprire questa finestra di dialogo non modale:

- dal menu Impostazioni ➤ Gestore di Stile…
- con il pulsante Gestore di Stile dalla barra degli strumenti del Progetto
- o con il pulsante Gestore di Stile da un menu del vettore (configuring a symbol o formatting a text).
Organizzare oggetti di stile

La finestra di dialogo *Gestore di Stile* mostra nel suo centro una cornice con gli oggetti in anteprima organizzati in schede:

- **Tutto** per una collezione completa di simboli di punti, lineari e di superficie e impostazioni di etichette, così come scala di colori predefinite e formati di testo;
- **Simbolo** solo per i simboli di punti;
- **Linea** solo per i simboli lineari;
- **Riempimento** solo per i simboli di superficie;
- **Scala Colore**;
- **Formato Testo** per gestire *text formats* che memorizza il carattere, il colore, i buffer, le ombre e gli sfondi dei testi (cioè tutte le parti di formattazione delle impostazioni delle etichette, che per esempio possono essere usate nei layout);
- **Impostazioni Etichette** per gestire *label settings* che comprende i formati di testo e alcune impostazioni specifiche della tipologia di layer come il posizionamento delle etichette, la priorità, i collegamenti, la rappresentazione…
- **Simboli 3D** per configurare simboli con *3D properties* (estrusione, ombreggiatura, altitudine, …) per gli elementi da rappresentare in una *3D Map view*

Per ogni famiglia di oggetti, puoi organizzare gli oggetti in diverse categorie, elencate nel pannello a sinistra:

- **Preferiti**: visualizzato di default quando si configura un oggetto, mostra un insieme espandibile di oggetti;
- **Tutto**: elenca tutti gli oggetti disponibili per la tipologia attiva;
- **Etichette**: mostra una lista di etichette che puoi usare per identificare gli elementi. Un elemento può essere etichettato più di una volta. Seleziona un’etichetta nella lista e le schede vengono aggiornate per mostrare solo gli elementi che vi appartengono. Per creare una nuova etichetta che potresti poi associare ad un insieme
di elementi, usa il pulsante Aggiungi Etichetta… o seleziona il Aggiungi Etichetta… da qualsiasi menu contestuale dell’etichetta;

• **Gruppo Intelligente**: un gruppo intelligente recupera dinamicamente i suoi simboli in base alle condizioni impostate (vedi ad esempio, Fig. 12.2). Fai clic sul pulsante Aggiungi Gruppo Intelligente… per creare gruppi intelligenti. La finestra di dialogo ti permette di inserire un’espressione per filtrare gli elementi da selezionare (ha una etichetta particolare, ha una stringa nel suo nome, ecc.) Ogni simbolo, scala di colore, formato di testo o impostazione di etichetta che soddisfa la condizione inserita viene automaticamente aggiunto al gruppo intelligente.

![Smart Group Editor](image)

Fig. 12.2: Creare un Gruppo Intelligente

Etichette e Gruppi Intelligenti non si escludono a vicenda: sono semplicemente due modi diversi di organizzare i tuoi oggetti di stile. A differenza dei Gruppi Intelligenti che recuperano automaticamente i loro oggetti in base ai vincoli di input, le Etichette sono alimentate dall’utente. Per modificare una qualsiasi di queste categorie, puoi:

- seleziona gli oggetti, fai clic destro e scegli Aggiungi all’Etichetta ➤ e poi seleziona il nome dell’etichetta o crea una nuova etichetta;
- seleziona il tag e premi Modifica gruppo… ➤ Collega il tag selezionato ai simboli. Una casella di controllo appare accanto ad ogni oggetto per aiutarti a selezionarlo o deselectionarlo. Quando la selezione è terminata, premi Modifica gruppo… ➤ Termina l’etichettatura.
- seleziona il gruppo intelligente, premi Modifica Gruppo… ➤ Modifica Gruppo Intelligente… e configura un nuovo set di vincoli nella finestra di dialogo Editor del gruppo intelligente. Questa opzione è disponibile anche nel menu contestuale del gruppo intelligente.

Per rimuovere un’etichetta o un gruppo intelligente, fai clic destro su di essa e seleziona il pulsante Rimuovi Oggetto. Nota che questo non cancella gli oggetti raggruppati nella categoria.

Aggiungere, modificare o rimuovere un oggetto

Come visto in precedenza, gli elementi di stile sono elencati sotto diverse schede il cui contenuto dipende dalla categoria attiva (etichette, gruppo intelligente, preferiti…). Quando una scheda è attiva, puoi:

- Aggiungere nuovi oggetti: premi il pulsante Aggiungi Oggetto e configura l’oggetto seguendo la descrizione del costruttore di symbols, color ramps o text format and label.
- Modificare un oggetto esistente: seleziona un oggetto e premi il pulsante Modifica oggetto… e configura come menzionato sopra.
- Eliminare gli oggetti esistenti: per eliminare un oggetto che non ti serve più, selezionalo e clicca su Rimuovi oggetto. (disponibile anche con il tasto destro del mouse). L’oggetto verrà cancellato dal database locale.

Nota che la scheda Tutto fornisce l’accesso a queste opzioni per ogni tipo di oggetto.

Cliccando con il tasto destro del mouse su una selezione di oggetti puoi anche fare:

- Aggiungi ai Preferiti;
• **Rimuovi dai Preferiti**;

• **Aggiungi all’Etichetta** ➤ e seleziona l’etichetta appropriata o creane una nuova da usare; quelle attualmente assegnate sono selezionate;

• **Cancella Etichette**: rimuove i simboli da qualsiasi etichetta;

• **Rimuovi Oggetto(i)**;

• **Modifica Oggetto**: si applica all’oggetto su cui si clicca con il tasto destro;

• **Copia Oggetto**;

• **Incolla Oggetto…**: incolla in una delle categorie del gestore di stile o altrove in QGIS (pulsanti simbolo o colore)

• **Esporta Simboli Selezionati come PNG…** (disponibile solo con i simboli);

• **Esporta Simboli Selezionati come SVG…** (disponibile solo con i simboli);

Condividere oggetti di stile

Lo strumento ✈️ *Importa/Esporta*, in basso a sinistra della finestra di dialogo Gestore di Stile, offre opzioni per condividere facilmente simboli, scale di colori, formati di testo e impostazioni di etichette con altri. Queste opzioni sono disponibili anche con un clic destro sugli oggetti.

Esportare Oggetti

Puoi esportare un insieme di oggetti in un file `.XML`:

1. Espandi il menu a discesa ✈️ Importa/Esporta e seleziona ✉️ *Esporta Oggetto(i)*…

2. Scegli gli oggetti che vuoi inserire. La selezione può essere fatta con il mouse o utilizzando una etichetta o un gruppo precedentemente definito.

Fig. 12.3: Esportare oggetti di stile

Quando i simboli sono selezionati, puoi anche esportarli in .PNG o .SVG. L’esportazione in .PNG o .SVG (entrambi non disponibili per altri tipi di elementi di stile) crea un file per ogni simbolo selezionato in una determinata cartella. La cartella SVG può essere aggiunta alla Percorsi SVG nel menu Impostazioni ➤ Opzioni ➤ Sistema di un altro utente, permettendogli di accedere direttamente a tutti questi simboli.

Importare Oggetti

Puoi ampliare la tua libreria di stili importando nuovi oggetti:

1. Espandi il menu a discesa Importa/Esporta e seleziona Imports Oggetto(i) nella parte inferiore sinistra della finestra di dialogo.
2. Nella nuova finestra di dialogo, indica la fonte degli oggetti di stile (può essere un file .xml su disco o un url).
5. Fornisci il nome di ogni Etichetta aggiuntiva(e) da applicare ai nuovi oggetti.
6. Seleziona dall’anteprima i simboli che vuoi aggiungere alla tua libreria.
7. E premi Importa.
Usare il pannello Browser

È anche possibile importare oggetti di stile nel database degli stili del profilo utente attivo direttamente dal pannello Browser:

1. Seleziona il file di stile .xml nel browser
2. Trascinalo sulla mappa o clicca con il tasto destro e seleziona **Importa stile**…
3. Compila la finestra di dialogo **Importa Oggetti** seguendo **Importare Oggetti**.
4. Premi **Importa** e gli oggetti di stile selezionati sono aggiunti al database degli stili

Facendo doppio clic sul file di stile nel browser si apre la finestra di dialogo **Gestore di Stile** che mostra gli oggetti nel file. Puoi selezionarli e premere **Copia in Stile Predefinito**… per importarli nel database degli stili attivo. Le etichette possono essere assegnate agli oggetti. Disponibile anche tramite clic destro, il comando **Apri stile**…

La finestra di dialogo ti permette anche di esportare singoli simboli come file .PNG o .SVG.
12.1.2 Impostazione di una Scala di Colori

La scheda Scala Colore nella finestra di dialogo Gestore di Stile ti aiuta a visualizzare in anteprima diverse scale di colori in base alla categoria selezionata nel pannello di sinistra.

Per creare una scala di colori personalizzata, attiva la scheda Scala Colore e fai clic sul pulsante Aggiungi Oggetto. Il pulsante visualizza un elenco a discesa per scegliere il tipo di scala:

- **Gradiente…**: dato un colore iniziale e uno finale, genera una scala di colori che può essere **Continuo o Discreto**. Con un doppio clic sull’anteprima della scala, puoi aggiungere tutte le interruzioni di colore intermedie che vuoi.

![Gradiente di colori personalizzata con interruzioni](image)

Fig. 12.6: Esempio di scala di colori a gradiente personalizzata con più interruzioni

- **Colori Preimpostati…**: ti permette di creare una scala di colori composta da una lista di colori selezionati dall’utente;

- **Casuale…**: genera un insieme casuale di colori basato sulla gamma di valori per **Tonalità, Saturazione, Valore** e **Opacità** e un numero di colori (**Classi**);
• *Catalog: ColorBrewer...*: un insieme di gradienti di colore discreti predefiniti che puoi personalizzare nel numero di colori nella scala;

• *o Catalog: cpt-city..*: un accesso a un intero catalogo di gradienti di colore su cui puoi fare *Salva come gradiente standard*. L’opzione *cpt-city* apre una nuova finestra di dialogo con centinaia di temi inclusi “pronti all’uso”.

![Fig. 12.7: finestra di dialogo cpt-city con centinaia di scale di colori](image)

Suggerimento: Regola facilmente le interruzioni di colore della scala di colori a gradiente.

Facendo doppio clic sull’anteprima della scala o trascinando un colore dalla zona colore sull’anteprima della scala si aggiunge una nuova interruzione di colore. Ogni interruzione di colore può essere modificata usando il widget *Scelta colore* o tramite il grafico di ogni suo parametro. Puoi anche riposizionarlo usando il mouse, i tasti freccia (combinati con il tasto *Shift* per uno spostamento più ampio) o la casella di percentuale *Posizione relativa*. Premendo *Elimina Interruzione* così come il tasto *DEL* si rimuove l’interruzione di colore selezionata.

12.2 Il Selettore dei Simboli

Il Selettore Simbolo è la finestra di dialogo principale per costruire un simbolo. Puoi creare o modificare simboli puntuali, lineari o di riempimento.
Due componenti principali strutturano la finestra di dialogo del Selettore Simbolo:

- l’albero dei simboli, che mostra i layer dei simboli che sono combinati tra loro per formare un nuovo simbolo globale
- e le impostazioni per configurare il layer del simbolo selezionato nell’albero.

12.2.1 L’albero dei layer dei simboli

Un simbolo può essere composto da diversi Layer di simboli. L’albero dei simboli mostra la sovrapposizione di questi layer di simboli che sono combinati successivamente per formare un nuovo simbolo globale. Inoltre, una rappresentazione dinamica del simbolo viene aggiornata non appena le proprietà del simbolo cambiano.

A seconda del livello selezionato nelle voci dell’albero dei simboli, vengono messi a disposizione vari strumenti per aiutarti a gestire l’albero:

- **Aggiungere un nuovo layer di simboli**:
 puoi impilare tutti i simboli che vuoi
- **Rimuovere il layer del simbolo selezionato**
- **Bloccare i colori del layer dei simboli**: un colore bloccato rimane invariato quando l’utente cambia il colore a livello di simbolo globale (o superiore)
• duplicare un (gruppo di) layer di simbolo(i)
• sposta in alto o in basso il layer del simbolo

12.2.2 Configurare un simbolo

In QGIS, la configurazione di un simbolo si fa in due passi: il simbolo e poi il layer del simbolo.

Il simbolo

Al livello superiore dell’albero, dipende dalla geometria del layer e può essere di tipo **Simbolo**, **Linea** o **Riempimento**. Ogni simbolo può incorporare uno o più simboli (anche di diverso tipo) o layer di simboli.

Puoi impostare alcuni parametri che si applicano al simbolo a livello globale:

• **Unità**: può essere **Millimetri**, **Punti**, **Pixel**, **Metri in scala**, **Unità di mappa** o **Pollici** (vedi Seleziona unità per maggiori dettagli)

• **Opacità**

• **Colore**: quando questo parametro viene cambiato dall’utente, il suo valore viene ripetuto a tutti i sotto-simboli non bloccati nel colore

• **Dimensione e Rotazione** per i simboli puntuali

• **Larghezza** per i simboli lineari

Suggerimento: Usa le proprietà **Dimensione** (per i simboli puntuali) o **Larghezza** (per i simboli lineari) a livello di simbolo per ridimensionare proporzionalmente le dimensioni di tutti i suoi livelli incorporati symbol layers.

Nota: Il pulsante Data-defined override accanto ai parametri di larghezza, dimensione o rotazione è inattivo quando si imposta il simbolo dalla finestra di Gestore di stile. Quando il simbolo è collegato ad un layer di mappa, questo pulsante ti aiuta a creare una rappresentazione proportional or multivariate analysis.

• Un’anteprima della symbols library: Vengono mostrati i simboli dello stesso tipo e, attraverso l’elenco a discesa modificabile di cui sopra, possono essere filtrati per testo libero o per categories. Puoi anche aggiornare l’elenco dei simboli usando il pulsante Gestore di stile e aprire la finestra di dialogo delle tipologie. Lì, puoi usare qualsiasi funzionalità come esposto nella sezione Il Gestore di Stile.

I simboli vengono visualizzati o:

– in una lista di icone (con miniatura, nome e tag associati) usando il pulsante Lista Viste sotto la cornice;

– o come anteprima dell’icona usando il pulsante Vista a Icone.

• Premere il pulsante Salva Simbolo… per aggiungere il simbolo che si sta modificando alla libreria dei simboli.

• Con l’opzione Avanzato puoi:

 – per i simboli di linea e di riempimento, Ritaglia elementi all’estensione della mappa.

 – per i simboli di riempimento, Forza orientazione secondo la regola della mano destra: permette di forzare i simboli di riempimento tracciati a seguire la «regola della mano destra» standard per l’orientamento degli anelli (cioè, poligoni dove l’anello esterno è in senso orario, e gli anelli interni sono tutti in senso antiorario).

La correzione dell’orientamento viene applicata solo durante la rappresentazione, e la geometria originale dell’elemento rimane invariata. Questo permette la creazione di simboli di riempimento con un
aspetto coerente, indipendentemente dall’insieme di dati in fase di rappresentazione e dall’orientamento
dell’anello delle singole caratteristiche.

– A seconda della symbology del layer a cui viene applicato un simbolo, sono disponibili ulteriori
impostazioni nel menu Avanzato:

* Symbol levels… per definire l’ordine di rappresentazione dei simboli

* Data-defined Size Legend

* Corrispondenza ai Simboli Salvati… e Corrispondenza ai Simboli da file… per automaticamente
assign symbols to classes

Layer dei simboli

Ad un livello inferiore dell’albero, puoi personalizzare i layer dei simboli. I tipi di simbolo per i layer disponibili
dipendono dal tipo di simbolo superiore. Puoi applicare al layer del simbolo paint effects per migliorarne la resa.
Poiché non sarebbe possibile descrivere tutte le opzioni di tutti i tipi di layer di simboli, solo quelle particolari e
significative sono menzionate di seguito.

Parametri comuni

Alcune opzioni e widget comuni sono disponibili per costruire un layer di simboli, indipendentemente dal fatto che
sia di tipo punto, linea o riempimento:

• il widget color selector per facilitare la manipolazione dei colori

• Unità: può essere Millimetri, Punti, Pixel, Metri in scala, Unità di mappa o Pollici (vedi Selezione unità
per maggiori dettagli)

• il widget Sovrascrittura definita dai dati vicino a quasi tutte le opzioni, estendendo le possibilità di personalizzare
ogni simbolo (vedi Impostazione Sovrascrittura definita dai dati per maggiori informazioni)

• l’opzione Abilita layer simbolo controlla la visibilità del livello del simbolo. I livelli di simbolo disabilitati non
vengono disegnati durante la rappresentazione del simbolo ma vengono salvati nel simbolo. Essere in grado di
nascondere i livelli del simbolo è conveniente quando si cerca il miglior design del proprio simbolo, poiché non
è necessario rimuoverne nessuno per i test. La sovrascrittura definita dai dati rende poi possibile nascondere o
mostrare diversi livelli di simbolo basati su espressioni (usando, per esempio, gli attributi delle caratteristiche).

• il pulsante Effetto disegno per effects rendering.

Nota: Mentre la descrizione che segue presuppone che il tipo di livello del simbolo sia legato alla geometria dell’elemento, si tenga presente che si possono incorporare i livelli dei simboli l’uno nell’altro. In tal caso, il parametro del
livello inferiore del simbolo (posizionamento, offset…) potrebbe essere legato al simbolo di livello superiore, e non
alla geometria dell’elemento stesso.
Simboli di punti

Adatti per elementi geometrici puntuali, i simboli marker hanno diverse Tipologie di simboli:

- **Simbolo semplice** (default)

![Symbol Selector](image)

Fig. 12.9: Configurare un Simbolo semplice

- **Simbolo Ellisse**: un simbolo con unico layer, con larghezza e altezza personalizzabili
- **Simbolo riempito**: simile al simbolo semplice, eccetto che usa un *fill sub symbol* per realizzare il simbolo. Questo permette l’uso di tutti gli stili di riempimento (e di tratto) esistenti in QGIS per la realizzazione dei simboli, ad esempio i riempimenti a gradiente o a sfumature.
- **Simbolo carattere**: simile al simbolo semplice, eccetto che usa i caratteri installati per realizzare il simbolo. Le sue proprietà aggiuntive sono:
 - *Famiglia del carattere*
 - *Stile carattere*
 - *Carattere(i)*, che rappresentano il testo da visualizzare come simbolo. Possono essere digitati o selezionati dal widget dei caratteri disponibili e si possono visualizzare in *Anteprima* con le impostazioni selezionate.
• **Generatore geometria** (vedi *Il Generatore Geometria*)

• **Maschera**: il suo sotto-simbolo definisce una forma di maschera la cui proprietà di colore sarà ignorata e sarà usata solo l’opacità. Questo è conveniente quando il simbolo si sovrappone a etichette o altri simboli i cui colori sono vicini, rendendone difficile la percezione. Maggiori dettagli in *Proprietà Maschere*.

• **Simbolo immagine raster**: usa un’immagine (PNG, JPG, BMP …) come simbolo. L’immagine può essere un file sul disco, un URL remoto o incorporato nel database degli stili (*more details*). La larghezza e l’altezza dell’immagine possono essere impostate indipendentemente o usando il **Blocca le proporzioni**. La dimensione può essere impostata usando una qualsiasi delle *common units* o come percentuale della dimensione originale dell’immagine (scalata dalla larghezza).

• **Simbolo Campo Vettoriale** (vedi *Il Simbolo di Campo Vettoriale*)

• **Simbolo SVG**: fornisce immagini da utilizzare come simbolo dai tuoi Percorsi SVG (impostati in *Impostazioni* ► **Opzioni…** ► **Sistema**). La larghezza e l’altezza del simbolo possono essere impostate indipendentemente o usando il **Blocca proporzioni**. Anche i colori e il tratto di ogni file SVG possono essere impostati. L’immagine può essere un file su disco, un URL remoto o incorporato nel database degli stili (*more details*).

Nota: Requisiti versione SVG

QGIS visualizza i file SVG che rispettano il *SVG Tiny 1.2 profile*, destinato all’implementazione su una gamma di dispositivi, dai telefoni cellulari e PDA ai computer portatili e desktop, e quindi include un sottoinsieme delle funzionalità incluse in SVG 1.1 Full, insieme a nuove funzionalità per estendere le funzionalità di SVG.

Alcune funzionalità non incluse in queste specifiche potrebbero non essere visualizzate correttamente in QGIS.

Suggerimento: Attivare la personalizzazione del simbolo SVG

Per avere la possibilità di cambiare i colori di un *Simbolo SVG*, devi aggiungere il *param(fill)* per il riempimento con il colore, il *param(outline)* per il colore del contorno e il *param(outline-width)* per lo spessore del contorno. Questi parametri possono essere facoltativamente seguiti da un valore predefinito, ad esempio:

```xml
<svg width="100%" height="100%">
  <rect fill="param(fill) #ff0000" stroke="param(outline) #00ff00" stroke-width="param(outline-width) 10" width="100%" height="100%">
  </rect>
</svg>
```
Simboli lineari

Specifici per le geometria lineari, i simboli lineari prevedono le seguenti tipologie di simboli:

- **Linea semplice** (predefinito): le impostazioni disponibili sono:

 ![Simboli lineari in QGIS](image)

 Fig. 12.10: Disegnare un simbolo di linea semplice

 La tipologia simbolo di linea semplice ha molte proprietà uguali al *simple marker symbol*, e in aggiunta:

 - **Stile testata**
 - **Usa pattern tratteggiato personalizzato**: sovrascrive l'impostazione di *Stile tratteggiato* con un trattino personalizzato.
 - **Allinea pattern tratteggiato alla lunghezza della linea**: la lunghezza del trattino sarà regolata in modo che la linea finisca con un elemento completo di trattino, invece che con uno spazio vuoto.
 - **Ritocca il pattern tratteggiato sugli angoli acuti**: regola dinamicamente la disposizione dei trattini in modo che gli angoli acuti siano rappresentati da un trattino completo che entra ed esce dall'angolo acuto. Dipende da *Allinea il pattern tratteggiato alla lunghezza della linea*.
 - **Disegna la linea solo all'interno del poligono**

- **Freccia**: disegna linee come frecce curve (o meno) con una testa singola o doppia, configurabile (e definita dai dati):
È possibile creare Freccia curve (l’elemento linea deve avere almeno tre vertici) e Freccia ripetuta su ogni segmento. Utilizza anche un fill symbol come gradienti o sfumature per rappresentare il corpo della freccia. Combinato con il generatore di geometrie, questo tipo di simbolo aiuta a rappresentare le mappe di flusso.

- **Generatore geometria** (vedi Il Generatore Geometria)

- **Linea di evidenziazione**: ripete un marker symbol lungo la linea.

 - Il posizionamento dei marcatori può essere a distanza regolare o basato sulla geometria della linea: primo, ultimo o ogni vertice, sul punto centrale della linea o di ogni segmento, o su ogni punto della curva.

 - Il posizionamento dei marcatori può anche avere un offset lungo la linea

 - L’opzione Ruota il marker per seguire la direzione della linea imposta se ogni simbolo di marcatore deve essere orientato relativamente alla direzione della linea o no.

 Poiché una linea è spesso una successione di segmenti aventi direzioni diverse, la rotazione del marcatore è calcolata facendo la media su una distanza specificata lungo la linea. Per esempio, impostando la proprietà Angolo medio sopra a 4 mm significa che i due punti lungo la linea che sono 2 mm prima e dopo il posizionamento del simbolo sono usati per calcolare l’angolo della linea per quel simbolo. Questo ha l’effetto di smussare (o rimuovere) qualsiasi piccola deviazione locale dalla direzione generale della linea, risultando in orientamenti visivi molto più piacevoli dei simboli delle linee di evidenziazione.

 - La linea di evidenziazione può anche avere un offset dalla linea stessa.

- **Linea Hashed**: ripete un segmento di linea (un hash) sulla lunghezza di un simbolo di linea, con un sotto-simbolo di linea usato per rappresentare ogni singolo segmento. In altre parole, una linea hashed è come una linea marker in cui i simboli marker sono sostituiti da segmenti. Come tale, le linee hashed hanno le same properties dei simboli delle linee di evidenziazione, insieme a:

 - Lunghezza cancelletto

 - Ruota il cancelletto per seguire la direzione della linea
Simboli di riempimento

Appropriati per le geometrie poligonali, i simboli di riempimento sono di diverse tipologie:

- **Riempimento semplice** (predefinito): riempie un poligono con un colore uniforme
Fig. 12.12: Creare un Simbolo Semplice di Riempiamento

- **Riempiimento con centroide**: posiziona un simbolo *marke symbol* al centroide dell'elemento visibile. La posizione del marcatore potrebbe non essere il reale centroide dell'elemento, perché per la rappresentazione il calcolo si riferisce ai poligoni ritagliati nell'area visibile nella mappa e ignora i buchi. Usando il *geometry generator symbol* se vuoi il centroide esatto.

Puoi:

- *Forza posizionamento dei simboli all'interno dei poligoni*
- *Disegna simboli su ogni parte di elementi parti multiple* o posiziona il punto solo sulla sua parte più grande
- visualizza il simbolo (o i simboli) del marcatore in tutto o in parte, mantenendo le parti che si sovrappongono alla geometria dell'elemento corrente (*Ritaglia simboli sul bordo del poligono*) o alla parte di geometria cui il simbolo appartiene (*Ritaglia simboli solo al limite della parte corrente*).

- **Generatore geometria** (vedi *il Generatore Geometria*)

- **Riempiemento a gradiente**: usa un gradiente radiale, lineare o conico, basato o su semplici gradienti a due colori o su una *gradient color ramp* per riempire i poligoni. Il gradiente può essere ruotato e applicato su un singolo elemento o sull'intera estensione della mappa. Anche i punti di inizio e fine possono essere impostati tramite coordinate o usando il centroide (dell'elemento o della mappa). Può essere definito un offset definito dai dati;

- **Riempiemento a pattern lineare**: riempie il poligono con un pattern di tratteggio di *line symbol layer*. Puoi impostare una rotazione, la spaziatura tra le linee e un offset dal confine dell'elemento;
• **Riempimento a pattern puntuale**: riempie il poligono con un pattern di *marker symbol layer*. Puoi impostare la distanza e uno spostamento tra le file di simboli, e un offset dal confine dell'elemento;

• **Riempimento simbolo casuale**: riempie il poligono con un *marker symbol* posto in posizioni casuali all'interno del confine del poligono. Puoi impostare:

 - il numero di simboli da rappresentare, sia come conteggio assoluto o come conteggio basato sulla densità (la densità di riempimento rimarrà la stessa su diversi livelli di scala / zoom);

 - un numero casuale di simboli, per dare un posizionamento coerente dei simboli ogni volta che le mappe vengono aggiornate (permette anche il posizionamento casuale per funzionare bene con il server QGIS e la rappresentazione basata su mattonelle);

 - se i simboli vicini ai bordi dei poligoni devono essere ritagliati sul confine del poligono o no

• **Riempimento raster**: riempi il poligono con tasselli di un'immagine raster (PNG, JPG, BMP ...). L'immagine può essere un file sul disco, un URL remoto o un file codificato incorporato in formato stringa (*more details*). Le opzioni includono (srovascrittura definita dai dati) opacità, larghezza dell'immagine, modalità di coordinate (oggetto o vista), rotazione e offset. La larghezza dell'immagine può essere impostata usando una qualsiasi delle *common units* o come percentuale della dimensione originale.

• **Riempimento SVG**: riempi il poligono usando *SVG markers*;

• **Riempimento sfumato**: bufferizza un riempimento a gradiente, dove un gradiente è disegnato dal confine di un poligono verso il centro del poligono. I parametri configurabili includono la distanza dal confine all'ombra, l'uso di scale di colori o semplici gradienti di due colori, la sfocatura opzionale del riempimento e gli offset;

• **Cornice Freccia**: usa un simbolo lineare *arrow symbol* per rappresentare il confine del poligono. Le impostazioni per la freccia di contorno sono le stesse dei simboli lineari.

• **Cornice: Linea Hashed**: usa un simbolo lineare *hash line symbol* per rappresentare il confine del poligono (gli anelli interni, l'anello esterno o tutti gli anelli). Le impostazioni per la linea hashed di contorno sono le stesse dei simboli lineari.

• **Cornice: Linea di evidenziazione**: usa un *marker line symbol* per rappresentare il confine del poligono (gli anelli interni, l'anello esterno o tutti gli anelli). Le impostazioni per la linea di evidenziazione di contorno sono le stesse dei simboli lineari.

• **Cornice: Linea semplice**: usa un *simple line symbol* per rappresentare il confine del poligono (gli anelli interni, l'anello esterno o tutti gli anelli). Le impostazioni per la linea semplice di contorno sono le stesse dei simboli di linea. L'opzione *Disegna la linea solo all'interno del poligono* visualizza i bordi del poligono all'interno del poligono e può essere utile per rappresentare chiaramente i confini dei poligoni adiacenti.

Nota: Quando il tipo di geometria è poligonale, si può scegliere di disabilitare il ritaglio automatico delle linee/poligoni all'estensione dell'area di disegno. In alcuni casi questo ritaglio risulta in una simbologia sfavorevole (per esempio i riempimenti del centroide dove il centroide deve essere sempre il centroide dell'elemento reale).

Il Generatore Geometria

Disponibile con tutte le tipologie di simboli, il simbolo *Generatore Geometria* permette di usare *expression syntax* per generare una geometria al volo durante il processo di rappresentazione. La geometria risultante non deve necessariamente corrispondere al tipo di geometria originale ed è possibile aggiungere diversi livelli di simboli modificati in modo diverso uno sull'altro.

Alcuni esempi:

```sql
-- render the centroid of a feature
centroid( $geometry )

-- visually overlap features within a 100 map units distance from a point
-- feature, i.e generate a 100m buffer around the point
```

(continues on next page)
buffer($geometry, 100)

-- Given polygon layer1(id1, layer2_id, ...) and layer2(id2, fieldn...)
-- render layer1 with a line joining centroids of both where layer2_id = id2
make_line(centroid($geometry),
 centroid(geometry(get_feature('layer2', 'id2', attribute($currentfeature, 'layer2_id'))))
)

-- Create a nice radial effect of points surrounding the central feature
-- point when used as a MultiPoint geometry generator
collect_geometries(
 array_foreach(
 generate_series(0, 330, 30),
 project($geometry, .2, radians(@element))
)
)

Il Simbolo di Campo Vettoriale

Il simbolo di campo vettoriale viene utilizzato per visualizzare dati puntuali a variabilità vettoriale come la deformazione della terra, le ampiezze di marea e simili. Visualizza gli indicatori con segmenti (preferibilmente frecce) che vengono ridimensionati e orientati in base agli attributi selezionati dei punti dati. Può essere utilizzato solo per la visualizzazione di dati puntuali; i layer lineari e poligonali non utilizzano questa simbologia.

Il campo vettoriale è definito da attributi nei dati, che possono rappresentare il campo sia tramite:

- le componenti cartesiane (componenti x e y del campo)
- o le coordinate polari: in questo caso, gli attributi definiscono la Lunghezza e l’Angolo. L’angolo può essere misurato in senso orario da nord, o in senso antiorario da est, e può essere in gradi o radianti.
- o solo come dati di altezza, che visualizza una freccia verticale che viene dimensionata utilizzando un attributo dei dati. Ciò è appropriato ad esempio per visualizzare la componente verticale di una deformazione.

La grandezza del simbolo campo vettoriale può essere aumentata o diminuita per ottimizzare la visualizzazione nella rappresentazione.

12.3 Impostare una etichetta

Le etichette sono informazioni testuali che si possono visualizzare su elementi vettoriali o mappe. Aggiungono dettagli che non si potrebbero necessariamente rappresentare usando i simboli. In QGIS sono disponibili due tipi di oggetti di testo:

- **Formato Testo**: definisce l’aspetto del testo, incluso font, size, colors, shadow, background, buffer, ...

 Possono essere usati per rappresentare testi sulla mappa (titolo del layout/mappa, decorazioni, barra di scala, ...), di solito attraverso il widget font.

Per creare un oggetto **Formato Testo**:

1. Apri la finestra di dialogo Gestore Stile
2. Attiva la scheda Formato Testo
3. Premi il pulsante **Aggiungi Oggetto**. La finestra di dialogo **Formato Testo** si apre per configurazione. Come al solito, queste proprietà sono **data-definable**.

- **Impostazioni testo**: estende le impostazioni del formato del testo con proprietà relative alla posizione o all’interazione con altri testi o oggetti (*callouts, placement, overlay, scale visibility, maschera* …).

Sono utilizzati per configurare l’etichettatura intelligente per i layer vettoriali attraverso la scheda **Etichette** della finestra di dialogo **Proprietà**… del vettore o il pannello **Stile del layer** o utilizzando il pulsante **Opzioni per le Etichette del layer** della **Label toolbar**.

Per creare un oggetto **Impostazioni Etichette**:

1. Apri la finestra di dialogo **Gestore Stile**
2. Attiva la scheda **Impostazioni Etichette**

![Fig. 12.13: Formato Testo nella finestra di dialogo Gestore Stile](image)
3. Premi il menu Aggiungi Oggetto e seleziona la voce corrispondente al tipo di geometria degli elementi che vuoi etichettare.

La finestra di dialogo Impostazioni Etichette si apre con le seguenti opzioni. Come al solito, queste sono *data-definable*.

12.3.1 Formattare etichetta testuale

La maggior parte delle seguenti proprietà sono comuni agli oggetti *Formato Testo* e *Impostazioni Etichetta*.

![Screenshot of QGIS Style Manager](image-url)
Scheda Testo

Nella scheda abc Testo, puoi impostare:

- il Carattere, tra quelli disponibili sul tuo computer
- lo Stile: insieme ai comuni stili del carattere, si può impostare se il testo deve essere sottolineato o barrato
- la Dimensione in una supported unit
- il Colore
- e l’Opacità.

In fondo alla scheda, un widget mostra un elenco filtrabile di oggetti compatibili memorizzati nel tuo database style manager. Questo ti permette di configurare facilmente il formato di testo corrente o l’impostazione dell’etichetta sulla base di una esistente, e anche di salvare un nuovo oggetto nel database degli stili. Premi il pulsante Save format… o Save settings… e fornisci un nome e una o più etichette.

Nota: Durante la configurazione di un oggetto in Impostazioni Etichette, sono disponibili in questo widget anche le voci relative al formato del testo. Selezionane uno per sovrascrivere rapidamente le attuali textual properties dell’etichetta. Allo stesso modo, puoi creare/sovrascrivere un formato di testo da lì.
Nella scheda **Formattazione**, puoi:

- Utilizza l'opzione *Tipo maiuscolo* per cambiare lo stile di scrittura in maiuscolo del testo. Hai la possibilità di visualizzare il testo come:
 - *Nessuna Modifica*
 - *Tutto Maiuscolo*
 - *Tutto Minuscolo*
 - *Rendi Maiuscole le iniziali di Tutte le Parole*: modifichi la prima lettera di ogni parola in maiuscolo, e trasformi le altre lettere in minuscolo se il testo originale usa una sola tipologia di maiuscolo/minuscolo. Nel caso di tipo misto nel testo, le altre lettere vengono lasciate intatte.
 - *Prima Lettera Maiuscola*: modifichi la prima lettera di ogni parola in maiuscola e lasci le altre lettere del testo invariata.
- Con *Spacing*, cambi lo spazio tra le parole e tra le singole lettere.
- *Abilita crenatura* del carattere del testo
• Imposta l'orientamento di Text che può essere Orizzontale o Verticale. Può anche essere Rotation-based quando si imposta un'etichetta (ad esempio, per modalità di posizionamento corretto delle etichette delle linee parallel).

• Usa l'opzione Modalità fusione per determinare come le tue etichette si mescoleranno con gli oggetti della mappa sotto di loro (maggiori dettagli in Metodi di fusione).

• L'opzione Applica sostituzione testo etichetta permette di specificare una lista di testi da sostituire ai testi nelle etichette degli oggetti (per esempio, abbreviando i tipi di strada). I testi sostitutivi sono usati quando si visualizzano le etichette sulla mappa. Gli utenti possono anche esportare e importare liste di sostituzioni per facilitare il riutilizzo e la condivisione.

• Configura Righe multiple:
 – Imposta un carattere che forzerà un’interruzione di riga nel testo con l’opzione A capo con il carattere
 – Imposta una dimensione ideale della linea per l’andare a capo in automatico usando l’opzione Termina linea a. La dimensione può rappresentare sia la Lunghezza massima della linea che la Lunghezza minima della linea.
 – Definisca la Altezza linea.
 – Formatta l’ Allineamento: i valori tipici disponibili sono Sinistro, Destro, Giustifica e Centro.

Nota: La formattazione Linee multiple non è ancora supportata da curve basate su label placement. Le opzioni saranno quindi disattivate.

• Per le etichette di linea puoi includere Simbolo di direzione della linea per poter stabilire le direzioni della linea, con simboli da usare per indicare la Sinistra o la Destra. Funzionano particolarmente bene se usati con le opzioni di posizionamento Curvato o Parallelo della scheda Posizionamento. Ci sono opzioni per impostare la posizione dei simboli, e per Inverti direzione.

• Usa l'opzione Numeri formattati per formattare i testi numerici. Puoi impostare il numero di Posizioni decimali. Per impostazione predefinita, verranno utilizzate 3 posizioni decimali. Usa la Mostra il segno più se vuoi mostrare il segno più per i numeri positivi.
Per creare un buffer intorno all’etichetta, attiva la casella di controllo **Disegna buffer del testo** nella scheda **Buffer**. Poi puoi:

- Impostare la *Dimensione* del buffer in una supported unit
- Selezionare il *Colore* del buffer
- **Colore riempimento del buffer**: Il buffer si espande dal contorno dell’etichetta, quindi, se l’opzione è attivata, l’interno dell’etichetta viene riempito. Questo può essere rilevante quando si usano etichette parzialmente trasparenti o con modalità di fusione non normali, che permettono di vedere dietro il testo dell’etichetta. Deselezionando l’opzione (mentre si utilizzano etichette totalmente trasparenti) si potranno creare etichette di testo contornate.
- Definire la *Opacità* del buffer
- Applicare uno *Stile unione tratto*: può essere Arrotondato, Seghettato o Smussato.
- Usare l’opzione *Modalità fusione* per determinare come il buffer della tua etichetta si mescolerà con i componenti della mappa sotto di essa (maggiori dettagli in *Metodi di fusione)*.
- Selezionare **Draw effects** per aggiungere avanzati paint effects per migliorare la leggibilità del testo, ad esempio attraverso bagliori esterni e sfocature.
Scheda Sfondo

La scheda Sfondo ti permette di configurare una figura che rimane sotto ogni etichetta. Per aggiungere uno sfondo, attiva la casella di controllo Disegna Sfondo e seleziona il tipo della Forma. Può essere:

- una forma regolare come: guilabel: Rettangolo, Quadrato, Cerchio o Elisse.
- un simbolo SVG da un file, un URL o incorporato nel progetto o nel database degli stili (more details)
- o un Simbolo singolo che puoi creare o selezionare dalla libreria symbol library.

A seconda della forma selezionata, devi configurare alcune delle seguenti proprietà:

- Il Tipo dimensione della cornice, che può essere:
 - Fisso: usa la stessa dimensione per tutte le etichette, indipendentemente dalla dimensione del testo
 - o un Buffer sul perimetro del testo
• La Dimensione della cornice nelle direzioni X e Y, usando una qualsiasi delle supported units
• Una Rotazione dello sfondo, tra Sincronizza con l'etichetta, Offset dell'etichetta e Fisso. Gli ultimi due richiedono un angolo in gradi.
• Un Offset X, Y per spostare l'oggetto sfondo nelle direzioni X e/o Y
• Un Raggio X, Y per arrotondare gli angoli della forma dello sfondo (si applica solo alle forme rettangolari e quadrate)
• Una Opacità dello sfondo
• Una Modalità fusione per mescolare lo sfondo con gli altri elementi della rappresentazione (vedi Metodi di fusione).
• I parametri Colore di riempimento, Colore tratto e Spessore tratto per tipi di forme diverse dal simbolo puntuale. Usa il Carica parametri del simbolo per riportare i cambiamenti su un simbolo SVG alle sue impostazioni predefinite.
• Uno Stile unione tratto: può essere Arrotondato, Seghettato o Smussato (si applica solo alle forme rettangolari e quadrate)
• Effetti disegno per aggiungere avanzati paint effects per migliorare la leggibilità del testo, ad esempio attraverso bagliori esterni e sfocature.

Scheda Ombreggiatura

![Label Settings](image)

Fig. 12.19: Impostazioni Etichetta - Scheda Ombreggiatura

12.3. Impostare una etichetta
Per aggiungere un’ombra al testo, abilita la scheda Ombreggiatura e attiva la Disegna ombreggiatura. Poi puoi:

- Indicare l’oggetto usato per generare l’ombra con Disegna sotto. Può essere il Componente Etichetta Inferiore o un particolare componente come lo stesso Testo, il Buffer o il Sfondo.
- Impostare l’Offset dell’ombra dall’oggetto da ombreggiare, cioè:
 - L’angolo: in senso orario, dipende dall’orientamento dell’oggetto sottostante
 - La distanza di offset dall’oggetto da ombreggiare
 - L’unità di misura dell’offset

Se spunti la casella di controllo Use ombreggiatura globale, allora il punto zero dell’angolo è sempre orientato a nord e non dipende dall’orientamento dell’oggetto etichetta.

- Modificare l’aspetto dell’ombra con il guilabel: Raggio di sfumatura”. Più alto è il numero, più soffuse sono le ombre, nelle unità di tua scelta.
- Definire l’Opacità dell’ombreggiatura.
- Ridimensionare le dimensioni dell’ombra usando il fattore Scala
- Scegliere il Colore dell’ombreggiatura
- Usare l’opzione Modalità fusione per determinare come l’ombreggiatura della tua etichetta si mescolerà con i componenti della mappa sotto di essa (maggiori dettagli in Metodi di fusione).

12.3.2 Configurare l’interazione con le etichette

Oltre alle impostazioni di formattazione del testo esposte sopra, puoi anche impostare come le etichette interagiscono tra loro o con gli elementi.

Scheda Maschera

La scheda Maschera ti permette di definire un’area di mascheramento intorno alle etichette. Questa possibilità è molto utile quando hai simboli sovrapposti ed etichette con colori simili, e vuoi renderle le etichette visibili.
Per creare effetti di mascheramento per le etichette:

1. Attiva la casella di controllo **Abilita maschera** nella scheda **Etichette**.
2. Poi puoi impostare:
 - la Dimensione della maschera nelle **supported units**
 - la Opacità dell’area della maschera intorno all’etichetta
 - uno Stile unione tratto
 - **paint effects** tramite la casella di controllo **Effetti disegno**.
3. Seleziona questa configurazione della maschera come sorgente della maschera nelle proprietà del layer sovrapposto **Maschera** (vedi **Proprietà Maschere**).
Scheda Linee di Richiamo

Una pratica comune quando si posizionano etichette su una mappa affollata è quella di usare i callout - le etichette che sono posizionate al di fuori (o spostate da) l’elemento associato sono identificate con una linea dinamica che collega l’etichetta e l’elemento. Se una delle due estremità (o l’etichetta o l’elemento) viene spostata, la forma del connettore viene ricalcolata.

Fig. 12.21: Etichette con varie impostazioni di callout

Per aggiungere un richiamo a un’etichetta, abilita la scheda Linee di richiamo e attiva la Disegna linea di richiamo. Poi puoi:

1. Selezionare lo Stile del connettore, uno dei seguenti:
 - Linee semplici: una linea retta, il percorso più breve
 - Linee di Manhattan: una linea spezzata a 90°

2. Selezionare lo Stile di linea con tutte le opzioni di un line symbol inclusi gli effetti di livello e le impostazioni definite dai dati

3. Impostare la Lunghezza minima delle linee di richiamo

4. Impostare l’opzione Offset dall’elemento: controlla la distanza dall’elemento (o dal suo punto di ancoraggio se è un poligono) dove finiscono le linee di richiamo. Per esempio, questo evita di disegnare linee proprio sui bordi degli elementi.

6. Disegna linee a tutte le parti dell’elemento dall’etichetta dell’elemento

7. Impostare il Punto di ancoraggio per l’elemento (poligono) (il punto finale della linea di collegamento). Opzioni disponibili:
 - Polo di Inaccessibilità
 - Punto sull’Esterno
• Punto sulla Superficie

• Centroide

8. Impostare il Punto di ancoraggio etichetta: controlla dove la linea del connettore dovrebbe unirsi al testo dell’etichetta. Opzioni disponibili:

• Punto più Vicino

• Centroide

• Posizione fissata sul bordo (In Alto a Sinistra, In Alto al Centro, In Alto a Destra, Centro a Sinistra, Centro a Destra, In Basso a Sinistra, In Basso al Centro e In Basso a Destra).

Scheda Posizionamento

Scegli la scheda *Posizionamento* per configurare il posizionamento delle etichette e la priorità di etichettatura. Nota che le opzioni di posizionamento differiscono a seconda del tipo di layer vettoriale, cioè punto, linea o poligono, e sono influenzate dall’impostazione globale *PAL setting*.

Posizionamento per layer puntuali

Le modalità di posizionamento disponibili per le etichette dei punti sono:

• **Cartografico**: le etichette dei punti sono generate con una migliore relazione visiva con il punto, seguendo le regole ideali di posizionamento cartografico. Le etichette possono essere posizionate:

 – ad una impostazione di *Distanza* in *supported units*, o dal punto stesso o dai confini del simbolo usato per rappresentare l’elemento (impostato in *Distanza di offset*). Quest’ultima opzione è particolarmente utile quando la dimensione del simbolo non è fissa, ad esempio se è impostata da una dimensione definita dai dati o quando si usano diversi simboli in una *categorized* rappresentazione.

 – seguendo una *Priorità di posizionamento* che può essere personalizzata o impostata per un singolo elemento usando una lista di posizioni prioritarie definita dai dati. Questo permette anche di utilizzare solo certi posizionamenti, così ad esempio per gli elementi costieri si può evitare che le etichette siano posizionate sopra la riva.

1. in alto a destra
2. in alto a sinistra
3. in basso a destra
4. in basso a sinistra
5. al centro a destra
6. al centro a sinistra
7. in alto, leggermente a destra
8. in alto, leggermente a sinistra.

• **Attorno al Punto**: le etichette sono posizionate in un cerchio intorno all’elemento, raggio del cerchio uguale impostato in *Distanza*. La priorità di posizionamento è in senso orario a partire da «in alto a destra». La posizione può essere controllata usando l’opzione definita dai dati *Quadrant*.

• **Offset dal Punto**: le etichette sono posizionate ad una distanza *Offset X,Y* dal punto, in varie unità, o preferibilmente sopra l’elemento. Puoi usare un *Quadrante* definito dai dati per vincolare il posizionamento e puoi assegnare una *Rotazione* all’etichetta.
Posizionamento per i layer lineari

Le modalità di etichettatura per i layer lineari includono:

- **Parallelo**: disegna l'etichetta parallelamente ad una linea generalizzata che rappresenta la caratteristica, con preferenza per il posizionamento rispetto alle porzioni più diritte della linea. Può definire:
 - Posizioni consentite: *Sopra la linea*, *Sulla linea*, *Sotto la linea* e *Posizione dipendente dall'orientazione della linea* (mettendo l'etichetta a sinistra o a destra della linea). È possibile selezionare più opzioni contemporaneamente. In questo caso, QGIS cercherà la posizione ottimale dell'etichetta.
 - Distanza tra l'etichetta e la linea
- **Curvato**: disegna l'etichetta seguendo la curvatura della linea. Oltre ai parametri disponibili con la modalità **Parallelo**, puoi impostare il **Angolo massimo tra caratteri curvi**, sia interno che esterno.
- **Orizzontale**: disegna le etichette orizzontalmente lungo la lunghezza della linea.

![Parallel label example](image1)

![Curved label example](image2)

![Horizontal label example](image3)

Fig. 12.22: Esempi di posizionamento di etichette per le linee

Oltre alle modalità di posizionamento, puoi impostare:

- **Ripetizione Etichette Distanza** per visualizzare più volte l'etichetta lungo la linea. La distanza può essere in **Millimetri**, **Punti**, **Pixel**, **Metri in scala**, **Unità di mappa** e **Pollici**.
- **A Tolleranza Etichetta Distanza** (non disponibile per la modalità orizzontale): specifica la massima distanza ammissibile per una etichetta di superare la fine (o l'inizio) della linea. Aumentando questo valore si può permettere che le etichette vengano mostrate per elementi di linea più corti.
- **Ancoraggio Etichetta**: controlla il posizionamento delle etichette lungo la linea a cui fanno riferimento. Clicca su **Impostazioni…** per scegliere:
 - la posizione (come rapporto) dove le etichette saranno posizionate vicino alla linea. Può essere definita dai dati e i valori possibili sono:
 - Al centro della linea
 - All'inizio della linea
 - Alla fine della linea
 - or Personalizzato…
 - **Comportamento Posizionamento**: usa **Suggerimento Posizionamento Preferito** per utilizzare l'ancoraggio dell'etichetta solo come un suggerimento per il posizionamento dell'etichetta. Scegliendo **Rigorosa**, le etichette sono posizionate esattamente sull'ancoraggio dell'etichetta.
Posizionamento per i layer poligonali

Puoi scegliere uno dei seguenti modi per posizionare le etichette dei poligoni:

- **Offset dal Centroide**: le etichette sono posizionate sopra il centroide della caratteristica o ad una fissata distanza Offset X,Y (in supported units) dal centroide. Il centroide di riferimento può essere determinato in base alla parte del poligono visualizzato in mappa (Poligono visibile) o il Poligono intero, non importa se visibile. Puoi anche:
 - forzare il punto del centroide a giacere all'interno del poligono
 - posizionare l'etichetta in un quadrante specifico
 - assegnare una rotazione
 - **Permettere di mettere etichette all’esterno dei poligoni** quando non è possibile metterle all’interno del poligono. Grazie alle proprietà definite dai dati, questo rende possibile sia permettere le etichette esterne, sia impedire le etichette esterne su base elemento per elemento.

- **Attorno al Centroide**: posiziona l’etichetta entro una distanza prestabilita intorno al centroide, con una preferenza per il posizionamento direttamente sopra il centroide. Anche in questo caso, puoi definire se il centroide è quello del Poligono visibile o del Poligono intero, e se forzare il punto centrale all’interno del poligono.

- **Orizzontale**: pone nella posizione migliore un’etichetta orizzontale all’interno del poligono. Il posizionamento preferito è più lontano dai bordi del poligono. È possibile scegliere **Permetti il posizionamento delle etichette all’esterno dei poligoni**.

- **Libero (Angolato)**: colloca nella posizione migliore un’etichetta ruotata all’interno del poligono. La rotazione rispesta l'orientamento del poligono e il posizionamento preferito è più lontano dai bordi del poligono. È possibile scegliere **Permetti il posizionamento delle etichette all’esterno dei poligoni**.

- **Usando il Perimetro**: disegna l’etichetta parallelamente ad una linea generalizzata che rappresenta il confine del poligono, con preferenza per le porzioni più diritte del perimetro. Puoi definire:
 - **Posizioni consentite**: Sopra la linea, Sulla linea, Sotto la linea e Posizione dipendente dall’orientamento della linea (mettendo l’etichetta a sinistra o a destra del confine del poligono). È’ possibile selezionare più opzioni contemporaneamente. In questo caso, QGIS cercherà la posizione ottimale dell’etichetta.
 - **Distanza** tra l’etichetta e il contorno del poligono

Fig. 12.23: Esempi di posizionamento delle etichette per i poligoni
– la Ripetizione Etichette Distanza per visualizzare più volte l'etichetta sulla lunghezza del perimetro.

• *Usa il Perimetro (Curvato):* disegna l'etichetta seguendo la curvatura del confine del poligono. Oltre ai parametri disponibili con la modalità *Usando il Perimetro*, puoi impostare l'angolo *Angolo massimo tra caratteri curvi*, sia interno che esterno.

• *Poligoni Esterni:* mette sempre le etichette fuori dai poligoni, ad una *Distanza* definita

Impostazioni di posizionamento comuni

Alcune impostazioni di posizionamento delle etichette sono disponibili per tutti i tipi di geometria di layer:

Definito dai dati

Il gruppo *Definito dai dati* fornisce un controllo diretto sul posizionamento delle etichette, elemento per elemento. Si basa sui loro attributi o su un'espressione da impostare:

• le coordinate X e Y

• l'allineamento del testo sulla posizione personalizzata impostata sopra:
 – *Orizzontale:* può essere *Sinistra, Centro o Destra*
 – *Verticale:* può essere *Bottom, Base, Half, Cap o Top*

• il testo *Rotazione.* Spunta la voce *Mantieni i valori di rotazione* se vuoi mantenere il valore di rotazione nel campo associato e applicarlo all'etichetta, che l'etichetta sia attiva o meno. Se non è attiva, togliendo la spunta la rotazione dell'etichetta viene azzerata e il suo valore cancellato dalla tabella degli attributi.

Nota: La rotazione definita dai dati con elementi poligonali è attualmente supportata solo con la modalità di posizionamento *Al centroide.*

Nota: Le espressioni non possono essere usate in combinazione con gli strumenti di mappatura delle etichette (cioè gli strumenti *Rotazione etichetta* e *Spostamento etichetta*) per *data-define* l'posizionamento delle etichette. Il widget sarà resettato al corrispondente *auxiliary storage field.*

Priorità

Nella sezione *Priorità* puoi definire il grado di priorità di posizionamento di ogni etichetta, cioè se ci sono diversi diagrammi o etichette candidati per la stessa posizione, l'oggetto con la priorità più alta sarà visualizzato e gli altri potrebbero essere lasciati fuori.

Il grado di priorità è anche usato per valutare se un'etichetta potrebbe essere omessa a causa di una più importante *obstacle feature.*
Ostacoli

In alcuni contesti (es. etichette ad alta densità, elementi che si sovrappongono…), il posizionamento delle etichette può comportare che le etichette siano posizionate sopra elementi non attinenti.

Un ostacolo è un elemento sopra il quale QGIS impedisce di posizionare etichette o diagrammi di altri elementi. Questo può essere controllato dalla sezione Ostacoli:

1. Attiva l’opzione Elément agiscono come ostacoli per decidere che gli elementi del layer debbano agire come ostacoli per qualsiasi etichetta e diagramma (inclusi gli elementi di altre caratteristiche nello stesso layer).

 Invece dell’intero layer, puoi selezionare un sottoinsieme di elementi da usare come ostacoli, usando il controllo Sovrascrittura definita dai dati accanto all’opzione.

2. Usa il pulsante Impostazioni… per modificare il peso dell’ostacolo.

 • Per ogni potenziale elemento di ostacolo puoi assegnare un Peso Ostacolo: ogni label o diagram il cui grado di priorità di posizionamento è maggiore di questo valore può essere collocato sopra. Le etichette o i diagrammi con rango inferiore saranno omessi se non è possibile nessun altro posizionamento.

 Questa ponderazione può anche essere definita dai dati, in modo che all’interno dello stesso layer, certe elementi hanno più probabilità di essere coperti rispetto ad altri.

 • Per i layer poligonali, puoi scegliere il modo in cui l’ostacolo agisce sull’elemento:

 – all’interno dell’elemento: evita di mettere le etichette all’interno del poligono (preferisce mettere le etichette totalmente fuori o appena dentro il poligono)

 – o lungo il contorno dell’elemento: evita di mettere le etichette sopra il contorno del poligono (preferisce mettere le etichette fuori o completamente dentro il poligono). Questo può essere utile per i layer in cui gli elementi coprono l’intera area (unità amministrative, coperture categoriali, …). In questo caso, è impossibile evitare di mettere le etichette all’interno di questi elementi, ed è molto meglio quando si evita di metterle sopra i confini tra gli elementi.

Scheda Visualizzazione

Nella scheda Visualizzazione, puoi regolare quando le etichette possono essere visualizzate e la loro interazione con altre etichette e elementi.

Opzioni etichetta

In Opzioni etichetta:

• Trovi le impostazioni di visibilità in funzione di scale-based e di Visibilità basata sulla dimensione in pixel.

• Il Livello dell’etichetta z-index determina l’ordine in cui le etichette sono rappresentate, così come in relazione ad altre etichette di elementi nel layer (usando l’espressione override definito dai dati), così come con etichette da altri layer. Le etichette con uno z-index più alto sono rappresentate sopra le etichette (di qualsiasi layer) con uno z-index più basso.

 Inoltre, la logica è stata perfezionata in modo che se due etichette hanno gli stessi z-indexes, allora:

 – se appartengono allo stesso layer, l’etichetta più piccola sarà disegnata sopra l’etichetta più grande

 – se appartengono a layer diversi, le etichette saranno disegnate nello stesso ordine dei loro layer stessi (cioè rispettando l’ordine impostato nella legenda della mappa).

Nota: Questa impostazione non fa sì che le etichette siano disegnate sotto gli elementi degli altri layer, controlla solo l’ordine in cui le etichette sono disegnate sopra gli elementi di tutti i layer.
• Nella visualizzazione delle etichette e al fine di mostrare etichette leggibili, QGIS valuta automaticamente la posizione delle etichette e può nasconderne alcune in caso di collisione. Puoi comunque scegliere di Mostra tutte le etichette per questo layer (inclusi le etichette in collisione) per sistematizzare manualmente il loro posizionamento (vedi Barra delle etichette).

• Con le espressioni definite dai dati in Mostra etichetta e Mostra sempre puoi mettere a punto quali etichette devono essere rappresentate.

• Abilita Mostra le etichette capovolte: le alternative sono mai, quando la rotazione è definita o sempre.

Opzioni elementi

In Opzioni elementi:

• Puoi scegliere di Etichettare ogni parte di elementi multipart e Numero massimo di elementi da etichettare.

• Entrambi i layer lineari e polygonali offrono l'opzione di impostare una dimensione minima per gli elementi da etichettare, usando Elimina l'etichettatura delle geometrie più piccole di.

• Per elementi polygonali, puoi anche filtrare le etichette da mostrare in base al fatto che rientrino o meno completamente nell'elemento.

• Per gli elementi lineari, puoi scegliere di Fondi le linee connesse per evitare la duplicazione dell'etichette, realizzando una mappa abbastanza ariosa in combinazione con le opzioni Distanza o Ripetizione nella scheda Placement.

12.4 Creare Simboli 3D

Il Gestore di stile ti aiuta a creare e memorizzare simboli 3D per ogni tipo di geometria da visualizzare in 3D map view.

Come per le altre voci, abilita la scheda Simboli 3D ed espandi il menu con il pulsante per creare:

• 3D point symbols
• 3D line symbols
• 3D polygon symbols
12.4.1 Layer puntuali

Puoi definire diverse forme 3D semplici come Sfera, Cilindro, Cubo, Cono, Piano e Toro definite dal loro Raggio, Dimensione o Lunghezza. L’unità di misura delle forme 3D si riferisce al SR del progetto.

L’ombreggiatura delle forme 3D può essere definita dai menù Diffuso, Ambiente, Speculare e Lucentezza (vedi https://en.wikipedia.org/wiki/Phong_reflection_model#Description)

Se scegli ‘guilabel’ Modello 3D”, la posizione sarà determinata da una semplice coordinata di punto.

Per visualizzare le nuvole di punti 3D puoi usare Tabellone Forme definite da Altezza Tabellone, Simbolo tabellone e Blocco altitudine. Il simbolo avrà una dimensione stabile.

Blocco altitudine può essere impostato su Assoluto, Relativo o Terreno. L’impostazione Assoluto può essere usata quando i valori di altezza dei vettori 3d sono forniti come misure assolute da 0. Relativo e Terreno aggiungono i valori di elevazione dei dati all’altezza del terreno sottostante.

Traslazione può essere usato per spostare gli oggetti lungo gli assi x, y e z.

Puoi definire un fattore di Scala per la forma 3D così come una Rotazione intorno agli assi x, y e z.
12.4.2 Layer Lineari

- Sotto le impostazioni *Larghezza* e *Altezza* puoi definire la *Estrusione* delle linee vettoriali. Se le linee non hanno valori z, puoi definire i volumi 3d con questa impostazione.
- Con il *Blocco Altitudine* definisci la posizione delle linee 3D rispetto alla superficie del terreno sottostante, se hai incluso dati di elevazione raster o altri vettori 3D.
- Il *Vincolo di altitudine* definisce come l'elemento è fissato al terreno. Ogni *Vertice* dell'elemento sarà fissato al terreno o questo sarà fatto per il *Centroide*.
- È possibile *Visualizzare come semplici linee 3D*.
- L'ombreggiatura può essere definita nei menu *Diffuso*, *Ambiente*, *Speculare* e *Lucentezza*.
12.4.3 Layer Poligonali

Fig. 12.26: Proprietà di un simbolo Poligono 3D

- Come per gli altri, l’Altezza può essere definita in unità SR. Puoi anche usare il pulsante per sovrascrivere il valore con un’espressione personalizzata, una variabile o una voce della tabella degli attributi.

- Di nuovo, l’Estrusione è possibile per i valori z mancanti. Anche per l’estrusione puoi usare il pulsante per usare i valori del layer vettoriale e avere risultati diversi per ogni poligono:
Figure 12.27: Estrusione Definita dai Dati

- Il **Blocco altitudine, Vincolo di altitudine** può essere definito come spiegato sopra.
- C'è un'opzione aggiuntiva per **Aggiungi le facce posteriori** e **Inverti le normali**.
- Puoi definire **Bordi** tramite **Larghezza e Colore**.

12.4.4 Esempio di applicazione

13.1 Accedere ai dati

Facendo parte di un ecosistema Software Open Source QGIS è costruito su diverse librerie che, unitamente agli specifici provider, offrono la capacità di leggere e spesso scrivere molti formati:

- I formati di dati vettoriali includono GeoPackage, GML, GeoJSON, GPX, KML, Comma Separated Values, formati ESRI (Shapefile, Geodatabase…), formati di file MapInfo e MicroStation, AutoCAD DWG/DXF, GRASS e molti altri… Leggi la lista completa dei formati vettoriali supportati in https://gdal.org/drivers/vector/index.html.

- I formati di database includono PostgreSQL/PostGIS, SQLite/SpatiaLite, Oracle, DB2 o MSSQL Spatial, MySQL …;

- Anche i servizi web di mappe e dati (WM(T)S, WFS, WCS, CSW, tasselli XYZ, servizi ArcGIS, …) sono gestiti dai provider QGIS. Vedere Lavorare con i protocolli OGC / ISO per maggiori informazioni su alcuni di questi.

- Puoi leggere i file supportati da cartelle archiviate e usare i formati nativi di QGIS come i file QML (QML - Il Formato FILE Stile QGIS) e i layer virtuali e in memoria.

Più di 80 formati vettoriali e 140 formati raster sono supportati da GDAL e dai provider nativi di QGIS.

Nota: Non tutti i formati elencati potrebbero funzionare in QGIS per varie ragioni. Per esempio, alcuni richiedono librerie proprietarie esterne, o l'installazione di GDAL/OGR del tuo sistema operativo potrebbe non essere stata sviluppata per supportare il formato che vuoi usare. Per vedere l'elenco dei formati disponibili, esegui la riga di comando ogrinfo --formats (per i vettori) e gdalinfo --formats (per i raster), o controlla il menu Impostazioni ► Opzioni ► GDAL in QGIS.
(Fig. 13.1) offre un’interfaccia unificata per aprire dati vettoriali o raster basati su file, così come database o servizi web supportati da QGIS. Può essere impostata come modale o meno con la casella di controllo

Finestra non modale di gestione delle sorgenti dati nel menu Impostazioni ➤ Opzioni ➤ Generale.

![Finestra di dialogo QGIS Gestore delle sorgenti dati](image)

Oltre a questo punto d’ingresso principale, hai anche il plugin **DB Manager** che offre funzionalità avanzate per analizzare e manipolare i database collegati. Maggiori informazioni sulle funzionalità di DB Manager possono essere trovate in **Plugin DB Manager**.

Ci sono molti altri strumenti, nativi o plugin di terze parti, che ti aiutano ad aprire vari formati di dati.

Questo capitolo descriverà solo gli strumenti forniti di default in QGIS per il caricamento dei dati. Si concentrerà principalmente sulla finestra di dialogo **Data Source Manager** ma più che descrivere ogni scheda, esplorerà anche gli strumenti basati sul fornitore di dati o sulle specificità del formato.
13.1.1 Il Pannello Browser

Il Browser è uno dei modi principali per aggiungere rapidamente e facilmente i tuoi dati ai progetti. È disponibile come:

- una scheda Gestore della sorgente dati, abilitata premendo il pulsante Apri gestore della sorgente dati (Ctrl+L);
- come pannello QGIS che puoi aprire dal menu Visualizza ► Pannelli (o Impostazioni ► Pannelli) o premendo Ctrl+2.

In entrambi i casi, il Browser ti aiuta a navigare nel tuo file system e a gestire i geodati, indipendentemente dal tipo di layer (raster, vettore, tabella), o dal formato della fonte dei dati (file semplici o compressi, database, servizi web).

Esplorare l’Interfaccia

Nella parte superiore del pannello Browser, trovi alcuni pulsanti che ti aiutano a:

- Aggiungi layer selezionati: puoi anche aggiungere dati alla mappa selezionando Aggiungi layer selezionato(i) dal menu contestuale del layer;
- Aggiorna l’albero del browser;
- Filtra Browser per cercare dati specifici. Inserisci una parola di ricerca o un carattere jolly e il browser filtrerà l’albero per mostrare solo i percorsi delle tabelle, dei nomi di file o delle cartelle del DB corrispondenti - altri dati o cartelle non saranno visualizzati. Vedi l’esempio di Browser Panel(2) in Fig. 13.2. Il confronto può essere sensibile alle maiuscole o meno. Può anche essere impostato a:
 - Normale: mostra gli elementi che contengono il testo cercato
 - Wildcard(s): perfeziona la ricerca usando i caratteri ? e/o * per specificare la posizione del testo cercato
 - Espressione Regolare
- Racchiudi tutto: collassa la struttura ad albero;
- Attiva/disattiva le proprietà del widget, quando è attivato, viene aggiunto un nuovo widget in fondo al pannello che mostra, se applicabile, i metadati per l’elemento selezionato.

Le voci nel pannello Browser sono organizzate gerarchicamente, e ci sono diverse voci di livello superiore:

1. Preferiti dove puoi mettere collegamenti a percorsi usati spesso
2. Segnalibri Spaziali dove puoi memorizzare destinazioni di mappe usate spesso (vedi Segnalibri Spaziali)
4. Home directory nel file system e la directory principale del file system.
5. Unità locali o di rete collegate
6. Poi viene una serie di tipologie di contenitori / database e protocolli di servizio, a seconda della piattaforma e delle librerie sottostanti:
 - GeoPackage
 - SpatiaLite
 - PostGIS
 - MSSQL
 - Oracle
Interagire con gli oggetti del Browser

Il browser supporta il trascinamento all’interno del browser, dal browser all’area di lavoro e al pannello Layer, e dal pannello Layer ai contenitori di layer (per esempio GeoPackage) nel browser.

Gli elementi dei file di progetto all’interno del browser possono essere espansi, mostrando l’intero albero dei layer (inclusi i gruppi) contenuti in quel progetto. Gli elementi del progetto sono trattati allo stesso modo di qualsiasi altro elemento nel browser, quindi possono essere trascinati e rilasciati all’interno del browser (per esempio per copiare un elemento del layer in un file geopackage) o aggiunti al progetto corrente attraverso il drag and drop o il doppio clic.

Il menu contestuale per un elemento nel pannello Browser si apre cliccandolo sopra con il tasto destro del mouse.

Per le voci delle cartelle del file system, il menu contestuale offre quanto segue:

- **Nuovo** ➤ per creare nella voce selezionata un:
 - Cartella…
 - GeoPackage…
 - ShapeFile…
- **Aggiungi ai Preferiti**: le cartelle preferite possono essere rinominate (Rinomina Preferito…) o rimosse (Rimuovi Preferito) in qualsiasi momento.
- **Nascondi dal Browser**: le cartelle nascoste possono essere rese visibili dall’impostazione Impostazioni ➤ Opzioni ➤ Sorgenti Dati ➤ Percorsi Browser Nascosti
- **Scansione Velocemente questa Cartella**
- **Apri Cartella**…
- **Apri nel Terminale**…
- **Proprietà**…
- **Proprietà Cartella**…

Per le voci delle foglie che possono agire come layer nel progetto, il menu contestuale avrà voci di supporto. Per esempio, per fonti di dati vettoriali, raster e mesh non basati su database e non basati su servizi:

- **Elimina File <<name of file>>**…
- **Esporta Layer ➔ Su File**…
- **Aggiungi Layer al Progetto**
- **Proprietà del Layer**…

Capitolo 13. Gestione fonti dati
• Proprietà File
Nella voce Proprietà del Layer..., troverai (simile a quello che troverai nelle proprietà dei layer vector e raster una volta che i layer sono stati aggiunti al progetto):

• Metadata per il layer. Gruppi di metadati: Informazioni dalla Sorgente (se possibile, Percorso sarà un collegamento ipertestuale alla fonte), Identificazione, Estensione, Accesso, Campi (per i layer vettoriali), Bande (per layer raster), Contatti, Collegamenti (per layer vettoriali), Riferimenti (per layer raster), Storia.

• Un pannello Anteprima

• La tabella degli attributi per le fonti vettoriali (nel pannello Attributi).

Per aggiungere un layer al progetto usando il Browser:

1. Attiva Browser come descritto sopra. Viene visualizzato una lista ad albero con il tuo file system, i database e i servizi web. Potrebbe essere necessario collegare i database e i servizi web prima di poterli visualizzare (vedi le sezioni dedicate).

2. Cerca il layer nell’elenco.

3. Usa il menu contestuale, fai doppio clic sul suo nome o trascinalo nella mappa map canvas. Il tuo layer è ora aggiunto al Layers panel e può essere visualizzato nell’area di disegno della mappa.

Suggerimento: Aprire un progetto QGIS direttamente dal browser

Puoi anche aprire un progetto QGIS direttamente dal pannello del Browser facendo doppio clic sul suo nome o trascinandolo e rilasciandolo nell’area di disegno della mappa.

Una volta che un file è stato caricato, puoi zoomare intorno ad esso usando gli strumenti di navigazione della mappa. Per cambiare lo stile di un layer, apri la finestra di dialogo Proprietà del Layer facendo doppio clic sul nome del layer o facendo clic con il tasto destro del mouse sul nome nella legenda e scegliendo Proprietà dal menu contestuale. Vedi la sezione Proprietà Simbologia per maggiori informazioni sull’impostazione della simbologia per i layer vettoriali.

Fare clic con il tasto destro del mouse su un elemento nell’albero del browser ti aiuta a:

• per un file o una tabella, visualizzare i suoi metadati o aprirlo nel tuo progetto. Le tabelle possono anche essere rinominate, cancellate o ritagliate.

• per una cartella, metterla tra i preferiti o nasconderla dall’albero del browser. Le cartelle nascoste possono essere gestite dalla scheda Impostazioni ➤ Opzioni ➤ Sorgenti Dati.

• gestire i tuoi segnalibri spaziali: i segnalibri possono essere creati, esportati e importati come file XML.

• creare una connessione a un database o a un servizio web.

• aggiornare, rinominare o eliminare uno schema.

Puoi anche importare file nei database o copiare tabelle da uno schema/database a un altro con un semplice drag-and-drop. C’è un secondo pannello del browser disponibile per evitare un lungo scorrimento durante il trascinamento. Basta selezionare il file e trascinare da un pannello all’altro.
Suggerimento: Aggiungi layer a QGIS con un semplice drag-and-drop dal visualizzatore file del tuo sistema operativo
Puoi anche aggiungere i file al progetto trascinandoli dal proprio visualizzatore di file del sistema operativo in uso al Panello Layer o all'area di visualizzazione mappa.

13.1.2 Il DB Manager

Il plugin DB Manager è un altro strumento per integrare e gestire i formati di database spaziali supportati da QGIS (PostGIS, SpatiaLite, GeoPackage, Oracle Spatial, MSSQL, DB2, Virtual layers). Può essere attivato dal menu Plugins ➤ Gestisci ed Installa Plugin…

Il Plugin DB Manager offre diverse funzionalità:

- connettersi ai database e visualizzare la loro struttura e il loro contenuto
- visualizzare in anteprima le tabelle dei database
- aggiungere layer alla mappa, sia con un doppio clic o con il drag-and-drop.
- aggiungere layer a un database dal Browser QGIS o da un altro database
- creare query SQL e aggiungere il loro risultato alla mappa
- creare virtual layers

Maggiori informazioni sulle funzionalità di DB Manager si trovano in Plugin DB Manager.
13.1.3 Strumenti di caricamento per specifici provider di dati

Oltre al Pannello Browser e al DB Manager, i principali strumenti forniti da QGIS per aggiungere layer, troverai anche strumenti specifici per i provider di dati.

Nota: Alcuni external plugins forniscono anche strumenti per aprire file di formato specifico in QGIS.

Caricare un layer da un file

Per caricare un layer da un file:

1. Apri la scheda del tipo di layer nella finestra di dialogo Data Source Manager, cioè clicca sul pulsante Apri Gestore della Sorgente Dati (o premi Ctrl+L) e attiva la scheda di destinazione o:
 • per dati vettoriali (come GML, ESRI Shapefile, Mapinfo e layer DXF): premi Ctrl+Shift+V, seleziona l'opzione del menu Layer ➤ Aggiungi Layer ➤ Aggiungi Layer Vettore... o clica sul pulsante Aggiungi Layer Vettore della barra degli strumenti.
per i dati raster (come GeoTiff, MBTiles, GRIdded Binary e layer DWG): premi Ctrl+Shift+R, seleziona l'opzione del menu Layer ➤ Aggiungi Layer ➤ Aggiungi Layer Raster… o clicca sul pulsante della barra degli strumenti Aggiungi Layer Raster.

2. Seleziona File tipo di sorgente
3. Fai clic sul pulsante …
4. Naviga nel file system e carica un tipo di dati supportato. Più di un layer può essere caricato allo stesso tempo tenendo premuto il tasto Ctrl e cliccando su più elementi nella finestra di dialogo o tenendo premuto il tasto Shift per selezionare un intervallo di elementi cliccando sul primo e sull'ultimo elemento dell'intervallo. Solo i formati che sono stati ben testati appaiono nel filtro dei formati. Altri formati possono essere caricati selezionando Tutti i file (la voce in alto nel menu a tendina).
5. Premi Apri per caricare il file selezionato nella finestra di dialogo Data Source Manager
Fig. 13.6: Caricamento di uno Shapefile con le opzioni aperte

6. Premi **Aggiungi** per caricare il file in QGIS e visualizzarlo nella vista mappa. Fig. 13.7 mostra QGIS dopo aver caricato il file **alaska.shp**.
Nota: Per caricare i file vettoriali, il driver GDAL offre la possibilità di definire le azioni di apertura. Queste saranno mostrate quando il file vettoriale è selezionato. Le opzioni sono descritte in dettaglio su https://gdal.org/drivers/vector/.

Nota: Poiché alcuni formati come MapInfo (ad esempio, .tab) o AutoCAD (.dxf) permettono di mescolare diversi tipi di geometria in un unico file, caricando tali set di dati si apre una finestra di dialogo per selezionare le geometrie da usare in modo da avere una geometria per layer.

Le schede Aggiungi Layer Vettore e Aggiungi Layer Raster permettono il caricamento di layer da tipi di sorgente diversi da File:

- Puoi caricare formati vettoriali specifici come ArcInfo Binary Coverage, UK. National Transfer Format, così come il formato grezzo TIGER del US Census Bureau o OpenfileGDB. Per farlo, seleziona Cartella come Tipo Sorgente. In questo caso, una cartella può essere selezionata nella finestra di dialogo dopo aver premuto … Sfoglia.

- Con il tipo di sorgente Database puoi selezionare una connessione al database esistente o crearne una al tipo di database selezionato. Alcuni tipi di database possibili sono ODBC, Esri Personal Geodatabase, MSSQL così come PostgreSQL o MySQL.

Premendo il pulsante: guilabel: Nuovo si apre la finestra di dialogo Crea una Nuova Conessione Database OGR i cui parametri sono tra quelli che può trovare in Creazione della connessione. Premendo :guilabel: Apri si può scegliere tra le tabelle disponibili, per esempio dei database abilitati per PostGIS.

- Il Protocollo: HTTP(S), cloud, ecc. apre i dati memorizzati localmente o in rete, accessibili pubblicamente o in bucket privati di servizi commerciali di cloud storage. I tipi di protocollo supportati sono:
 - HTTP/HTTPS/FTP con un URI e, se richiesto, un authentication.
 - Cloud storage come AWS S3, Google Cloud Storage, Microsoft Azure Blob, Alibaba OSS Cloud, Open Stack Swift Storage. Devi compilare la Bucket o contenitore e la Chiave oggetto.
 - servizio che supporta OGC WFS 3 (ancora sperimentale), usando il formato GeoJSON o GEOJSON - Newline Delimited o basato sul database CouchDB. È richiesto un URI, con opzionale authentication.
– Per tutti i tipi di fonti dati vettoriali è possibile definire la *Codifica* o usare l'impostazione *Automatico*.

Caricare un layer mesh

Una mesh è una griglia non strutturata di solito con elementi temporali e altri elementi. La componente spaziale contiene una collezione di vertici, bordi e facce nello spazio 2D o 3D. Maggiori informazioni sui layer delle mesh in *Lavorare con i dati Mesh*.

Per aggiungere un layer mesh a QGIS:

1. Apri la finestra di dialogo *Data Source Manager*, o selezionala dal menu *Layer* o cliccando il pulsante [Apri Gestore delle Sorgenti Dati](#)
2. Abilita la scheda *Mesh* nel pannello sinistro
4. Seleziona il layer e premi *Aggiungi*. Il layer verrà aggiunto utilizzando la rappresentazione nativa della mesh.

![Fig. 13.8: Scheda Mesh in Gestore delle sorgente dati](#)

Importare file di testo delimitato

1. Fai clic sull'icona [Apri Gestore delle Sorgenti Dati](#) per aprire la finestra di dialogo *Data Source Manager*
2. Abilita la scheda *Testo Delimitato*
3. Seleziona il file di testo delimitato da importare (per esempio, `qgis_sample_data/csv/elevp.csv`) cliccando sul pulsante … [Sfoglia](#).
4. Nel campo *Nome Layer*, fornisci il nome da usare per il Layer nel progetto (ad esempio *Elevation*).
5. Configura le impostazioni per conformare il tuo set di dati e le tue esigenze, come spiegato di seguito.
Una volta selezionato il file, QGIS tenta di analizzare il file con l’ultimo delimitatore usato, identificando campi e righe. Per permettere a QGIS di analizzare correttamente il file, è importante selezionare il delimitatore giusto. Puoi specificare un delimitatore scegliendo tra:

- **CSV (formato testo delimitato)** per usare il carattere virgola.
- **Delimitatore espressione regolare** e inseriscici del testo nel campo *Espressione*. Per esempio, per cambiare il delimitatore in tabulazione, usa \t (questo è usato nelle espressioni regolari per il carattere tabulazione).
- **Delimitatori personalizzati**, scegliendo tra alcuni delimitatori predefiniti come ‘Virgola, Spazio, tab’, ‘Punto e Virgola’,
Record e campi

Alcune altre opzioni convenienti possono essere utilizzate per il riconoscimento dei dati:

- **Numero di righe di intestazione da saltare**: comodo quando vuoi evitare le prime righe del file nell’importazione, o perché sono righe vuote o con un’altra formattazione.

- **Il primo record ha i nomi dei campi**: i valori nella prima riga sono usati come nomi di campo, altrimenti QGIS usa i nomi di campo `field_1, field_2...`

- **Identifica i tipi di campo**: riconosce automaticamente il tipo di campo. Se disattivato, tutti gli attributi sono trattati come campi di testo.

- **La virgola è il separatore decimale**: puoi forzare il separatore decimale ad essere una virgola.

- **Tronca campi**: ti permette di troncare gli spazi iniziale e finali dai campi.

- **Scarta i campi vuoti**.

Mentre imposti le proprietà di interpretazione, un’anteprima dei dati campione viene aggiornata nella parte inferiore della finestra di dialogo.

Definizione geometria

Una volta che il file è stato interpretato, imposta **Definizione della Geometria** a:

- **Coordinate del punto** e fornisce i campi Campo X, Campo Y, Campo Z (per dati tridimensionali) e Campo M (per la dimensione di misura) se il layer è di tipo geometrico puntuale e contiene tali campi. Se le coordinate sono definite come gradi/minuti/secondi, attiva la casella di controllo **Coordinate GMS**. Fornisci l’appropriato SR della geometria usando il widget **Seleziona SR**.

- **Well known text (WKT)** opzione se le informazioni spaziali sono rappresentate come WKT: selezionare il Campo geometria contenente la geometria WKT e scegliere il Campo geometria appropriato o lasciare che QGIS lo rilevi automaticamente. Fornisci l’appropriato SR della geometria usando il widget **Seleziona SR**.

- **Se il file contiene dati non spaziali**, attiva **Nessuna geometria (solo tabella attributi)** e verrà caricato come una normale tabella.

Impostazioni layer

Puoi anche attivare:

- **Usa indice spaziale** per migliorare le prestazioni di visualizzazione e selezione spaziale degli elementi.

- **Usa indice di raggruppamento** per migliorare le prestazioni dei filtri *subset filters* (quando definiti nelle proprietà del layer).

- **Controlla file** per controllare le modifiche al file da parte di altre applicazioni mentre QGIS è in esecuzione.

Alla fine, clicca su **Aggiungi** per aggiungere il layer alla mappa. Nel nostro esempio, un layer di punti chiamato Elevation viene aggiunto al progetto e si comporta come qualsiasi altro layer della mappa in QGIS. Questo layer è il risultato di una query sul file sorgente .csv (quindi, collegato ad esso) e richiederebbe *to be saved* per avere un layer spaziale su disco.
Importare file DXF o DWG

I file DXF e DWG possono essere aggiunti a QGIS con un semplice drag-and-drop dal Pannello Browser. Ti verrà richiesto di selezionare i sublayers che vuoi aggiungere al progetto. I layer vengono aggiunti con proprietà di stile casuali.

Nota: Per i file DXF contenenti diversi tipi di geometria (punto, linea e/o poligono), il nome dei layer sarà generato come <filename.dxf> entities <geometry type>.

Per mantenere la struttura del file dxf/dwg e la sua simbologia in QGIS, puoi utilizzare lo strumento dedicato Progetto ► Importa/Esporta ► Importa layer da DWG/DXF.... che ti permette di:

1. importare elementi dal file DWG/DXF in un database di GeoPackage.
2. aggiungere elementi importati al progetto.

Nella finestra di dialogo Importa DWG/DXF, per importare il file Disegno nel Geopackage:

1. Inserisci la posizione del Target package, cioè il nuovo file GeoPackage che memorizzerà i dati. Se viene fornito un file esistente, allora verrà sovrascritto.
2. Specifica il sistema di riferimento delle coordinate dei dati del file DWG/DXF.
3. Seleziona ☑ Espandi riferimenti blocco per importare i blocchi nel file di disegno come oggetti normali.
4. Seleziona ☑ Use curve per trasformare i layer importati in un tipo di geometria curva.
5. Usa il pulsante Importa per selezionare il file DWG/DXF da utilizzare (uno per geopackage). Il database del GeoPackage sarà automaticamente popolato con il contenuto del file di disegno. A seconda della dimensione del file, questo può richiedere del tempo.

Dopo che i dati .dwg o .dxf sono stati importati nel database di GeoPackage, la cornice nella metà inferiore della finestra di dialogo è popolata con la lista dei layer provenienti dal file importato. Li puoi selezionare quali layer aggiungere al progetto QGIS:

1. Nella parte superiore, imposta un Nome gruppo per raggruppare i file di disegno nel progetto.
2. Controlla i layer da mostrare: ogni layer selezionato viene aggiunto ad un gruppo ad hoc che contiene layer vettoriali per le tipologie punto, linea, etichetta e area del layer di disegno. Lo stile dei layer assomigherà all'aspetto che avevano originariamente in *CAD.
3. Selezionare se il layer deve essere visibile all'apertura.
4. Selezionando l'opzione ☑ Fondi layer colloca tutti i layer in un unico gruppo.
5. Premi OK per aprire i layer in QGIS.
Importare vettori OpenStreetMap

Il progetto OpenStreetMap è popolare perché in molti paesi non sono disponibili geodati gratuiti come le mappe stradali digitali. L’obiettivo del progetto OSM è quello di creare una mappa modificabile gratuita del mondo da dati GPS, fotografie aeree e conoscenze locali. Per sostenere questo obiettivo, QGIS fornisce il supporto per i dati OSM.

Usando il Pannello Browser, puoi caricare un file .osm nella mappa, in tal caso otterrai un finestra di dialogo per selezionare i sublayers basati sul tipo di geometria. I layer caricati conterranno tutti i dati di quel tipo di geometria nel file .osm, e manterranno la struttura dati del file .osm.

Layer SpatiaLite

La prima volta che carichi i dati da un database di SpatiaLite, inizia da:

- cliccando sul pulsante della barra degli strumenti Aggiungi Layer SpatiaLite
- selezionando l’opzione Aggiungi Layer SpatiaLite... dal menu Layer ➤ Aggiungi Layer
- o digitando Ctrl+Shift+L

Questo farà apparire una finestra che ti permetterà o di connetterti ad un database SpatiaLite già noto a QGIS (che sceglierai dal menù a tendina) o di definire una nuova connessione ad un nuovo database. Per definire una nuova
connessione, clicca su `Nuovo` e usa il browser dei file per puntare al tuo database SpatiaLite, che è un file con estensione `.sqlite`.

QGIS supporta anche viste modificabili in SpatiaLite.

GPS

Il caricamento di dati GPS in QGIS può essere fatto usando il plugin di base `Strumenti GPS`. Le istruzioni si trovano nella sezione `Plugin GPS`.

GRASS

Lavorare con i dati vettoriali di GRASS è descritto nella sezione `Integrazione con GRASS GIS`.

Strumenti riferiti ai Database

Creazione della connessione

Per leggere e scrivere tabelle da un formato di database supportato da QGIS devi creare una connessione a quel database. Mentre `QGIS Browser Panel` è il modo più semplice e raccomandato per connettersi e utilizzare i database, QGIS fornisce altri strumenti per connettersi a ciascuno di essi e caricare le loro tabelle:

- **Aggiungi vettore PostGIS…** oppure digitando `Ctrl+Shift+D`
- **Aggiungi Layer MSSQL Spatial…**
- **Aggiungi Layer Oracle Spatial…** o digitando `Ctrl+Shift+O`
- **Aggiungi Layer DB2 Spatial…** o digitando `Ctrl+Shift+2`

Questi strumenti sono accessibili sia dalla **Barra di Gestione dei Layer** che dal menu `Layer ➤ Aggiungi Layer ➤`. La connessione al database SpatiaLite è descritta in `Layer SpatiaLite`.

Suggerimento: Creare una connessione al database dal pannello Browser QGIS

Selezionando il formato di database corrispondente nell’albero del Browser, cliccando con il tasto destro del mouse e scegliendo connect si ottiene la finestra di dialogo di connessione al database.

La maggior parte delle finestre di dialogo di connessione seguono una base comune che sarà descritta di seguito usando lo strumento database PostgreSQL come esempio. Per ulteriori impostazioni specifiche di altri provider, puoi trovare le descrizioni corrispondenti su:

- **Connessione a MSSQL Spatial**;
- **Connessione a Oracle Spatial**;
- **Connessione a DB2 Spatial**.

La prima volta che usi un’origine dati PostGIS, devi creare una connessione a un database che contiene i dati. Inizia facendo clic sul pulsante appropriato come esposto sopra, aprendo una finestra di dialogo `Aggiungi Tabella(e) PostGIS` (vedi Fig. 13.12). Per accedere al gestore delle connessioni, fai clic sul pulsante `Nuovo` per visualizzare la finestra di dialogo `Crea una nuova connessione PostGIS`.

Capitolo 13. Gestione fonti dati
Fig. 13.11: Crea una nuova finestra di dialogo PostGIS
I parametri richiesti per una connessione PostGIS sono spiegati qui sotto. Per gli altri tipi di database, vedi le loro differenze in *Requisiti specifici per le connessioni*.

- **Nome**: Un nome per questa connessione. Può essere lo stesso di *Database*.
- **Servizio**: Parametro di servizio da usare in alternativa a hostname/port (e potenzialmente al database). Può essere definito in *pg_service.conf*. Consulta la sezione *File per la connessione a Servizio PostgreSQL* per maggiori dettagli.
- **Host**: Nome dell'host del database. Questo deve essere un nome di host risolvibile, come quello che verrebbe usato per aprire una connessione TCP/IP o per eseguire il ping dell'host. Se il database è sullo stesso computer di QGIS, inserisci semplicemente *localhost* qui.
- **Porta**: Numero di porta su cui il server di database PostgreSQL è in ascolto. La porta predefinita per PostGIS è 5432.
- **Database**: Nome del database.
- **Modalità SSL**: Impostazione della crittografia SSL. Sono disponibili le seguenti opzioni:
 - *Preferito* (il default): Non mi interessa la crittografia, ma desidero sostenere l'overhead della crittografia se il server la supporta.
 - *Richiesto*: Voglio che i miei dati siano criptati e accetto l'overhead. Confido che la rete si assicuri che io mi connetta sempre al server che voglio.
 - *Verifica CA*: Voglio che i miei dati siano criptati e accetto l'overhead. Voglio essere sicuro di connettermi ad un server di cui mi fido.
 - *Verifica-intero*: Voglio che i miei dati siano criptati e accetto l'overhead. Voglio essere sicuro di connettermi a un server di cui mi fido, e che sia quello che ho specificato.
 - *Permessi*: Non mi interessa la sicurezza, ma accetterò l'overhead della crittografia se il server insiste su di essa.
 - *Disabilitato*: Non mi interessa la sicurezza e non voglio subire l'overhead della crittografia.
- **Autenticazione**, base.
 - **Nome utente**: Nome utente usato per accedere al database.
 - **Password**: Password usata con *Nome Utente* per connettersi al database.

Puoi salvare uno o entrambi i parametri *Nome utente* e *Password*, nel qual caso saranno usati per default ogni volta che dovrai connetterti a questo database. Se non vengono salvati, ti verrà richiesto di fornire le credenziali per connettersi al database nelle prossime sessioni di QGIS. I parametri di connessione inseriti vengono memorizzati in una cache interna temporanea e restituiti ogni volta che viene richiesto un nome utente/password per lo stesso database, finché non si termina la sessione corrente di QGIS.

Avvertimento: QGIS impostazioni utente e sicurezza

Nella scheda *Autenticazione*, salvando *username* e *password* si mantengono le credenziali non protette nella configurazione della connessione. Queste *credenziali saranno visibili* se, per esempio, si condivide il file del progetto con qualcuno. Pertanto, è consigliabile salvare invece le credenziali in una configurazione di *Autenticazione* (scheda *Configurazioni* - Vedi *Sistema di Autenticazione* per maggiori dettagli) o in un file di connessione di servizio (vedi *File per la connessione a Servizio PostgreSQL* per esempio).

- **Autenticazione**, configurazioni. Scegli una configurazione di autenticazione. Puoi aggiungere configurazioni usando il pulsante . Le scelte sono:
 - Autenticazione Base
 - autenticazione PKI PKCS#12
 - percorsi di autenticazione PKI
 - certificato di identità PKI memorizzato
In alternativa, a seconda del tipo di database, è possibile attivare le seguenti caselle di controllo:

- **Mostra solamente i layer contenuti nel registro**
- **Non risolvere tipo di geometria senza restrizioni (GEOMETRY)**
- **Cerca solo nello schema “public”**
- **Mostra anche le tabelle senza geometria**
- **Usa i metadati stimati della tabella**
- **Consenti il salvataggio/caricamento di progetti QGIS nel database - maggiori dettagli [here](#)**

Suggerimento: Utilizza metadati di tabella stimati per velocizzare le operazioni

Quando si inizializzano i layer, possono essere necessarie varie query per stabilire le caratteristiche delle geometrie memorizzate nella tabella del database. Quando l’opzione *Usa i metadati stimati della tabella* è selezionata, queste query esaminano solo un campione di righe e usano le statistiche della tabella, piuttosto che l’intera tabella. Questo può accelerare drasticamente le operazioni su grandi insiemi di dati, ma può risultare in una caratterizzazione non corretta dei layer (ad esempio il conteggi degli elementi dei layer filtrati non sarà determinato accuratamente) e può anche causare un comportamento strano se le colonne che dovrebbero essere univoci in realtà non lo sono.

Una volta impostati tutti i parametri e le opzioni, puoi testare la connessione cliccando il pulsante *Test Connessione* o applicarla cliccando il pulsante *OK*. Da *Aggiungi Tabella(e) PostGIS*, clicca ora su *Connetti*, e la finestra di dialogo si riempie di tabelle dal database selezionato (come mostrato in Fig. 13.12).

Requisiti specifici per le connessioni

A causa delle particolarità del tipo di database, le opzioni fornite non sono le stesse. Le opzioni specifiche del database sono descritte di seguito.

File per la connessione a Servizio PostgreSQL

Il file di connessione del servizio consente di associare parametri di connessione PostgreSQL a un singolo nome di servizio. Quel nome di servizio può essere specificato da un client e verranno utilizzate le impostazioni associate.

Si chiama *pg_service.conf* nei sistemi *nix systems (GNU/Linux, macOS etc.)* e *pg_service.conf* in Windows.

Il file di servizio può essere simile a questo:

```ini
[water_service]
host=192.168.0.45
port=5433
dbname=gisdb
user=paul
password=paulspass

[wastewater_service]
host=dbserver.com
dbname=water
user=waterpass
```

Nota: Ci sono due servizi nell’esempio precedente: *water_service* e *wastewater_service*. Puoi usarli per connetterti da QGIS, pgAdmin, ecc. specificando solo il nome del servizio a cui vuoi connetterti (senza le parentesi graffe). Se vuoi usare il servizio con *psql* devi fare qualcosa come `export PGSERVICE=water_service` prima di fare i tuoi comandi *psql*.
Puoi trovare tutti i parametri PostgreSQL [qui](#).

Nota: Se non vuoi salvare le password nel file di servizio puoi usare l’opzione `.pg_pass`.

Sui sistemi operativi nix (GNU/Linux, macOS ecc.) puoi salvare il file `.pg_service.conf` nella cartella home dell’utente e i client PostgreSQL ne saranno automaticamente a conoscenza. Per esempio, se l’utente loggato è `web`, `.pg_service.conf` dovrebbe essere salvato nella cartella `/home/web/` per funzionare direttamente (senza specificare altre variabili d’ambiente).

Puoi specificare la posizione del file di servizio creando una variabile di ambiente `PGSERVICEFILE` (e.g. eseguire il comando `export PGSERVICEFILE=/home/web/.pg_service.conf` nel proprio OS *nix OS per impostare temporaneamente la variabile `PGSERVICEFILE`)

Puoi anche rendere il file di servizio disponibile a livello di sistema (tutti gli utenti) sia mettendo il file `.pg_service.conf` in `pg_config --sysconfdir` o aggiungendo la variabile d’ambiente `PGSYSCONFDIR` per specificare la cartella contenente il file di servizio. Se esistono definizioni di servizio con lo stesso nome nel file utente e nel file di sistema, il file utente ha la precedenza.

Avvertimento: Ci sono alcune particolarità per Windows:
- Il file dei servizi deve essere salvato come `pg_service.conf` e non come `.pg_service.conf`.
- Il file del servizio deve essere salvato nel formato Unix. Un modo per fare ciò è di aprire il file con Notepad++ ed eseguire **Edit** ➤ **EOL Conversion** ➤ **UNIX Format** ➤ **File save**.
- Puoi aggiungere variabili di ambiente in vari modi; uno testato, noto per funzionare in modo affidabile, è **Pannello di controllo** ➤ **Sistema e sicurezza** ➤ **Sistema** ➤ **Impostazioni di sistema avanzate** ➤ **Variabili di ambiente** aggiungendo `PGSERVICEFILE` con il percorso - per esempio `C:UsersJohnpg_service.conf`.
- Dopo l’aggiunta di una variabile di ambiente è necessario riavviare il computer.

Connessione a Oracle Spatial

Le caratteristiche spaziali di Oracle Spatial aiutano gli utenti a gestire i dati geografici e di localizzazione in un tipo nativo all’interno di un database Oracle. Oltre ad alcune delle opzioni in *Creazione della connessione*, la finestra di dialogo di connessione propone:

- **Database:** SID o `SERVICE_NAME` dell’istanza Oracle;
- **Porta:** Numero di porta su cui il database Oracle rimane in ascolto. La porta predefinita è 1521;
- **Opzioni:** Opzioni specifiche della connessione Oracle (per esempio `OCI_ATTR_PREFETCH_ROWS`, `OCI_ATTR_PREFETCH_MEMORY`). Il formato della stringa delle opzioni è una lista separata da punto e virgola di nomi di opzioni o di opzione=combinationi di valori;
- **Spazio di lavoro:** Spazio di lavoro a cui passare;
- **Schema:** Schema in cui sono memorizzati i dati

Opzionalmente, puoi selezionare le seguenti caselle di controllo:

- **Guarda solo nella tabella metadati:** restringe le tabelle visualizzate a quelle che sono presenti nella vista `all_sdo_geom_metadata`. Questo procedimento velocizza la visualizzazione iniziale delle tabelle spaziali;
- **Guarda solo nelle tabelle dell’utente:** la ricerca di tabelle spaziali si limita alle tabelle di proprietà dell’utente;
- **Mostra anche tabelle senza geometria:** specifica che anche le tabelle senza geometria devono essere elencate.
• **Usa i metadati stimati della tabella:** quando il layer viene impostato, la tabella Oracle richiede diversi metadati. Sono necessarie informazioni come il conteggio delle righe della tabella, il tipo di geometria e l'estensione spaziale nella colonna geometria. Se la tabella contiene un grande numero di righe che descrivono i metadati, stimare questi metadati porterà via molto tempo. Attivando questa opzione verranno eseguite le seguenti rapide operazioni sulla tabella dei metadati: Il conteggio delle righe è determinato da `all_tables.num_rows`. Le estensioni della tabella saranno sempre determinate con la funzione `SDO_TUNE.EXTENTS_OF` anche se viene applicato un filtro di livello. La geometria della tabella è determinata dalle prime 100 righe di geometria non-null della tabella.

• **Solo tipi di geometrie esistenti** elenca solo i tipi di geometria esistenti e non permette di aggiungerne altre.

• **Includere attributi aggiuntivi alla geometria.**

Suggerimento: Vettori Oracle Spatial

Normalmente un vettore Oracle Spatial è definito con una voce nella tabella `USER_SDO_METADATA`. Per garantire che gli strumenti di selezione funzionino correttamente, si consiglia che le tabelle dispongano di una **chiave primaria**.

Connessione a DB2 Spatial

Oltre ad alcune delle opzioni descritte in *Creazione della connessione*, la connessione a un database DB2 (vedi *Layer DB2 Spatial* per maggiori informazioni) può essere specificata usando un nome *Service/DSN* definito per ODBC o *Driver*, *Host* e *Port*.

Una connessione ODBC *Service/DSN* richiede il nome del servizio definito per ODBC.

Una connessione driver/host/porta richiede:

• **Driver**: Nome del driver DB2. In genere questo dovrebbe essere IBM DB2 ODBC DRIVER.

• **Host DB2**: Nome del database nell'host. Questo deve essere un nome host risolvibile come quello utilizzato per aprire una connessione TCP/IP o per il ping all'host. Se il database è sullo stesso computer di QGIS, digitare `localhost`.

• **Porta DB2**: Numero di porta in cui il server di database DB2 ascolta. La porta `DBW LUW` predefinita è 50000. La porta `DB2 z/OS` predefinita è 446.

Suggerimento: DB2 Spatial Layers

Un DB2 Spatial layer è definito da una riga nella vista `DB2GSE.ST_GEOMETRY_COLUMNS`.

Nota: Per poter lavorare in modo efficace con le tabelle spaziali DB2 in QGIS, è importante che le tabelle presentino una colonna INTEGER o BIGINT definita come PRIMARY KEY e se nuove funzioni saranno aggiunte, questa colonna dovrebbe avere anche la caratteristica GENERATED.

È inoltre utile che la colonna spaziale venga registrata con un identificativo spaziale specifico (spesso 4326 per le coordinate WGS84). Una colonna spaziale può essere registrata chiamando la procedura di memorizzazione `ST_Register_Spatial_Column`.
Connessione a MSSQL Spatial

Oltre ad alcune delle opzioni in Creazione della connessione, la creazione di una nuova finestra di connessione MSSQL ti propone di inserire un nome a Provider/DSN. Puoi anche visualizzare i database disponibili.

Caricare layer da Database

Una volta che hai definito una o più connessioni a un database (vedi la sezione Creazione della connessione), puoi caricare i layer da esso. Naturalmente, questo richiede che i dati siano disponibili. Vedi la sezione Importare dati in PostgreSQL per una discussione sull'importazione di dati in un database PostGIS.

Per caricare un layer da un database, puoi eseguire le seguenti operazioni:

1. Apri la finestra di dialogo «Aggiungi <database> tabella(e)>> (vedi Creazione della connessione),
2. Scegli la connessione dall'elenco a discesa e fai clic su Connett.
3. Seleziona o deseleziona ☑ Mostra anche le tabelle senza geometria.
4. Opzionalmente, usa delle ☑ Opzioni di ricerca per ridurre la lista delle tabelle a quelle che corrispondono alla tua ricerca. Puoi anche impostare questa opzione prima di premere il pulsante Connett, velocizzando il caricamento del database.
5. Individua il(i) layer(s) che vuoi aggiungere nell'elenco dei layers disponibili.
7. Se applicabile, usa il pulsante Imposta filtro (o fai doppio clic sul layer) per avviare la finestra di dialogo Costruttore di interrogazioni (vedi sezione Costruttore di interrogazioni) e definire quali elementi caricare dal layer selezionato. L'espressione del filtro appare nella colonna sql. Questa restrizione può essere rimossa o modificata nella cornice Proprietà Layer ► Generale ► Filtro Specifico del Fornitore.
8. La casella di controllo nella colonna Seleziona all'id che è attivata di default ottiene gli id degli elementi senza gli attributi e generalmente velocizza il caricamento dei dati.
9. Clicca sul pulsante Aggiungi per aggiungere il layer alla mappa.
Suggerimento: Utilizzare il pannello Browser per velocizzare il caricamento delle tabelle del database.

L'aggiunta di tabelle DB dal DB Manager può a volte richiedere molto tempo perché QGIS recupera prima le statistiche e le proprietà (ad esempio il tipo di geometria e il campo, il SR, il numero di elementi) per ogni tabella. Per evitare questo, una volta che the connection is set, è meglio usare il Browser Panel o il DB Manager per trascinare e rilasciare le tabelle del database nella mappa.

13.1.4 Formati QGIS personalizzati

QGIS offre due formati personalizzati:

- Layer Scratch Temporaneo: un layer in memoria che è legato al progetto (vedi Creare un nuovo Vettore Temporaneo per maggiori informazioni)
- Layer virtuali: un layer risultante da una query su altro(i) layer(s) (per ulteriori informazioni, vedi Creazione di layer virtuali)

13.1.5 QLR - QGIS File Definizione Layer

Le definizioni del layer possono essere salvate come Layer Definition File (QLR - .qlr) usando Esporta -> Salva come file di definizione layer… nel menu contestuale del layer.

Il formato QLR consente di condividere layer QGIS «completi» con altri utenti QGIS. I file QLR contengono collegamenti alle fonti dati e tutte le informazioni di stile QGIS necessarie per lo stile del layer.

I file QLR sono mostrati nel Pannello Browser e possono essere usati per aggiungere layer (con i relativi stili salvati) al Pannello Layer. Puoi anche trascinare e rilasciare i file QLR dal file manager di sistema nell'area della mappa.
13.1.6 Connessione a web services

Con QGIS puoi avere accesso a diversi tipi di servizi web OGC (WM(T)S, WFS(-T), WCS, CSW, …). Grazie a QGIS Server, puoi anche pubblicare tali servizi. QGIS-Server-manual contiene descrizioni di queste funzionalità.

Usare i servizi Tasselli Vettoriali

I servizi di Tasselli Vettoriali possono essere trovati nella voce di primo livello Tasselli Vettoriali in Browser. Puoi aggiungere un servizio aprendo il menu contestuale con un clic destro e scegliendo Nuova Connessione Generica …. Si imposta un servizio aggiungendo un Nome e un URL. Il servizio di tasselli vettoriali deve fornire tasselli in formato .pbf. La finestra di dialogo fornisce due menu per definire il Minimo Livello di Zoom e il Massimo Livello di Zoom. I tasselli vettoriali hanno una struttura piramidale. Usando queste opzioni hai l’opportunità di generare individualmente dei livelli dalla piramide di tasselli. Questi livelli saranno poi usati per visualizzare il Tassello Vettoriale in QGIS. Per la proiezione Mercator (usata da OpenStreetMap Vector Tiles) Zoom Level 0 rappresenta il mondo intero ad una scala di 1:500.000.000. Il livello di zoom 14 rappresenta la scala 1:35.000. Fig. 13.13 mostra la finestra di dialogo con la configurazione del servizio MapTiler planet Vector Tiles.

![Image of Vector Tiles Connection dialog box]

Fig. 13.13: Tasselli Vettoriali - Configurazione Map Tiler Planet

Usando Nuova Connessione al Vector Tile Service Connection di ArcGIS … puoi connetterti a ArcGIS Vector Tile Services.
Usare i servizi di Tasselli XYZ

I servizi Tassello XYZ possono essere trovati nella voce di primo livello Aggiungi layer XYZ nella cartella Browser. Per impostazione predefinita, è configurato il servizio OpenStreetMap Tassello XYZ. Puoi aggiungere altri servizi che usano il protocollo Tassello XYZ scegliendo Nuovo collegamento nel menu contestuale di Tasselli XYZ (clic destro per aprire). Fig. 13.14 mostra la finestra di dialogo con la configurazione del servizio Tassello OpenStreetMap XYZ.

![XYZ Connection](image)

Fig. 13.14: Tasselli XYZ - Configurazione OpenStreetMap

Le configurazioni possono essere salvate (Salva) in XML e caricate (Carica) attraverso il menu contestuale. La configurazione dell'autenticazione è supportata. Il file XML per OpenStreetMap si presenta così:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<qgsXYZTilesConnections version="1.0">
  <xyztiles url="https://tile.openstreetmap.org/{z}/{x}/{y}.png" zmin="0" zmax="19" password="" name="OpenStreetMap" username="" authcfg="" referer=""/>
</qgsXYZTilesConnections>
```

13.1. Accedere ai dati
Una volta impostata una connessione a un servizio di Tasselli XYZ, clicca con il tasto destro del mouse sulla voce per:

- **Modifica...** le impostazioni della connessione XYZ
- **Rimuovi** la connessione
- **Esporta**, *saving it as a raster*
- **Aggiungi**: un doppio clic aggiunge anche il layer al Progetto
- **Visualizza le Proprietà del layer...** e ottieni l’accesso ai metadati e un’anteprima dei dati forniti dal servizio. Altre impostazioni sono disponibili quando il layer viene caricato nel progetto.

Esempi di servizi di Tasselli XYZ:

- **OpenStreetMap Monochrome**: URL: http://tiles.wmflabs.org/bw-mapnik/{z}/{x}/{y}.png, **Minimo Livello di Zoom**: 0, **Massimo Livello di Zoom**: 19.

- **Google Maps**: URL: https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}, **Minimo Livello di Zoom**: 0, **Massimo Livello di Zoom**: 19.

- **Open Weather Map Temperature**: URL: http://tile.openweathermap.org/map/temp_new/{z}/{x}/{y}.png?appid={api_key}, **Minimo Livello di Zoom**: 0, **Massimo Livello di Zoom**: 19.

13.2 Creare Layer

I layer possono essere creati in molti modi, tra cui:

- vuoti da zero
- layer da layer esistenti
- layer dagli appunti
- layer come risultato di una query di tipo SQL basata su uno o più layer (*virtual layers*)

QGIS fornisce anche strumenti per importare/esportare da/a diversi formati.

13.2.1 Creare nuovi layer Vettore

QGIS permette di creare nuovi layer in diversi formati. Fornisce strumenti per la creazione di layer GeoPackage, Shapefile, SpatiaLite, formato GPX e Layer Temporaneo (anche detto layer in memoria). La creazione di un new **GRASS layer** è supportata dal plugin GRASS.

Creare un nuovo vettore GeoPackage

Per creare un nuovo layer GeoPackage, premi il pulsante "Nuovo Layer GeoPackage..." nel menu Layer ► *Crea Vettore* ► o dalla barra degli strumenti *Barra degli Strumenti per la Gestione della Sorgente Dati*. La finestra di dialogo *Nuova Layer GeoPackage* verrà visualizzata come mostrato in Fig. 13.15.
1. Il primo passo è indicare la posizione del file del database. Questo può essere fatto premendo il pulsante … a destra del campo Database e selezionare un file GeoPackage esistente o crearne uno nuovo. QGIS aggiungerà automaticamente la giusta estensione al nome fornito.

2. Dare un nome al nuovo layer / tabella (Nome tabella)

3. Definisci il Tipo di geometria. Se non è un layer senza geometria, puoi anche specificare Include dimensione Z e/o Include valori M.

4. Specifica il sistema di riferimento delle coordinate usando il pulsante

Per aggiungere campi al layer che stai creando:

1. Inserisci il Nome del campo

2. Seleziona il Tipo. I tipi supportati sono Dati testo, Numero intero (sia intero che intero64), Numero decimale, Data e Data e Ora, Binario (BLOB) e Booleano.

3. A seconda del formato di dati selezionato, inserisci la Lunghezza massima dei valori.

4. Clicca sul pulsante Aggiungi a Lista Campi

5. Ripeti i passi precedenti per ogni campo che vuoi aggiungere
6. Una volta che sei soddisfatto degli attributi, clicca su OK. QGIS aggiungerà il nuovo layer alla legenda, e potrai modificarlo come descritto nella sezione *Modifica di un layer esistente*.

Per impostazione predefinita, quando si crea un layer GeoPackage, QGIS genera una colonna *Colonna id elemento* chiamata *fid* che agisce come chiave primaria del layer. Il nome può essere cambiato. Il campo geometria, se disponibile, è chiamato *geometry*, e può scegliere *Crea un indice spaziale* su di esso. Queste opzioni possono essere trovate sotto *Opzioni Avanzate* insieme al *Identificatore Layer* (nome breve e leggibile del livello) e alla *Descrizione Layer*.

Un'ulteriore gestione dei layer di GeoPackage può essere fatta con il *DB Manager*.

Creare un nuovo layer Shapefile

Per creare un nuovo layer in formato ESRI Shapefile, premi il pulsante *Nuovo Layer Shapefile* nel menu *Layer* o dalla barra degli strumenti *Barra degli Strumenti per la Gestione della Sorgente Dati*. Viene visualizzata la finestra di dialogo *Nuovo Layer Shapefile* in Fig. 13.16.

1. Fornisci un percorso e un nome di file usando il pulsante … accanto a *Nome del file*. QGIS aggiungerà automaticamente la giusta estensione al nome fornito.

2. Poi, indica la *Codifica file* dei dati

3. Scegli il *Tipo di geometria* del layer: Nessuna geometria (si ottiene un file in formato .DBF), punto, multipunto, linea o poligono

4. Specifica se la geometria deve avere dimensioni aggiuntive: *Nessuna*, *Z (+ valori M)* o *valori M*.

5. Specifica il sistema di riferimento delle coordinate usando il pulsante

![New Shapefile Layer](image)

Fig. 13.16: Finestra di dialogo creazione nuovo Layer Shapefile

Per aggiungere campi al layer che stai creando:
1. Inserisci il Nome del campo
2. Seleziona il Tipo dei dati. Sono supportati solo gli attributi Numero Decimale, Numero Intero, Dati testo e Data.
3. A seconda del formato di dati selezionato, inserisci Lunghezza e Precisione.
4. Clicca sul pulsante Aggiungi a Lista Campi
5. Ripeti i passi precedenti per ogni campo che vuoi aggiungere
6. Una volta che sei soddisfatto degli attributi, clicca su OK. QGIS aggiungerà il nuovo layer alla legenda, e potrai modificarlo come descritto nella sezione Modifica di un layer esistente.

Per impostazione predefinita, viene aggiunta una prima colonna numero intero id, ma può essere rimossa.

Creare un nuovo layer SpatiaLite

Per creare un nuovo layer SpatiaLite, premi il pulsante Nuovo Layer SpatiaLite... nel menu Layer ➤ Crea Layer ➤ o dalla barra degli strumenti Barra degli Strumenti per la Gestione della Sorgente Dati. La finestra di dialogo Nuovo Layer SpatiaLite verrà visualizzata come mostrato in Fig. 13.17.

![Fig. 13.17: Finestra di dialogo creazione Nuovo layer SpatiaLite](image)

1. Il primo passo è indicare la posizione del file del database. Questo può essere fatto premendo il pulsante … a destra del campo Database e selezionare un file SpatiaLite esistente o crearne uno nuovo. QGIS aggiungerà automaticamente la giusta estensione al nome fornito.
2. Fornisci un nome (Nome Layer) per il nuovo layer
3. Definisci il Tipo di geometria. Se non è un layer senza geometria, puoi anche specificare Includi dimensione Z e/o Includi valori M.

4. Specifica il sistema di riferimento delle coordinate usando il pulsante 💡.

Per aggiungere campi al layer che stai creando:

1. Inserisci il Nome del campo
2. Seleziona il Tipo dei dati. Sono supportati solo gli attributi Numero Decimale, Numero Intero, Dati testo e Data.
3. Clicca sul pulsante 🗒️ Aggiungi a Lista Campi
4. Ripeti i passi precedenti per ogni campo che vuoi aggiungere
5. Una volta che sei soddisfatto degli attributi, clicca su OK. QGIS aggiungerà il nuovo layer alla legenda, e potrai modificarlo come descritto nella sezione Modifica di un layer esistente.

Se vuoi puoi selezionare 🚧 Crea una chiave primaria autoincrementale nella sezione Opzioni Avanzate. Puoi anche rinominare la Colonna Geometria (geometry per impostazione predefinita).

Un’ulteriore gestione dei layer di SpatiaLite può essere fatta con DB Manager.

Creare un nuovo layer GPX

Per creare un nuovo file GPX, devi prima caricare il plugin GPS. Plugins ➤ Gestisci e installa Plugin… apre la finestra di dialogo Plugin. Attiva la casella di controllo 🗝️ Strumenti GPS.

Quando questo plugin è caricato, scegli Crea Vettore ➤ Crea nuovo vettore GPX… dal menu Layer. Nella finestra di dialogo, scegli dove salvare il nuovo file e premi Salva. Tre nuovi layer vengono aggiunti al Pannello Layer: waypoints, routes e tracks.

Creare un nuovo Vettore Temporaneo

I Vettori Temporanei sono layer in-memoria, il che significa che non vengono salvati su disco e verranno eliminati quando QGIS viene chiuso. Possono essere utili per memorizzare gli elementi di cui hai bisogno temporaneamente o come layer intermedi durante le operazioni di geoprocessing.

Per creare un nuovo layer Vettore Temporaneo, scegli la voce 🌐 Nuovo Layer Temporaneo… nel menu Layer ➤ Crea Vettore ➤ o nella barra degli strumenti Barra degli Strumenti per la Gestione della Sorgente Dati. La finestra di dialogo Nuovo Layer Temporaneo verrà visualizzata come mostrato in Fig. 13.18. Poi:

1. Fornisci il Nome Layer.
2. Seleziona il Tipo di geometria. Qui puoi creare un:
 - layer di tipo Nessuna geometria, utilizzato come semplice tabella,
 - layer Punto o Multi punto,
 - layer LineString/CurvaComposta o MultiLineString/MultiCurve,
 - layer Poligono/CurvePolygon o MultiPoligono/MultiSurface.
3. Per tipologie geometria, specifica le dimensioni del dataset: controlla se scegliere Includi dimensione Z e/o Includi valori M.
4. Specifica il sistema di riferimento delle coordinate usando il pulsante 🩱.
5. Aggiungi campi al layer. Nota che a differenza di molti formati, i layer temporanei possono essere creati senza alcun campo. Questo passo è quindi opzionale.
 1. Inserisci il Nome del campo
2. Seleziona il Tipo dei dati: sono supportati Testo, Numero Interro, Numero Decimale, Booleano, Data, Ora, Data e Ora e Binarino (BLOB).

3. A seconda del format di dati selezionato, inserisci Lunghezza e Precisione.

4. Clicca sul pulsante **Aggiungi a Lista Campi**

5. Ripeti i passi precedenti per ogni campo che vuoi aggiungere

6. Una volta che sei soddisfatto delle impostazioni, clicca su **OK**. QGIS aggiungerà il nuovo layer al pannello *Layer*, e potrai modificarlo come descritto nella sezione **Modifica di un layer esistente**.

![Fig. 13.18: Finestra di dialogo creazione nuovo vettore temporaneo](image)

Puoi anche creare layer temporanei prepopolati usando ad esempio gli appunti (vedi *Creare nuovi layer dagli appunti*) o come risultato di un *Processing algorithm*.

Suggerimento: Salvataggio permanente di un vettore temporaneo su disco

Per evitare la perdita di dati quando si chiude un progetto con layer temporanei, puoi salvare questi layer in qualsiasi formato vettoriale supportato da QGIS:

- cliccando sull'icona accanto al layer;
- selezionando *Rendi permanente* nel menu contestuale del layer;
- usando la voce *Esporta* dal menu contestuale o il menu *Layer* > *Salva con nome*....

Ciascuno di questi comandi apre la finestra di dialogo *Salva Elementi Come...* descritta nella sezione *Creare nuovi layer da layer esistente* e il file salvato sostituisce quello temporaneo nel pannello *Layer*.

13.2. Creare Layer
13.2.2 Creare nuovi layer da layer esistente

Sia i layer raster che vettoriali possono essere salvati in un formato diverso e/o riproiettati in un diverso sistema di riferimento di coordinate (SR) usando il menu Layer ► Salva con nome…. o facendo clic destro sul layer nel pannello Layer e selezionando:

- Esporta ► Salva con Nome… per layer raster
- Esporta ► Salva Elementi Come… o Esporta ► Salva Elementi Selezionati Come… per vettori.
- Trascina il layer dall’albero dei layer alla voce PostGIS nel Pannello Browser. Nota che devi avere una connessione PostGIS nel Pannello Browser.

Parametri comuni

La finestra di dialogo Salva Layer come…. mostra diversi parametri per cambiare il risultato con il salvataggio del layer. Tra i parametri comuni per raster e vettori ci sono:

- Nome file: la posizione del file sul disco. Può riferirsi al layer risultato o a un contenitore che memorizza il layer (per esempio formati del tipo database come GeoPackage, SpatiaLite o Open Document Spreadsheets).
- SR: può essere cambiato per riproiettare i dati.
- Estensione (i valori possibili sono Estensione del Layer, Estensione della mappa o Estensione definita dall’utente)
- Aggiungi il file salvato sulla mappa per aggiungere il nuovo layer alla mappa

Tuttavia, alcuni parametri sono specifici per i formati raster e vettoriali

Parametri specifici per i Raster

A seconda del formato di esportazione, alcune di queste opzioni potrebbero non essere disponibili:

- Modalità uscita (può essere Dati grezzi o Immagine visualizzata)
- Formato: esportazioni in qualsiasi formato raster che GDAL può scrivere, come GeoTiff, GeoPackage, MBTiles, Geospatial PDF, SAGA GIS Binary GIS Grid, Intergraph Raster, ESRI .hdr Labelled…..
- Risoluzione
- Opzioni di creazione: utilizzare le opzioni avanzate (compressione file, dimensioni dei blocchi, colorimetria……) quando si generano file, o da predefined create profiles relativi al formato di output o impostando ciascun parametro.
- Pyramids creation
- Tasselli VRT nel caso in cui hai scelto 📁 Crea VRT
- Valori nulli
Fig. 13.19: Salvare come un nuovo layer raster

Parametri specifici per i Vettori

A seconda del formato di esportazione, alcune di queste opzioni possono essere disponibili:

- **Formato**: esporta in un qualsiasi formato vettoriale in cui GDAL può scrivere, come GeoPackage, GML, ESRI Shapefile, AutoCAD DXF, ESRI FileGDB, Mapinfo TAB o MIF, SpatiaLite, CSV, KML, ODS, …

- **Nome Layer**: disponibile quando il *Nome file* si riferisce a un formato tipo contenitore, questa voce rappresenta il livello di uscita.

- **Codifica**

- **Salva solo le geometrie selezionate**

- **Seleziona i campi da esportare e le loro opzioni di esportazione**. Nel caso in cui imposti i comportamenti dei campi con alcuni *Edit widgets* ad esempio «valore», puoi mantenere i valori visualizzati nel layer scegliendo *Sostituisci tutti i valori grezzi selezionati dai valori mostrati*.

- **Esporta simbologia**: opzione che può utilizzare principalmente per l’esportazione del formato DXF e per tutti i formati di file che gestiscono le tipologie di file OGR (vedi nota di seguito) come i formati DXF, KML, i formati tabelle:
 - **Nessuna simbologia**: stile di default dell’applicazione che legge i dati
 - **Simbologia geometrie**: salva lo stile utilizzando gli stili OGR (vedi la nota di seguito)
 - **Simbologia simboli vettore**: salva con gli stili OGR (vedi nota di seguito) ma esporta la stessa geometria più volte se sono utilizzati più simboli
 - Un valore di **Scala** può essere applicato alle ultime opzioni

- **Geometria**: puoi definire le caratteristiche geometriche del layer in output

 - **Tipo di geometria**: mantiene la geometria originale degli elementi quando è impostata su **Automatico**, altrimenti la rimuove o la sostituisce con qualsiasi tipo. Si può aggiungere una colonna geometria vuota ad una tabella di attributi e rimuovere la colonna geometria di un layer spaziale.

 - **Forza multi-tipo**: forza la creazione di features multi-geometry nel layer

 - **Includi dimensione z**: alle geometrie.

Suggerimento: Modificare il tipo di geometria di un layer consente di eseguire cose come salvare una tabella senza geometrie (ad esempio file `.csv`) in uno shapefile con qualsiasi tipo di geometria (punto, linee, poligono), in modo che le geometrie possano essere aggiunte manualmente a righe con lo strumento Aggiungi parte.

- **Sorgente Dati, Opzioni Layer o Opzioni personalizzate** che ti permettono di configurare parametri avanzati a seconda del formato in uscita. Alcuni sono descritti in Esplorare i formati dati e i campi ma per tutti i dettagli, vedi la documentazione del driver GDAL. Ogni formato di file ha i suoi parametri personalizzati, ad esempio per il formato GeoJSON dai un’occhiata alla documentazione di GDAL GeoJSON.
Fig. 13.20: Salvare come un nuovo layer vettoriale

Quando si salva un layer vettoriale in un file esistente, a seconda delle capacità del formato di output (Geopackage, SpatiaLite, FileGDB ...), l’utente può decidere se:

- sovrascrivere l’intero file
- sovrascrivere solo il layer di destinazione (il nome del layer è configurabile)
- aggiungere geometrie ad un layer esistente
- aggiungere geometrie, aggiungere nuovi campi se ce ne sono.

Sono disponibili opzioni per aggiungere geometrie ai formati come ESRI Shapefile, MapInfo .tab,.

13.2.3 Creazione di nuovi file DXF

Oltre alla finestra di dialogo Salva Come... che fornisce opzioni per esportare un singolo layer in un altro formato, incluso *.DXF, QGIS fornisce un altro strumento per esportare più layer come un singolo layer DXF. È accessibile nel menu Progetto ► Importa/Esporta ► Esporta Progetto in DXF.....

Nella finestra di dialogo Esportazione DXF:

1. Fornisci il file di destinazione.
2. Scegli la modalità e la scala della simbologia (vedi la nota OGR Feature Styles), se applicabile.
3. Seleziona la Codifica dei dati.
4. Seleziona il SR da applicare: i layer selezionati verranno riproiettati nel SR indicato.

5. Seleziona i layer da includere nei file DXF spuntandoli nel widget della tabella o scegliendoli automaticamente da un map theme esistente. I pulsanti Seleziona Tutto e Deseleziona Tutto possono aiutare a impostare rapidamente i dati da esportare.

Per ogni layer, puoi scegliere se esportare tutte gli elementi in un singolo layer DXF o fare affidamento su un campo i cui valori sono usati per dividere gli elementi in layer nel DXF in uscita.

Opzionalmente puoi anche scegliere di:

- [] Se impostato usa il titolo del layer come nome invece del nome del layer stesso;
- [] Esporta gli elementi che intersecano l’attuale estensione della mappa;
- [] Forza risultato 2D (ad esempio per supportare la larghezza della polilinea);
- [] Esporta le etichette come MTEXT o elementi TEXT.

![QGIS Desktop DXF Export](image)

Fig. 13.21: Esportazione di un progetto nella finestra di dialogo DXF

13.2.4 Creare nuovi layer dagli appunti

Le geometrie che si trovano negli appunti possono essere incollate in un nuovo layer. Seleziona alcune geometrie e poi copiale in un nuovo layer usando **Modifica ➤ Incolla geometrie come** ➤ e scegliendo:

- **Nuovo Vettore…**: appare la finestra di dialogo **Salva Vettore Come…** (per i parametri vedi Creare nuovi layer da layer esistente)
- **Layer Temporaneo…**: devi fornire un nome per il layer

Viene creato un nuovo layer, popolato con gli elementi selezionati e relativi attributi (e aggiunto alla mappa).

Nota: La creazione di layer dagli appunti è possibile con elementi selezionati e copiati all’interno di QGIS, nonché elementi di un’altra applicazione, a condizione che siano definiti utilizzando il formato stringa well-known text (WKT).
13.2.5 Creazione di layer virtuali

I layer virtuali sono una tipologia speciale di layer vettoriale. Permesso di definire un layer come il risultato di una query SQL che coinvolge un qualsiasi numero di altri layer vettoriali che QGIS è in grado di aprire. I layer virtuali non hanno dati propri e possono essere visti come vister.

Per creare un layer virtuale, apri la finestra di dialogo per la creazione di un layer virtuale:

• scegliendo la voce **Aggiungi/Modifica Layer Virtuale** nel menu **Layer ➤ Aggiungi Layer ➤**;

• abilitando la scheda **Nuovo Layer Virtuale** nella finestra di dialogo **Barra degli Strumenti per la Gestione della Sorgente Dati**;

• o usando la finestra di dialogo **DB Manager**....

La finestra di dialogo ti consente di specificare un **Nome vettore** e una **Interrogazione SQL**. Questa interrogazione può utilizzare il nome (o id) dei vettori esistenti, così come i nomi dei campi del layer.

Ad esempio, se hai un layer chiamato airports, puoi creare un nuovo layer virtuale da denominare public_airports con una query SQL del tipo:

```
SELECT * 
FROM airports 
WHERE USE = "Civilian/Public"
```

La query SQL verrà eseguita, qualunque sia la struttura di base del vettore airports e anche se questa fonte dati non supporta direttamente le query SQL.

È inoltre possibile creare join e query complesse, ad esempio, per unire aeroporti e informazioni sui paesi:

```
SELECT airports.*, country.population 
FROM airports 
JOIN country 
ON airports.country = country.name
```
Nota: Layer virtuali possono essere creati anche usando la finestra di dialogo SQL di Plugin DB Manager.

Layer nidificati da usare nelle query

Oltre ai layer vettoriali disponibili nella mappa, l'utente può aggiungere layer alla lista Layer nidificati, che possono essere usati nelle query senza bisogno di averli visualizzati nella mappa o nel pannello Layer.

Per incorporare un layer, fai clic su Aggiungi e inserisci Nome locale, Sorgente dati, Codifica e il percorso della Sorgente dati.

Il pulsante Importa permette di aggiungere i layer nella mappa nella lista dei layer incorporati. Questi layer possono poi essere rimossi dal pannello Layer senza interrompere le query esistenti.

Linguaggi query supportati

Il motore incorporato utilizza SQLite e SpatiaLite per operare.

Ciò significa che puoi utilizzare tutto l'SQL che l'installazione locale di SQLite comprende.

Funzioni di SQLite e funzioni spaziali di SpatiaLite possono anche essere utilizzate in una query di layer virtuale. Ad esempio, la creazione di un layer di punti da un layer di solo attributo può essere fatto con una query simile a:

```
SELECT id, MakePoint(x, y, 4326) as geometry
FROM coordinates
```

Functions of QGIS expressions possono essere utilizzate anche in una query di layer virtuale.

Per fare riferimento alla colonna geometrica di un layer, utilizzare il nome geometry.

Al contrario di una query SQL pura, tutti i campi di una query di un layer virtuale devono avere un nome. Non dimenticare di usare la parola chiave as per nominare le tue colonne se sono il risultato di un calcolo o di una chiamata di funzione.

Problemi relativi alle prestazioni

Con i parametri predefiniti, il motore del layer virtuale farà del suo meglio per rilevare il tipo delle diverse colonne della query, incluso il tipo della colonna geometry se presente.

Questo viene fatto analizzando la query quando possibile o recuperando la prima riga della query (LIMIT 1) come ultima risorsa. Recuperare la prima riga del risultato solo per creare il layer può essere indesiderabile per ragioni di prestazioni.

La finestra di dialogo per la creazione dei parametri:

- **Colonna identificativa univoca**: specifica un campo della query che rappresenta valori interi unici che QGIS può usare come identificatori di riga. Per impostazione predefinita, viene usato un valore intero autoincrementante. La definizione di una colonna identificatore unico velocizza la selezione delle righe per id.

- **Nessuna geometria**: forza il layer virtuale a ignorare qualsiasi campo geometria. Il layer risultante sarà solamente un layer tabella attributi.

- **Geometria Colonna**: specifica il nome della colonna della geometria.

- **Geometria Tipo**: specifica il tipo della geometria.

- **Geometria SR**: specifica il sistema di riferimento delle coordinate del layer virtuale.
Commenti speciali

L’interprete del layer virtuale tenta di determinare il tipo di ogni colonna della query. Se non riesce, viene eseguita la prima riga della query per determinare i tipi colonna.

Il tipo di una particolare colonna può essere specificato direttamente nella query utilizzando alcuni commenti speciali. La sintassi è la seguente: /*: type*/. Deve essere inserita subito dopo il nome di una colonna. il tipo può essere int per interi, real per numeri a virgola mobile o text.

Ad esempio:

```
SELECT id+1 as nid /*:int*/
FROM table
```

Il tipo e il sistema di riferimento della colonna geometrica può essere impostato anche grazie a speciali commenti con la seguente sintassi /*:gtype: srid*/ dove gtype è il tipo geometrico (point, linestring, polygon, multipoint, multilinestring o multipolygon) e srid un intero che rappresenta il codice EPSG di un sistema di riferimento di coordinate.

Uso degli indici

Quando si richiama un layer attraverso un layer virtuale, gli indici dei layer di origine saranno utilizzati nei seguenti modi:

- se viene usato = nella colonna chiave primaria del layer, al fornitore di dati sottostante verrà richiesto un id particolare (FilterFid)
- per tutti gli altri predicati (>,<,=, !=, etc.) o per richiesta su una colonna senza chiave primaria, verrà utilizzata una richiesta costruita da un’ espressione per il driver attivo. Ciò significa che gli indici possono essere utilizzati sui drivers di database, se esistono.

Esiste una sintassi specifica per gestire le predichazioni spaziali nelle richieste e innesca l’utilizzo di un indice spaziale: una colonna nascosta denominata _search_frame_ esiste per ogni layer virtuale. Questa colonna può essere paragonata per l'uguaglianza con un riquadro di limitazione. Ad esempio:

```
SELECT *
FROM vtab
WHERE _search_frame_=BuildMbr(-2.10,49.38,-1.3,49.99,4326)
```

I predicati binari spaziali come ST_Intersects consentono significative accelerazioni quando utilizzati in combinazione con questa sintassi dell’indice spaziale.

13.3 Esplorare i formati dati e i campi

13.3.1 Dati Raster

I dati raster GIS sono matrici di celle discrete che rappresentano caratteristiche/ fenomeni su, sopra o sotto la superficie terrestre. Ogni cella nella griglia raster ha la stessa dimensione, e le celle sono solitamente rettangolari (in QGIS saranno sempre rettangolari). I tipici insiemi di dati raster includono dati di telerilevamento, come fotografie aeree, o immagini satellitari e dati modellati, come l'elevazione o la temperatura.

A differenza dei dati vettoriali, i dati raster in genere non hanno un record di database associato per ogni cella. Sono geocodificati dalla risoluzione del pixel e dalla coordinata X/Y di un pixel d'angolo del layer raster. Questo permette a QGIS di posizionare correttamente i dati sulla mappa.

Il formato GeoPackage è ideale per memorizzare dati raster quando si lavora con QGIS. Il popolare e potente formato GeoTiff è una buona alternativa.

QGIS fa uso di informazioni di georeferenziazione all’interno del layer raster (ad esempio, GeoTiff) o di un world file associato per visualizzare correttamente i dati.
13.3.2 Dati vettoriali

Molti degli elementi e degli strumenti disponibili in QGIS funzionano allo stesso modo, indipendentemente dalla fonte di dati vettoriali. Tuttavia, a causa delle differenze nelle specifiche dei formati (GeoPackage, ESRI Shapefile, MapInfo e MicroStation, AutoCAD DXF, PostGIS, SpatiaLite, DB2, Oracle Spatial, MSSQL Spatial databases, e molti altri), QGIS può gestire alcune delle loro proprietà in modo diverso. Il supporto è fornito dalla OGR Simple Feature Library. Questa sezione descrive come lavorare con queste specifiche.

Nota: QGIS supporta (multi)punto, (multi)linea, (multi)poligono, CircularString, CurvaComposta, CurvePolygon, MultiCurve, MultiSurface, tutti opzionalmente con valori Z e/o M.

Dovresti anche tener presente che alcuni driver non supportano alcuni di questi formati, come CircularString, CurvaComposta, CurvePolygon, MultiCurve, MultiSurface. QGIS li convertirà.

GeoPackage

Il formato GeoPackage (GPKG) è indipendente dalla piattaforma, ed è implementato come un contenitore di database SQLite, e può essere usato per memorizzare sia dati vettoriali che raster. Il formato è stato definito dall'Open Geospatial Consortium (OGC), ed è stato pubblicato nel 2014.

GeoPackage può essere utilizzato per memorizzare quanto segue in un database SQLite:

- elementi vettore
- insiemi di immagini di matrici di tasselli e mappe raster
- attributi (dati non-spaaziali)
- estensioni

Dalla versione 3.8 di QGIS, GeoPackage può anche memorizzare progetti QGIS. I layer di GeoPackage possono avere campi JSON.

GeoPackage è il formato predefinito per i dati vettoriali in QGIS.

Formato ESRI Shapefile

Il formato ESRI Shapefile è ancora uno dei formati di file vettoriali più utilizzati, anche se ha alcune limitazioni rispetto ad esempio a GeoPackage e SpatiaLite.

Un insieme di dati in formato ESRI Shapefile è composto da diversi file. I tre seguenti sono obbligatori:

1. .shp file contenente le geometrie
2. .dbf file contenente gli attributi in formato dBase
3. .shx file indici

Un insieme di dati in formato ESRI Shapefile può anche includere un file con un suffisso .prj, che contiene informazioni sulla proiezione. Anche se è molto utile avere un file di proiezione, non è obbligatorio. Un set di dati in formato Shapefile può contenere file aggiuntivi. Per ulteriori dettagli, si veda la specifica tecnica ESRI all'indirizzo https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

GDAL 3.1 ha il supporto in lettura e scrittura per il formato compresso ESRI Shapefile (shz e shp.zip).

Migliorare le prestazioni per i insiemi di dati in formato ESRI Shapefile

Per migliorare le prestazioni di visualizzazione di un insieme di dati in formato ESRI Shapefile, puoi creare un indice spaziale. Un indice spaziale migliorerà la velocità di zoom e di spostamento. Gli indici spaziali usati da QGIS hanno un’estensione .qix.

Segui questi passi per creare un indice spaziale:

1. Carica un insieme di dati in formato ESRI Shapefile (vedi Il Pannello Browser)
2. Apri la finestra di dialogo Proprietà Layer facendo doppio clic sul nome del livello nella legenda o facendo clic destro e scegliendo Proprietà… dal menu contestuale.

Problemi nel caricare un file .prj

Se carichi un dataset in formato ESRI Shapefile con un file .prj e QGIS non è in grado di leggere il sistema di riferimento delle coordinate da quel file, sarà necessario definire manualmente la proiezione corretta nella scheda Proprietà Layer ➤ Sorgente del layer cliccando il pulsante Seleziona SR. Questo è dovuto al fatto che i file .prj spesso non forniscono i parametri di proiezione completi come usati in QGIS ed elencati nella finestra di dialogo SR.

Per lo stesso motivo, se crei un nuovo dataset in formato ESRI Shapefile con QGIS, vengono creati due diversi file di proiezione: un file .prj con parametri di proiezione limitati, compatibili con il software ESRI, e un file .qpj, che fornisce tutti i parametri del SR. Ogni volta che QGIS trova un file .qpj, questo sarà usato al posto del .prj.

Files Testo Limitato

I file di testo delimitati sono molto comuni e ampiamente utilizzati a causa della loro semplicità e leggibilità - i dati possono essere visualizzati e modificati in un semplice editor di testo. Un file di testo delimitato è costituito da dati tabulari con colonne separate da un determinato carattere e righe separate da interruzioni di riga. La prima riga di solito contiene i nomi delle colonne. Un tipo comune di file di testo delimitato è un CSV (Comma Separated Values), con colonne separate da virgole. I file di testo delimitati possono anche contenere informazioni di posizione (vedi Memorizzazione di informazioni sulla geometria in un file di testo delimitato).

QGIS ti permette di caricare un file di testo delimitato come layer o come tabella ordinaria (vedi Il Pannello Browser o Importare file di testo delimitato). Prima controlla che il file soddisfi i seguenti requisiti:

1. Il file deve avere una riga di intestazione con il nome dei campi. Questa deve essere la prima riga del file di testo (preferibilmente la prima riga del file di testo).

2. Se la geometria deve essere abilitata, il file deve contenere campo(i) per definire la geometria. Questo campo(i) può avere qualsiasi nome.

3. Le coordinate X e Y (se la geometria è identificata da coordinate) devono essere specificate come numeri. Il sistema di coordinate non è importante.

4. Se hai un file CSV con colonne non contenenti stringhe, devi avere un file CSVT di accompagnamento (vedi la sezione Utilizzo di file CSVT per controllare la formattazione del campo).

Il file di dati di elevazione elevp.csv nell’insieme dei dati campione di QGIS (vedi la sezione Installare dati campione) è un esempio di un file di testo valido:

<table>
<thead>
<tr>
<th>X; Y; ELEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>-300120; 7689960; 13</td>
</tr>
<tr>
<td>-654360; 7562040; 52</td>
</tr>
<tr>
<td>1640; 7512840; 3</td>
</tr>
<tr>
<td>[…]</td>
</tr>
</tbody>
</table>

Alcune cose da notare sul file di testo:

1. Il file di testo di esempio usa ; (punto e virgola) come delimitatore (qualsiasi carattere può essere usato per delimitare i campi).

2. La prima riga è la riga di intestazione. Questa contiene i campi X, Y e ELEV.

3. Non si usano virgolette (‘) per delimitare i campi di testo.

4. Le coordinate X sono contenute nel campo X.

5. Le coordinate Y sono contenute nel campo Y.
Memorizzazione di informazioni sulla geometria in un file di testo delimitato

I file testo delimitato possono contenere informazioni sulla geometria in due forme principali:

- Come coordinate in colonne separate (es. Xcol, Ycol...), per geometrie puntuali di dati;
- Come well-known text (WKT) rappresentazione della geometria in una singola colonna, per qualsiasi tipo di geometria.

Sono supportati gli elementi con geometrie curve (CircularString, CurvePolygon e CompoundCurve). Ecco alcuni esempi di tipi di geometria in un file di testo delimitato con geometrie codificate come WKT:

| Label;WKT_geom | LINESTRING(10.0 20.0, 11.0 21.0, 13.0 25.5) |
| CircularString;CIRCULARSTRING(268 415, 227 505, 227 406) |
| CurvePolygon;CURVEPOLYGON(CIRCULARSTRING(1 3, 3 5, 4 7, 7 3, 1 3)) |
| CompoundCurve;COMPOUNDCURVE((5 3, 5 13), CIRCULARSTRING(5 13, 7 15, 9 13), (9 13, 9 3), CIRCULARSTRING(9 3, 7 1, 5 3)) |

I file di testo delimitati supportano anche le coordinate Z e M nelle geometrie:

LINESTRINGZ(10.0 20.0 30.0, 11.0 21.0 31.0, 11.0 22.0 30.0)

Utilizzo di file CSV file per controllare la formattazione del campo

Quando si caricano i file CSV, il driver OGR assume che tutti i campi siano stringhe (cioè testo) a meno che non gli venga detto altrimenti. Puoi creare un file CSV per dire all'OGR (e a QGIS) il tipo di dati delle diverse colonne:

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole number</td>
<td>Integer</td>
<td>4</td>
</tr>
<tr>
<td>Decimal number</td>
<td>Real</td>
<td>3.456</td>
</tr>
<tr>
<td>Date</td>
<td>Date (YYYY-MM-DD)</td>
<td>2016-07-28</td>
</tr>
<tr>
<td>Time</td>
<td>Time (HH:MM:SS+nn)</td>
<td>18:33:12+00</td>
</tr>
<tr>
<td>Date & Time</td>
<td>DateTime (YYYY-MM-DD HH:MM:SS+nn)</td>
<td>2016-07-28 18:33:12+00</td>
</tr>
</tbody>
</table>

Il file CSV è un file di testo normale di **UNA sola riga** con i tipi di dati racchiussi da virgolette e separati da virgole, ad esempio:

"Integer","Real","String"

Puoi anche specificare la larghezza e la precisione di ogni colonna, ad esempio:

"Integer(6)","Real(5.5)","String(22)"

Questo file viene salvato nella stessa cartella del file .csv, con lo stesso nome, ma con .csvt come estensione.
Puoi trovare maggiori informazioni in GDAL CSV Driver.

Layer PostGIS

I layer PostGIS sono memorizzati in un database PostgreSQL. I vantaggi di PostGIS sono l'indicizzazione spaziale, il filtraggio e le possibilità di interrogazione. Usando PostGIS, le funzioni vettoriali come selezionare e identificare funzionano più accuratamente di quanto non avvenga con gli strati OGR in QGIS.

Suggerimento: Layer PostGIS
Normalmente, un layer PostGIS è identificato da una voce nella tabella geometry_columns. QGIS può caricare layer che non hanno una voce nella tabella geometry_columns. Questo include sia tabelle che viste. Fai riferimento al tuo manuale PostgreSQL per informazioni sulla creazione di viste.

Questa sezione contiene alcuni dettagli su come QGIS accede ai layer PostgreSQL. La maggior parte delle volte, QGIS dovrebbe semplicemente fornirti una lista di tabelle di database che possono essere caricate, e le caricherà su richiesta. Tuttavia, se hai problemi a caricare una tabella PostgreSQL in QGIS, le informazioni che seguono possono aiutarti a capire i messaggi di QGIS e darti indicazioni per modificare la tabella PostgreSQL o la definizione della vista per permettere a QGIS di caricarla.

Chiave primaria

QGIS richiede che i vettori PostgreSQL contengano una colonna che possa essere usata come chiave univoca per il vettore. Le tabelle devono contenere una chiave primaria o una colonna con un vincolo univoco. Questa colonna deve essere di tipo int4 (un numero intero di 4 byte). Alternativamente, la colonna ctd può essere usata come chiave primaria. Se a una tabella mancano queste informazioni, verrà usata la colonna oid. Le prestazioni saranno migliori se la colonna è indizzata (le chiavi primarie sono indizzate automaticamente in PostgreSQL).

QGIS offre una casella di controllo **Select at id** che è attivata di default. Questa opzione ottiene gli id senza gli attributi, il che è più veloce nella maggior parte dei casi.

Viste

Se il layer di PostgreSQL è una vista sussistono gli stessi requisiti, ma non sempre necessitano chiavi primarie o colonne con vincoli univoci. Devi definire un campo della chiave primaria (deve essere un intero) nella finestra di dialogo di QGIS prima di caricare la vista. Se non c'è una colonna adatta nella vista, QGIS non caricherà il vettore. Se succede la soluzione è di modificare la vista in modo che contenga una colonna adatta (un intero e una chiave primaria con un vincolo univoco, preferibilmente indicizzato).

Come per le tabelle, una casella di controllo **Seleziona all'ID** è attiva per impostazione predefinita (vedere sopra per il significato della casella di controllo). Può aver senso disattivare questa opzione quando si utilizzano viste impegnative.

Stili di default dei layer QGIS e backup del database

Se vuoi fare una copia di backup del tuo database PostGIS usando i comandi `pg_dump` e `pg_restore`, e gli stili di default dei layer come salvati da QGIS non ripristinabili in seguito, devi impostare l'opzione `XML` su `DOCUMENT` prima del comando di ripristino.

```
SET XML OPTION DOCUMENT;
```

Filtro lato server

QGIS permette di filtrare gli elementi già sul lato server. Controlla **Impostazioni ► Opzioni ► Sorgenti Dati ► Esegui le espressioni lato server se possibile** per farlo. Solo le espressioni supportate saranno inviate al database. Le espressioni che usano operatori o funzioni non supportate saranno restituita alla esecuzione in locale.
Supporto di PostgreSQL alle diverse tipologie di dati

I tipi di dati supportati da PostgreSQL includono: intero, numero in virgola mobile, booleano, oggetto binario, dati stringa a lunghezza variabile, geometria, timestamp, array, list e json.

Importare dati in PostgreSQL

I dati possono essere importati in PostreSQL/PostGIS usando diversi strumenti, come il plugin DB Manager e gli strumenti da riga di comando shp2pgsql e ogr2ogr

DB Manager

QGIS ha un plugin di base chiamato DB Manager. Si può utilizzare per caricare dati, e include il supporto per gli schemi. Vedi la sezione Plugin DB Manager per ulteriori informazioni.

shp2pgsql

PostGIS include uno strumento chiamato shp2pgsql, che può essere usato per importare set di dati in formato Shapefile in un database compatibile con PostGIS. Per esempio, per importare un set di dati in formato Shapefile chiamato lakes.shp in un database PostgreSQL chiamato gis_data, usa il seguente comando:

```
shp2pgsql -s 2964 lakes.shp lakes_new | psql gis_data
```

Questo crea un nuovo layer chiamato lakes_new nel database gis_data. Il nuovo layer avrà un identificatore di riferimento spaziale (SRID) di 2964. Vedi la sezione Lavorare con le proiezioni per maggiori informazioni sui sistemi di riferimento spaziale e le proiezioni.

Suggerimento: Esportare dati da PostGIS

C’è anche uno strumento per esportare insiemi di dati PostGIS in formato Shapefile: pgsql2shp. Viene fornito all’interno della tua distribuzione PostGIS.

ogr2ogr

Oltre a shp2pgsql e DB Manager, esiste un altro strumento per alimentare i dati geografici in PostGIS: ogr2ogr. Fa parte dell’installazione di GDAL.

Per importare un insieme di dati in formato Shapefile in PostGIS, fai come segue:

```
ogr2ogr -f "PostgreSQL" PG:"dbname=postgis host=myhost.de user=postgres password=topsecret" alaska.shp
```

Questo importerà l’insieme dei dati in formato Shapefile alaska.shp nel database PostGIS postgis usando l’utente postgres con la password topsecret sul server host myhost.de.

Nota che OGR deve essere costruito con PostgreSQL per supportare PostGIS. Puoi verificarlo digitando (in 🔄):

```
ogrinfo --formats | grep -i post
```

Se preferisci usare il comando COPY di PostgreSQL invece del metodo predefinito INSERT INTO, puoi esportare la seguente variabile d’ambiente (disponibile solo su 📦 e 🌐):

```
export PG_USE_COPY=YES
```
ogr2ogr non crea indici spaziali come fa shp2pgsql. Devi crearli manualmente, usando successivamente il normale comando SQL CREATE INDEX, come passo extra (come descritto nella prossima sezione Migliorare le prestazioni).

Migliorare le prestazioni

Recuperare elementi da un database PostgreSQL può essere dispendioso in termini di tempo, specialmente su una rete. Puoi migliorare le prestazioni di estrazione dei layer PostgreSQL assicurandoti che esista un indice spaziale PostGIS su ogni layer nel database. PostGIS supporta la creazione di un indice GiST (Generalized Search Tree) per velocizzare la ricerca spaziale (le informazioni sull'indice GiST sono prese dalla documentazione di PostGIS disponibile all'indirizzo https://postgis.net).

Suggerimento: Puoi usare il DB Manager per creare un indice per il tuo layer. Dovresti prima selezionare il layer e cliccare su Tabella ➤ Modifica tabella, andare alla scheda Indici e cliccare su Aggiungi indice spaziale.

La sintassi per creare un indice GiST è:

```
CREATE INDEX [indexname] ON [tablename]
    USING GIST ( [geometryfield] GIST_GEOMETRY_OPS );
```

Nota che per tabelle grandi, la creazione dell'indice può richiedere molto tempo. Una volta che l'indice è stato creato, si dovrebbe eseguire un VACUUM ANALYZE. Vedi la documentazione di PostGIS (POSTGIS-PROJECT in Letteratura e riferimenti web) per maggiori informazioni.

Il seguente esempio crea un indice GiST:

```
gsherman@madison:~/current$ psql gis_data
Welcome to psql 8.3.0, the PostgreSQL interactive terminal.
Type: \copyright for distribution terms
    \h for help with SQL commands
    \? for help with psql commands
    \g or terminate with semicolon to execute query
    \q to quit

gis_data=# CREATE INDEX sidx_alaska_lakes ON alaska_lakes
gis_data=# USING GIST (the_geom GIST_GEOMETRY_OPS);
CREATE INDEX
gis_data=# VACUUM ANALYZE alaska_lakes;
VACUUM
gis_data=# \q
```

Vettori a cavallo dei 180° di longitudine

Molti software GIS non gestiscono al meglio mappe vettoriali con un sistema di riferimento geografico (lat/lon) che attraversa la linea dei 180 gradi di longitudine (http://postgis.refractions.net/documentation/manual-2.0/ST_Shift_Longitude.html). Come risultato, se apriamo una mappa di questo tipo in QGIS, potremmo vedere due luoghi molto separati, che dovrebbero apparire uno vicino all'altro. In Fig. 13.23, il piccolo punto all'estrema sinistra della mappa (Isole Chatham) dovrebbe essere all'interno della griglia, alla destra delle isole principali della Nuova Zelanda.
Una soluzione consiste nel trasformare i valori di longitudine utilizzando PostGIS e la funzione **ST_Shift_Longitude**. Questa funzione legge i punti/vertici di ogni elemento di una geometria e se la coordinata di longitudine è < 0°, aggiunge 360°. Il risultato sarà una versione 0° - 360° dei dati, che verranno poi visualizzati su una mappa centrata a 180°.

Guida all’uso

- Importa i dati in PostGIS (**Importare dati in PostgreSQL**) usando, per esempio, il plugin DB Manager.
- Usa l’interfaccia da linea di comando di PostGIS per dare il seguente comando (nell’esempio **“TABLE”** è il nome della tua tabella PostGIS): `gis_data=# update TABLE set the_geom=ST_Shift_Longitude(the_geom);`
- Se tutto è andato a buon fine, riceverai la conferma sul numero di geometrie che sono state aggiornate. Potrai così caricare la mappa e vedere le differenze (**Figure_vector_crossing_map**).

Vettori SpatiaLite

Se vuoi salvare un vettore usando il formato SpatiaLite, puoi farlo seguendo le istruzioni in **Creare nuovi layer da layer esistente**. Seleziona SpatiaLite come **Formato** e inserisci sia **Nome file** che **Nome layer**.

Inoltre, puoi selezionare SQLite come formato e poi aggiungere **SPATIALITE=YES** nel campo **Opzioni personalizzate ➤ Origine dati**. Questo dice a GDAL di creare un database SpatiaLite. Vedi anche https://gdal.org/drivers/vector/sqlite.html.

QGIS supporta anche le viste modificabili in SpatiaLite. Per la gestione dei dati di SpatiaLite, puoi anche usare il plugin di base **DB Manager**.

Se vuoi creare un nuovo layer SpatiaLite, fai riferimento alla sezione **Creare un nuovo layer SpatiaLite**.
Parametri specifici di GeoJSON

Con exporting layers in GeoJSON, sono disponibili alcune specifiche Opzioni del layer. Queste opzioni provengono da GDAL che è responsabile della scrittura del file:

- **COORDINATE_PRECISION** il numero massimo di cifre dopo il separatore decimale da inserire in coordinate. I valori predefiniti sono 15 (nota: per le coordinate Lat Lon 6 è considerato sufficiente). La troncatura si verifica per rimuovere gli zeri finali.

- **WRITE_BBOX** impostato su YES per includere il perimetro di delimitazione delle geometrie a livello di elemento e insieme di elementi.

Oltre a GeoJSON c’è anche un’opzione per esportare in «GeoJSON - Newline Delimited» (vedi https://gdal.org/drivers/vector/geojsonseq.html). Invece di una FeatureCollection con Features, può esportare un tipo (probabilmente solo Features) separato sequenzialmente con newline.

GeoJSON - Newline Delimited ha anche alcune opzioni specifiche per i Layer:

- **COORDINATE_PRECISION** vedi sopra (come per GeoJSON)

- **RS** se iniziare i record con il carattere RS=0x1E. La differenza è come gli elementi sono separati: solo da un carattere newline (LF) (Newline Delimited JSON, geojsonl) o aggiungendo anche un carattere record-separator (RS) (dando GeoJSON Text Sequences, geojsons). Il valore predefinito è NO. Ai file viene data l’estensione .json se l’estensione non è fornita.

Layer DB2 Spatial

IBM DB2 per Linux, Unix e Windows (DB2 LUW), i prodotti IBM DB2 per z/OS (mainframe) e IBM DashDB consentono agli utenti di memorizzare e analizzare i dati spaziali nelle colonne della tabella relazionale. La funzione DB2 per QGIS supporta la gamma completa di visualizzazione, analisi e manipolazione dei dati spaziali in questi database.

La documentazione utente su queste funzionalità può essere trovata in DB2 z/OS KnowledgeCenter, DB2 LUW KnowledgeCenter e DB2 DashDB KnowledgeCenter.

Per ulteriori informazioni sul funzionamento delle opzioni spaziali DB2, consulta il Tutorial DB2 Spatial Tutorial su IBM DeveloperWorks.

La funzionalità DB2 attualmente supporta solo l’ambiente Windows tramite il driver ODBC di Windows.

Il client che esegue QGIS deve disporre di uno dei seguenti componenti installati:

- DB2 LUW
- IBM Data Server Driver Package
- IBM Data Server Client

Per aprire un dato DB2 in QGIS, vedi la sezione *Il Pannello Browser o Caricare layer da Database.*

Se stai accedendo a un database DB2 LUW sulla stessa macchina o usi DB2 LUW come client, gli eseguibili DB2 e i file di supporto devono essere inclusi nel percorso di Windows. Questo può essere fatto creando un file batch come il seguente con il nome db2.bat e includendolo nella cartella %OSGEO4W_ROOT%\etc\ini:

```bash
@echo off
REM Point the following to where DB2 is installed
SET db2path=C:\Program Files (x86)\sqlib
(continues on next page)
```

13.3. Esplorare i formati dati e i campi
REM This should usually be ok – modify if necessary
SET gskpath=C:\Program Files (x86)\ibm\gsk8
SET Path=%db2path%\BIN;%db2path%\FUNCTION;%gskpath%\lib64;%gskpath%\lib;%path%
14.1 La finestra di dialogo Proprietà dei vettori

La finestra di dialogo Proprietà Layer fornisce le impostazioni generali per gestire l’aspetto degli oggetti del layer nella mappa (simbologia, etichettatura, diagrammi), l’interazione con il mouse (azioni, suggerimenti per la mappa). Fornisce anche informazioni sul layer.

Per accedere alla finestra di dialogo Proprietà Layer:

- Nel pannello Layer, fai doppio clic sul layer o fai clic con il tasto destro del mouse e seleziona Proprietà… dal menu pop-up;
- Vai al menu Layer ► Proprietà… quando il layer è selezionato.

La finestra di dialogo sul vettore Proprietà Layer ha le seguenti sezioni:

<table>
<thead>
<tr>
<th>Information</th>
<th>Source</th>
<th>Symbology[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagrams</td>
<td>Fields</td>
<td>Attributes Form</td>
</tr>
<tr>
<td>Joins</td>
<td>Auxiliary Storage</td>
<td>Actions</td>
</tr>
<tr>
<td>Display</td>
<td>Rendering</td>
<td>Temporal</td>
</tr>
<tr>
<td>Variables</td>
<td>Metadata</td>
<td>Dependencies</td>
</tr>
<tr>
<td>Legend</td>
<td>QGIS Server</td>
<td>Digitizing</td>
</tr>
</tbody>
</table>

[1] Disponibile anche nel Layer styling panel

Suggerimento: Condividere completamente o in parte le proprietà degli stili dei layer
Il menu *Style* nella parte inferiore della finestra di dialogo consente di importare o esportare queste proprietà o parte di esse da/per diverse destinazioni (file, appunti, database). Vedi *Gestione stili personalizzati*.

Nota: Poiché le proprietà (simbologia, etichetta, azioni, valori predefiniti, moduli …) di layer incorporati (vedi *Progetti nidificati*) sono ricavate dal file di progetto originale per evitare modifiche che potrebbero alterare questo comportamento, la finestra di dialogo delle proprietà dei layer non è disponibile per questi layer.

14.1.1 Proprietà Informazioni

La scheda *Informazioni* è di sola lettura e rappresenta un posto interessante per avere rapidamente informazioni e metadati di sintesi sul layer corrente. Le informazioni fornite sono:

- basate sulla fonte dati del layer (formato di memorizzazione, percorso, tipo di geometria, codifica sorgente dati, estensione…);
- ricavate da *filled metadata* (accesso, link, contatti, cronologia…);
- o in base alla sua geometria (estensione spaziale, SR…..) o ai suoi attributi (numero di campi, caratteristiche di ciascuno…..).

14.1.2 Proprietà Sorgente

Usa questa scheda per gestire le impostazioni generali di un layer vettoriale.

![Layer Properties - rivers | Source](image)

Fig. 14.1: Finestra di dialogo scheda Generale Proprietà Layer

Oltre l'impostazione del *Nome layer* come visualizzato nel pannello *Layer*, le opzioni disponibili includono:
Sistema di Riferimento delle Coordinate

- Visualizza il *Coordinate Reference System (CRS)* del layer. Puoi cambiare il SR del layer, selezionandone uno usato recentemente nell’elenco a discesa o cliccando sul pulsante Selezione SR (vedi *Scelta del sistema di riferimento delle coordinate*). Usa questo processo solo se il SR applicato al layer è sbagliato o se non ne è stato applicato nessuno. Se vuoi riproiettare i tuoi dati in un altro SR, usa piuttosto gli algoritmi di riproiezione dei layer di Processing o *Save it into another layer*.

- *Crea indice spaziale* (solo per formati supportati da OGR).

- *Aggiorna estensione* del vettore.

Costruttore di interrogazioni

La finestra di dialogo *Costruttore di interrogazioni* è accessibile attraverso il pulsante eponimo in fondo alla scheda *Sorgente* nella finestra di dialogo Proprietà vettore, sotto il gruppo *Filtro delle geometrie della sorgente dati*.

Il Costruttore di interrogazioni fornisce un’interfaccia che permette di definire un sottoinsieme delle geometrie del layer utilizzando una clausola SQL-like WHERE e di visualizzare il risultato nella finestra principale. Finché la query è attiva, nel progetto sono disponibili solo le geometrie corrispondenti al suo risultato.

Puoi usare uno o più attributi del layer per definire il filtro nel *Costruttore di interrogazioni*. L’uso di più di un attributo è mostrato in Fig. 14.2. Nell’esempio, il filtro combina gli attributi

- `toa(DateTime field: cast("toa" as character) > '2017-05-17' and cast("toa" as character) < '2019-12-24T18:00:00'),`
- `name(String field: "name" > 'S') and`
- `FID(Integer field: FID > 10)`

utilizzando gli operatori AND, OR e NOT e le parentesi. Questa sintassi (incluso il formato DateTime per il campo `toa`) funziona per i set di dati GeoPackage.

Il filtro viene creato a livello della fonte dati (OGR, PostgreSQL, MSSQL …). Quindi la sintassi dipende dalla fonte dati (DateTime ad esempio non è supportato per il formato Shapefile ESRI). L’espressione completa:

```
cast("toa" as character) > '2017-05-17' AND
cast("toa" as character) < '2019-12-24T18:00:00' AND
NOT ("name" > 'S' OR FID > 10)
```
Puoi anche aprire la finestra di dialogo Costruttore di interrogazioni utilizzando l’opzione Filtro… dal menu Layer o dal menu contestuale del layer. Le sezioni Campi, Valori e Operatori nella finestra di dialogo ti aiutano a costruire la query di tipo SQL visualizzata nella casella Espressione di Filtro Specifica del Provider.

L’elenco Campi contiene tutti i campi del layer. Per aggiungere una colonna attributo al campo della condizione SQL WHERE, fai doppio click sul suo nome o semplicemente digitalo nel box SQL.

Il riquadro Valori elenca i valori del campo attualmente selezionato. Per elencare tutti i valori unici di un campo, fai clic sul pulsante Tutto. Per elencare invece i primi 25 valori univoci della colonna, fai clic sul pulsante Campione. Per aggiungere un valore al campo della clausola SQL WHERE, fai doppio clic sul suo nome nella lista Valori. Puoi utilizzare la casella di ricerca nella parte superiore del riquadro Valori per sfogliare e trovare facilmente i valori degli attributi nella lista.

La sezione Operatori elena tutti gli operatori che puoi usare. Per aggiungere un operatore nella casella delle clausole SQL WHERE, clicca sul pulsante appropriato. Sono disponibili operatori relazionali (=, >, …), operatori per confrontare stringhe di testo (LIKE) ed operatori logici (AND, OR, …).

Il pulsante Test ti aiuta a controllare la tua richiesta e visualizza una casella messaggio con il numero di geometrie che soddisfano la richiesta corrente. Utilizza il pulsante Pulisci per cancellare la query SQL e ripristinare il layer al suo stato originale (cioè, caricare completamente tutte le geometrie).

Quando viene applicato un filtro, QGIS tratta il sottoinsieme risultante agisce come se fosse l’intero layer. Per esempio, se applichi il filtro di cui sopra per “Borough” (“TYPE_2” = 'Borough’), non puoi visualizzare, interrogare, salvare o modificare Anchorage, perché questo è una “Municipality” e quindi non fa parte del sottoinsieme.

Suggerimento: I Layer filtrati sono evidenziati nel Pannello Layer

Capitolo 14. Lavorare con i vettori
Nel pannello Layer, il layer filtrato è elencato con una icona Filtro accanto ad esso che indica la query utilizzata quando il mouse passa sopra il pulsante. Facendo doppio clic sull'icona si apre la finestra di dialogo Costruttore di interrogazioni per la modifica.

14.1.3 Proprietà Simbologia

La Scheda Simbologia ti fornisce uno strumento completo per la visualizzazione e la simbologia dei dati vettoriali. Puoi utilizzare gli strumenti che sono comuni a tutti i dati vettoriali, così come gli strumenti simbolo speciale che sono stati progettati per i diversi tipi di dati vettoriali. Tuttavia tutti i tipi condividono la seguente struttura della finestra di dialogo: nella parte superiore, disponi di un widget che ti consente di impostare il tipo simbolo e la classificazione per le geometrie e nella parte inferiore il widget Visualizzazione del layer.

Suggerimento: Passa rapidamente tra le diverse rappresentazioni del layer.

Utilizzando il menu Stile ► Aggiungi… in fondo alla finestra di dialogo Proprietà Layer, puoi salvare tutti gli stili di cui hai bisogno. Uno stile è la combinazione di tutte le proprietà che desideri per un layer (come la simbologia, l'etichettatura, il diagramma, la forma dei campi, le azioni….). Quindi, basta passare da uno stile all'altro dal menu contestuale del layer nel pannello Layer per ottenere automaticamente rappresentazioni diverse dei tuoi dati.

Suggerimento: Esporta simbologia vettore

Hai la possibilità di esportare la simbologia del vettore da QGIS nei file Google *.*kml, *.*dxf e MapInfo *.*tab. Semplicemente, clicca con il tasto destro sul vettore per aprire il menu contestuale e clicca su Salva con nome… per specificare il nome del file in uscita e il suo formato. Nella finestra di dialogo, usa il menu Esporta simbologia per salvare la simbologia o come Simbologia elementi ▶ o come Simbologia simboli del vettore ▶. Se hai utilizzato dei simboli, si consiglia di utilizzare la seconda impostazione.

Modalità di rappresentazione delle geometrie

Il visualizzatore è responsabile della visualizzazione di una geometria insieme al simbolo corretto. Indipendentemente dal tipo di geometria del vettore, esistono quattro tipologie comuni di visualizzatori: simbolo singolo, categorizzato, graduato e tramite regole. Per vettori di punti, sono disponibili i visualizzatori spostamento punto e mappa di concentrazione, mentre i vettori di poligoni possono essere visualizzati anche con il visualizzatore invertito e il visualizzatore 2.5 D.

Il visualizzatore a colorazione continua non c'è perché è a tutti gli effetti un caso speciale del visualizzatore graduato. I visualizzatori categorizzato e graduato possono essere modificati con simboli specifici e con scale di colore personalizzate - i colori per i simboli saranno realizzati in modo appropriato. Per ogni tipo di vettori (punti, linee e poligoni), sono disponibili tipi di simboli. A seconda del visualizzatore selezionato, la finestra di dialogo offre diverse sezioni aggiuntive.

Nota: Se cambi il tipo di visualizzatore mentre imposti lo stile di un vettore, le impostazioni effettuate per il simbolo saranno mantenute. Questo funziona solo per un cambiamento. Se si ripete la modifica del tipo di visualizzatore le impostazioni per il simbolo saranno perse.
Visualizzatore Simbolo Singolo

Il Visualizzatore **Simbolo Singolo** rappresenta tutti gli elementi di un layer tramite un unico simbolo definito dall’utente. Vedi *Il Selettore dei Simboli* per informazioni aggiuntive sulla rappresentazione del simbolo.

Fig. 14.3: Finestra di dialogo Simbolo singolo
Visualizzatore Senza Simboli

Il visualizzatore Senza Simboli è un caso di utilizzo speciale della visualizzazione a Simbolo Singolo in quanto applica la stessa rappresentazione a tutti gli oggetti. Utilizzando questa tipologia di visualizzazione, nessuna simbologia verrà disegnata sulle caratteristiche geometriche (sulla rappresentazione del punto o della linea o del poligono), ma l'etichettatura, eventuali diagrammi e altre parti non-simbologia geometrica saranno ancora visualizzate.

Le selezioni possono ancora essere effettuate sul layer in mappa e le geometrie selezionate verranno visualizzate con un simbolo predefinito. Verranno mostrate anche le geometrie modificate.

Questo è inteso come una comoda scorciatoia per i layer per i quali vuoi mostrare solo le etichette o i diagrammi evitando di dover rendere totalmente trasparente la simbologia per raggiungere questo obiettivo.

Visualizzatore Categorizzato

Il visualizzatore Categorizzato è usato per rappresentare gli elementi di un layer, usando una simbologia definita dall'utente il cui aspetto riflette i valori discreti di un campo o di un'espressione.

Per usare simbologia categorizzata per un layer:

1. Seleziona il Valore per la classificazione: può essere un campo esistente o una expression che puoi digitare nella casella o costruire usando il pulsante associato. L'uso delle espressioni per la classificazione evita la necessità di creare un campo ad hoc per la simbologia (ad esempio, se i tuoi criteri di classificazione sono derivati da uno o più attributi).

L'espressione usata per classificare gli elementi può essere di qualsiasi tipo; per esempio, può:

• essere un confronto. In questo caso, QGIS restituisce i valori 1 (Vero) e 0 (Falso). Alcuni esempi:
myfield >= 100
$id = @atlas_featureid
myfield % 2 = 0
within($geometry, @atlas_geometry)

• combinare diversi campi:

concat(field_1, ' ', field_2)

• essere un calcolo sui campi:

myfield % 2
year(myfield)
field_1 + field_2
substr(field_1, -3)

• essere usata per trasformare valori lineari in classi discrete, per esempio:

CASE WHEN x > 1000 THEN 'Big' ELSE 'Small' END

• combinare diversi valori discreti in un’unica categoria, per esempio:

CASE
WHEN building IN ('residence', 'mobile home') THEN 'residential'
WHEN building IN ('commercial', 'industrial') THEN 'Commercial and Industrial'
END

Suggerimento: Sebbene puoi utilizzare qualsiasi tipo di espressione per categorizzare le geometrie, per alcune espressioni complesse potrebbe essere più semplice utilizzare la rule-based rendering.

2. Configurare il **Symbol** che sarà usato come simbolo base per tutte le classi;
3. Specificare il **Color ramp** cioè la gamma di colori da cui viene selezionato il colore applicato ad ogni simbolo.

Oltre alle opzioni comuni del **color ramp widget** puoi applicare una scala di colori **Random Color** alle categorie. Puoi cliccare sulla voce Rimescola colori casuali per rigenerare un nuovo set di colori casuali se non sei soddisfatto.

4. Poi clicca sul pulsante **Classifica** per creare classi dai valori distinti del campo o dell’espressione fornita.

5. **Applica** le modifiche se **live update** non è in uso e ogni elemento sulla mappa sarà rappresentato con il simbolo della sua classe.

Per impostazione predefinita, QGIS aggiunge una classe **tutti gli altri valori** alla lista. Sebbene sia vuota all’inizio, questa classe viene utilizzata come classe predefinita per qualsiasi elemento che non rientri nelle altre classi (ad esempio, quando si creano elementi con nuovi valori per il campo/espressione di classificazione). Ulteriori modifiche possono essere fatte alla classificazione predefinita:

- Puoi scegliere **Aggiungi** nuove categorie, **Elimina** categorie selezionate o **Elimina Tutto**.
- Una classe può essere disabilitata deselezionando la casella di controllo a sinistra del nome della classe; gli elementi corrispondenti vengono nascosti sulla mappa.
- Trascina le righe per riordinare le classi
- Per cambiare il simbolo, il valore o la legenda di una classe, fai doppio clic sull’oggetto.

Facendo clic con il tasto destro del mouse sull’oggetto(i) selezionato, viene visualizzato un menu contestuale per:

- **Copia Simbolo e Incolla Simbolo**, un modo conveniente per applicare la rappresentazione di un oggetto ad altri oggetti
• Cambia Colore... del simbolo(i) selezionato
• Cambia Opacità... del simbolo(i) selezionato
• Cambia Unità Output... del simbolo(i) selezionato
• Cambia Larghezza... del simbolo(i) di linea selezionato
• Cambia Dimensione... del simbolo(i) di punti selezionato
• Cambia Angolo... del simbolo(i) di punti selezionato
• Fondi Categorie: Raggruppa più categorie selezionate in una sola. Questo permette uno stile più semplice dei layer con un gran numero di categorie, dove può essere possibile raggruppare numerose categorie distinte in un insieme più piccolo e gestibile di categorie che si applicano a più valori.

Suggerimento: Poiché il simbolo utilizzato per le categorie fuse è quello della categoria selezionata più in alto nella lista, potresti spostare in alto la categoria di cui vuoi riutilizzare il simbolo prima di fonderla.

• Separa Categorie che sono state precedentemente unite

Il menu Avanzato dà accesso alle opzioni per velocizzare la classificazione o perfezionare il disegno dei simboli:

• Fai corrispondere ai Simboli Salvati: Usando la symbols library, assegna ad ogni categoria un simbolo il cui nome rappresenta il valore di classificazione della categoria
• Abbina ai Simboli dal File...: Fornito un file con simboli, assegna ad ogni categoria un simbolo il cui nome rappresenta il valore di classificazione della categoria
• Symbol levels... per definire l'ordine di visualizzazione dei simboli.

Suggerimento: Modificare le categorie direttamente dal Pannello Layer

Quando una simbologia layer è basata su una modalità di simbologia categorized, graduated o rule-based, puoi modificare ciascuna delle categorie dal pannello Layer. Clicca con il tasto destro del mouse su una sottovoce del layer e potrai:

• Attiva oggetti visibilità
• Mostra Tutti gli Oggetti
• Nascondi Tutti gli Oggetti
• Modifica il colore del simbolo grazie alla ruota color selector
• Modifica simbolo... dalla finestra di dialogo symbol selector
• Copia Simbolo
• Incolla Simbolo

Visualizzatore Graduato

Il Visualizzatore graduato è usato per visualizzare tutte le geometrie di un layer, utilizzando un simbolo definito dall'utente il cui colore o dimensione riflettono la classificazione in classi dell'attributo scelto.

Come il Visualizzatore Categorizzato, quello Graduato ti permette di impostare la rotazione e la dimensione della scala in base a valori presenti in colonne specifiche.

Inoltre, analogamente al Visualizzatore Categorizzato, ti permette di selezionare:

• Il valore (usando la casella di lista campi o la funzione \begin{itemize}
 \item Finestra di dialogo delle espressioni
\end{itemize} \begin{itemize})
Il simbolo (utilizzando la finestra di dialogo Selettor simbolo)
Il formato legenda e la precisione
Il metodo da usare per cambiare il simbolo: colore e dimensione
I colori (usando la Scala di colori) se il metodo per il colore è selezionato
La dimensione (utilizzando il dominio di dimensioni e la sua unità)

Quindi puoi utilizzare la scheda Istogramma che mostra un istogramma interattivo dai valori del campo assegnato o dalla espressione. Le interruzioni di classe possono essere spostate o aggiunte utilizzando il widget istogramma.

Nota: Puoi usare il pannello Sintesi delle Statistiche per ottenere maggiori informazioni sul tuo vettore. Vedi Pannello Statistiche.

Tornando alla scheda Classi, puoi specificare il numero di classi e anche la modalità per classificare le geometrie all'interno delle classi (utilizzando l'elenco in Modo). Le modalità disponibili sono:

- Conteggio uguale (quantile): ogni classe avrà lo stesso numero di elementi (il concetto di un boxplot).
- Intervallo Uguale: ogni classe avrà la stessa dimensione (ad esempio, con i valori da 1 a 16 e quattro classi, ogni classe avrà una dimensione di quattro).
- Scala logaritmica: adatta a dati con un'ampia gamma di valori. Classi strette per valori bassi e classi larghe per valori grandi (ad esempio, per numeri decimali con intervallo [0..100] e due classi, la prima classe sarà da 0 a 10 e la seconda da 10 a 100).
- Intervalli Naturali (Jenks): la varianza all'interno di ogni classe è minimizzata mentre la varianza tra le classi è massimizzata.
- Pretty Breaks: calcola una sequenza di circa n+1 valori equamente distanziati che coprono la gamma dei valori in x. I valori sono scelti in modo che siano 1, 2 o 5 volte una potenza di 10. (basato su Pretty dell'ambiente statistico R https://www.rdocumentation.org/packages/base/topics/pretty).
- Deviazione standard: le classi sono costruite in funzione della deviazione standard dei valori.

La parte centrale della scheda Simbologia elenca le classi insieme ai relativi intervalli, etichette e simboli che verranno sottoposti a visualizzazione.

Clicca sul pulsante Classifica per creare la classi usando il metodo scelto. Ogni classe può essere disabilitata spuntando la casella a sinistra del nome della classe.

Per cambiare simbolo, valore e/o etichetta della classe, semplicemente fai doppio click sull'oggetto che vuoi cambiare.

Facendo clic con il tasto destro del mouse sull'oggetto(i) selezionato, viene visualizzato un menu contestuale per:

- Copia Simbolo e Incola Simbolo, un modo conveniente per applicare la rappresentazione di un oggetto ad altri oggetti
- Cambia Colore... del simbolo(i) selezionato
- Cambia Opacità... del simbolo(i) selezionato
- Cambia Unità Output... del simbolo(i) selezionato
- Cambia Larghezza... del simbolo(i) di linea selezionato
- Cambia Dimensione... del simbolo(i) di punti selezionato
- Cambia Angolo... del simbolo(i) di punti selezionato

L'esempio in Fig. 14.5 mostra la finestra di dialogo di visualizzazione graduata per il layer major_rivers del dataset di esempio QGIS.
Suggerimento: Mappe tematiche usando un’espressione
Puoi creare mappe tematiche categorizzate o graduate usando il risultato di un’espressione. Nella finestra di dialogo delle proprietà del vettore il selettore degli attributi viene esteso con una funzione Imposta funzione espressione colonna. Non hai quindi più bisogno di creare una nuova colonna nella tabella degli attributi di un vettore se desideri che l'attributo di classificazione sia composto da più campi o da un qualche tipo di formula.

Simboli Proporzionali e Analisi Multivariata

Il Simbolo Proporzionale e l’Analisi Multivariata non sono tipologie di visualizzazione disponibili nell’elenco a discesa dello stile. Tuttavia con le opzioni data-defined override applicate a qualsiasi delle precedenti opzioni di Visualizzazione, QGIS ti consente di visualizzare i dati di punti e linee con tale rappresentazione.

Creare simboli proporzionali
Per applicare una rappresentazione proporzionale:

1. Per prima cosa applica al layer il single symbol renderer.
2. Quindi imposta il simbolo da applicare alle geometrie.
3. Seleziona la voce al livello superiore dell’albero dei simboli, e usa il pulsante button Sovrascrittura definita dai dati accanto all’opzione Dimensione (per layer puntuale) o Larghezza (per layer lineare).

14.1. La finestra di dialogo Proprietà dei vettori
4. Seleziona un campo o inserisci un’espressione e, per ogni geometria, QGIS applicherà il valore di output alla proprietà e ridimensionerà proporzionalmente il simbolo nell’area di disegno della mappa.

Se necessario, utilizza l’opzione Assistente… del menu per applicare alcune trasformazioni (esponenziale, flannery….) al ridimensionamento della dimensione del simbolo (vedi Usare l’interfaccia assistente definizione dati per maggiori dettagli).

Puoi scegliere di visualizzare i simboli proporzionali nel pannello Layers: apri l’elenco a discesa Avanzato in fondo alla finestra di dialogo principale della scheda Simbologia e seleziona Dimensione legenda definita dai dati… per configurare le voci della legenda (vedi Dimensione legenda definita dai dati per i dettagli).

![Image](image.png)

Fig. 14.6: Classificare gli aeroporti in base all’altitudine dell’aeroporto

Creazione di analisi multivariata

Una visualizzazione con analisi multivariata ti consente di valutare la relazione tra due o più variabili ad esempio, una può essere rappresentata da una scala di colori mentre l’altra è rappresentata da una dimensione.

Il modo più semplice per creare analisi multivariate in QGIS è quello di:

1. Per prima cosa applica una rappresentazione categorizzata o graduata su un layer, usando lo stesso tipo di simbolo per tutte le classi.

2. Poi, applica una simbologia proporzionale alle classi:

 2. Ridimensiona la dimensione o la larghezza del simbolo del layer usando il widget data defined override come visto sopra.

Come il simbolo proporzionale, la simbologia in scala può essere aggiunta all’albero dei layer, nella parte superiore dei simboli delle classi categorizzate o graduate usando la funzione data defined size legend. Ed entrambe le rappresentazioni sono disponibili nella voce della legenda del layout di stampa.
Visualizzazione basata su Regole

Il visualizzatore **Tramite regole** viene utilizzato per eseguire la visualizzazione di un layer, utilizzando simboli basati su regole il cui aspetto rispecchia l'assegnazione dell'attributo di una geometria selezionata a una classe. Le regole sono basate su istruzioni SQL e possono essere annidiate. La finestra di dialogo consente di definire le regole per filtrare il raggruppamento o condizionare la visualizzazione alla scala e tu puoi decidere se vuoi cambiare l'ordine gerarchico o utilizzare la prima regola proposta.

Per creare una regola:

1. Attiva una riga esistente facendo doppio clic su di essa (per impostazione predefinita, QGIS aggiunge un simbolo senza una regola quando la modalità di visualizzazione è abilitata) oppure fai clic sul pulsante **Modifica regola** o **Aggiungi regola**.
2. Nella finestra di dialogo **Modifica regola** che si apre, puoi definire una etichetta per aiutarti a identificare ogni regola. Questa è l'etichetta che verrà visualizzata nel pannello Layer e anche nella legenda del layout di stampa.
3. Inserisci manualmente una espressione nella casella di testo accanto all’opzione **Filtro** oppure premi il pulsante **Filtro** accanto ad essa per aprire la finestra di dialogo del costruttore di stringhe di espressione.
4. Usa le funzioni fornite e gli attributi del layer per costruire un’espressione espressione per filtrare le caratteristiche che vorresti selezionare. Premi il pulsante **Prova** per controllare il risultato della query.
5. Puoi digitare un’etichetta più lunga per rendere più completa la descrizione della regola.
6. Puoi utilizzare l’opzione **Intervallo di scala** per impostare le scale alle quali applicare la regola.
7. Infine, configura il simbolo simbolo da usare per queste geometrie.
8. E premi **OK**.

Una nuova riga che riassume la regola viene aggiunta alla finestra di dialogo Proprietà Layer. Puoi creare tutte le regole necessarie seguendo i passaggi precedenti o copiare incollandola una regola esistente. Trascina e rilascia le regole una sopra l’altra per annidarle e perfezionare le funzionalità delle regole superiori nelle sottoclassi.
Selezionando una regola, puoi anche organizzare le sue funzionalità in sottoclassi usando il menu a discesa *Refine selected rules*. L'affinamento automatico delle regole può essere basato su:

- **scale**;
- **Categorie**: applicando un *categorized*;
- o **intervalli**: applicando un *graduated*.

Le classi perfezionate appaiono come sotto-voci della regola, in una gerarchia ad albero e come sopra, puoi impostare la simbologia di ogni classe.

Nella finestra di dialogo *Modifica regola*, puoi evitare di scrivere tutte le regole e utilizzare l'opzione *Altrimenti* per rilevare tutte le geometrie che non corrispondono a nessuna delle altre regole, nello stesso layer. Questo può anche essere ottenuto scrivendo *Altrimenti* nella colonna *Regola* della finestra di dialogo *Proprietà Layer ➤ Simbologia ➤ Basata su regole*.

Facendo clic con il tasto destro del mouse sull'oggetto(i) selezionato, viene visualizzato un menu contestuale per:

- *Copia e Incolla*, un modo semplice per creare nuove voci basate su voci esistenti
- *Copia Simbolo e Incolla Simbolo*, un modo conveniente per applicare la rappresentazione di un oggetto ad altri oggetti
- *Cambia Colore…* del simbolo(i) selezionato
- *Cambia Opacità…* del simbolo(i) selezionato
- *Cambia Unità Output…* del simbolo(i) selezionato
- *Cambia Larghezza…* del simbolo(i) di linea selezionato
- *Cambia Dimensione…* del simbolo(i) di punti selezionato
- *Cambia Angolo…* del simbolo(i) di punti selezionato
- **Affina Regola Attuale**: apre un sottomenu che permette di raffinare la regola corrente con **scale**, **categorie** (visualizzazione categorizzata) o **intervalli** (visualizzazione graduata).

Le regole create appaiono anche in una gerarchia ad albero nella legenda della mappa. Fai doppio clic sulle regole nella legenda della mappa e viene visualizzata la scheda Simbologia delle proprietà del layer che mostra la regola che è di riferimento al simbolo nell'albero.

L’esempio in *Fig. 14.8* mostra il dialogo visualizzazione basata su regole per il layer *rivers* del dataset di esempio QGIS.
Il visualizzatore **Spostamento Punto** permette di visualizzare gli elementi di un layer di punti anche se hanno la stessa posizione. Per ottenere questo, il visualizzatore prende i punti che cadono in una data **Distanza di tolleranza** l'uno dall'altro e li posiziona intorno al loro baricentro seguendo diversi **Metodi di posizionamento**:

- **Anello**: posiziona tutti i punti su un cerchio il cui raggio dipende dal numero di punti da visualizzare.
- **Anelli concentrici**: utilizza una serie di cerchi concentrici per mostrare i punti.
- **Reticolo**: genera un reticolo regolare con un simbolo puntuale ad ogni intersezione.

Il widget **Simbolo centrale** ti aiuta a personalizzare il simbolo e il colore del punto centrale. Per i simboli dei punti distribuiti, puoi applicare **Senza simboli**, **Simbolo singolo**, **Categorizzato**, **Graduato** o **Basato su regole** utilizzando l'elenco a discesa **Visualizzatore** e personalizzarli utilizzando il pulsante **Impostazioni Visualizzatore**.

Mentre la spaziatura minima di **Linee di spostamento** dipende dal simbolo del punto, puoi ancora personalizzare alcune delle sue impostazioni come **Spessore tratto**, **Colore tratto** e **Rettifica dimensione** (ad esempio, per aggiungere più spaziatura tra i punti visualizzati).

Utilizza le opzioni del gruppo **Etichette** per eseguire l'etichettatura sui punti: le etichette sono posizionate vicino alla posizione del simbolo, e non nella posizione reale del punto. Oltre a **Attributo dell'etichetta**, **Carattere dell'etichetta** e **Colore dell'etichetta**, puoi impostare la **Scala minima della mappa** per visualizzare le etichette.
Fig. 14.9: Finestra di dialogo Spostamento punti

Nota: Il visualizzatore Spostamento punto non altera la geometria dei punti, il che significa che i punti non vengono spostati dalla loro posizione. Si trovano ancora al loro posto iniziale. Le modifiche sono solo visive, a scopo di visualizzazione. Utilizza invece l'algoritmo di Processing Spostamento punti se vuoi generare punti spostati.

Visualizzatore Gruppo di punti

A differenza della visualizzazione Spostamento punto che fa spostare il punto più vicino o sovrapposto, il Gruppo di punti raggruppa la visualizzazione di punti vicini in un unico simbolo. Sulla base di una determinata Distanza, i punti che tra loro vicini vengono fusi in un unico simbolo. L’aggregazione dei punti viene fatta in base al gruppo più vicino che si sta formando, piuttosto che assegnando loro il primo gruppo all’interno della distanza di ricerca.

Dalla finestra di dialogo principale, puoi:

- impostare il simbolo per rappresentare l’insieme di punti in Cluster symbol; la visualizzazione predefinita mostra il numero di punti aggregati grazie al @cluster_size variable sul carattere del simbolo del layer.

- utilizza l’elenco a discesa Visualizzatore per applicare uno qualsiasi degli altri tipi di visualizzazione degli oggetti al layer (singolo, categorizzato, basato su regole…..). Poi, premi il pulsante Impostazioni Visualizzatore… per configurare la simbologia dei punti come al solito. Nota che questa funzionalità è visibile solo su geometrie che non sono raggruppate. Inoltre, quando il colore del simbolo è lo stesso per tutti i punti all’interno di un cluster, quel colore imposta la variabile @cluster_color del cluster.
Nota: Il visualizzatore Spostamento Gruppo non altera la geometria dei punti, il che significa che i punti non vengono spostati dalla loro posizione. Si trovano ancora al loro posto iniziale. Le modifiche sono solo visive, a scopo di rendering. Utilizza invece l'algoritmo di Processing Spostamento punti se vuoi generare punti basati su cluster.

Visualizzatore Poligoni Invertiti

La visualizzazione Poligoni invertiti consente all'utente di definire un simbolo al di fuori dei poligoni del layer. Come sopra puoi selezionare le altre visualizzazioni, ovvero Simbolo singolo, Graduato, Categorizzato, Basato su regole o Visualizzazione 2.5D.

Fig. 14.11: Finestra di dialogo Poligoni invertiti
Visualizzatore Mappa di Concentrazione

Con la visualizzazione **Mappa di concentrazione** puoi creare mappe di concentrazione dinamiche per layers puntuali e multi-puntuali. Puoi specificare il raggio di concentrazione in millimetri, punti, pixel, unità di mappa o pollici, scegliere e modificare una scala di colore per lo stile di concentrazione e utilizzare un cursore per selezionare un compromesso tra la velocità di visualizzazione e la qualità. Inoltre puoi definire un valore limite massimo e dare un peso ai punti utilizzando un campo o una espressione. Quando si aggiunge o si rimuove una geometria, il visualizzatore Mappa di concentrazione aggiorna automaticamente lo stile.

![Image of Layer Properties dialog](image)

Fig. 14.12: Finestra di dialogo Mappa di concentrazione

Visualizzatore 2.5D

Utilizzando la visualizzazione **2.5D** è possibile creare un effetto 2.5D sulle geometrie del tuo layer. Inizia scegliendo un valore di **Altezza** (in unità di mappa). Per questo puoi utilizzare un valore fisso, uno dei campi del tuo layer o un’espressione. È inoltre devi scegliere un **Angolo** (in gradi) per ricreare la posizione del visualizzatore (0 ° significa ovest, crescente in senso antiorario). Usa le opzioni avanzate di configurazione per impostare il **Colore tetto** e **Colore muro**. Puoi simulare la radiazione solare sulle pareti e scegliere la posizione dell'ombra. Puoi anche simulare la presenza di un'ombra impostando un **Colore** e una **Dimensione** (in unità di mappa).
Fig. 14.13: Finestra di dialogo mappa 2.5D

Suggerimento: Utilizzare l'effetto 2.5D con altre visualizzazioni

Una volta che hai finito di impostare lo stile di base nella visualizzazione 2.5D, puoi convertirlo in un'altra tipologia di visualizzazione (Singolo, Categorizzato, Graduato). Gli effetti 2.5D verranno mantenuti e tutte le altre opzioni di visualizzazione saranno disponibili per essere o meno confermate (in questo modo puoi avere, ad esempio, simboli categorizzati con una bella rappresentazione 2.5D o aggiungere un certo stile aggiuntivo ai tuoi simboli 2.5D). Per assicurarti che l’ombra e l’“edificio” non interferiscano con altre geometrie vicine, potrebbe essere necessario attivare i Livelli dei simboli (**Avanzate** ➤ Livelli dei Simboli…). I valori di altezza e angolo 2.5D vengono salvati nelle variabili del layer, quindi puoi modificarla successivamente nella scheda variabili della finestra di dialogo delle proprietà del layer.

Visualizzazione del layer

Nella scheda Stile puoi anche impostare alcune opzioni che agiscono contemporaneamente su tutte le geometrie del layer:

- **Trasparenza del layer**: Con questo strumento è possibile rendere visibile il layer sottostante della mappa. Usa il cursore per adattare la visibilità del tuo layer vettoriale alle tue esigenze. Puoi anche definire con precisione la percentuale di visibilità nel menu accanto al cursore.

- **Modalità fusione layer e Modalità fusione elementi**: puoi ottenere effetti speciali di visualizzazione con questi strumenti che potresti già aver avuto a disposizione con programmi specializzati per la elaborazione di immagini. I pixel dei tuoi layer in sovrapposizione e di geometria sovrapposte vengono mischiati tramite le impostazioni descritte in **Metodi di fusione**.

- Applica **paint effects** su tutte le geometrie del layer con il pulsante **Personalizza effetti**.

- **Controllo ordine di visualizzazione** ti permette, utilizzando gli attributi delle geometrie, di definire in quale ordine vengono visualizzati. Attiva la casella di controllo e fai click sul pulsante accanto **順次**. Ottiene quindi la finestra di dialogo **Definisci l'ordine** in cui:
 1. Scegli un campo o crea un'Espressione da applicare alle geometrie del layer.
 2. Imposta con quale sequenza le geometrie coinvolte devono essere ordinate, quindi se scegli ordine **Crescente**, le geometrie con valore inferiore vengono visualizzate sotto quelle con valore superiore.
 3. Definisce se le geometrie che hanno per il campo scelto valore NULL devono essere visualizzati per **Prime** o per **Ultime**.

14.1. La finestra di dialogo Proprietà dei vettori 281
4. Ripeti i passaggi precedenti per tutte le regole che vuoi utilizzare.

La prima regola viene applicata a tutte le geometrie del layer, ordinandole in base al valore z restituito. Quindi, per ciascun gruppo di geometrie con lo stesso valore (compresi quelli con valore NULL) e quindi dello stesso livello z, viene applicata la regola successiva per ordinare i propri elementi tra di loro. E così via…

Fig. 14.14: Opzioni di visualizzazione del layer

Altre impostazioni

Livelli simbolo

Per i visualizzatori che permettono layer di simbolo sovrapposti (solo la mappa di concentrazione non lo permette) c’è un’opzione per controllare l’ordine di visualizzazione di ciascun livello del simbolo.

Nella maggior parte delle visualizzazioni puoi accedere all’opzione livelli dei simboli facendo clic sul pulsante **Avanzato** al di sotto dell’elenco dei simboli salvati e scegliendo **Livelli simbolo**…. Nell’opzione **Visualizzazione basata su Regole** è direttamente disponibile tramite il pulsante **Livelli simbolo**…, mentre nella visualizzazione **Visualizzatore Spostamento Punto** lo stesso pulsante si trova all’interno della finestra di dialogo **Impostazioni di visualizzazione**.

Per attivare i livelli dei simboli, selezionare **Abilita livelli simbolo**. Ogni riga mostrerà un piccolo campione del simbolo combinato, la sua etichetta e il singolo livello di simbolo diviso in colonne con un numero accanto ad esso. I numeri rappresentano l’ordine di visualizzazione con cui verrà prelevato il livello di simbolo. I livelli di valori inferiori vengono tracciati prima, rimanendo in basso, mentre i valori più alti vengono tracciati per ultimi, sopra agli altri.

Fig. 14.15: Finestra di dialogo dei livelli simbolo
Nota: Se i livelli simbolo sono disattivati, saranno mostrati i simboli completi secondo il rispettivo ordine delle geometrie. I simboli sovrapposti copriranno quelli al di sotto di essi. Inoltre, simboli simili non si «uniranno» gli uni con gli altri.

Fig. 14.16: Differenza tra i livelli simboli attivati (A) e disattivati (B)

Dimensione legenda definita dai dati

Quando un layer è rappresentato con il simbolo *proportional symbol or the multivariate rendering* o quando al layer viene applicato un *scaled size diagram*, puoi abilitare la visualizzazione dei simboli scalati sia nel *Layers panel* che nel *print legend layout*.

Per abilitare la finestra di dialogo *Dimensioni della Legenda Definita dai Dati*… per attivare la simbologia, seleziona l'opzione del pulsante *Avanzato* sotto l'elenco dei simboli salvati. Per i diagrammi, l'opzione è disponibile sotto la scheda *Legenda*. La finestra di dialogo fornisce le seguenti opzioni per:

- selezionare il tipo di legenda: *Legenda non attivata*, *Oggetti della legenda separati* e *Legenda racchiusa*. Per quest'ultima opzione, puoi selezionare se gli elementi della legenda sono allineati in *Basso* o in *Centro*;
- impostare il `symbol to use <symbol-selector>` per la rappresentazione della legenda;
- inserire il titolo nella legenda;
- ridefinire le classi da utilizzare: per impostazione predefinita, QGIS fornisce una legenda di cinque classi (basata sulle pause naturali), ma puoi applicare la tua classificazione utilizzando l’opzione *Classi personalizzate*. Usa i pulsanti per impostare i valori e le etichette delle classi personalizzate.

Un’anteprima della legenda viene visualizzata nel pannello destro della finestra di dialogo e aggiornata quando si impostano i parametri. Per le legende collassate, viene tracciata una linea di separazione dal centro orizzontale del simbolo al testo della legenda corrispondente.
Fig. 14.17: Impostazione delle dimensioni in scala delle legenda

Nota: Attualmente, la dimensione della legenda definita dai dati per la simbologia dei layer può essere applicata solo all'intero della simbologia singola, categorizzata o graduata.

Effetti disegno

Al fine di migliorare la rappresentazione dei vettori ed evitare (o per lo meno ridurre) il ricorso ad altri software per la rappresentazione finale delle mappe, QGIS fornisce un'altra potente funzionalità: l'opzione "Effetti Disegno", che aggiunge effetti grafici per personalizzare la visualizzazione di vettori.

L'opzione è disponibile nella finestra di dialogo Proprietà vettore –> Simbologia, all'interno del gruppo Layer rendering (si applica all'intero layer) oppure in symbol layer properties (si applica alla geometria corrispondente). Puoi combinare entrambi gli usi.

Gli effetti disegno possono essere attivati selezionando l'opzione "Effetti disegno" e cliccando il pulsante "Personalizza effetti". Questo aprirà la finestra di dialogo Proprietà Effetto (vedi Fig. 14.18). Sono disponibili i seguenti tipi di effetti, con opzioni personalizzate:

- **Sorgente:** Mostra lo stile originale della geometria in accordo alla configurazione delle proprietà del vettore. La Trasparenza dello stile può essere regolata così come la Blend mode e la Draw mode. Queste sono proprietà comuni per tutti i tipi di effetti.
Fig. 14.18: Finestra di dialogo Effetti di disegno

- **Sfumatura**: aggiunge un effetto di sfumatura sul layer vettoriale. Le opzioni di personalizzazione che puoi scegliere sono *Tipo di sfumatura* (*Stack blur* (fast) o *Gaussian blur* (quality)) e *Grado di sfumatura*.

Fig. 14.19: Effetti di disegno: finestra di dialogo Sfumatura

- **Colorazione**: Questo effetto può essere utilizzato per creare una versione dello stile utilizzando una singola tinta. La base del simbolo avrà sempre una versione in scala di grigi e puoi:
 - Usare *Scala di grigi* per selezionare come crearlo: le opzioni sono “Per brillantezza”, “Per luminosità”, “Per media” e “Spento”.
 - Se viene selezionato *Colora*, sarà possibile mescolare un altro colore e scegliere quanto deve essere forte.
 - Controllare i livelli di *Brillantezza*, *Contrasto* e *Saturazione* del simbolo risultante.
Fig. 14.20: Effetti di disegno: finestra di dialogo Colorazione

- **Ombreggiatura**: utilizzando questo effetto si aggiunge un’ombra sulla geometria, che sembra aggiungere una dimensione aggiuntiva. Questo effetto può essere personalizzato modificando l’angolo di Offset e la distanza, determinando dove verso dove si sposta l’ombra e la prossimità dell’oggetto sorgente. Ombreggiatura ha anche l’opzione di modificare Raggio di sfocatura e il Colore.

Fig. 14.21: Effetti di disegno: finestra di dialogo Ombreggiatura
• **Ombreggiatura interna**: questo effetto è simile all’effetto *Ombreggiatura*, ma aggiunge l’effetto ombra all’interno dei bordi della geometria. Le opzioni disponibili per la personalizzazione sono le stesse dell’effetto *Ombreggiatura*.

![Fig. 14.22: Effetti di disegno: finestra di dialogo Ombreggiatura interna](image)

• **Luminescenza interna**: aggiunge un effetto di incandescenza all’interno della geometria. Questo effetto può essere personalizzato regolando la *Diffusione* (larghezza) del bagliore o il *Raggio di sfumatura*. Quest’ultima specifica la vicinanza dal margine della geometria alla quale si vuole che si verifichi la sfumatura. Inoltre, esistono opzioni per personalizzare il colore del bagliore, utilizzando un *Singolo colore* o una *Scala di colori*.

![Fig. 14.23: Effetti di disegno: finestra di dialogo Ombreggiatura interna](image)
• **Luminescenza esterna:** questo effetto è simile all'effetto *Luminescenza interna*, ma aggiunge l'effetto di incandescenza all'esterno dei bordi della geometria. Le opzioni disponibili per la personalizzazione sono le stesse dell'effetto *Luminescenza interna*.

![Fig. 14.24: Effetti di disegno: finestra di dialogo Ombreggiatura esterna](image)

• **Trasformazione:** aggiunge la possibilità di trasformare la forma del simbolo. Le prime opzioni disponibili per la personalizzazione sono *Rifletti orizzontalmente* e *Rifletti verticalmente* che creano una rotazione sugli assi orizzontali e/o verticali. Le altre opzioni sono:
 - *Tagliare X,Y:* Allinea la geometria lungo l'asse X e/o Y.
 - *Ridimensiona X,Y:* ingrandisce o rimpicciolisce la geometria lungo l'asse X e/o Y per la percentuale data,
 - *Rotazione:* Ruota la geometria intorno al punto centrale.
 - e *Trasla* modifica la posizione dell'oggetto in base a una distanza data sull'asse X e/o sull'asse Y.
Uno o più effetti di disegno possono essere usati contemporaneamente. Puoi attivare/disattivare un effetto utilizzando la relativa casella di controllo nell'elenco degli effetti. Puoi modificare il tipo di effetto selezionato utilizzando l'opzione **Tipo effetto**. Puoi riordinare gli effetti utilizzando i pulsanti **Sposta in alto** e **Sposta in basso** e anche aggiungere o rimuovere gli effetti utilizzando i pulsanti **Aggiungi nuovo effetto** e **Rimuovi effetto**.

Ci sono alcune opzioni comuni disponibili per tutti i tipi di effetti. Le opzioni Trasparenza e Modalità di fusione operano in modo simile a quelle descritte in **Visualizzazione del layer** e possono essere utilizzate in tutti gli effetti di disegno, tranne che per la Trasformazione.

C'è anche un'opzione **Modalità disegno** disponibile per ogni effetto, e puoi scegliere se visualizzare e/o modificare il simbolo, seguendo alcune regole:

- • **Visualizza gli effetti dall'alto verso il basso.**
- • **la modalità Visualizza solamente** significa che l'effetto sarà visibile.
- • **la modalità Modifica solamente** significa che l'effetto non sarà visibile ma i cambiamenti che applica saranno passati all'effetto successivo (quello immediatamente sotto).
- • **La modalità Visualizza e modifica** renderà visibile l'effetto e passerà tutte le modifiche all'effetto successivo. Se l'effetto si trova in cima alla lista degli effetti o se l'effetto immediatamente precedente non è in modalità modifica, allora utilizzerà il simbolo originale dalle proprietà dei layer (simile al sorgente).

14.1.4 Proprietà etichette

La proprietà **Etichette** fornisce tutte le funzionalità necessarie e appropriate per configurare l'etichettatura intelligente sui layer vettoriali. Questa finestra di dialogo è accessibile anche dal pannello **Style Layer**, o usando il pulsante **Opzioni per le etichette del Layer** della **Barra delle Etichette**.

Il primo passo è quello di scegliere il metodo di etichettatura dall'elenco a discesa. I metodi disponibili sono:

- • **Non mostrare etichette**: il valore predefinito, che non mostra alcuna etichetta per il layer.
- • **Etichette Singole**: Mostra le etichette sulla mappa usando un singolo attributo o un'espressione
- • **Rule-based labeling**
• e **Non coprente**: ti permette di impostare un layer come un ostacolo per le etichette degli altri layer senza che vengano visualizzate le relative etichette.

I prossimi passi presuppongono che tu selezioni l’opzione **Etichette Singole**, aprendo la seguente finestra di dialogo.

Fig. 14.26: Impostazioni etichettatura dei layer - Etichette Singole

Nella parte superiore della finestra di dialogo, è abilitato un elenco a discesa **Valore**. Si può selezionare una colonna di attributi da usare per l’etichettatura. Per impostazione predefinita, viene usato **display field**. Fai clic su **`** se vuoi definire etichette basate su espressioni - vedi **Definire le etichette tramite espressioni**.

Di seguito vengono visualizzate le opzioni per personalizzare le etichette, sotto varie schede:

- **Text**
- **Formatting**
- **Buffer**
- **Mask**
- **Background**
- **Shadow**
- **Callouts**
- **Placement**
- **Rendering**

La descrizione di come impostare ogni proprietà è esposta in **Impostare una etichetta**.
Impostazioni sistema di posizionamento automatico

Puoi usare le impostazioni di posizionamento automatico per configurare un comportamento automatico delle etichette a livello di progetto. Nell’angolo in alto a destra della scheda Etichette, fai clic sul pulsante Impostazioni di posizionamento automatico (si applicano a tutti i layer), aprendo una finestra di dialogo con le seguenti opzioni:

![Automated Placement Engine](image)

Fig. 14.27: Il motore di posizionamento automatico delle etichette

- **Numero di Candidati**: calcola e assegna agli elementi lineari e poligonali il numero di possibili posizionamenti delle etichette in base alla loro dimensione. Più un elemento è lungo o largo, più candidati ha, e le sue etichette possono essere posizionate meglio con meno rischi di collisione.

- **Visualizzazione testo**: imposta il valore predefinito per i widget di visualizzazione delle etichette quando exporting a map canvas o a layout in PDF o in SVG. Se è selezionato Rendering sempre delle Etichette come Testo, allora le etichette possono essere modificate in applicazioni esterne (ad esempio Inkscape) come testo normale. Ma l’effetto collaterale è che la qualità del rendering è minore, e ci sono problemi con il rendering quando sono attive certe impostazioni di testo come i buffer. Ecco perché Rendering sempre delle Etichette come Percorsi (raccomandato) che esporta le etichette come contorni, è raccomandato.

- **il checkbox ‘guilabel: Permetti etichette troncate sui bordi della mappa’**: controlla se le etichette che cadono parzialmente al di fuori dell’estensione della mappa devono essere visualizzate. Se selezionata, queste etichette saranno mostrate (quando non c’è modo di posizionarle completamente all’interno dell’area visibile). Se deselectionato, le etichette parzialmente visibili saranno omesse. Si noti che questa impostazione non ha effetti sulla visualizzazione delle etichette nel layout map item.

- **Mostra tutte le etichette per tutti i layer (cioè inclusi gli oggetti che collisionano)**. Nota che questa opzione può essere impostata anche per layer (vedi Scheda Visualizzazione)

- **Mostra etichette non ubicate**: permette di determinare se qualche etichetta importante manca dalle mappe (ad esempio a causa di sovrapposizioni o altri vincoli). Vengono visualizzate con un colore personalizzabile.

- **Mostra candidati (per debugging)**: controlla se devono essere disegnate delle riquadri sulla mappa che mostrano tutti i candidati generati per il posizionamento delle etichette. Come dice la dicitura, è utile solo per il debug e per testare l’effetto di diverse impostazioni di etichettatura. Potrebbe essere utile per un migliore posizionamento manuale con gli strumenti della label toolbar.

- **Versione di etichettatura del progetto**: QGIS supporta due diverse versioni di posizionamento automatico delle etichette:
 - **Versione 1**: il vecchio sistema (usato da QGIS versione 3.10 e precedenti, e quando si aprono progetti creati in queste versioni in QGIS 3.12 o successivi). La versione 1 tratta le priorità delle etichette e degli
ostacoli solo come «guide approssimative», ed è possibile che un’etichetta a bassa priorità sia posta sopra un ostacolo ad alta priorità in questa versione. Di conseguenza, può essere difficile ottenere i risultati di etichettatura desiderati quando si usa questa versione ed è quindi raccomandata solo per la compatibilità con progetti più vecchi.

- **Versione 2 (raccomandata):** questo è il sistema predefinito nei nuovi progetti creati in QGIS 3.12 o successivo. Nella versione 2, la logica che detta quando le etichette possono sovrapporsi a obstacles è stata rielaborata. La nuova logica vieta a qualsiasi etichetta di sovrapporsi a qualsiasi ostacolo con un peso di ostacolo maggiore rispetto alla priorità dell’etichetta. Come risultato, questa versione porta a risultati di etichettatura molto più prevedibili e facili da capire.

Etichettatura tramite regole

Con Etichettatura tramite regole le etichette possono essere definite e applicate selettivamente sulla base di filtri tramite espressioni e di intervalli di scala, come nella *Rule-based rendering*.

Per creare una regola, seleziona l’opzione *Etichettatura tramite regole* nell’elenco a discesa principale dalla scheda *Etichette* e fai click sul pulsante + nella parte inferiore della finestra di dialogo. Poi inserisci nella nuova finestra di dialogo una descrizione e un’espressione che consente di selezionare le geometrie. Puoi anche impostare un *Intervallo di scala* in cui deve essere applicata la regola per le etichette. Le altre opzioni disponibili in questa finestra di dialogo sono le *common settings* viste in precedenza.
14.1. La finestra di dialogo Proprieta dei vettori
Un riassunto delle regole esistenti è mostrato nella finestra di dialogo principale (vedi Fig. 14.29). Puoi aggiungere più regole, riordinarle o unirle con un drag-and-drop. Puoi anche rimuoverle con il pulsante o modificare con il pulsante o con un doppio clic.

Fig. 14.29: Pannello etichettatura tramite regole

Definire le etichette tramite espressioni

Sia che tu scelga il tipo di etichettatura singola o basata su regole, QGIS consente di utilizzare le espressioni per l'etichettatura di elementi.

Supponendo che tu stia usando il metodo *Etichette Singole*, fai clic sul pulsante vicino all'elenco a discesa *Valore* nella scheda *Etichette* della finestra di dialogo Proprietà.

In Fig. 14.30, vedi un'espressione di esempio per etichettare il layer trees dell'Alaska con il tipo di albero e l'area, basata sul campo “VEGDESC”, del testo descrittivo, e la funzione area in combinazione con format_number() per renderlo più gradevole.

L'etichettatura a base di espressioni è facile da gestire. Tutto quello che devi fare è che:

Fig. 14.30: Uso di espressioni per l'etichettatura
• Potresti avere necessità di combinare tutti gli elementi (stringhe, campi e funzioni) con una funzione di concatenamento stringa come `concat`, `+` o `||`. Ricorda che in alcune situazioni (quando sono coinvolti null o valori numerici), non tutti questi strumenti sono adatti alle tue esigenze.

• Le stringhe sono scritte tra "singoli apici".

• I campi sono scritti tra «apici doppi» o senza alcun apice.

Guarda alcuni esempi:

1. Etichetta basata su due campi “nome” e “luogo” con una virgola come separatore:

```sql
"name" || ',' || "place"
```

Risulta:

John Smith, Paris

2. Etichetta basata su due campi “nome” e “luogo” con altri testi:

```sql
'My name is ' + "name" + ' and I live in ' + "place"
'My name is ' || "name" || ' and I live in ' || "place"
concat('My name is ', name, ' and I live in ', "place")
```

Risulta:

My name is John Smith and I live in Paris

3. Etichetta basata su due campi “nome” e “luogo” con altri testi che combinano diverse funzioni di concatenazione:

```sql
concat('My name is ', name, ' and I live in ' || place)
```

Risulta:

My name is John Smith and I live in Paris

Oppure, se il campo “luogo” è NULL, restituisce:

My name is John Smith

4. Etichetta a più righe basata su due campi “nome” e “luogo” con un testo descrittivo:

```sql
concat('My name is ', "name", '
' , 'I live in ' , "place")
```

Risulta:

My name is John Smith
I live in Paris

5. Etichetta basata su un campo e la funzione `area()` per mostrare il nome del luogo e la sua superficie arrotondata in una unità convertita:

```sql
'The area of ' || "place" || ' has a size of ' || round(area/10000) || ' ha'
```

Risulta:

The area of Paris has a size of 10500 ha

6. Creare una condizione CASE ELSE. Se il valore della popolazione nel campo “popolazione” è <= 50000 è una town, altrimenti è una city:
concat('This place is a ',
CASE WHEN "population" <= 50000 THEN 'town' ELSE 'city' END)

Risulta:
This place is a town

7. Visualizza il nome della città e nessuna etichetta per le altre voci (per il caso della «città», vedi esempio sopra):
CASE WHEN "population" > 50000 THEN "NAME" END

Risulta:
Paris

Come puoi vedere nel costruttore di espressioni, puoi creare espressioni semplici o molto complesse con tantissime funzioni utili, per etichettare i tuoi dati in QGIS. Vedi il capitolo *Espressioni* per ulteriori esempi e informazioni sulle espressioni.

Etichettare in funzione dei dati

Con la funzione [Sovrascrittura definita dai dati](#), le impostazioni per l'etichettatura sono sovrascritte dalle voci della tabella degli attributi o da espressioni basate su di essi. Questa funzione può essere usata per impostare i valori per la maggior parte delle opzioni di etichettatura sopra descritte.

Per esempio, usando il set di dati campione QGIS dell'Alaska, etichettiamo il layer *airports* con il loro nome, in base al loro USE militare, cioè se l'aeroporto è accessibile a:

- personale militare, allora mostralo in grigio, dimensione 8;
- altri, allora mostralo in blu, dimensione 10.

Per ottenere ciò, dopo aver abilitato l'etichettatura sul campo *NAME* del layer (vedi *Impostare una etichetta*):

1. Attiva la scheda *Testo*.
2. Fai clic sull'icona [Accedi alla proprietà Dimensioni](#) accanto alla proprietà *Dimensioni*.
3. Seleziona *Modifica*… e digita:

```sql
CASE
  WHEN "USE" like '%Military%' THEN 8 -- because compatible values are
    'Military'
  ELSE 10
END
```

4. Premi OK per convalidare. La finestra di dialogo si chiude e il pulsante [Accedi alla proprietà Dimensioni](#) diventa [E] il che significa che una regola è in esecuzione.
5. Quindi fai clic sul pulsante accanto alla proprietà colore, digita l'espressione sottostante e convalida:

```sql
CASE
  WHEN "USE" like '%Military%' THEN '150, 150, 150'
  ELSE '0, 0, 255'
END
```

Allo stesso modo, puo personalizzare qualsiasi altra proprietà dell’etichetta, nel modo desiderato. Vedi maggiori dettagli sulla descrizione e manipolazione del widget [Sovrascrittura definita dai dati](#) nella sezione *Impostazione Sovrascrittura definita dai dati*.
Suggerimento: Usare Sovrascrittura definita dai dati per etichettare ogni parte di elementi a parti multiple

C’è un’opzione per impostare l’etichettatura per gli elementi multi parte indipendentemente dalle tue proprietà dell’etichetta. Scegli il Rendering, Opzioni Elementi, vai al pulsante Sovrascrittura definita dai dati accanto alla casella Etichetta ogni parte di elementi multipart e definisci le etichette come descritto in Impostazione Sovrascrittura definita dai dati.

Barra delle etichette

La Barra delle Etichette fornisce alcuni strumenti per manipolare le proprietà label o diagram.

Mentre per la leggibilità è stato usato etichetta per descrivere la barra degli strumenti etichette, nota che quando menzionati nel loro nome, gli strumenti funzionano quasi nello stesso modo con i diagrammi:

- [showPinnedLabels] Evidenzia Etichette e Diagrammi appuntati. Se il layer vettoriale dell’etichetta è modificabile, allora l’evidenziazione è verde, altrimenti è blu.
• **Evidenzia le etichette non collocate**: Permette di determinare se alcune etichette importanti mancano dalle mappe (ad esempio a causa di sovrapposizioni o altri vincoli). Sono visualizzate con un colore personalizzabile (vedi Impostazioni sistema di posizionamento automatico).

• **Blocca/Sblocca Etichette e Diagrammi**: Cliccando o trascinando un’area, si bloccano le etichette. Se clicchi o trascini un’area tenendo premuto Shift, l’etichetta (o le etichette) vengono sbloccate. Infine, puoi anche cliccare o trascinare un’area tenendo premuto Ctrl per alternare lo stato di sbloccaggio della(e) etichetta.

• **Mostra/Nascondi Etichette e Diagrammi**: Se clicchi sulle etichette, o clicchi e trascini un’area tenendo premuto Shift, esse vengono nascoste. Quando un’etichetta è nascosta, basta cliccare sull’elemento per ripristinarne la visibilità. Se trascini un’area, tutte le etichette nell’area saranno ripristinate.

• **Muove una Etichetta o un Diagramma**: Devi solo trascinare l’etichetta nel posto desiderato.

• **Ruota un’Etichetta**: Clicca sull’etichetta e girala otterrai il testo ruotato.

• **Modifica Proprietà Etichetta**: Apre una finestra di dialogo per cambiare le proprietà dell’etichetta cliccata; può essere l’etichetta stessa, le sue coordinate, l’angolo, il carattere, la dimensione, l’allineamento multilinea … purché questa proprietà sia stata mappata su un campo. Qui è possibile impostare l’opzione Etichetta ogni parte dell’elemento.

Avvertimento: Gli strumenti di etichetta sovrascrivono i valori del campo corrente

L’utilizzo di Barra degli strumenti di etichetta per personalizzare l’etichetta effettivamente scrive il nuovo valore della proprietà nel campo mappato. Quindi, presta attenzione a non sostituire inavvertitamente i dati che ti potrebbero essere necessari in seguito!

Nota: Il meccanismo Proprietà Dati Auxiliari può essere utilizzato per personalizzare l’etichettatura (posizione e così via) senza modificare la fonte dati sottostante.

Personalizza le etichette nella mappa

Combinata con la Barra delle Etichette, l’impostazione di sovrascrittura definita dai dati ti aiuta a manipolare le etichette nella mappa (spostare, modificare, ruotare). Ora descriviamo un esempio usando la funzione di sostituzione dei dati definiti per la funzione (vedi Fig. 14.33).

1. **Importa il **lakes.shp** dall’insieme di dati di esempio di QGIS.

2. Fai doppio clic sul layer per aprire le proprietà del layer. Clicca su Etichette e Posizionamento. Seleziona Offset dal centro.

3. Cercare la voce Definito in funzione dei dati. Fai clic sull’icona per definire il tipo campo per Coordinata. Scegli xlabel per X e ylabel per Y. Le icone sono ora evidenziate in giallo.

Fig. 14.33: Etichettatura di vettori poligonali sovrascritti in funzione dei dati
4. Fai zoom su un lago

5. Imposta come modificabile il layer utilizzando il pulsante

6. Vai alla Barra delle Etichette e clicca sull'icona . Ora puoi spostare manualmente l’etichetta in un’altra posizione (vedi Fig. 14.34). La nuova posizione dell’etichetta viene salvata nelle colonne xlabel e ylabel della tabella degli attributi.

7. È anche possibile aggiungere una linea che collega ogni lago alla sua etichetta spostata usando:
 - la callout property dell’etichetta
 - o il geometry generator symbol layer con l’espressione sottostante:

   ```make_line( centroid( $geometry ), make_point( "xlabel", "ylabel" ) )```

   Fig. 14.34: Spostamento etichette

**Nota:** Il meccanismo Proprietà Dati Ausiliari può essere utilizzato con proprietà definite dai dati senza avere una fonte di dati modificabile.
14.1.5 Proprietà Diagrammi

La scheda Proprietà del Diagramma del layer ti permette di aggiungere una parte grafica ad un layer vettoriale (vedi Fig. 14.35).

Attualmente le tipologie di diagrammi supportati sono:

- **Nessun diagramma**: il valore di default senza visualizzazione di diagrammi sulle geometrie;
- **Grafico a Torta**, un grafico statistico circolare diviso in fette per illustrare la proporzione numerica. La lunghezza dell’arco di ogni fetta è proporzionale alla quantità che rappresenta;
- **Diagramma Testo**, un cerchio diviso orizzontalmente che mostra i valori statistici al suo interno;
- **Istogramma**, barre di vari colori per ogni attributo allineate una accanto all’altra;
- **Barre Impilate**, impila le barre di vari colori per ogni attributo l’una sull’altra in verticale o in orizzontale.

Nell’angolo in alto a destra della scheda Diagrammi, il pulsante Impostazioni di posizionamento automatico (si applica a tutti i layer) fornisce gli strumenti per controllare la posizione delle etichette sulla visualizzazione mappa.

**Suggerimento: Passare rapidamente tra tipi di diagrammi**

Dato che le impostazioni sono quasi comuni ai diversi tipi di diagrammi, nella progettazione del diagramma è possibile modificare facilmente il tipo di diagramma e verificare quale è più appropriato ai tuoi dati senza perdita delle impostazioni e dei dati.

Per ogni tipo di diagramma, le proprietà sono suddivise in più schede:

- **Attributes**
- **Rendering**
- **Size**
- **Placement**
- **Options**
- **Legend**

**Attributi**

*Attributi* definisce quali variabili da visualizzare nel diagramma. Utilizza il pulsante per selezionare i campi desiderati nel pannello «Attributi assegnati». Possono essere utilizzati anche gli attributi generati con le Espressioni.

Puoi spostarti su e giù in qualsiasi riga con il clic e trascina, ordinando come vengono visualizzati gli attributi. Puoi inoltre modificare l’etichetta nella colonna «Legenda» o nel colore dell’attributo facendo doppio clic sull’elemento.

Questa etichetta è il testo predefinito visualizzato nella legenda del layout di stampa o dell’albero dei layer.
Visualizzazione

*Aspetto* definisce come appare il diagramma. Fornisce impostazioni generali che non interferiscono con i valori statistici quali:

- la trasparenza grafica, lo spessore e il colore del contorno
- a seconda del tipo di diagramma:
  - per istogramma e barre impilate, la larghezza della barra e la spaziatura tra le barre. Potresti voler impostare la spaziatura a 0 per le barre impilate. Inoltre, il *Simbolo della linea dell’asse* può essere reso visibile sulla mappa e personalizzato usando *line symbol properties*.
  - per il diagramma testo, il colore di sfondo del cerchio e il *font* usato per i testi;
  - per grafici a torta, l’*Inizio angolo* della prima fetta e la loro *Direzione* (in senso orario o no).
- l’uso dell’*paint effects* sul grafico.

In questa scheda, puoi anche gestire e ottimizzare la visibilità del diagramma con diverse opzioni:

- *Livello del diagramma (z-index)*: controlla come i diagrammi sono disegnati uno sopra l’altro e sopra le etichette. Un diagramma con un alto indice viene disegnato sopra diagrammi ed etichette;
- *Mostra tutti i diagrammi*: mostra tutti i diagrammi anche se si sovrappongono tra loro;
- *Mostra diagramma*: permette di visualizzare solo diagrammi specifici;
- *Mostra sempre*: seleziona diagrammi specifici da visualizzare sempre, anche quando si sovrappongono ad altri diagrammi o a etichette delle mappe;
- impostando *Visibilità dipendente dalla scala* ;
Fig. 14.36: Proprietà Diagramma – Scheda Visualizzazione

**Dimensione**

*Size* is the main tab to set how the selected statistics are represented. The diagram size *units* can be “Millimeters”, “Points”, “Pixels”, “Map Units” or “Inches”. You can use:

- *Dimensione fissa*, una dimensione unica per rappresentare il grafico di tutti gli elementi (non disponibile per gli istogrammi)
- o *Dimensione scalata*, basata su un’espressione che usa gli attributi del layer:
  1. In *Attributo*, seleziona un campo o costruisci un’espressione
  2. Premi *Trova* per ottenere il *Valore massimo* dell’attributo o inserisci un valore personalizzato nel widget.
  3. Per istogramma e barre impilate, inserire un valore *Lunghezza della barra*, usato per rappresentare il *Valore massimo* degli attributi. Per ogni elemento, la lunghezza della barra sarà poi scalata linearmente per mantenere questa corrispondenza.
  4. Per grafico a torta e diagramma di testo, inserisci un valore :guilabel: *Dimensione*, usato per rappresentare il *Valore massimo* degli attributi. Per ogni elemento, l’area o il diametro del cerchio sarà poi scalato linearmente per mantenere questa corrispondenza (da 0). Una *Dimensione minima* può comunque essere impostata per piccoli diagrammi.
Posizionamento

*Posizionamento* definisce la posizione del diagramma. A seconda del tipo di geometria del layer, offre diverse opzioni per il posizionamento (maggiori dettagli in *Placement*):

- **Intorno al punto o Sopra il punto** per la geometria di punti. La prima variabile richiede un raggio da rispettare.
- **Attorno alla linea o Sopra alla linea** per geometria lineare. Come per gli elementi puntuali, la prima variabile richiede una distanza da rispettare e si può specificare il posizionamento del diagramma rispetto all’elemento (“sopra”, “su” e/o “sotto” la linea). È possibile selezionare diverse opzioni contemporaneamente. In questo caso, QGIS cercherà la posizione ottimale del diagramma. Ricorda che puoi anche usare l’orientamento della linea per la posizione del diagramma.
- **Attorno al centroide (ad una fissata Distanza), Sopra al centroide, Usando il perimetro e Dentro al poligono** sono le opzioni per gli elementi poligonali.

Il gruppo *Coordinate* fornisce un controllo diretto sul posizionamento del diagramma, su base elemento per elemento, usando i loro attributi o un’espressione per impostare le coordinate $X$ e $Y$. Le informazioni possono anche essere inserite usando lo strumento *Move labels and diagrams*.

Nella sezione *Priorità*, puoi definire il grado di priorità di posizionamento di ogni diagramma, cioè se ci sono diversi diagrammi o etichette candidati per la stessa posizione, l’elemento con la priorità più alta sarà visualizzato e gli altri potrebbero essere lasciati fuori.

_Evita che i diagrammi e le etichette si sovrappongano alle geometrie_ definisce gli elementi da usare come obstacles, cioè QGIS cercherà di non posizionare diagrammi o etichette su questi elementi. Il grado di priorità è quindi utilizzato per valutare se un diagramma potrebbe essere omesso a causa di un elemento di ostacolo con un peso maggiore.
Opzioni

La scheda **Opzioni** ha impostazioni per istogrammi e barre impilate. Puoi scegliere se l’orientazione della barra debba essere **Su**, **Giù**, **Destra** o **Sinistra**, per diagrammi orizzontali e verticali.

Legenda

Dalla scheda **Legenda**, puoi scegliere di visualizzare gli oggetti del diagramma nel **Layers panel** e nella **print layout legend** accanto alla simbologia del layer:

- seleziona **Mostra legenda degli attributi del diagramma** per visualizzare nelle leggende le proprietà **Colore** e **Legenda**, come precedentemente assegnato nella scheda **Attributi**;
- e, quando per i diagrammi viene utilizzata una dimensione **scaled size**, premi il pulsante **Legend Entries for Diagram Size**... per configurare l’aspetto del simbolo del diagramma nelle legende. Questo apre la finestra di dialogo **Dimensione legenda definita dai dati** le cui opzioni sono descritte in **Dimensione legenda definita dai dati**.

Quando sono impostate, le voci della legenda del diagramma (attributi con colore e dimensioni del diagramma) sono visualizzate anche nella legenda del layout di stampa, accanto alla simbologia dei layer.

### 14.1.6 Proprietà Maschere

La scheda **Maschere** ti aiuta a configurare la sovrapposizione dei simboli del layer corrente con altri layer di simboli o etichette, da qualsiasi layer. Questo ha lo scopo di migliorare la leggibilità di simboli ed etichette i cui colori sono vicini e possono essere difficili da decifrare quando si sovrappongono; aggiunge una maschera personalizzata e trasparente intorno agli elementi per «nascondere» parti dei livelli simbolo del layer corrente.

Per applicare maschere al livello attivo, devi prima abilitare nel progetto o **mask symbol layers** o **mask labels**. Poi, dalla scheda **Maschere**, seleziona:

- la **Layer di simboli mascherati**: elenca in una struttura ad albero tutti i livelli simbolo del layer corrente. Li puoi selezionare l’elemento del livello simbolo che vuoi «tagliare» in modo trasparente quando si sovrappongono alle sorgenti della maschera selezionata.
• la scheda **Sorgente della maschera**: elenca tutte le etichette della maschera e i livelli dei simboli mascherati definiti nel progetto. Seleziona le voci che genererebbero la maschera sui livelli dei simboli mascherati selezionati.

![Layer Properties — rivers — Masks](image)

Fig. 14.39: Proprietà Layer - Scheda Maschere

### 14.1.7 Proprietà Vista 3D

La scheda **Vista 3D** fornisce le impostazioni per i layer vettoriali che dovrebbero essere rappresentati nello strumento **3D Map view**.

Per migliorare le prestazioni, i dati dei layer vettoriali sono caricati in background, usando il multithreading, e resi in piastrelle la cui dimensione può essere controllata dalla sezione **Rendering dei layer** della scheda:

- **Numero livelli di zoom**: determina quanto profondo sarà il quadrilatero. Per esempio, livello di zoom uno significa che ci sarà un solo tassello per l'intero layer. Tre livelli di zoom significa che ci saranno 16 tasselli a livello di foglia (ogni ulteriore livello di zoom moltiplica per 4). Il valore predefinito è 3 e il massimo è 8.

- **Mostra perimetri di delimitazione dei tasselli**: particolarmente utile se ci sono problemi con i tasselli che non appaiono quando dovrebbero.

Per visualizzare un layer in 3D, seleziona dal menu a tendina nella parte superiore della scheda, o:

- **Simbolo singolo**: le caratteristiche sono rese usando un simbolo 3D comune le cui proprietà possono essere **data-defined** o meno. Leggi i dettagli su **setting a 3D symbol** per ogni tipo di geometria del layer.

- **Tramite regole**: configurazioni multiple di simboli possono essere definite e applicate selettivamente in base a filtri con espressione e intervallo di scala. Maggiori dettagli su come fare in **Rule-based rendering**.
14.1.8 Proprietà Campi

La scheda Campi fornisce informazioni sui campi relativi al layer e ti aiuta ad organizzarli.

Puoi rendere *editable* il layer usando l'icona *Attiva/disattiva modalità modifica*. A questo punto puoi modificare la struttura usando i pulsanti *Nuovo campo* e *Elimina campo*.

Puoi anche rinominare i campi facendo doppio clic sul nome. Questa opzione è supportata solo per le sorgenti dati come PostgreSQL, Oracle, Memory layer e qualche layer OGR a seconda del formato e della versione dei dati OGR.

Se è impostato nella sorgente dati o nelle *forms properties*, viene visualizzato anche l'alias del campo. Un alias è un nome di campo leggibile dall'utente che può usare nel modulo delle geometrie o nella tabella degli attributi. Gli alias vengono salvati nel file del progetto, PROPRIETÀ.

A seconda della sorgente dati, puoi associare un commento a un campo, ad esempio al momento della sua creazione. Questa informazione viene recuperata e mostrata nella colonna *Commento* e viene poi visualizzata nel modulo della geometria quando si passa sopra l'etichetta del campo.

Oltre ai campi contenuti nel dataset, campi virtuali e *Auxiliary Storage* inclusi, la scheda *Campi* elenca anche i campi da qualsiasi *joined layers*. A seconda dell'origine del campo, gli viene applicato un colore di sfondo diverso.
Per ogni campo elencato, la finestra di dialogo elenca anche caratteristiche di sola lettura come il suo Tipo, Nome, Lunghezza e Precisione. Quando si usano layer come WMS o WFS, si può anche controllare qui quali campi possono essere ricavati.

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Alias</th>
<th>Type</th>
<th>Type name</th>
<th>Length</th>
<th>Precision</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ID</td>
<td></td>
<td>qulongint</td>
<td>integer64</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAME</td>
<td></td>
<td>qulongint</td>
<td>integer64</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ELEV</td>
<td></td>
<td>double</td>
<td>Real</td>
<td>31</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NAME</td>
<td></td>
<td>QString</td>
<td>String</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>USE</td>
<td></td>
<td>QString</td>
<td>String</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>regions_NAME_2</td>
<td></td>
<td>QString</td>
<td>String</td>
<td>75</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>regions_TYPE_2</td>
<td></td>
<td>QString</td>
<td>String</td>
<td>50</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>auxiliary_storage_labeling_show</td>
<td></td>
<td>int</td>
<td>integer</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>auxiliary_storage_labeling_positionx</td>
<td></td>
<td>double</td>
<td>Real</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>classOrder</td>
<td></td>
<td>int</td>
<td>integer</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 14.41: Proprietà scheda Campi

14.1.9 Proprietà Modulo Attributi

La scheda Modulo Attributi ti aiuta a impostare il modulo da visualizzare quando si creano nuove geometrie o si interrogano quelle esistenti. Puoi definire:

- lo stile e il comportamento di ogni campo nel modulo delle geometrie o nella tabella degli attributi (etichetta, widget, vincoli ...);
- la struttura del modulo (personalizzata o autogenerata);
- logica extra in Python per gestire l'interazione con i widget del modulo o dei campi.

In alto a destra della finestra di dialogo, puoi impostare se il modulo viene aperto in maniera predefinita quando si creano nuove funzioni. Puoi configurarlo per layer o globalmente con l'opzione Non aprire il modulo dopo la creazione di ogni geometria nel menu Impostazioni ➤ Opzioni ➤ Digitalizzazione.

Personalizzare un modulo per i tuoi dati

Per impostazione predefinita, quando clicchi su una geometria con lo strumento Informazioni elementi o apri la tabella degli attributi nella modalità vista modulo, QGIS visualizza un modulo base con widget predefiniti (generalmente caselle a tendina e caselle di testo — ogni campo è rappresentato su una riga dedicata dalla sua etichetta accanto al widget). Se sono configurate relazioni del layer, i campi dei layer di riferimento sono mostrati in una cornice incorporata nella parte inferiore del modulo, seguendo la stessa struttura di base.

Questa visualizzazione è il risultato del valore predefinito Genera automaticamente dell'impostazione Configurazione dell'editor degli attributi nella scheda Proprietà vettore ➤ Modulo attributi. Questa proprietà contiene tre diversi valori:
• **Genera automaticamente**: mantiene la struttura di base di «una riga - un campo» per il modulo, ma permette di personalizzare ogni widget corrispondente.

• **Crea maschera di inserimento**: oltre alla personalizzazione del widget, la struttura del modulo può essere resa più complessa, ad esempio, con widget incorporati in gruppi e schede.

• **Fornisci file ui**: permette di utilizzare un file di Qt designer, quindi un modello potenzialmente più complesso e completo, come modulo per le geometrie.

**Il modulo generato automaticamente**

Quando l’opzione **Genera automaticamente** è attivata, il pannello **Widgets disponibili** ti mostra le liste di campi (del layer e delle sue relazioni) che verranno mostrati nel modulo. Seleziona un campo e puoi configurare il suo aspetto e il suo comportamento nel pannello di destra:

- aggiungendo una etichetta personalizzabile e spunte automatizzate al campo;
- impostando un widget particolare da usare.

**Editor clicca e trascina**

L’editor clicca e trascina ti permette di creare una maschera con diversi contenuti (schede e gruppi) per vedere i campi degli attributi, come mostrato nell’esempio **Fig. 14.42**.

![Fig. 14.42: Modulo personalizzato con schede e gruppi distinti](image)

1. Scegli «Crea maschera di inserimento» dal menu a tendina **Seleziona l’editor degli attributi**. Questo abilita il pannello **Disposizione del modulo** accanto al pannello **Widget disponibili**, riempito con i campi esistenti. Il campo selezionato visualizzerà le sue properties in un terzo pannello.

2. Seleziona i campi che non vuoi utilizzare nel tuo pannello **Disposizione della maschera** e usa il pulsante per rimuoverli. Trascina e rilascia i campi dall’altro pannello per riaggiungeli. Lo stesso campo può essere aggiunto più volte.
3. Trascina e rilascia i campi con il pannello Disposizione della maschera per riordinare la disposizione.

4. Aggiungi i contenitori (schede o gruppi) per associare i campi che appartengono alla stessa categoria e migliorare la struttura del modulo.

   1. Il primo passo è usare l'icona per creare una Sche da in cui disporrai campi e gruppi.
   2. Quindi definisci le proprietà del contenitore, per esempio:
      - il nome
      - il tipo, es. una scheda o un gruppo (un gruppo in una scheda o in un altro gruppo)
      - e il numero di colonne con cui distribuisci i campi interessati

   ![Fig. 14.43: Finestra di dialogo per creare contenitore con Disposizione dell'editor di attributi](image)

   Puoi aggiornare successivamente queste e altre proprietà selezionando l'elemento e, dal terzo pannello:
   - nascondere o mostrare l'etichetta del contenitore
   - mostra il contenitore come un gruppo (utilizzabile solo per le schede)
   - rinominare il contenitore
   - definire il numero di colonne
   - Inserire un'espressione che regoli la visibilità del contenitore. L'espressione verrà ricalcolata ogni volta che il modulo cambia e la scheda o la casella di gruppo mostrata/nascosta
   - aggiungere un colore di sfondo

3. Puoi creare tutti i contenitori che vuoi; Premi il pulsante di nuovo per creare un'altra scheda o un gruppo in una scheda esistente.

5. Il prossimo passo è assegnare i campi a ciascun contenitore, semplicemente con il trascinamento. Puoi spostare allo stesso modo anche i gruppi e le schede.

6. **Personalizza il widget** dei campi in uso
7. Nel caso in cui il livello sia coinvolto in una relazione uno a molti o molti a molti to many relation, trascina il nome di relazione dal pannello Widget disponibili al pannello Disposizione del modulo. Troverai il modulo degli attributi del layer associato incorporato nella posizione scelta nel modulo del layer corrente. Per quanto riguarda gli altri elementi, selezionare l'etichetta di relazione per configurare alcune proprietà:

- nascondi o mostra l'etichetta della relazione
- mostra il pulsante di collegamento
- mostra il pulsante di non-collegamento

8. Attiva le modifiche

9. Apri il modulo degli attributi di un elemento (ad esempio usa lo strumento Informazioni elemento) e ti dovrebbe apparire il nuovo modulo.

**Utilizzare file-ui personalizzato**

L'opzione Fornisci file UI ti permette di usare finestre di dialogo complesse fatte con Qt-Designer. L'utilizzo di un file UI consente una grande libertà nella creazione di una finestra di dialogo. Nota che, per collegare gli oggetti grafici (casella di testo, casella combinata ...) ai campi del livello, è necessario assegnare loro lo stesso nome.

Usa Modifica UI per definire il percorso del file da utilizzare.

I file UI possono anche essere ospitati su un server remoto. In questo caso, si fornisce l'URL del modulo invece del percorso del file in Edit UI.


**Migliora il tuo modulo con funzioni personalizzate**

I moduli QGIS possono avere una funzione Python chiamata quando viene aperta la finestra di dialogo. Usa questa funzione per aggiungere ulteriori comandi alle tue finestre di dialogo. Il codice del modulo può essere specificato in tre modi diversi:

- **Carica dall'ambiente:** utilizza una funzione, ad esempio in startup.py` o da un plugin installato.
- **Caricare da un file esterno:** un selezionatore di file ti permetterà di selezionare un file Python dal tuo filesystem o di inserire un URL per un file remoto.
- **Fornisci il codice in questa finestra:** apparirà un editor Python dove puoi digitare direttamente la funzione da usare.

In tutti i casi devi inserire il nome della funzione che verrà chiamata (open nell'esempio sotto).

Un esempio è (nel modulo MyForms.py):

```python
def open(dialog, layer, feature):
 geom = feature.geometry()
 control = dialog.findChild(QWidget, "My line edit")
```

Riferimento in Python Init Function in questo modo: `open`
Configurare il comportamento dei campi

La parte principale della scheda **ModuloAttributi** ti aiuta a impostare il tipo di widget utilizzato per riempire o visualizzare i valori del campo, nella tabella degli attributi o nel modulo geometrie: puoi definire come l'utente interagisce con ogni campo e i valori o la gamma di valori che possono essere aggiunti a ciascuno.

![Fig. 14.44: Finestra di dialogo per modificare un campo](image)

**Impostazioni comuni**

Indipendentemente dal tipo di widget applicato al campo, ci sono alcune proprietà comuni che puoi impostare per controllare se e come un campo può essere modificato.

**Widget Visualizza**

**Visualizza Nome**: indica se il nome del campo deve essere visualizzato nel modulo (solo nella modalità *Drag and drop* designer).

**Opzioni generali**

- **Alias**: un nome comprensibile da usare per i campi. Gli alias saranno visualizzati nel modulo geometrie, nella tabella degli attributi o nel pannello **Visualizzatore risultati**. Può anche essere usato come sostituto del nome del campo in Costruttore di espressioni 1, facilitando la comprensione delle espressioni e delle verifiche. Gli alias sono salvati nel file di progetto.
- **Commento**: visualizza il commento del campo come mostrato nella scheda **Campi**, in uno stato di sola lettura. Questa informazione è mostrata come suggerimento quando si passa il mouse sopra l'etichetta del campo in un modulo di elemento.
• **Modificabile**: deseleziona questa opzione per impostare il campo in sola lettura (non modificabile manualmente) anche quando il layer è in modalità di modifica. Nota che il controllo di questa impostazione non prevale su qualsiasi altra limitazione di modifica da parte del fornitore dati.

• **Etichetta in alto**: posiziona il nome del campo sopra o accanto al widget nel modulo delle geometrie.

**Valori predefiniti**

• **Valore predefinito**: per nuove geometrie, popola automaticamente il campo con un valore predefinito o un valore expression-based one 1. Per esempio, puoi:
  
  – utilizzare $x, $length, $area per popolare automaticamente un campo con la coordinata X dell’elemento, la lunghezza, l’area o qualsiasi informazione geometrica alla sua creazione;
  
  – incrementare un campo di 1 per ogni nuova geometria usando `maximum("field")+1`;
  
  – salvare la data e l’ora di creazione della geometria usando `now()`;
  
  – usare **variables** nelle espressioni, rendendo più facile, ad esempio, inserire il nome dell’operatore `@user_full_name`), il percorso del file del progetto `@project_path`), ....

Un’anteprima del conseguente valore predefinito viene visualizzata nella parte inferiore del widget.

**Nota:** L’opzione **Valore predefinito** ignora i valori in ogni altro campo della geometria creata, quindi non sarà possibile utilizzare un’espressione che combina uno qualsiasi di questi valori, ad esempio utilizzando un’espressione come `concat(field1, field2)` potrebbe non funzionare.

• **Applica valore predefinito all’aggiornamento**: ogni volta che l’attributo della geometria o la geometria viene modificata, il valore predefinito viene ricalcolato. Questo potrebbe essere utile per salvare valori come modificati dall”ultimo utente, l'ultima volta che è stato modificato…..

**Vincoli**

Puoi vincolare il valore da inserire nel campo. Questo vincolo può essere:

• **Non nullo**: richiede che l'utente fornisca un valore;

• **Univoco**: per garantire che il valore inserito sia unico in ogni campo;

• basato su una **espressione** personalizzata: ad esempio `not regexp_match(col0, '^[A-Za-z\$]')` assicurerà che il valore del campo `col0` abbia solo lettere dell’alfabeto. Una breve descrizione può essere aggiunta per aiutarti a ricordare il vincolo.

Ogni volta che un valore viene aggiunto o modificato in un campo, viene sottoposto ai vincoli esistenti e:

• se soddisfa tutti i requisiti, un segno di spunta verde viene mostrato accanto al campo nel modulo;

• se non soddisfa tutti i requisiti, allora il campo è colorato in giallo o arancione e una croce corrispondente viene visualizzata accanto al widget. Puoi passare il mouse sulla croce per ricordare quali vincoli sono applicati al campo e aggiustare il valore:
  
  – Una croce gialla appare quando il vincolo non soddisfatto è un vincolo non obbligatorio e non impedisce di salvare le modifiche con i valori «sbagliati»;
  
  – Una croce arancione non può essere ignorata e non ti permette di salvare le tue modifiche finché non si soddisfano i vincoli. Appare quando l'opzione **Fai rispettare il vincolo** è selezionata.
Widgets disponibili

In base al tipo di campo, QGIS determina e assegna automaticamente un tipo di widget predefinito. È quindi possibile sostituire il widget con qualsiasi altro compatibile con il tipo di campo. I widget disponibili sono:

- **Casella di controllo**: Visualizza una casella di controllo il cui stato definisce il valore da inserire.
- **Classificazione**: Disponibile solo quando un categorized symbology è applicato al layer, visualizza una casella combinata con i valori delle classi.
- **Colore**: Visualizza un color widget che permette di selezionare un colore; il valore del colore è memorizzato come notazione html nella tabella degli attributi.
- **Data/ora**: Visualizza un campo che può aprire un widget di calendario per inserire una data, un tempo o entrambi. Il tipo di colonna deve essere testo. Puoi selezionare un formato personalizzato, aprire un calendario, ecc.
- **Numerazione**: Apre una combo box con valori predefiniti provenienti dal database. Questo è attualmente supportato solo da PostgreSQL, per campi di tipo enum.
- **Allegato**: utilizza una finestra di dialogo «Apri file» per memorizzare il percorso del file in modalità relativa o assoluta. Può anche essere utilizzato per visualizzare un collegamento ipertestuale (per il percorso del documento), un'immagine o una pagina web.
- **Nascosto**: rende invisibile la colonna, quindi non potrai vederne il contenuto.
- **Chiave/Valore**: Visualizza una tabella a due colonne per memorizzare insiemi di coppie chiave/valore in un unico campo. Questo è attualmente supportato da PostgreSQL, per campi di tipo hstore.
- **Lista**: Visualizza una tabella a colonna singola per aggiungere valori diversi all'interno di un singolo campo. Questo è attualmente supportato da PostgreSQL, per campi di tipo array.
- **Intervallo**: ti permette di impostare dei valori di un preciso intervallo numerico. Il widget può apparire come un cursore o come un campo modificabile.
- **Relazione di riferimento**: Questo è il widget predefinito assegnato al campo di riferimento (cioè la chiave esterna nel layer figlio) quando è impostata una relation. Fornisce un accesso diretto al modulo dell'elemento padre che a sua volta incorpora la lista e il modulo dei suoi figli.
- **Modifica testo** (impostazione predefinita): consente di aprire un campo di modifica del testo che consente di utilizzare testi semplici testi o a più righe. Se scegli più righe puoi anche scegliere contenuto html.
- **Valori univoci**: puoi selezionare uno dei valori già utilizzati nella tabella degli attributi. Se è attivato “Modifica”, viene visualizzata una scelta in linea con il supporto di autocompletamento, altrimenti viene visualizzato un menu a tendina.
- **Generatore UUID**: genera un campo UUID (Universally Unique Identifiers) di sola lettura, se il campo è vuoto.
- **Mappa valore**: un menu a tendina con elementi predefiniti. Il valore viene memorizzato nell'attributo, la descrizione viene visualizzata nel menu a tendina. Puoi definire i valori manualmente oppure caricarli da un layer o da un file CSV.
- **Relazione valore**: offre valori da una tabella correlata in caselle combinate. Puoi selezionare layer, colonna chiave e colonna valore. Sono disponibili diverse opzioni per modificare i comportamenti standard: consentire il valore nullo, l'ordine per valore, consentire più selezioni e utilizzare l'autocompletamento. Le maschere visualizzeranno un elenco a discesa o un elemento di modifica in linea quando la casella di controllo autocompletamento è abilitata.

**Suggerimento: Percorso relativo nel widget allegato**

Se il percorso selezionato con il browser file si trova nella stessa directory del file di progetto .qgs o in cartella sottostante, i percorsi vengono convertiti in percorsi relativi. Ciò aumenta la portabilità di un progetto .qgs con le informazioni multimediali allegate.
14.1.10 Proprietà Join

La scheda Join ti permette di associare elementi del layer corrente (chiamato Target layer) a elementi di un altro layer vettoriale caricato (o tabella). L’unione è basata su un attributo che è condiviso dai layer. I layer possono essere senza geometria (tabelle) oppure no, ma il loro attributo di unione deve essere dello stesso tipo.

Per creare un join:

2. Seleziona il Vettore di join che vuoi collegare con il layer vettoriale di destinazione.
3. Specifica il Campo unione e il Campo destinazione che sono comuni sia al layer di unione che a quello di destinazione.
4. Premi OK e un riassunto dei parametri selezionati viene aggiunto al pannello Join.
I passi precedenti creeranno un’unione, dove **TUTTI** gli attributi del primo elemento corrispondente nel layer di unione sono aggiunti all’elemento del layer di destinazione. QGIS fornisce più opzioni per modificare l’unione:

- **Cache unione layer in memoria**: permette di mettere in cache in memoria i valori (senza geometrie) del layer unito per velocizzare le ricerche.

- **Crea un indice nel campo unito**

- **Modulo Dinamico**: ti aiuta a sincronizzare i campi di unione al volo, secondo il **Campo destinazione**. In questo modo, anche i vincoli per i campi di unione sono aggiornati correttamente. Si noti che è disattivato per impostazione predefinita perché può richiedere molto tempo se si hanno molte funzioni o una miriade di join.

---

**Fig. 14.45: Unisci una tabella di attributi ad un layer vettoriale**
• Se il layer di destinazione è modificabile, allora alcune icone saranno visualizzate nella tabella degli attributi accanto ai campi, per informare sul loro stato:
  – ✗: il layer di join non è configurato per essere modificabile. Se vuoi essere in grado di modificare le geometrie in join dalla tabella degli attributi di destinazione, allora devi spuntare l'opzione Layer di unione modificabile.
  – ✗: il layer di join è ben configurato per essere modificabile, ma il suo stato attuale è in sola lettura.
  – ✗: il layer di unione è modificabile, ma i meccanismi di sincronizzazione non sono attivati. Se vuoi aggiungere automaticamente un elemento nel layer di unione quando un elemento viene creato nel layer di destinazione, allora devi selezionare l'opzione Inserimento in modifica. Simmetricamente, l'opzione Elimina a cascata può essere attivata se vuoi eliminare automaticamente le caratteristiche di unione.

• Campi uniti: invece di aggiungere tutti i campi del layer unito, puoi specificare un sottoinsieme.

• Prefisso del nome del campo personalizzato per i campi uniti, per evitare la collisione dei nomi

QGIS attualmente ha il supporto per unire formati di tabelle non spaziali supportati da OGR (ad esempio, CSV, DBF e Excel), testo delimitato e il provider PostgreSQL.

### 14.1.11 Proprietà Dati Ausiliari

Il modo consueto per personalizzare lo styling e l'etichettatura è quello di utilizzare proprietà definite dai dati come descritto in Impostazione Sovrascrittura definita dai dati. Tuttavia, potrebbe non essere possibile se i dati sottostanti sono di sola lettura. Inoltre, la configurazione di queste proprietà definite dai dati può richiedere molto tempo o non essere auspicabile! Per esempio, se si desidera utilizzare completamente gli strumenti della mappa con Barra delle etichette, è necessario aggiungere e configurare più di 20 campi nella sorgente dati originale (posizioni X e Y, angolo di rotazione, stile del carattere, colore e così via).

Il meccanismo Dati Ausiliari fornisce la soluzione a queste limitazioni e complesse configurazioni. I campi ausiliari sono un modo alternativo per gestire e memorizzare automaticamente queste proprietà definite dai dati (etichette, diagrammi, simbologia…) in un database SQLite grazie a collegamenti modificabili. Questo permette di memorizzare proprietà per layer che non sono modificabili.

Una scheda è disponibile nella finestra di dialogo delle proprietà del layer vettoriale per gestire la memoria ausiliaria:
Etichettatura

Considerando che l'origine dati può essere personalizzata grazie alle proprietà definite dai dati senza essere modificabile, gli strumenti di etichettatura della mappa descritti in Barra delle etichette sono sempre disponibili non appena l'etichettatura viene attivata.

In realtà, il sistema di archiviazione ausiliario ha bisogno di un layer ausiliario per memorizzare queste proprietà in un database SQLite (vedi Database Dati Ausiliari). Il suo processo di creazione viene eseguito la prima volta che si clicca sulla mappa mentre uno strumento di etichettatura della mappa è attualmente attivato. Poi, viene visualizzata una finestra che permette di selezionare la chiave primaria da utilizzare per l'unione (per assicurarsi che le geometrie siano univocamente identificate):

Non appena viene configurato un layer ausiliario come fonte di dati corrente, puoi recuperare le sue informazioni nella scheda:
Il layer ausiliario ha ora queste caratteristiche:

- la chiave primaria è ID,
- ci sono 0 geometrie che utilizzano un campo ausiliario,
- ci sono 0 campi ausiliari.

Ora che il layer ausiliario è stato creato, puoi modificare le etichette del layer. Clicca su un’etichetta mentre è attivato lo strumento \textit{Change Label} degli strumenti mappa, poi puoi aggiornare le proprietà di stile come dimensioni, colori e così via. Le corrispondenti proprietà definite dai dati vengono create e possono essere recuperate:
Come puoi vedere nella figura sopra, 21 campi vengono automaticamente creati e configurati per l'etichettatura. Per esempio, il tipo di campo ausiliario FontStyle è uno String ed è chiamato labeling_fontstyle nel database SQLite sottostante. C'è anche la geometria 1 che attualmente utilizza questi campi ausiliari.

Notare che l'icona è visualizzata nella scheda Etichette proprietà che indica che le opzioni di sovrapposizione dei dati definiti sono impostate correttamente:
Altrimenti, c'è un altro modo per creare un campo ausiliario per una specifica proprietà grazie al pulsante [Sovrascrittura definita dai dati]. Cliccando su [Memorizza i dati nel progetto], viene creato automaticamente un campo ausiliario per il campo Opacità. Se clicchi su questo pulsante e il livello ausiliario non è ancora stato creato, viene prima visualizzata una finestra (Fig. 14.47) per selezionare la chiave primaria da usare per l'unione.

Simbologia

Come il metodo sopra descritto per la personalizzazione delle etichette, i campi ausiliari possono essere usati anche per stilizzare simboli e diagrammi. Per fare questo, clicca su [Sovrascrittura definita dai dati] e seleziona [Salva Dati nel Progetto] per una proprietà specifica. Per esempio, il campo [Colore di riempimento]:
Fig. 14.51: Menu definizione proprietà per i simboli

Ci sono diversi attributi per ogni simbolo (es. stile di riempimento, colore di riempimento, colore di riempimento, colore del tratto, ecc.), quindi ogni campo ausiliario che rappresenta un attributo richiede un nome unico per evitare conflitti. Dopo aver selezionato Salvare Dati nel Progetto, si apre una finestra che visualizza Tipo del campo e richiede di inserire un nome univoco per il campo ausiliario. Ad esempio, quando si crea un campo ausiliario Colore di riempimento si apre la seguente finestra:

![New auxiliary field parameters](image)

Fig. 14.52: Nome del campo ausiliario di un simbolo

Una volta creato, il campo ausiliario può essere richiamato nella scheda dati ausiliari:

14.1. La finestra di dialogo Proprietà dei vettori
Tabella degli attributi e widget

I campi ausiliari possono essere modificati utilizzando la *attribute table*. Tuttavia, non tutti i campi ausiliari sono inizialmente visibili nella tabella degli attributi.

I campi ausiliari che rappresentano gli attributi della simbologia, dell'etichettatura, dell'aspetto o dei diagrammi di un layer appariranno automaticamente nella tabella degli attributi. L'eccezione sono gli attributi che possono essere modificati usando la *Label toolbar* che sono nascosti per impostazione predefinita. I campi ausiliari che rappresentano un *Colore* hanno un widget *Colore* impostato di default, mentre i campi ausiliari sono predefiniti dal widget *Testo Modifica*.

I campi ausiliari che rappresentano gli attributi che possono essere modificati utilizzando la barra degli strumenti *Label toolbar* per impostazione predefinita sono *Nascosti* nella tabella degli attributi. Per rendere visibile un campo, aprire la scheda *Attribute Form properties tab* e cambiare il valore di un campo ausiliario *Tipo Widget* da *Nascosto* ad un altro valore pertinente. Per esempio, cambiare *auxiliary_storage_labeling_size* in *Modifica testo* o cambiare *auxiliary_storage_labeling_color* nel widget *Colore*. Questi campi saranno ora visibili nella tabella degli attributi.

I campi ausiliari nella tabella degli attributi appariranno come nell’immagine seguente:
Gestione

Il menu Dati Ausiliarì permette di gestire i campi ausiliarì:
La prima voce *Crea* in questo caso è disabilitata perché il layer ausiliario è stato già creato. Ma nel caso di un lavoro nuovo, puoi usare questa azione per creare un layer ausiliario. Come spiegato in *Etichettatura*, sarà necessaria una chiave primaria.

L’azione *Pulisci* permette di mantenere tutti i campi ausiliari, ma di rimuoverne il contenuto. In questo modo, il numero di funzioni che utilizzano questi campi scenderà a 0.

L’azione *Elimina* rimuove completamente il layer ausiliario. In altre parole, la tabella corrispondente viene cancellata dal database SQLite sottostante e la personalizzazione delle proprietà viene persa.

Infine, l’azione *Esporta* permette di salvare il livello ausiliario come un *new vector layer*. Si noti che le geometrie non sono memorizzate in una memoria ausiliaria. Tuttavia, in questo caso, anche le geometrie vengono esportate dall’origine dati originale.

Fig. 14.55: Gestione layer ausiliario
Database Dati Ausiliari

Quando salvi il tuo progetto con il formato .qgs, il database SQLite utilizzato per i dati ausiliari viene salvato nello stesso posto ma con l'estensione .qgd.

Per comodità, un archivio invece può essere utilizzato invece grazie al formato .qgz. In questo caso, i file .qgd e .qgs sono entrambi incorporati nell’archivio.

14.1.12 Proprietà Azioni

La scheda ti offre la possibilità di creare azioni sulla base degli attributi associati ai singoli elementi del vettore. Potrai così creare un grande numero di azioni, per esempio, avviare un programma con argomenti come gli attributi di un vettore o inviare parametri a una applicazione di rete.

Le azioni sono utili quando vuoi avviare un’applicazione esterna oppure aprire una pagina web sulla base di uno o più valori associati al vettore. Ci sono sei tipologie di azioni che puoi usare nel seguente modo:

- Le azioni Generic, Mac, Windows e Unix avviano un processo esterno.
- Le azioni python eseguono un’espressione python.
- Le azioni generic e python sono visibili ovunque.
- Le azioni Mac, Windows e Unix sono visibili solo sulle rispettive piattaforme (cioè puoi definire le azioni, ma sarai in grado di vedere i risultati solamente sulla piattaforma dalla quale è stato lanciato l’editor).

Ci sono diversi esempi inclusi nella finestra di dialogo. Puoi caricarli cliccando su Crea Azioni Predefinite. Per modificare uno qualsiasi degli esempi, fare doppio clic sulla sua riga. Un esempio è l’esecuzione di una ricerca basata su un valore di un attributo. Questo concetto è usato nella seguente discussione.

Mostra nella tabella degli attributi permette di visualizzare nella finestra di dialogo della tabella degli attributi le azioni selezionate, sia come Combo Box o come Pulsanti separati (vedi Configurare le colonne).
Definire le azioni

Per definire un’azione di attributo, apri la finestra di dialogo **Proprietà** e fai click sulla scheda **Azioni**. Nella scheda **Azioni** fai click su **Aggiunge una nuova azione** per aprire la finestra di dialogo **Aggiunge nuova azione**.

Seleziona **Tipo** e fornisca un nome descrittivo per l’azione. L’azione stessa deve contenere il nome dell’applicazione che verrà eseguita quando viene richiamata l’azione. Puoi aggiungere uno o più valori del campo attributo come argomenti all’applicazione. Quando viene richiamata l’azione, qualsiasi gruppo di caratteri che inizia con un % seguito dal nome di un campo verrà sostituito dal valore di quel campo. I caratteri speciali % % verranno sostituiti dal valore del campo selezionato dalla opzione di identificazione dei risultati o dalle tabella attributi (vedi using_actions_below). Le virgolette doppie possono essere utilizzate per raggruppare il testo come un unico argomento al programma, allo script o al comando. Le virgolette doppie saranno ignore se precedute dal carattere .

**Ambiti Azione** permette di definire dove l’azione dovrebbe essere disponibile. Ha 4 diverse scelte:

1. **Ambito Elemento**: l’azione è disponibile quando si clicca con il tasto destro del mouse nella cella all’interno della tabella degli attributi.
2. **Ambito Campo**: l’azione è disponibile quando si clicca con il tasto destro del mouse nella cella all’interno della tabella degli attributi, nel modulo delle geometrie e nel pulsante di azione predefinito della barra degli strumenti principale.
3. **Ambito Layer**: l’azione è disponibile nel pulsante azione nella barra degli strumenti della tabella degli attributi.
   Da notare che questo tipo di azione coinvolge l’intero layer e non le singole geometrie.
4. **Mappa**: l’azione è disponibile nel pulsante azione principale nella barra degli strumenti.

Se sono presenti nomi di campi che possono essere interpretati come sotto-stringhe di altri nomi di campi (ad es. col1 e col10) devi racchiudere il nome (e il carattere %) tra parentesi quadre (es. [%col10%]). Questo impedirà che il nome di campo %col10% possa essere confuso con %col1 con uno 0 alla fine. Le virgolette saranno rimosse da QGIS mano che inserirai i valori del campo. Se vuoi che i campi sostituiti vengano racchiusi entro parentesi quadre, aggiungi una seconda coppia di parentesi quadre: [[%col10%]].

La finestra di dialogo **Informazione sui risultati** che compare quando usi lo strumento **Informazioni elementi** ha una voce (Derivato) che contiene informazioni che dipendono dal tipo di vettore interrogato. Puoi accedere ai valori di questa voce in modo simile a come accedi ad altri campi della tabella attributi anteponendo al nome del campo (Derivato). Per esempio un vettore di punti ha due campi, X e Y, e puoi usare il loro valore nell’azione con l’espressione % (Derivato).X e % (Derivato).Y. Gli attributi derivati sono disponibili solo nella finestra **Informazione sui risultati** e non nella finestra **Tabella degli attributi**.

Due esempi di azioni sono di seguito mostrati:

- konqueror https://www.google.com/search?q=%nam
- konqueror https://www.google.com/search?q=%%


Nel secondo esempio viene usata la notazione `% %` che non si basa su un particolare campo per il suo valore. Quando richiami l’azione, il % % sarà rimpiazzato dal valore del campo selezionato nella finestra Informazioni risultati o nella tabella degli attributi.
**Uso delle azioni**

QGIS offre molti modi per eseguire le azioni che hai attivato su un layer. A seconda delle loro impostazioni, possono essere disponibili:

- nel menu a discesa dell’elemento dalla finestra di dialogo Barra degli strumenti relativa agli attributi o dalla Tabella degli Attributi;
- quando si clicca con il tasto destro del mouse su una geometria con lo strumento Informazioni Elementi (vedi Informazioni Elementi per maggiori informazioni);
- dal pannello Informazioni Risultati, sotto la sezione Azioni;
- come elementi di una colonna Azioni nella finestra di dialogo Tabella degli Attributi.

Se stai richiamando un’azione che usa l’annotazione %%, fai click con il tasto destro sul valore del campo nella finestra Informazioni risultati oppure dalla finestra Tabella attributi e scegli l’applicazione o lo script da assegnare.

In questo altro esempio viene mostrato come estrarre dati da un vettore per inserirli in un file usando il terminale e il comando echo (quindi funzionerà su Δ e forse su X). Il vettore in questione ha i seguenti campi nella tabella attributi: nome della specie taxon_name, latitudine lat e longitudine long. Vuoi eseguire una selezione spaziale delle specie (taxon) presenti in determinate posizioni, esportando i risultati in un file di testo (evidenziate in giallo sulla mappa di QGIS ). Ecco l’azione giusta per questo scopo:

```
bash -c "echo \"%taxon_name \lat \long\" >> /tmp/species_localities.txt"
```

Selezionando solo alcune posizioni, l’esecuzione dell’azione precedente genera un file di output fatto così:

```
Acacia mearnsii -34.0800000000 150.0800000000
Acacia mearnsii -34.9000000000 150.1200000000
Acacia mearnsii -35.2200000000 149.9300000000
Acacia mearnsii -32.2700000000 150.4100000000
```

Come esercizio, possiamo creare un’azione che faccia una ricerca con Google sul livello Lakes. Per prima cosa, dobbiamo determinare l’URL necessario per eseguire una ricerca su una parola chiave. Questo si può fare facilmente andando su Google e facendo una semplice ricerca, poi prendendo l’URL dalla barra degli indirizzi del browser. Da questo piccolo sforzo, vediamo che il formato è https://www.google.com/search?q=QGIS, dove QGIS è il termine di ricerca. Armati di queste informazioni, possiamo procedere:

1. Assicurati di aver caricato il vettore Lakes.
2. Aprì la finestra di dialogo Proprietà layer facendo doppio click sul vettore o cliccandoci sopra con il tasto destro del mouse e scegliendo Proprietà dal menu contestuale.
3. Clic sulla scheda Azioni.
4. Clic Aggiungi nuova azione.
5. Scegli il tipo di azione Apri.
6. Inserisci un nome descrittivo per l’azione, ad esempio Ricerca Google.
7. Inoltre puoi aggiungere un Descrizione breve o anche un Icona.
8. Scegli l’azione in Ambiti Azione. Vedi Definire le azioni per ulteriori informazioni. Lascia le impostazioni predefinite per questo esempio.
9. Devi fornire il nome del programma esterno, in questo caso Firefox. Se il programma non è presente nel tuo path, devi inserire il path assoluto.


14. Il testo dell’azione dovrebbe ora apparire come segue:

   https://www.google.com/search?q=[%NAMES%]

15. Per concludere e aggiungere l’azione, clicca sul pulsante OK.

![Fig. 14.57: Esempio finestra di dialogo di definizione di un azione](image)

Questo ultimo passo completa l’azione che è ora pronta per essere usata. Il testo finale dell’azione dovrebbe apparire così:

**https://www.google.com/search?q=[%NAMES%]**

A questo punto puoi usare l’azione. Chiudi la finestra Proprietà layer e usa lo zoom su un’area a scelta. Assicurati che il vettore lakes sia attivo ed identifica con l’apposito strumento un lago qualsiasi. Nella finestra risultante dovrebbe essere visibile l’azione:
Cliccando sull’azione, verrà lanciato Firefox all'URL http://www.google.com/search?q=Tustumena. Puoi anche aggiungere altri campi all’azione, aggiungendo un + alla fine della stringa che definisce l’azione, selezionando quindi un altro campo e cliccando sul pulsante Inserisci. Nel nostro esempio non c’è alcun altro campo sul quale avrebbe senso fare una ricerca.

Puoi definire più di un’azione per ogni vettore, ognuna delle quali verrà mostrata nella finestra di dialogo Informazioni Risultati.

Puoi anche richiamare le azioni dalla tabella degli attributi selezionando una riga e cliccando col tasto destro, allora puoi scegliere un’azione dal menu a tendina.

Puoi creare tantissimi tipi di azione. Per esempio se hai un vettore di punti che fa riferimento alle posizioni dove sono state scattate foto o immagini, insieme al nome stesso del file, puoi creare un’azione per avviare un programma che visualizzerà l'immagine. Puoi usare le azioni anche per lanciare report sul web per uno o più campi della tabella degli attributi, definendole allo stesso modo dell’esempio per la ricerca con Google.

Ci sono esempi anche molto più complicati, per esempio usando le azioni Python.

Di solito, quando creiamo un’azione per aprire un file con un’applicazione esterna, possiamo usare percorsi assoluti, o eventualmente relativi. Nel secondo caso, il percorso è relativo alla posizione del file eseguibile del programma esterno. Ma cosa succede se abbiamo bisogno di usare percorsi relativi, relativi al layer selezionato (uno layer basato su file, come Shapefile o SpatiaLite)? Il codice seguente servirà allo scopo:

```python
command = "firefox"
imagerelpath = "images_test/test_image.jpg"
layer = qgis.utils.iface.activeLayer()
import os.path
layerpath = layer.source() if layer.providerType() == 'ogr'
else (qgis.core.QgsDataSourceURI(layer.source()).database() if layer.providerType() == 'spatialite' else None)
path = os.path.dirname(str(layerpath))
image = os.path.join(path, imagerelpath)
import subprocess
subprocess.Popen([command, image])
```

Ricordati che l’azione è del tipo Python, quindi devi cambiare le variabili command e imagerelpath.
E se il percorso relativo deve essere relativo al file di progetto (salvato)? Il codice per l’azione Python diventa:

```python
command = "firefox"
imagerelpath = "images_test/test_image.jpg"
projectpath = qgis.core.QgsProject.instance().fileName()
import os.path
path = os.path.dirname(str(projectpath))
if projectpath != ''
 imagerelpath = os.path.join(path, imagerelpath)
import subprocess
subprocess.Popen([command, image])
```

Un altro esempio di azione python è quello che ti permette di aggiungere nuovi layer al progetto. In questo esempio aggiungeremo sia un vettore che un raster. Il nome dei file da aggiungere al progetto e il nome da assegnare ai layer è specificato dai dati (filename e layname sono nomi di colonne della tabella dagli attributi del vettore dove l’azione è stata creata):

```python
qgis.utils.iface.addVectorLayer('/yourpath/%filename%.shp',
 '>%layname%')
```  

Per aggiungere un raster (in questo caso un'immagine TIF), diventa:

```python
qgis.utils.iface.addRasterLayer('/yourpath/%filename%.tif',
 '>%layname%')
```

### 14.1.13 Proprietà Suggerimenti

La scheda Suggerimenti ti aiuta a configurare i campi da utilizzare per l’identificazione degli elementi:

- **Il Nome visualizzato:** basato su un campo o su un'espressione. Questo è:
  - l'etichetta mostrata sopra le informazioni sull'elemento Identify tool results
  - il campo usato nella locator bar quando si cercano elementi in tutti i layer
  - l'identificatore dell'elemento nella tabella degli attributi form view
  - l'identificatore dell'elemento quando la mappa o il layout viene esportato in un formato di output a più livelli come GeoPDF
  - geometria del layer attivo con l'icona Mostra suggerimenti mappa. Applicabile quando HTML Map Tip è impostato a no.

- **HTML Map Tip** è stato creato appositamente per i suggerimenti della mappa: si tratta di un testo HTML più complesso e completo che mescola campi, espressioni e tag html (multilinea, font, immagini, collegamenti ipertestuali…..).
Per attivare Suggerimenti mappa, seleziona l’opzione di menu **Visualizza ➤ Mostra Suggerimenti mappa** o fai clic sull’icona ![Mostra Suggerimenti mappa](image). Suggerimenti mappa è una funzionalità di cross-session che, una volta attivata, rimane attiva e si applica a qualsiasi layer impostato in qualsiasi progetto, anche nelle future sessioni di QGIS finché non viene disattivato.

**Fig. 14.59: Codice HTML per suggerimento mappa**

**Fig. 14.60: Suggerimento mappa realizzato con codice HTML**

### 14.1.14 Proprietà Visualizzazione

**Visibilità dipendente dalla scala**

Puoi impostare la scala **Massimo (incluso)** e quella **Minimo (escluso)**, definendo un intervallo di valori di scala in cui le geometrie saranno visibili. Fuori di questo intervallo sono nascoste. Il pulsante ![Imposta alla scala corrente dell’estensione della mappa](image) ti consente di utilizzare la scala corrente della mappa come limite di visibilità.
QGIS offre il supporto per la generalizzazione delle geometrie on-the-fly. Ciò può migliorare i tempi di visualizzazione quando si disegnano molteplici oggetti complessi a piccole scale. Questa funzionalità può essere abilitata o disattivata nelle impostazioni del layer utilizzando l'opzione  

**Semplifica geometrie**. Esiste anche un'impostazione globale che consente la generalizzazione per impostazione predefinita per i nuovi layer aggiunti (per ulteriori informazioni, vedi  

**global simplification**)

![Fig. 14.61: Finestra di dialogo vettore Semplifica geometrie](image)

**Nota:** La generalizzazione delle geometrie può in alcuni casi presentare artefatti nel tuo output di visualizzazione. Questi possono includere slivers tra poligoni e visualizzazioni imprecise quando si utilizzano layers di simboli basati su offset.

Durante la visualizzazione di layers estremamente dettagliati (ad esempio, layers poligonali con un numero enorme di nodi), ciò può far sì che le esportazioni delle composizioni di stampa in formato PDF/SVG siano enormi in quanto tutti i nodi sono inclusi nei file esportati. Questo può anche renderle i file risultanti molto lenti per funzionare con/aprire in altri programmi.

Con l'opzione  

**Forza la visualizzazione del vettore come raster** si impone per questi layer una rasterizzazione in modo che i file esportati non dovramo includere tutti i nodi contenuti in questi layers e quindi renderà più rapida la visualizzazione.

Puoi anche farlo obbligando il layout ad esportare come raster, ma è una soluzione tutto o niente, dato che la rasterizzazione viene applicata a tutti i layer.

**Aggiorna i layer a intervalli (secondi):** imposta un timer per aggiornare automaticamente i singoli layer ad un intervallo corrispondente. Gli aggiornamenti delle mappe sono posticipati per evitare di aggiornare più volte se più di un layer ha impostato un intervallo di aggiornamento automatico.

A seconda del fornitore di dati (ad es. PostgreSQL), le notifiche possono essere inviate a QGIS quando vengono applicate modifiche all'origine dati, da QGIS. Utilizza  

**Livello di aggiornamento sulla notifica** per attivare un
aggiornamento. Puoi anche limitare l’aggiornamento del layer ad un messaggio specifico impostato nella casella di controllo Solo se il messaggio è casella di testo.

14.1.15 Scheda Variabili

La scheda Variabili elenca tutte le variabili disponibili a livello di layer (che include tutte le variabili globali e di progetto).

Consente inoltre all’utente di gestire le variabili a livello di layer. Fai click sul pulsante per aggiungere una nuova variabile a livello di layer personalizzato. Allo stesso modo, seleziona una variabile a livello di layer personalizzato dall’elenco e fai click sul pulsante per rimuoverla.

Ulteriori informazioni sull’utilizzo delle variabili nella sezione Memorizzazione valori nelle Variabili.

14.1.16 Scheda Metadati

La scheda Metadata ti propone delle opzioni per creare e modificare un report di metadati sul tuo layer. Le informazioni da inserire riguardano:

- **Identificazione**: attributi di base del dataset (genitore, identificatore, titolo, abstract, lingua….);
- **Categorie** a cui appartengono i dati. Accanto alle categorie ISO, è possibile aggiungere categorie personalizzate;
- **Parole chiave** per recuperare i dati e i concetti associati seguendo un vocabolario standard;
- il **Accesso** al dataset (licenze, diritti, tariffe e vincoli);
- l’**Estensione** del dataset, sia spaziale (SR, estensione della mappa, altitudini) che temporale;
- il **Contatti** del proprietario(i) del dataset;
- i **Collegamenti** alle risorse ausiliarie e alle relative informazioni;
- lo **Storico** del dataset.

Una sintesi delle informazioni compilate è fornito nella scheda Validazione e ti aiuta a identificare potenziali problemi relativi al modulo. Puoi quindi correggerli o ignorarli.

I metadati sono normalmente salvati nel file di progetto. Possono anche essere salvati in un file .qmd per i layer basati su file o in un database locale .sqlite per i layer remoti (ad esempio PostGIS).

14.1.17 Proprietà Dipendenze

La scheda Dipendenze permette di stabilire le dipendenze dei dati tra i layer. Una dipendenza dai dati si verifica quando una modifica dei dati in un layer, non tramite manipolazione diretta da parte dell’utente, può modificare i dati di altri layer. Questo è il caso per esempio quando la geometria di un layer è aggiornata da un trigger di database o da uno scripting PyQGIS personalizzato dopo la modifica della geometria di un altro layer.

Nella scheda Dipendenza, puoi selezionare tutti i layer che possono alterare esternamente i dati del layer corrente. Specificare correttamente i livelli dipendenti permette a QGIS di invalidare le cache per questo layer quando i layer dipendenti vengono alterati.
14.1.18 Proprietà Legenda

La scheda proprietà **Legenda** ti fornisce impostazioni avanzate per il *Layers panel* e/o la *print layout legend*. Queste opzioni includono:

- **Testo sui simboli**: In alcuni casi può essere utile aggiungere informazioni aggiuntive ai simboli nella legenda. Con questa finestra, puoi applicare ai simboli utilizzati nella simbologia dei layer un testo che viene visualizzato sopra il simbolo, sia nel pannello *Layer* che nella legenda del layout di stampa. Questa mappatura viene eseguita digitando ogni testo accanto al simbolo nel widget della tabella o riempiendo la tabella usando il pulsante *Imposta etichette da espressione*. L’aspetto del testo viene gestito attraverso i widget di selezione dei caratteri e dei colori del pulsante *Formato Testo*.

![Image of QGIS Desktop](QGIS Desktop 3.16 User Guide)

![Image of QGIS Desktop](QGIS Desktop 3.16 User Guide)

Fig. 14.62: Impostazione testo sui simboli (a sinistra) e sua visualizzazione nel pannello *Layer* (destra)

- un elenco di widget che puoi incorporare all’interno dell’albero dei layer nel pannello dei layer. L’idea è quella di avere un modo per accedere rapidamente ad alcune azioni che sono spesso usate con il layer (configurazione trasparenza, filtraggio, selezione, stile o altre impostazioni….).

Per impostazione predefinita, QGIS fornisce widget di trasparenza, ma questo può essere esteso da plugin che registrano i propri widget e assegnano azioni personalizzate ai layers che gestiscono.

14.1.19 Proprietà Server QGIS

La scheda **QGIS Server** ha le sezioni: **Descrizione**, **Attribuzione**, **URL Metadati** e **LegendUrl**.

Dalla sezione *Descrizione*, puoi cambiare il *Breve descrizione* usato per fare riferimento al layer nelle richieste (per saperne di più sui nomi brevi, leggi server_short_name). Puoi anche aggiungere o modificare un *Titolo* e un *Riassunto* per il layer, o definire un *Lista delle parole chiave* qui. Questi elenchi di parole chiave possono essere usati in un catalogo di metadati. Se vuoi usare un titolo da un file di metadati XML, devi compilare un collegamento nel campo *DataUrl*.

Utilizza *Attribuzione* per ottenere i dati di attributo da un catalogo di metadati in formato XML.

In *URL Metadati*, puoi definire il percorso generale del catalogo metadati XML. Queste informazioni verranno salvate nel file di progetto QGIS per le sessioni successive e verranno utilizzate per il server QGIS.

Nella sezione *LegendUrl* puoi fornire l’URL di un’immagine per la legenda nel campo URL. È possibile utilizzare le opzioni del menù a discesa su Formato per applicare il formato appropriato dell’immagine. Attualmente sono supportati i formati di immagine png, jpg e jpeg.
Fig. 14.63: Scheda Server QGIS nella finestra di dialogo delle proprietà dei layer vettoriali

Per saperne di più su QGIS Server, leggi il QGIS-Server-manual.

14.1.20 Proprietà Digitalizzazione

La scheda Digitalizzazione dà accesso a opzioni che aiutano a garantire la qualità delle geometrie digitalizzate.
Fig. 14.64: Scheda Digitalizzazione QGIS nella finestra di dialogo delle proprietà dei layer vettoriali

**Correzioni automatiche**

Le opzioni nella sezione *Correzioni Automatiche* influenzano direttamente i vertici di qualsiasi geometria aggiunta o modificata. Se l’opzione *Rimuovi nodi duplicati* è selezionata, tutte le coppie di vertici successivi con le stesse coordinate saranno eliminate. Se è impostata l’opzione *Precisione delle geometrie*, tutti i vertici saranno arrotondati al multiplo più vicino alla precisione geometrica configurata. L’arrotondamento avverrà nel sistema di riferimento delle coordinate del layer. I valori Z e M non vengono arrotondati. Con molti strumenti, una griglia viene mostrata sulla mappa durante la digitalizzazione.
Controlli geometria

Nella sezione **Controlli geometria** possono essere attivate ulteriori convalidhe per geometria. immediatamente dopo ogni modifica della geometria, gli errori di questi controlli sono segnalati all’utente nel pannello di convalida della geometria. Fino a che un controllo fallisce, non è possibile salvare il layer. La casella di controllo **Is valid** eseguirà controlli di validità di base come l’intersezione automatica delle geometrie.

Controlli topologici

Nella sezione **Controlli topologici** possono essere attivati ulteriori controlli di convalida della topologia. I controlli topologici saranno eseguiti quando l’utente salva il layer. Gli errori a seguito del controllo saranno riportati nel pannello di validazione della geometria. Finché gli errori di validazione sono presenti, il layer non può essere salvato. I controlli di topologia vengono eseguiti nell’area del rettangolo di delimitazione delle geometrie modificate. Poiché altre geometrie possono essere presenti nella stessa area, vengono riportati gli errori topologici relativi a queste geometrie e gli errori introdotti nella sessione di modifica corrente.

<table>
<thead>
<tr>
<th>Opzione verifica topologica</th>
<th>Illustrazione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>La verifica <strong>[Vuoto]</strong> controllerà la presenza di spazi vuoti tra i poligoni adiacenti.</strong></td>
<td><img src="image" alt="Illustrazione Vuoto" /></td>
</tr>
<tr>
<td><img src="image" alt="Sovrappone" /> <strong>Sovrappone</strong> controllerà le sovrapposizioni tra i poligoni vicini.</td>
<td><img src="image" alt="Illustrazione Sovrappone" /></td>
</tr>
<tr>
<td><img src="image" alt="Vertice Mancante" /> <strong>Vertice Mancante</strong> controlla i confini condivisi dei poligoni vicini quando un confine manca di un vertice presente sull’altro.</td>
<td><img src="image" alt="Illustrazione Vertice Mancante" /></td>
</tr>
</tbody>
</table>
Eccezioni ai controlli dei vuoti

A volte è desiderabile mantenere dei vuoti all’interno di un’area in un layer di poligoni che altrimenti è completamente coperto da poligoni. Per esempio, uno strato di uso del suolo può avere dei buchi accettabili per i laghi. È possibile definire aree che vengono ignorate nel controllo degli spazi vuoti. Poiché gli spazi vuoti all’interno di queste aree sono consentiti, ci rifeririamoci ad esse come aree con Vuoti Consentiti.

Nelle opzioni per i controlli dei vuoti sotto Vuoti consentiti, si può configurare un layer Vuoti Consentiti. Ogni volta che viene eseguito il controllo degli spazi vuoti, gli spazi vuoti che sono coperti da uno o più poligoni nel Layer con Vuoti Consentiti non sono riportati come errori di topologia.

È anche possibile configurare un ulteriore Buffer. Questo buffer viene applicato ad ogni poligono sul Layer con Vuoti Consentiti. Questo permette di rendere i test meno sensibili ai piccoli cambiamenti dei contorni ai bordi dei vuoti.

Quando sono abilitati i Vuoti Consentiti, un pulsante aggiuntivo (Aggiungi Vuoti Consentiti) per gli errori per vuoti rilevati è disponibile nel dock di validazione della geometria, dove i vuoti sono segnalati durante la digitalizzazione. Se il pulsante Aggiungi Vuoti Consentiti viene premuto, un nuovo poligono con la geometria del vuoto rilevato viene inserito nel Layer Vuoti Consentiti. Questo rende possibile segnalare rapidamente gli spazi vuoti come consentiti.

14.2 Espressioni

Basate sui dati dei layer e sulle funzioni predefinite o definite dall’utente, le Espressioni offrono un modo potente per manipolare il valore degli attributi, la geometria e le variabili al fine di cambiare dinamicamente lo stile della geometria, il contenuto o la posizione dell’etichetta, il valore del diagramma, la quota di un oggetto del layout, selezionare alcuni elementi, creare un campo virtuale, …

Nota: Una lista delle funzioni e delle variabili predefinite per scrivere espressioni può essere trovata in Lista delle funzioni, con informazioni dettagliate ed esempi.

14.2.1 Il Calcolatore di campi

La finestra di dialogo principale per la creazione di espressioni Calcolatore di campi è disponibile da molte parti in QGIS e, in particolare, puoi accedervi:

• facendo click sul pulsante $^\text{Expression}$;
• $^\text{Calcolatore di campi}$
• $^\text{Sovrascrittura definita dai dati}$
• $^\text{geometry generator}$
• nell’attivare alcune funzioni geoprocessing.

Le finestre di dialogo del Costruttore di Espressioni offrono l’accesso a:

• Expression tab che, grazie ad un elenco di funzioni predefinite, aiuta a scrivere e controllare l’espressione da utilizzare;
• Function Editor tab delle funzioni che consente di ampliare l’elenco delle funzioni creando quelle personalizzate.
L’Interfaccia

La scheda Espressione fornisce l’interfaccia principale per scrivere espressioni utilizzando funzioni, campi del layer e valori. Contiene i seguenti widget:

![Image of Expression Dialog]

Fig. 14.65: La scheda Espressioni

- Un’area di editing di espressioni per digitare o copiare le espressioni. L’autocompletamento è disponibile per velocizzare la scrittura delle espressioni:
  - Le variabili, i nomi delle funzioni e dei campi corrispondenti al testo di input sono mostrati di seguito: usare le frecce Up e Down per sfogliare gli elementi e premere Tab per inserirli nell’espressione o semplicemente cliccare sull’elemento desiderato.
  - I parametri delle funzione vengono visualizzati durante la digitazione.

QGIS controlla anche la correttezza dell’espressione ed evidenzia tutti gli errori utilizzando:
- **Sottolineatura**: per funzioni sconosciute, argomenti errati o non corretti;
- **Simbolo**: per ogni altro errore (es. parentesi mancante, carattere imprevisto) in una singola posizione.

**Suggerimento: Documentare le tue espressioni con i commenti**

Quando si usa un’espressione complessa, è buona pratica aggiungere testo sia come commento multilinea che come commento in linea per aiutarsi a ricordare.

```c
/*
Labels each region with its highest (in altitude) airport(s) and altitude, eg 'AMBLER : 264m' for the 'Northwest Artic' region
*/
with_variable(
 'airport_alti', -- stores the highest altitude of the region
 aggregate(
 'airports',
 'max',
 "ELEV", -- the field containing the altitude
 -- and limit the airports to the region they are within
 filter := within($geometry, geometry(@parent))
),
)
```

(continues on next page)
aggregate( -- finds airports at the same altitude in the region
 'airports',
 'concatenate',
 "NAME",
 filter := within( $geometry, geometry( @parent ) )
 and "ELEV" = @airport_alti
 )
 || ' : ' || @airport_alti || 'm'
 -- using || allows regions without airports to be skipped

• Sopra l’editor di espressioni, una serie di strumenti ti aiutano:

  – Cancella l’editor espressione
  – creare e manipolare le user expressions

• Sotto l’editor di espressioni, trovi:

  – un insieme di operatori di base per aiutarti a costruire l’espressione
  – un’indicazione del formato in uscita previsto quando si definiscono i dati delle proprietà degli elementi.
  – una istantanea Anteprima dell’espressione, valutata sul primo elemento del Layer predefinito. Puoi sfogliare e valutare altre proprietà del layer usando il menu a tendina Elemento (i valori sono presi dalla display name proprietà del layer).

In caso di errore, lo indica e si può accedere ai dettagli con il link ipertestuale fornito.

• Un selettore di funzioni visualizza l’elenco di funzioni, variabili, campi…. organizzati in gruppi. Una casella di ricerca è disponibile per filtrare l’elenco e trovare rapidamente una particolare funzione o campo. Facendo doppio clic su un elemento lo aggiunge all’editor di espressioni.

• Un pannello di aiuto visualizza la guida per ogni voce selezionata nel selettore di funzione.

**Suggerimento:** Premi Ctrl+Click quando passi con il mouse sul nome di una funzione in un’espressione per visualizzare automaticamente il suo aiuto nella finestra di dialogo.

Il widget dei valori di un campo mostrato quando un campo è selezionato nel selettore di funzioni aiuta a cercare gli attributi degli elementi:

  – Cercare un particolare valore di campo
  – Visualizza l’elenco di Tutti i valori univoci o di 10 Campioni. Disponibile anche con il tasto destro del mouse.

Quando il campo è mappato con un altro layer o un insieme di valori, ad esempio se il field widget è di tipo RelationReference, ValueRelation o ValueMap, è possibile elencare tutti i valori del campo mappato (dal layer, tabella o lista di riferimento). Inoltre, puoi filtrare questa lista con Mostra solo i valori in uso nel campo corrente.

Il doppio clic sul valore di un campo nel widget lo aggiunge all’editor di espressioni.

**Suggerimento:** Il pannello di destra, che mostra le funzioni di aiuto o i valori del campo, può essere chiuso (invisibile) nella finestra di dialogo. Premi il pulsante Mostra valori o Mostra aiuto per recuperarlo.
Scrive una espressione

Le espressioni di QGIS sono usate per selezionare elementi o impostare valori. Scrivere un’espressione in QGIS segue alcune regole:

1. **La finestra di dialogo definisce il contesto**: se siete abituati a SQL, probabilmente conoscete query del tipo `select features from layer where condition` o `update layer set field = new_value where condition`. Anche un’espressione QGIS ha bisogno di tutte queste informazioni, ma lo strumento che usate per aprire la finestra di dialogo del costruttore di espressioni ne fornisce una parte. Per esempio, fornendo un layer (building) con un campo (height):
   - **Usando lo strumento** Selezione per espressione significa che vuoi «selezionare gli elementi dagli edifici». La **condizione** è l’unica informazione che devi fornire nel widget di testo dell’espressione, ad esempio scrivi "height" > 20 per selezionare gli edifici che sono più alti di 20.
   - **con questa selezione fatta**, premendo il pulsante Calcolatore di Campi e scegliendo «height» come Aggiorna campo esistente, fornisci già il comando «update buildings set height = ??? where height > 20». L’unico dato rimanente che devi fornire in questo caso è il nuovo valore, per esempio inserisci semplicemente 50 per impostare l’altezza degli edifici precedentemente selezionati.

2. **Fai attenzione alle virgolette**: le virgolette singole restituiscono una stringa carattere, quindi un testo posto tra virgolette singole ("145") viene interpretato come una stringa. I doppi apici ti danno il valore di quel testo, quindi usali per i campi ("myfield"). I campi possono anche essere usati senza virgolette (myfield). Niente virgolette per i numeri (3.16).

**Nota:** Le funzioni normalmente richiedono come parametro una stringa per il nome del campo. Fai:

```
attribute(@atlas_feature, 'height') -- returns the value stored in the
"height" attribute of the current atlas feature
```

e non:

```
attribute(@atlas_feature, "height") -- fetches the value of the attribute...
--named "height" (e.g. 100), and use that value as a field
-- from which to return the atlas...

```

**Suggerimento:** Usare i parametri in modo esplicito per facilitare la lettura delle espressioni

Alcune funzioni richiedono l’impostazione di molti parametri. Il motore delle espressioni supporta l’uso di parametri con nomi espliciti. Questo significa che invece di scrivere la criptica espressione `clamp( 1, 2, 9)` puoi usare `clamp( min:=1, value:=2, max:=9)` . Questo permette anche di cambiare ordine degli argomenti, ad esempio `clamp( value:=2, max:=9, min:=1)` . L’uso di parametri con nome aiuta a chiarire a cosa si riferiscono gli argomenti di una funzione di espressione, il che è utile quando si cerca di interpretare un’espressione in seguito!
Alcuni casi di uso di espressioni

- Dal calcolatore di campi, calcola un campo «pop_density» usando i campi esistenti «total_pop» e «area_km2»:

  \[
  \frac{\text{total}_{\text{pop}}}{\text{area}_{\text{km}^2}}
  \]

- Etichetta o categorizza gli elementi in base alla loro area:

  \[
  \text{CASE WHEN } \text{area} > 10 000 \text{ THEN 'Larger' ELSE 'Smaller' END}
  \]

- Aggiornare il campo «density_level» con le categorie in base ai valori «pop_density»:

  \[
  \text{CASE WHEN 'pop_density' < 50 THEN 'Low population density'
  \quad \text{WHEN 'pop_density' } \geq 50 \text{ AND 'pop_density' } < 150 \text{ THEN 'Medium population...'
  \quad \text{WHEN 'pop_density' } \geq 150 \text{ THEN 'High population density'
  \end{CASE}
  \]

- Applicare uno stile categorizzato a tutte le geometrie in base al fatto che il prezzo medio della casa sia più piccolo o superiore a 10000€ per metro quadrato:

  \[
  \text{price}_{\text{m}^2} > 10000
  \]

- Utilizzando lo strumento «Seleziona per espressione ...», selezionare tutte le geometrie che rappresentano aree di «Alta densità di popolazione» e il cui prezzo medio di casa è superiore a 10000€ per metro quadrato:

  \[
  \text{density}_{\text{level}} = 'High population density' \text{ AND 'price}_{\text{m}^2} > 10000
  \]

L'espressione precedente potrebbe anche essere usata per definire quali elementi etichettare o mostrare sulla mappa.

- Creare un simbolo diverso (tipo) per il layer, usando il generatore di geometrie:

  \[
  \text{point}_{\text{on}_{\text{surface}}}( $\text{geometry} )
  \]

- Dato un elemento puntuale, genera una linea chiusa (usando make_line) intorno alla sua geometria:

  \[
  \text{make}_{\text{line}}(\text{-- using an array of points placed around the original array_foreach(\text{-- list of angles for placing the projected points (every 90°) array:=generate_series( 0, 360, 90 ), \text{-- translate the point 20 units in the given direction (angle expression:=project( $\text{geometry}, distance:=20, azimuth:=radians( $\text{element } )_\text{-- } ) )\text{)}}})
  \]

- In un'etichetta del layout di stampa, visualizzare il nome degli elementi » airports» che si trovano all'interno dell'elemento » Map 1 » del layout:

  \[
  \text{with}_{\text{variable}}( '\text{extent}', \text{map}_{\text{get}}( \text{item}_{\text{variables}}( '\text{Map 1}' ), '\text{map}_{\text{extent}}' ), \text{aggregate}( \text{airports}, '\text{concatenate}', '\text{Name}', \text{intersects}( $\text{geometry}, \text{extent }, ' ', ' ) )
  \]


Salvare le Espressioni

Usando il pulsante ☀️ Aggiungi l’espressione corrente alle espressioni utente sopra il riquadro dell’editor di espressioni, puoi salvare le espressioni importanti a cui vuoi avere accesso rapido. Queste sono disponibili nel gruppo Espressioni utente nel pannello centrale. Sono salvate sotto il profilo dell’utente (file <userprofile>/QGIS/QGIS3.ini) e disponibili in tutte le finestre di dialogo delle espressioni in tutti i progetti del profilo utente corrente.

Un insieme di strumenti disponibili sopra la cornice dell’editor di espressioni ti aiuta a gestire le espressioni utente:

- ☀️ Aggiungi l’espressione corrente alle espressioni dell’utente: memorizza l’espressione nel profilo dell’utente. Un’etichetta e un testo di aiuto possono essere aggiunti per una facile interpretazione.
- ☐️ Modifica l’espressione selezionata dalle espressioni utente, così come il relativo testo di aiuto e l’etichetta
- ☣️ Rimuovi l’espressione selezionata dalle espressioni utente
- 🔽 Importa le espressioni utente da un file .json nella cartella del profilo utente attivo
- 🔺 Esporta Espressioni Utente come file .json; tutte le espressioni utente sono condivise nel profilo utente QGIS3.

14.2.2 Editor delle Funzioni

Con la scheda Editor delle funzioni, puoi scrivere le tue funzioni nel linguaggio Python. Ciò fornisce un modo pratico e comodo per affrontare esigenze particolari che non sarebbero coperte dalle funzioni predefinite.

Per creare una nuova funzione:

1. Premi il pulsante ☀️ Nuovo File.
2. Inserisci un nome da utilizzare nel modulo che compare e premi OK.
Un nuovo oggetto con il nome da te fornito viene aggiunto nel pannello sinistro della scheda Editor delle funzioni; si tratta di un file .py basato sul file del modello predefinito di QGIS e memorizzato nella cartella /python/expressions sotto la directory attiva user profile.


4. Premi il pulsante Salva e Carica Funzioni. La funzione scritta viene aggiunta all’albero delle funzioni nella scheda Espressione, di default nel gruppo Custom.

5. Goditi la tua nuova funzione.

6. Se la funzione necessita di richiede miglioramenti, abilita la scheda Editor delle Funzioni, fai le modifiche e premi nuovamente il pulsante Salva e Carica Funzioni per renderle disponibili nel file, quindi in qualsiasi scheda di espressione.

Le funzioni personalizzate Python sono memorizzate nella directory del profilo utente, il che significa che ad ogni avvio di QGIS, caricherà automaticamente tutte le funzioni definite con il profilo utente corrente. Tieni presente che le nuove funzioni vengono salvate solo nella cartella /python/expressions e non nel file di progetto. Se condividi un progetto che utilizza una delle tue funzioni personalizzate, dovrai anche condividere il file .py nella cartella /python/expressions.

Per eliminare una funzione personalizzata:

1. Abilitare la scheda Editor delle funzioni.

2. Selezionare la funzione nella lista

3. Premere il pulsante Rimuove il file funzioni selezionato. La funzione viene rimossa dalla lista e il file .py corrispondente viene eliminato dalla cartella del profilo utente.

Esempio

Ecco un breve esempio su come creare la propria funzione my_sum che opererà con due valori.

```python
from qgis.core import *
from qgis.gui import *

@qgsfunction(args='auto', group='Custom')
def my_sum(value1, value2, feature, parent):

 Calculates the sum of the two parameters value1 and value2.
 <h2>Example usage:</h2>

 my_sum(5, 8) -> 13
 my_sum("field1", "field2") -> 42

 return value1 + value2
```

Quando si usa il parametro args='auto' per la funzione il numero di argomenti della funzione richiesti sarà calcolato dal numero di argomenti con cui la funzione è stata definita in Python (meno 2 - feature e parent). L’argomento group='Custom' indica il gruppo in cui la funzione dovrebbe essere elencata nella finestra di dialogo Espressione.

È anche possibile aggiungere argomenti a parole chiave come:

- usesgeometry=True se l’espressione richiede l’accesso alla geometria dell’elemento. Per default False.
- handlesnull=True se l’espressione ha una gestione personalizzata per i valori NULL. Se False (default), il risultato sarà sempre NULL ogni volta che qualsiasi parametro è NULL.
- referenced_columns=[elenco]: Un array di nomi di attributi che sono richiesti alla funzione. Il valore predefinito è [QgsFeatureRequest.ALL_ATTRIBUTES].

Capitolo 14. Lavorare con i vettori
La funzione dell’esempio precedente può quindi essere utilizzata nelle espressioni:

![Image](https://example.com/image.png)

**Fig. 14.67: Funzione personalizzata aggiunta alla scheda Espressione**

Ulteriori informazioni sulla creazione di codice Python possono essere trovate nel PyQGIS-Developer-Cookbook.

### 14.3 Lista delle funzioni

Sono elencate di seguito le funzioni, gli operatori e le variabili disponibili in QGIS, raggruppate per categorie.

#### 14.3.1 Funzioni di Aggregazione

Questo gruppo contiene funzioni che aggregano valori su layer e campi

- `aggregate`
- `array_agg`
- `collect`
- `concatenate`
- `concatenate_unique`
- `count`
- `count_distinct`
- `count_missing`
- `iqr`
- `majority`
- `max_length`
- `maximum`
- `mean`
- `median`
- `min_length`
aggregate

Restituisce un valore aggregato calcolato utilizzando elementi da un altro layer.
### Sintassi

aggregate(layer, aggregate, expression, [filter], [concatenator=""], [order_by])

[] indica argomenti facoltativi

### Argomenti

- **layer** - una stringa, che rappresenta o il nome di un layer o l'ID di un layer
- **aggregate** - una stringa corrispondente al complesso da calcolare. Le opzioni valide sono:
  - count
  - count_distinct
  - count_missing
  - min
  - max
  - sum
  - mean
  - median
  - stdev
  - stdevsample
  - range
  - minority
  - majority
  - q1: primo quartile
  - q3: terzo quartile
  - iqr: intervallo interquartile
  - min_length: lunghezza minima stringa
  - max_length: lunghezza massima stringa
  - concatenate: unisce stringhe tramite un concatenamento
  - concatenate_unique: unisce stringhe univoci tramite un concatenamento
  - collect: crea una geometria multi parte aggregata
- **expression** - sub espressione o nome del campo da aggregare
- **filter** - un filtro opzionale per limitare gli elementi utilizzati per il calcolo dell'aggregato. I campi e la geometria provengono dagli elementi del layer unito. Si può accedere all'elemento di origine con la variabile @parent.
- **concatenator** - stringa opzionale da usare per unire i valori per “concatenare” in modo aggregato
- **order_by** - filtro opzionale per ordinare gli elementi utilizzati per il calcolo dell'aggregato. I campi e la geometria provengono dagli elementi del layer unito. Per impostazione predefinita, gli elementi saranno restituiti in un ordine non specificato.

### Esempi

- `aggregate(layer:='rail_stations', aggregate:='sum', expression:="passengers")` → somma di tutti i valori del campo passengers nel layer rail_stations
- `aggregate('rail_stations','sum', "passengers"/7)` → calcola una media giornaliera di «passengers» dividendo il campo «passengers» per 7 prima di sommare i valori
- `aggregate(layer:='rail_stations',aggregate:='sum', expression:="passengers",filter:="class">3)` → somma tutti i valori del campo «passeggeri» dagli elementi in cui l’attributo «classe» è maggiore di 3
- `aggregate(layer:='rail_stations',aggregate:='concatenate', expression:="name", concatenator:=',')` → elenco separato da virgole del campo nome per tutti gli elementi nel layer rail_stations
- `aggregate(layer:='countries', aggregate:='max', expression:="code", filter:intersects( $geometry, geometry(@parent) ) ) → Il codice paese di un paese in intersezione sul layer “countries”
- `aggregate(layer:='rail_stations',aggregate:='sum', expression:="passengers",filter:contains( @atlas_geometry, $geometry ) ) → somma di tutti i valori del campo passengers in rail_stations all’interno dell’elemento corrente dell’atlante
- `aggregate(layer:='rail_stations', aggregate:='collect', expression:="centroid($geometry), filter:="region_name“ = attribute(@parent,’name’))` → aggrega i centroidi delle geometrie dei rail_stations della stessa regione dell’elemento corrente
**array_agg**

Restituisce un array di valori aggregati da un campo o un’espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_agg(expression, [group_by], [filter], [order_by])</th>
</tr>
</thead>
</table>

Argomenti

- **expression** - sub espressione o campo da aggregare
- **group_by** - espressione opzionale da usare per raggruppare i risultati dei calcoli
- **filtro** - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l’aggregato
- **order_by** - espressione opzionale da usare per ordinare gli elementi da usare per calcolare l’aggregato. Per impostazione predefinita, gli elementi saranno restituiti in un ordine non specificato.

Esempi

- array_agg("name",group_by:="state") → lista di nome, raggruppati per condizione campo

**collect**

Restituisce la geometria a parti multiple di geometrie aggregate da una espressione

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>collect(expression, [group_by], [filter])</th>
</tr>
</thead>
</table>

Argomenti

- **expression** - espressione geometrica di aggregazione
- **group_by** - espressione opzionale da usare per raggruppare i risultati dei calcoli
- **filtro** - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l’aggregato

Esempi

- collect( $geometry ) → geometria multipart di geometrie aggregate
- collect( centroid($geometry), group_by:="region", filter:="use" = 'civilian' ) → centroidi aggregati degli elementi civili in base al loro valore regionale
**concatenate**

Restituisce tutte le stringhe aggregate da un campo o un’espressione unite da un separatore.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>concatenate(expression, [group_by], [filter], [concatenator], [order_by])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>expression</strong> - sub espressione o campo da aggregare</td>
</tr>
<tr>
<td></td>
<td>• <strong>group_by</strong> - espressione opzionale da usare per raggruppare i risultati dei calcoli</td>
</tr>
<tr>
<td></td>
<td>• <strong>filtri</strong> - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l’aggregato</td>
</tr>
<tr>
<td></td>
<td>• <strong>concatenator</strong> - stringa opzionale da usare per unire i valori. Vuoto per impostazione predefinita.</td>
</tr>
<tr>
<td></td>
<td>• <strong>order_by</strong> - espressione opzionale da usare per ordinare gli elementi da usare per calcolare l’aggregato. Per impostazione predefinita, gli elementi saranno restituiti in un ordine non specificato.</td>
</tr>
</tbody>
</table>

**Esempi**

• `concatenate("town_name", group_by:="state", concatenator:='\',')` → lista separata da virgole di town_names, raggruppati per campo state

**concatenate_unique**

Restituisce tutte le stringhe univoche di un campo o di un’espressione unite da un delimitatore.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>concatenate_unique(expression, [group_by], [filter], [concatenator], [order_by])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>expression</strong> - sub espressione o campo da aggregare</td>
</tr>
<tr>
<td></td>
<td>• <strong>group_by</strong> - espressione opzionale da usare per raggruppare i risultati dei calcoli</td>
</tr>
<tr>
<td></td>
<td>• <strong>filtri</strong> - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l’aggregato</td>
</tr>
<tr>
<td></td>
<td>• <strong>concatenator</strong> - stringa opzionale da usare per unire i valori. Vuoto per impostazione predefinita.</td>
</tr>
<tr>
<td></td>
<td>• <strong>order_by</strong> - espressione opzionale da usare per ordinare gli elementi da usare per calcolare l’aggregato. Per impostazione predefinita, gli elementi saranno restituiti in un ordine non specificato.</td>
</tr>
</tbody>
</table>

**Esempi**

• `concatenate_unique("town_name", group_by:="state", concatenator:='\',')` → lista separata da virgole di town_name distinti, raggruppati per campo state

**count**

Restituisce il conteggio gli elementi che coincidono.
<table>
<thead>
<tr>
<th>Sintassi</th>
<th>count(expression, [group_by], [filter])</th>
</tr>
</thead>
</table>
| Argomenti     | • expression - sub espressione o campo da aggregare  
|               | • group_by - espressione opzionale da usare per raggruppare i risultati dei calcoli  
|               | • filtro - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato  |
| Esempi        | • count("stazions", group_by:="state") → conteggio delle stazions, raggruppate per campo state  |

### count_distinct

Restituisce il numero di valori distinti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>count_distinct(expression, [group_by], [filter])</th>
</tr>
</thead>
</table>
| Argomenti     | • expression - sub espressione o campo da aggregare  
|               | • group_by - espressione opzionale da usare per raggruppare i risultati dei calcoli  
|               | • filtro - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato  |
| Esempi        | • count_distinct("stations", group_by:="state") → conteggio dei valori distinti delle stations, raggruppati per campo state  |

### count_missing

Restituisce il numero di valori nulli (NULL).

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>count_missing(expression, [group_by], [filter])</th>
</tr>
</thead>
</table>
| Argomenti     | • expression - sub espressione o campo da aggregare  
|               | • group_by - espressione opzionale da usare per raggruppare i risultati dei calcoli  
|               | • filtro - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato  |
| Esempi        | • count_missing("stations", group_by:="state") → conteggio dei valori mancanti (NULL) delle stations, raggruppati per campo state  |
### iqr

Restituisce l’intervallo inter quartile calcolato da un campo o un’espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>iqr(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ] indica argomenti facoltativi</td>
</tr>
</tbody>
</table>

| Argomenti | • **expression** - sub espressione o campo da aggregare  
|           | • **group_by** - espressione opzionale da usare per raggruppare i risultati dei calcoli  
|           | • **filtri** - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l’aggregato |

| Esempi    | • iqr("population", group_by="state") → intervallo inter quartile del valore population, raggruppatot per campo state |

### majority

Restituisce la maggioranza aggregata dei valori (il valore più comunemente presente) di un campo o di un’espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>majority(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ] indica argomenti facoltativi</td>
</tr>
</tbody>
</table>

| Argomenti | • **expression** - sub espressione o campo da aggregare  
|           | • **group_by** - espressione opzionale da usare per raggruppare i risultati dei calcoli  
|           | • **filtri** - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l’aggregato |

| Esempi    | • majority("class", group_by="state") → valore di class più frequente, raggruppatop per campo state |

### max_length

Restituisce la lunghezza massima delle stringhe di un campo o di un’espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>max_length(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ] indica argomenti facoltativi</td>
</tr>
</tbody>
</table>

| Argomenti | • **expression** - sub espressione o campo da aggregare  
|           | • **group_by** - espressione opzionale da usare per raggruppare i risultati dei calcoli  
|           | • **filtri** - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l’aggregato |

| Esempi    | • max_length("town_name", group_by="state") → lunghezza massima del town_name, raggruppatop per il campo state |
### maximum

Restituisce il valore massimo aggregato di un campo o di un'espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>maximum(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] indica argomenti facoltativi</td>
<td></td>
</tr>
</tbody>
</table>

**Argomenti**

- **expression** - sub espressione o campo da aggregare
- **group_by** - espressione opzionale da usare per raggruppare i risultati dei calcoli
- **filtro** - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato

**Esempi**

- `maximum("population",group_by:="state")` → valore massimo di population, raggruppato per campo state

### mean

Restituisce il valore medio aggregato di un campo o di un'espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>mean(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] indica argomenti facoltativi</td>
<td></td>
</tr>
</tbody>
</table>

**Argomenti**

- **expression** - sub espressione o campo da aggregare
- **group_by** - espressione opzionale da usare per raggruppare i risultati dei calcoli
- **filtro** - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato

**Esempi**

- `mean("population",group_by:="state")` → valore medio di population, raggruppato per campo state

### median

Restituisce il valore della mediana aggregata di un campo o di un'espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>median(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] indica argomenti facoltativi</td>
<td></td>
</tr>
</tbody>
</table>

**Argomenti**

- **expression** - sub espressione o campo da aggregare
- **group_by** - espressione opzionale da usare per raggruppare i risultati dei calcoli
- **filtro** - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato

**Esempi**

- `median("population",group_by:="state")` → valore della mediana di population, raggruppato per campo state
### min_length

Restituisce la lunghezza minima delle stringhe di un campo o di un’espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>min_length(expression, [group_by], [filter])</th>
</tr>
</thead>
</table>
| Argomenti | • expression - sub espressione o campo da aggregare  
• group_by - espressione opzionale da usare per raggruppare i risultati dei calcoli  
• filtro - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l’aggregato |
| Esempi | • min_length("town_name", group_by:="state") → lunghezza minima del town_name, raggruppato per il campo state |

### minimum

Restituisce il valore minimo aggregato di un campo o di un’espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>minimum(expression, [group_by], [filter])</th>
</tr>
</thead>
</table>
| Argomenti | • expression - sub espressione o campo da aggregare  
• group_by - espressione opzionale da usare per raggruppare i risultati dei calcoli  
• filtro - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l’aggregato |
| Esempi | • minimum("population", group_by:="state") → valore minimo della population, raggruppato per il campo state |

### minority

Restituisce la minoranza complessiva dei valori (il valore meno frequente) di un campo o di un’espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>minority(expression, [group_by], [filter])</th>
</tr>
</thead>
</table>
| Argomenti | • expression - sub espressione o campo da aggregare  
• group_by - espressione opzionale da usare per raggruppare i risultati dei calcoli  
• filtro - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l’aggregato |
| Esempi | • minority("class", group_by:="state") → valore di class meno frequente, raggruppato per campo state |
### q1
Restituisce il primo quartile calcolato da un campo o un'espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>q1(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td><img src="#" alt="list" /></td>
</tr>
<tr>
<td><img src="expression" alt="bold" /></td>
<td>sub espressione o campo da aggregare</td>
</tr>
<tr>
<td><img src="group_by" alt="bold" /></td>
<td>espressione opzionale da usare per raggruppare i risultati dei calcoli</td>
</tr>
<tr>
<td><img src="filtro" alt="bold" /></td>
<td>espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato</td>
</tr>
<tr>
<td>Esempi</td>
<td>![code](q1(&quot;population&quot;, group_by:=&quot;state&quot;)) → primo quartile del valore della popolazione, raggruppato per il campo stato</td>
</tr>
</tbody>
</table>

### q3
Restituisce il terzo quartile calcolato rispetto a un campo o a un'espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>q3(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td><img src="#" alt="list" /></td>
</tr>
<tr>
<td><img src="expression" alt="bold" /></td>
<td>sub espressione o campo da aggregare</td>
</tr>
<tr>
<td><img src="group_by" alt="bold" /></td>
<td>espressione opzionale da usare per raggruppare i risultati dei calcoli</td>
</tr>
<tr>
<td><img src="filtro" alt="bold" /></td>
<td>espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato</td>
</tr>
<tr>
<td>Esempi</td>
<td>![code](q3(&quot;popolazione&quot;, group_by:=&quot;stato&quot;)) → terzo quartile del valore della popolazione, raggruppato per il campo stato</td>
</tr>
</tbody>
</table>

### range
Restituisce l'intervallo aggregato di valori (massimo - minimo) di un campo o di un'espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>range(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td><img src="#" alt="list" /></td>
</tr>
<tr>
<td><img src="expression" alt="bold" /></td>
<td>sub espressione o campo da aggregare</td>
</tr>
<tr>
<td><img src="group_by" alt="bold" /></td>
<td>espressione opzionale da usare per raggruppare i risultati dei calcoli</td>
</tr>
<tr>
<td><img src="filtro" alt="bold" /></td>
<td>espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato</td>
</tr>
<tr>
<td>Esempi</td>
<td>![code](range(&quot;population&quot;, group_by:=&quot;state&quot;)) → gamma di valori di population, raggruppati per campo state</td>
</tr>
</tbody>
</table>
relation_aggregate

Restituisce un valore aggregato calcolato usando tutte gli elementi figli corrispondenti da una relazione di layer.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>relation_aggregate(relation, aggregate, expression, [concatenator=&quot;&quot;], [order_by])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] indica argomenti facoltativi</td>
<td></td>
</tr>
</tbody>
</table>

**Argomenti**

- **relation** - una stringa, che rappresenta un ID di relazione
- **aggregate** - una stringa corrispondente al complesso da calcolare. Le opzioni valide sono:
  - count
  - count_distinct
  - count_missing
  - min
  - max
  - sum
  - mean
  - median
  - stdev
  - stdevsample
  - range
  - minority
  - majority
  - q1: primo quartile
  - q3: terzo quartile
  - iqr: intervallo interquartile
  - min_length: lunghezza minima stringa
  - max_length: lunghezza massima stringa
  - concatenate: unisce stringhe tramite un concatenamento
  - concatenate_unique: unisce stringhe univoci tramite un concatenamento
  - collect: crea una geometria multi parte aggregata
  - array_agg: crea un array di valori aggregati
- **expression** - sub espressione o nome del campo da aggregare
- **concatenator** - stringa opzionale da usare per unire i valori per “concatenare” in modo aggregato
- **order_by** - espressione opzionale per ordinare gli elementi utilizzati per il calcolo dell’aggregato. I campi e la geometria provengono dagli elementi sul layer unito. Per impostazione predefinita, gli elementi saranno restituiti in un ordine non specificato.

**Esempi**

- `relation_aggregate('my_relation','sum', "passengers"/7)` → somma del campo passengers diviso per 7 per tutti gli elementi figlio corrispondenti utilizzando la relazione “my_relation”
- `relation_aggregate('my_relation','concatenate', "towns", concatenator:='",')` → elenco separato da virgole del campo towns per tutti gli elementi figli corrispondenti utilizzando la relazione “my_relation”
- `relation_aggregate('my_relation','array_agg', "id")` → array del campo id di tutte gli elementi figli corrispondenti utilizzando la relazione “my_relation”

Ulteriori informazioni: *Creare una relazione uno a molti o molti a molti*
**stdev**

Restituisce il valore della deviazione standard aggregata di un campo o di un'espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>stdev(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• expression - sub espressione o campo da aggregate</td>
</tr>
<tr>
<td></td>
<td>• group_by - espressione opzionale da usare per raggruppare i risultati dei calcoli</td>
</tr>
<tr>
<td></td>
<td>• filtro - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato</td>
</tr>
</tbody>
</table>

| Esempi            | stdev("population",group_by:="state") → deviazione standard del valore della population, raggruppat per campo state |

**sum**

Restituisce il valore sommato aggregato di un campo o di un'espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>sum(expression, [group_by], [filter])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• expression - sub espressione o campo da aggregate</td>
</tr>
<tr>
<td></td>
<td>• group_by - espressione opzionale da usare per raggruppare i risultati dei calcoli</td>
</tr>
<tr>
<td></td>
<td>• filtro - espressione opzionale da usare per filtrare gli elementi da selezionare per calcolare l'aggregato</td>
</tr>
</tbody>
</table>

| Esempi            | sum("population",group_by:="state") → valore somma della population, raggruppat per il campo state |

### 14.3.2 Funzioni Array

Questo gruppo contiene funzioni per la creazione e la manipolazione di array (noti anche come strutture dati ad elenco). L'ordine dei valori all'interno dell'array è importante, al contrario della "map" data structure, in cui l'ordine delle coppie chiave-valore è irrilevante e i valori vengono identificati dalle loro chiavi.

- array
- array_all
- array_append
- array_cat
- array_contains
- array_distinct
- array_filter
- array_find
- array_first
- array_foreach
array

Restituisce un array contenente tutti i valori passati come parametro.

### Sintassi

array(value1, value2, …)

### Argomenti

- **value** - un valore

### Esempi

- array(2, 10) → [2, 10]

array_all

Restituisce vero se un array contiene tutti i valori di un dato array.

### Sintassi

array_all(array_a, array_b)

### Argomenti

- **array_a** - un array
- **array_b** - l’array di valori da cercare

### Esempi

- array_all(array(1, 2, 3), array(2, 3)) → true
- array_all(array(1, 2, 3), array(1, 2, 4)) → false
array_append

Restituisce un array con il valore dato aggiunto alla fine.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_append(array, value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• array - un array</td>
<td></td>
</tr>
<tr>
<td>• value - il valore da aggiungere</td>
<td></td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• array_append(array(1, 2, 3), 4) [ 1, 2, 3, 4 ]</td>
<td></td>
</tr>
</tbody>
</table>

array_cat

Restituisce un array contenente tutti gli array dati concatenati.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_cat(array1, array2, …)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• array - un array</td>
<td></td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• array_cat(array(1, 2), array(2, 3)) [ 1, 2, 2, 3 ]</td>
<td></td>
</tr>
</tbody>
</table>

array_contains

Restituisce vero se un array contiene il valore dato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_contains(array, value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• array - un array</td>
<td></td>
</tr>
<tr>
<td>• value - il valore da cercare</td>
<td></td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• array_contains(array(1, 2, 3), 2) \true</td>
<td></td>
</tr>
</tbody>
</table>

array_distinct

Restituisce un array contenente valori distinti dell’array dato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_distinct(array)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• array - un array</td>
<td></td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• array_distinct(array(1, 2, 3, 2, 1)) [ 1, 2, 3 ]</td>
<td></td>
</tr>
</tbody>
</table>
**array_filter**

Restituisce un array con solo gli elementi per i quali l'espressione valuta true.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_filter(array, expression)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• array - un array</td>
<td></td>
</tr>
<tr>
<td>• expression - un'espressione che deve essere applicata ad ogni elemento. La variabile @element sarà sostituita dal valore corrente.</td>
<td></td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td></td>
</tr>
<tr>
<td>• array_filter(array(1,2,3),@element &lt; 3) → [1,2]</td>
<td></td>
</tr>
</tbody>
</table>

**array_find**

Restituisce l'indice (0 per il primo elemento) di un valore all'interno di un array. Restiuisce -1 se il valore non viene trovato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_find(array, value)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• array - un array</td>
<td></td>
</tr>
<tr>
<td>• value - il valore da cercare</td>
<td></td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td></td>
</tr>
<tr>
<td>• array_find(array(1,2,3),2) → 1</td>
<td></td>
</tr>
</tbody>
</table>

**array_first**

Restituisce il primo valore di un array.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_first(array)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• array - un array</td>
<td></td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td></td>
</tr>
<tr>
<td>• array_first(array('a','b','c')) → “a”</td>
<td></td>
</tr>
</tbody>
</table>

**array_foreach**

Restituisce un array con l'espressione data valutata su ogni elemento.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_foreach(array, expression)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• array - un array</td>
<td></td>
</tr>
<tr>
<td>• expression - un'espressione che deve essere applicata ad ogni elemento. La variabile @element sarà sostituita dal valore corrente.</td>
<td></td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td></td>
</tr>
<tr>
<td>• array_foreach(array('a','b','c'),upper(@element)) → [“A”, “B”, “C”]</td>
<td></td>
</tr>
<tr>
<td>• array_foreach(array(1,2,3),@element + 10) → [11,12,13]</td>
<td></td>
</tr>
</tbody>
</table>
array_get

Restituisce l'ennesimo valore (partendo da 0 per il primo) di una matrice.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_get(array, index)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - un array</td>
</tr>
<tr>
<td></td>
<td>• index - l'indice da ottenere (in base 0)</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_get(array('a', 'b', 'c'), 1) → “b”</td>
</tr>
</tbody>
</table>

array_insert

Restituisce un array con il valore dato aggiunto nella posizione data.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_insert(array, pos, value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - un array</td>
</tr>
<tr>
<td></td>
<td>• pos - la posizione dove aggiungere (in base 0)</td>
</tr>
<tr>
<td></td>
<td>• value - il valore da aggiungere</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_insert(array(1, 2, 3), 1, 100) → [1, 100, 2, 3]</td>
</tr>
</tbody>
</table>

array_intersect

Restituisce true se almeno un elemento di array1 esiste in array2.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_intersect(array1, array2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array1 - un array</td>
</tr>
<tr>
<td></td>
<td>• array2 - un altro array</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_intersect(array(1, 2, 3, 4), array(4, 0, 2, 5)) → true</td>
</tr>
</tbody>
</table>

array_last

Restituisce l'ultimo valore di un array.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_last(array)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - un array</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_last(array('a', 'b', 'c')) → “c”</td>
</tr>
</tbody>
</table>
**array_length**

Restituisce il numero di elementi di un array.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_length(array)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - un array</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_length(array(1,2,3)) → 3</td>
</tr>
</tbody>
</table>

**array_prepend**

Restituisce un array con il valore dato aggiunto all'inizio.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_prepend(array, value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - un array</td>
</tr>
<tr>
<td></td>
<td>• value - il valore da aggiungere</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_prepend(array(1,2,3),0) → [0, 1, 2, 3]</td>
</tr>
</tbody>
</table>

**array_remove_all**

Restituisce un array con tutte le voci del valore dato rimosse.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_remove_all(array, value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - un array</td>
</tr>
<tr>
<td></td>
<td>• value - i valori da rimuovere</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_remove_all(array('a','b','c','b'),'b') → [&quot;a&quot;,&quot;c&quot;]</td>
</tr>
</tbody>
</table>

**array_remove_at**

Restituisce un array con l’indice dato rimosso.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_remove_at(array, pos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - un array</td>
</tr>
<tr>
<td></td>
<td>• pos - la posizione da rimuovere (in base 0)</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_remove_at(array(1,2,3),1) → [1,3]</td>
</tr>
</tbody>
</table>
**array_reverse**

Restituisce l’array dato con i valori dell’array in ordine inverso.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_reverse(array)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - un array</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_reverse(array(2,4,0,10)) → [10,0,4,2]</td>
</tr>
</tbody>
</table>

**array_slice**

Restituisce una porzione dell’array. La parte viene definita dagli argomenti start_pos e end_pos.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_slice(array, start_pos, end_pos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - un array</td>
</tr>
<tr>
<td></td>
<td>• start_pos - l’indice della posizione iniziale della stringa (basato su 0). L’indice start_pos è incluso nella stringa. Se usi uno start_pos negativo, l’indice viene contato dalla fine della lista (su base -1).</td>
</tr>
<tr>
<td></td>
<td>• end_pos - l’indice della posizione finale della stringa (in base 0). L’indice end_pos è incluso nella stringa. Se usi un end_pos negativo, l’indice viene contato dalla fine della lista (su base -1).</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_slice(array(1,2,3,4,5),0,3) → [1,2,3,4,5]</td>
</tr>
<tr>
<td></td>
<td>• array_slice(array(1,2,3,4,5),0,-1) → [1,2,3,4,5]</td>
</tr>
<tr>
<td></td>
<td>• array_slice(array(1,2,3,4,5),-5,-1) → [1,2,3,4,5]</td>
</tr>
<tr>
<td></td>
<td>• array_slice(array(1,2,3,4,5),0,0) → [1]</td>
</tr>
<tr>
<td></td>
<td>• array_slice(array(1,2,3,4,5),-2,-1) → [4,5]</td>
</tr>
<tr>
<td></td>
<td>• array_slice(array(1,2,3,4,5),-1,-1) → [5]</td>
</tr>
<tr>
<td></td>
<td>• array_slice(array('Dufour','Valmiera','Chugiak','Brighton'),1,2) → [“Valmiera”, “Chugiak”]</td>
</tr>
<tr>
<td></td>
<td>• array_slice(array('Dufour','Valmiera','Chugiak','Brighton'),-2,-1) → [“Chugiak”, “Brighton”]</td>
</tr>
</tbody>
</table>

**array_sort**

Restituisce l’array dato con i suoi elementi ordinati.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_sort(array, [ascending=true])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ ] indica argomenti facoltativi</td>
<td></td>
</tr>
<tr>
<td>Argomenti</td>
<td>• array - un array</td>
</tr>
<tr>
<td></td>
<td>• ascending - impostare questo parametro su false per ordinare l’array in ordine decrescente</td>
</tr>
<tr>
<td>Esempi</td>
<td>• array_sort(array(3,2,1)) → [1,2,3]</td>
</tr>
</tbody>
</table>
### array_to_string

Concatena gli elementi dell'array in una stringa separata da un delimitatore e usando una stringa opzionale per i valori vuoti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>array_to_string(array, [delimiter=&quot;&quot;,&quot;], [empty_value=&quot;&quot;]])</th>
</tr>
</thead>
</table>
| Argomenti | • array - l'array in ingresso  
• delimiter - il delimitatore di stringa usato per separare gli elementi concatenati dell'array  
• empty_value - la stringa opzionale da usare come sostituzione per le voci vuote (lunghezza zero) |
| Esempi   | • array_to_string(array('1','2','3')) → “1,2,3”  
• array_to_string(array(1,2,3),'-' ) → “1-2-3”  
• array_to_string(array('1','','3'),',','0') → “1,0,3” |

### generate_series

Crea un array contenente una sequenza di numeri.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>generate_series(start, stop, [step=1])</th>
</tr>
</thead>
</table>
| Argomenti | • start - primo valore della sequenza  
• stop - valore che chiude la sequenza una volta completata  
• step - valore usato come incremento tra i valori |
| Esempi   | • generate_series(1,5) → [1, 2, 3, 4, 5]  
• generate_series(5,1,-1) → [5, 4, 3, 2, 1] |

### regexp_matches

Restituisce un array di tutte le stringhe intercettate dai gruppi di intercettazione, nell’ordine in cui i gruppi stessi appaiono nell’espressione regolare fornita rispetto ad una stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>regexp_matches(string, regex, [empty_value=&quot;&quot;] )</th>
</tr>
</thead>
</table>
| Argomenti | • string - la stringa da cui acquisire i gruppi in base all’espressione regolare  
• regex - l’espressione regolare usata per acquisire i gruppi  
• empty_value - la stringa opzionale da usare come sostituzione per le voci vuote (lunghezza zero) |
| Esempi   | • regexp_matches('QGIS=>rocks','(.*)=>(.*)') → [“QGIS”, “rocks”]  
• regexp_matches('key=>','(.*)=>(.*)','empty value') → [“key”, “empty value”] |
string_to_array

Divide la stringa in un array usando il delimitatore fornito e una stringa opzionale per i valori vuoti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>string_to_array(string, [delimiter=”,”], [empty_value=””])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>string</td>
<td>la stringa in ingresso</td>
</tr>
<tr>
<td>delimiter</td>
<td>il carattere usato per dividere la stringa in ingresso</td>
</tr>
<tr>
<td>empty_value</td>
<td>la stringa opzionale da usare come sostituzione per le voci vuote (lunghezza zero)</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>string_to_array('1,2,3',',') → [ “1”, “2”, “3” ]</td>
<td></td>
</tr>
<tr>
<td>string_to_array('1,,3',',','0') → [ “1”, “0”, “3” ]</td>
<td></td>
</tr>
</tbody>
</table>

14.3.3 Funzioni colore

Questo gruppo contiene funzioni per la manipolazione dei colori.

- color_cmyk
- color_cmyka
- color_grayscale_average
- color_hsl
- color_hsla
- color_hsv
- color_hsva
- color_mix_rgb
- color_part
- color_rgb
- color_rgba
- create_ramp
- darker
- lighter
- project_color
- ramp_color
- set_color_part
**color_cmyk**

Restituisce una rappresentazione in formato stringa di un colore in base alle componenti ciano, magenta, giallo e nero.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_cmyk(cyan, magenta, yellow, black)</th>
</tr>
</thead>
</table>
| **Argomenti**   | • cyan - componente ciano del colore, come valore percentuale intero da 0 a 100  
                  • magenta - componente magenta del colore, come valore percentuale intero da 0 a 100  
                  • yellow - componente giallo del colore, come valore percentuale intero da 0 a 100  
                  • black - componente nero del colore, come valore percentuale intero da 0 a 100 |
| **Esempi**      | • color_cmyk(100, 50, 0, 10) → “0,115,230” |

**color_cmyka**

Restituisce una rappresentazione in formato stringa di un colore in base ai componenti ciano, magenta, giallo, nero e alfa (trasparenza).

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_cmyka(cyan, magenta, yellow, black, alpha)</th>
</tr>
</thead>
</table>
| **Argomenti**   | • cyan - componente ciano del colore, come valore percentuale intero da 0 a 100  
                  • magenta - componente magenta del colore, come valore percentuale intero da 0 a 100  
                  • yellow - componente giallo del colore, come valore percentuale intero da 0 a 100  
                  • black - componente nero del colore, come valore percentuale intero da 0 a 100  
                  • alpha - componente alfa come valore intero da 0 (completamente trasparente) a 255 (opaco). |
| **Esempi**      | • color_cmyka(100, 50, 0, 10, 200) → “0,115,230,200” |

**color_grayscale_average**

Applica un filtro in scala di grigi e restituisce una rappresentazione in formato stringa da un dato colore.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_grayscale_average(color)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td>• color - un colore in formato stringa</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td>• color_grayscale_average(’255,100,50’) → “135,135,135,255”</td>
</tr>
</tbody>
</table>

**color_hsl**

Restituisce una rappresentazione in formato stringa di un colore basata sui suoi attributi di tonalità, saturazione e luminosità.
### color_hsl

Restituisce una rappresentazione in formato stringa di un colore in base agli attributi di tonalità, saturazione, luminosità e alfa (trasparenza)

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_hsl(hue, saturation, lightness)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• hue</td>
<td>- tintadelcolore, come valore intero da 0 a 360</td>
</tr>
<tr>
<td>• saturation</td>
<td>- percentuale di saturazione del colore come valore intero da 0 a 100</td>
</tr>
<tr>
<td>• lightness</td>
<td>- percentuale di luminosità del colore come valore intero da 0 a 100</td>
</tr>
<tr>
<td>Esempi</td>
<td>• color_hsl(100, 50, 70) → &quot;166,217,140&quot;</td>
</tr>
</tbody>
</table>

### color_hsla

Restituisce una rappresentazione in formato stringa di un colore in base agli attributi di tonalità, saturazione, luminosità e alfa (trasparenza)

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_hsla(hue, saturation, lightness, alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• hue</td>
<td>- tintadelcolore, come valore intero da 0 a 360</td>
</tr>
<tr>
<td>• saturation</td>
<td>- percentuale di saturazione del colore come valore intero da 0 a 100</td>
</tr>
<tr>
<td>• lightness</td>
<td>- percentuale di luminosità del colore come valore intero da 0 a 100</td>
</tr>
<tr>
<td>• alpha</td>
<td>- componente alfa come valore intero da 0 (completamente trasparente) a 255 (opaco).</td>
</tr>
<tr>
<td>Esempi</td>
<td>• color_hsla(100, 50, 70, 200) → &quot;166,217,140,200&quot;</td>
</tr>
</tbody>
</table>

### color_hsv

Restituisce una rappresentazione stringa di un colore basato sui suoi attributi di tinta, saturazione e valore.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_hsv(hue, saturation, value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• hue</td>
<td>- tintadelcolore, come valore intero da 0 a 360</td>
</tr>
<tr>
<td>• saturation</td>
<td>- percentuale di saturazione del colore come valore intero da 0 a 100</td>
</tr>
<tr>
<td>• value</td>
<td>- valore percentuale del colore come un intero da 0 a 100</td>
</tr>
<tr>
<td>Esempi</td>
<td>• color_hsv(40, 100, 100) → &quot;255,170,0&quot;</td>
</tr>
</tbody>
</table>

### color_hsva

Restituisce una rappresentazione stringa di un colore basato sui suoi attributi di tonalità, saturazione, valore e alfa (trasparenza).

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_hsva(hue, saturation, value, alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• hue</td>
<td>- tintadelcolore, come valore intero da 0 a 360</td>
</tr>
<tr>
<td>• saturation</td>
<td>- percentuale di saturazione del colore come valore intero da 0 a 100</td>
</tr>
<tr>
<td>• value</td>
<td>- valore percentuale del colore come un intero da 0 a 100</td>
</tr>
<tr>
<td>• alpha</td>
<td>- componente alfa come valore intero da 0 (completamente trasparente) a 255 (opaco)</td>
</tr>
<tr>
<td>Esempi</td>
<td>• color_hsva(40, 100, 100, 200) → &quot;255,170,0,200&quot;</td>
</tr>
</tbody>
</table>
color_mix_rgb

Restituisce una stringa che rappresenta un colore che mescola i valori di rosso, verde, blu e alfa di due colori forniti sulla base di un dato rapporto.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_mix_rgb(color1, color2, ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• color1 - un colore in formato stringa</td>
</tr>
<tr>
<td></td>
<td>• color2 - un colore in formato stringa</td>
</tr>
<tr>
<td></td>
<td>• ratio - un rapporto</td>
</tr>
<tr>
<td>Esempi</td>
<td>• color_mix_rgb('0,0,0','255,255,255',0.5) → &quot;127,127,127,255&quot;</td>
</tr>
</tbody>
</table>

color_part

Restituisce un componente specifico da una stringa colore, ad esempio il componente rosso o il componente alfa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_part(color, component)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• color - un colore in formato stringa</td>
</tr>
<tr>
<td></td>
<td>• component - una stringa corrispondente al componente di colore da restituire. Le opzioni valide sono:</td>
</tr>
<tr>
<td></td>
<td>• red: componente RGB rosso (0-255)</td>
</tr>
<tr>
<td></td>
<td>• green: componente RGB verde (0-255)</td>
</tr>
<tr>
<td></td>
<td>• blue: componente RGB blu (0-255)</td>
</tr>
<tr>
<td></td>
<td>• alpha: alpha (trasparenza) valore (0-255)</td>
</tr>
<tr>
<td></td>
<td>• hue: HSV tonalità (0-360)</td>
</tr>
<tr>
<td></td>
<td>• saturation: saturazione HSV (0-100)</td>
</tr>
<tr>
<td></td>
<td>• value: valore HSV (0-100)</td>
</tr>
<tr>
<td></td>
<td>• hsl_hue: HSL HUE (0-360)</td>
</tr>
<tr>
<td></td>
<td>• hsl_saturation: saturazione HSL (0-100)</td>
</tr>
<tr>
<td></td>
<td>• lightness: HSL luminosità (0-100)</td>
</tr>
<tr>
<td></td>
<td>• cyan: componente ciano CMYK (0-100)</td>
</tr>
<tr>
<td></td>
<td>• magenta: componente magenta CMYK (0-100)</td>
</tr>
<tr>
<td></td>
<td>• yellow: componente giallo CMYK (0-100)</td>
</tr>
<tr>
<td></td>
<td>• black: componente nero CMYK (0-100)</td>
</tr>
<tr>
<td>Esempi</td>
<td>• color_part('200,10,30','green') → 10</td>
</tr>
</tbody>
</table>

color_rgb

Restituisce una rappresentazione stringa di un colore basata sui suoi componenti rosso, verde e blu.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_rgb(red, green, blue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• red - componente rosso come valore intero da 0 a 255</td>
</tr>
<tr>
<td></td>
<td>• green - componente verde come valore intero da 0 a 255</td>
</tr>
<tr>
<td></td>
<td>• blue - componente blu come valore intero da 0 a 255</td>
</tr>
<tr>
<td>Esempi</td>
<td>• color_rgb(255,127,0) → &quot;255,127,0&quot;</td>
</tr>
</tbody>
</table>
**color_rgba**

Restituisce una rappresentazione stringa di un colore basata sui suoi componenti rosso, verde, blu e alfa (trasparenza).

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>color_rgba(red, green, blue, alpha)</th>
</tr>
</thead>
</table>
| Argomenti        | • red - componente rosso come valore intero da 0 a 255  
|                  | • green - componente verde come valore intero da 0 a 255  
|                  | • blue - componente blu come valore intero da 0 a 255  
|                  | • alpha - componente alfa come valore intero da 0 (completamente trasparente) a 255 (opaco). |
| Esempi           | • color_rgba(255,127,0,200) → “255,127,0,200” |

**create_ramp**

Restituisce una scala a gradiente da una mappa di stringhe di colori e gradini.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>create_ramp(map, [discrete=false])</th>
</tr>
</thead>
</table>
| Argomenti        | • map - una mappa di stringhe di colori e gradini.  
|                  | • discrete - imposta questo parametro su true per creare una scala di colore di tipo discontinuo |
| Esempi           | • ramp_color(create_ramp(map(0,'0,0,0',1,'255,0,0')),1) → “255,0,0,255” |

**darker**

Restituisce una stringa di colore più scuro (o più chiaro)

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>darker(color, factor)</th>
</tr>
</thead>
</table>
| Argomenti        | • color - un colore in formato stringa  
|                  | • factor - un numero intero corrispondente al fattore di oscuramento:  
|                  |   - se il fattore è maggiore di 100, questa funzione restituisce un colore più scuro (ad esempio, impostando il fattore a 200 si ottiene un colore che ha una luminosità pari alla metà);  
|                  |   - se il fattore è inferiore a 100, il colore risultante è più chiaro, ma si raccomanda di utilizzare la funzione lighter() per questo scopo;  
|                  |   - se il fattore è 0 o negativo, il valore risultante non è prevedibile. |
| Esempi           | • darker ('200,10,30', 200) → “100,5,15,255” |

Ulteriori informazioni: lighter
lighter

Restituisce una stringa di colore più chiara (o più scura)

Sintassi

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>lighter(color, factor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• color</td>
<td>un colore in formato stringa</td>
</tr>
<tr>
<td>• factor</td>
<td>un intero corrispondente al fattore di schiarimento:</td>
</tr>
<tr>
<td></td>
<td>– se il fattore è maggiore di 100, questa funzione restituisce un colore più chiaro (ad esempio, impostando il fattore a 150 si ottiene un colore più chiaro del 50%);</td>
</tr>
<tr>
<td></td>
<td>– se il fattore è inferiore a 100, il colore risultante è più chiaro, ma si raccomanda di utilizzare la funzione lighter() per questo scopo;</td>
</tr>
<tr>
<td></td>
<td>– se il fattore è 0 o negativo, il valore risultante non è prevedibile.</td>
</tr>
</tbody>
</table>

Esempi

| • lighter('200,10,30', 200) | “255,158,168,255” |

Ulteriori informazioni: darker

project_color

Restituisce un colore dallo schema di colori del progetto.

Sintassi

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>project_color(name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• name</td>
<td>il nome di un colore</td>
</tr>
</tbody>
</table>

Esempi

| • project_color('Logo color') | “20,140,50” |

Ulteriori informazioni: setting project colors

ramp_color

Restituisce una stringa che rappresenta un colore da una scala di colori.

Variabile rampa salvata

Restituisce una stringa che rappresenta un colore da una scala salvata

Sintassi

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>ramp_color(ramp_name, value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ramp_name</td>
<td>il nome della scala di colori in formato stringa, per esempio “Spectral”</td>
</tr>
<tr>
<td>• valore</td>
<td>la posizione sulla scala da cui selezionare il colore come numero reale tra 0 e 1</td>
</tr>
</tbody>
</table>

Esempi

| • ramp_color('Spectral',0.3) | “253,190,115,255” |

Nota: Le scale di colori disponibili variano tra le installazioni di QGIS. Questa funzione potrebbe non dare i risultati attesi se si sposta il progetto QGIS tra le installazioni.

Variabile di scala creato dall'espressione

Restituisce una stringa che rappresenta un colore da una scala creato con un'espressione
**Sintassi**
ramp_color(ramp, value)

**Argomenti**
- **ramp** - La scala di colori
- **valore** - la posizione sulla scala da cui selezionare il colore come numero reale tra 0 e 1

**Esempi**
- `ramp_color(create_ramp(map(0,'0,0,0',1,'255,0,0')),1) → "255,0,0,255"

Ulteriori informazioni: *Impostazione di una Scala di Colori, Il menu di scelta rapida scala di colori*

**set_color_part**

Imposta un componente di colore specifico per una stringa di colore, ad esempio il componente rosso o il componente alfa.

**Sintassi**
set_color_part(color, component, value)

**Argomenti**
- **color** - un colore in formato stringa
- **component** - una stringa corrispondente al componente di colore da impostare. Le opzioni valide sono:
  - red: componente RGB rosso (0-255)
  - green: componente RGB verde (0-255)
  - blue: componente RGB blu (0-255)
  - alpha: alpha (transparenza) valore (0-255)
  - hue: HSV tonalità (0-360)
  - saturation: saturazione HSV (0-100)
  - value: valore HSV (0-100)
  - hsl_hue: HSL HUE (0-360)
  - hsl_saturation: saturazione HSL (0-100)
  - lightness: HSL luminosità (0-100)
  - cyan: componente ciano CMYK (0-100)
  - magenta: componente magenta CMYK (0-100)
  - yellow: componente giallo CMYK (0-100)
  - black: componente nero CMYK (0-100)
- **value** - nuovo valore per il componente colore, rispettando gli intervalli elencati sopra

**Esempi**
- `set_color_part('200,10,30','green',50) → "200,50,30,255"

**14.3.4 Funzioni Condizionali**

Questo gruppo contiene funzioni per eseguire controlli condizionali nelle espressioni.

- **CASE**
- **coalesce**
- **if**
- **nullif**
- **regexp_match**
- **try**
CASE

CASE è usato per valutare una serie di condizioni e restituire un risultato per la prima condizione soddisfatta. Le condizioni sono valutate in modo sequenziale, e se una condizione è vera, la valutazione si ferma e viene restituito il risultato corrispondente. Se nessuna delle condizioni è vera, viene restituito il valore della clausola ELSE. Inoltre, se nessuna clausola ELSE è impostata e nessuna delle condizioni è soddisfatta, viene restituito NULL.

CASE
WHEN condition THEN result
[ ...n ]
[ ELSE result ]
END

[ ] indica componenti opzionali

<table>
<thead>
<tr>
<th>Argomenti</th>
</tr>
</thead>
<tbody>
<tr>
<td>• WHEN condition - Un’espressione condizionale da valutare</td>
</tr>
<tr>
<td>• THEN result - Se la condizione è valutata a True, allora viene valutato e restituito result.</td>
</tr>
<tr>
<td>• ELSE result - Se nessuna delle condizioni precedenti è valutata come vera, allora viene valutato e restituito result.</td>
</tr>
</tbody>
</table>

Esempi

• CASE WHEN "name" IS NULL THEN 'None' END → Restituisce la stringa “None” se il campo «name» è NULL
• CASE WHEN $area > 10000 THEN 'Big property' WHEN $area > 5000 THEN 'Medium property' ELSE 'Small property' END → Restituisce la stringa “Big property” se l’area è più grande di 10000, “Medium property” se l’area è tra 5000 e 10000, e “Small property” per gli altri

coalesce

Restituisce il primo valore non NULL dalla lista dell’espressione.

Questa funzione può accettare qualsiasi numero di argomenti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>coalesce(expression1, expression2, ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• expression - qualsiasi espressione o valore valido, indipendentemente dal tipo.</td>
</tr>
</tbody>
</table>

Esempi

• coalesce(NULL, 2) → 2
• coalesce(NULL, 2, 3) → 2
• coalesce(7, NULL, 3*2) → 7
• coalesce("fieldA", "fallbackField", 'ERROR') → valore di fieldA se non è NULL altrimenti il valore di «fallbackField» o la stringa “ERROR” se entrambi sono NULL
if

Verifica una condizione e restituisce un risultato diverso a seconda del controllo sulla condizione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>if(condition, result_when_true, result_when_false)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>condition</strong> - la condizione che dovrebbe essere controllata</td>
</tr>
<tr>
<td></td>
<td>• <strong>result_when_true</strong> - il risultato che sarà restituito quando la condizione è vera o un altro valore che non sia convertibile in falso.</td>
</tr>
<tr>
<td></td>
<td>• <strong>result_when_false</strong> - il risultato che sarà restituito quando la condizione è falsa o un altro valore che si converte in falso come 0 o &quot;&quot;. Anche NULL sarà convertito in false.</td>
</tr>
<tr>
<td>Esempi</td>
<td>• if( 1+1=2, 'Yes', 'No' ) → “Yes”</td>
</tr>
<tr>
<td></td>
<td>• if( 1+1=3, 'Yes', 'No' ) → “No”</td>
</tr>
<tr>
<td></td>
<td>• if( 5 &gt; 3, 1, 0) → 1</td>
</tr>
<tr>
<td></td>
<td>• if( '', 'It is true (not empty)', 'It is false (empty)' ) → “It is false (empty)”</td>
</tr>
<tr>
<td></td>
<td>• if( ' ', 'It is true (not empty)', 'It is false (empty)' ) → “It is true (not empty)”</td>
</tr>
<tr>
<td></td>
<td>• if( 0, 'One', 'Zero' ) → “Zero”</td>
</tr>
<tr>
<td></td>
<td>• if( 10, 'One', 'Zero' ) → “One”</td>
</tr>
</tbody>
</table>

nullif

Restituisce un valore NULL se value1 è uguale a value2; altrimenti restituisce value1. Questo può essere usato per sostituire condizionatamente i valori con NULL.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>nullif(value1, value2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>value1</strong> - Il valore che dovrebbe essere usato o sostituito con NULL.</td>
</tr>
<tr>
<td></td>
<td>• <strong>value2</strong> - Il valore di controllo che provocherà la sostituzione del NULL.</td>
</tr>
<tr>
<td>Esempi</td>
<td>• nullif('(none)', '(none)') → NULL</td>
</tr>
<tr>
<td></td>
<td>• nullif('text', '(none)') → &quot;text&quot;</td>
</tr>
<tr>
<td></td>
<td>• nullif(&quot;name&quot;, '') → NULL, se name è una stringa vuota (o già NULL), name in qualsiasi altro caso.</td>
</tr>
</tbody>
</table>

regexp_match

Restituisce la prima posizione corrispondente a un’espressione regolare all’interno di una stringa unicode, o 0 se la sottostringa non viene trovata.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>regexp_match(input_string, regex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>input_string</strong> - la stringa da testare in base all’espressione regolare</td>
</tr>
<tr>
<td></td>
<td>• <strong>regex</strong> - L’espressione regolare da testare. I caratteri di slash devono essere sottoposti a doppio escape (ad esempio, «\s» per trovare un carattere di spazio bianco o «\b» per trovare un confine di parola).</td>
</tr>
<tr>
<td>Esempi</td>
<td>• regexp_match('QGIS ROCKS','\sROCKS') → 5</td>
</tr>
<tr>
<td></td>
<td>• regexp_match('Budač','udač\b') → 2</td>
</tr>
</tbody>
</table>
try

Prova un'espressione e restituisce il suo valore se privo di errori. Se l'espressione restituisce un errore, verrà restituito un valore alternativo se disponibile, altrimenti la funzione restituirà NULL.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>try(expression, [alternative])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] indica argomenti facoltativi</td>
<td></td>
</tr>
</tbody>
</table>

**Argomenti**

- **expression** - l'espressione che dovrebbe essere eseguita
- **alternativo** - il risultato che sarà restituito se l'espressione restituisce un errore.

<table>
<thead>
<tr>
<th>Esempi</th>
<th>try( to_int( '1' ), 0 ) → 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>try( to_int( 'a' ), 0 ) → 0</td>
</tr>
<tr>
<td></td>
<td>try( to_date( 'invalid_date' ) ) → NULL</td>
</tr>
</tbody>
</table>

14.3.5 Funzioni di conversione

Questo gruppo contiene funzioni per convertire un tipo di dati in un altro (ad esempio, stringa da/a intero, binario da/a stringa, stringa a data, …).
**from_base64**

Decodifica una stringa nella codifica Base64 in un valore binario.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>from_base64(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td>• <strong>string</strong> - la stringa da decodificare</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td>• from_base64('UUmJUw==' → “QGIS”</td>
</tr>
</tbody>
</table>

**hash**

Crea un hash da una stringa con un dato metodo. Un byte (8 bit) è rappresentato con due «cifre» esadecimali, quindi «md4» (16 byte) produce una stringa esadecimale lunga 16 * 2 = 32 caratteri e «keccak_512» (64 byte) produce una stringa esadecimale lunga 64 * 2 = 128 caratteri.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>hash(string, method)</th>
</tr>
</thead>
</table>
| **Argomenti** | • **stringa** - la stringa da sottoporre ad hash  
| **Esempi** | • hash('QGIS', 'md4') → “c0fc71c241cdeb6e688ca0c2e686eb”  
| | • hash('QGIS', 'md5') → “57470aa9e22adaefac7f5f342f16da”  
| | • hash('QGIS', 'sha1') → “f87cf2b74f5867f913237024e0700162b11”  
| | • hash('QGIS', 'sha224') → “4093a619ada631c770f44be634ead18fb39b939d5a6cf186f1f6fced0”  
| | • hash('QGIS', 'sha256') → “eb045c7a797aaa0f5830846e40c8e8c7869306666d3393605fae50c”  
| | • hash('QGIS', 'sha384') → “91c1de038c3d309fdd512e9919fdd922efade39ed21d392922e69a4305ce2”  
| | • hash('QGIS', 'sha512') → “c2c092f2ab743bf8edfbeb6d028a7f5f30f7c2092f284f0ed369412f0a49e20”  
| | • hash('QGIS', 'sha3_224') → “476f9a5039e7280d5b42f4d33e80d203e3c3e8e3e9e0d701f0f6de617ce”  
| | • hash('QGIS', 'sha3_256') → “540f7354b68ade6735f2845250f15f4f3ba4fe6ec55574d9e9354575”  
| | • hash('QGIS', 'sha3_384') → “96052da1e776769e9a65f60d7e2c991b2879772834478638e43646664c0f5503c6”  
| | • hash('QGIS', 'sha3_512') → “900d799c69761da113980253aa8ac0414a865699839a9162288f”  
| | • hash('QGIS', 'keccak_224') → “5b0ce6ace8b0a121d4ac4f3eaa8503c799ad4e26a33921f20149”  
| | • hash('QGIS', 'keccak_256') → “991c520a6815392de2408761b1ae0fd5f6abbee4a8ca019c1010”  
| | • hash('QGIS', 'keccak_384') → “c57a3ed9d856fa04e5e0ee9b626b027c81a57411633c1f0d” |

**md5**

Crea un hash md5 da una stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>md5(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td>• <strong>stringa</strong> - la stringa da sottoporre ad hash</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td>• md5('QGIS') → “57470aa9e22adaefac7f5f342f16da”</td>
</tr>
</tbody>
</table>
**sha256**

Crea un hash sha256 da una stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>sha256(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>stringa</td>
<td>la stringa da sottoporre ad hash</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td>sha256('QGIS') → “eb045c7a797aaa06ac58830846e40c8e8c780bc0676d3393605fae50c05309”</td>
</tr>
</tbody>
</table>

**to_base64**

Codifica un valore binario in una stringa, usando la codifica Base64.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_base64(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>value</td>
<td>il valore binario da codificare</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td>to_base64('QGIS') → “UUdJUw==”</td>
</tr>
</tbody>
</table>

**to_date**

Converte una stringa in un oggetto data. Una stringa di formato opzionale può essere fornita per analizzare la stringa; vedi QDate::fromString per ulteriore documentazione sul formato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_date(string, [format], [language])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] indica argomenti facoltativi</td>
<td></td>
</tr>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>stringa</td>
<td>stringa che rappresenta un valore di data</td>
</tr>
<tr>
<td>format</td>
<td>formato usato per convertire la stringa in una data</td>
</tr>
<tr>
<td>language</td>
<td>lingua (minuscola, due o tre lettere, codice lingua ISO 639) usata per convertire la stringa in una data</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td>to_date('2012-05-04') → 2012-05-04</td>
</tr>
<tr>
<td></td>
<td>to_date('June 29, 2019', 'MMMM d, yyyy') → 2019-06-29</td>
</tr>
<tr>
<td></td>
<td>to_date('29 juin, 2019', 'd MMMM, yyyy', 'fr') → 2019-06-29</td>
</tr>
</tbody>
</table>

**to_datetime**

Converte una stringa in un oggetto datetime. Una stringa di formato opzionale può essere fornita per analizzare la stringa; vedi QDate::fromString e QTime::fromString per ulteriore documentazione sul formato.
Sintassi: `to_datetime(string, [format], [language])`

Argomenti:
- `stringa` - stringa che rappresenta un valore di data e ora
- `format` - formato usato per convertire la stringa in un `datetime`
- `language` - lingua (minuscola, due o tre lettere, codice lingua ISO 639) usata per convertire la stringa in un `datetime`

Esempi:
- `to_datetime('2012-05-04 12:50:00')` → `2012-05-04T12:50:00`
- `to_datetime('June 29, 2019 @ 12:34','MMMM d, yyyy @ HH:mm')` → `2019-06-29T12:34`
- `to_datetime('29 juin, 2019 @ 12:34','d MMMM, yyyy @ HH:mm', 'fr')` → `2019-06-29T12:34`

### to_decimal

Converte una coordinata in gradi, minuti e secondi nel suo equivalente decimale.

Sintassi: `to_decimal(value)`

Argomenti:
- `value` - Una stringa di gradi, minuti e secondi.

Esempi:
- `to_decimal('6°21\'16.445')` → `6.3545680555`

### to_dm

Converte una coordinata in gradi, minuti.

Sintassi: `to_dm(coordinate, axis, precision, [formatting=])`

Argomenti:
- `coordinate` - Un valore di latitudine o longitudine.
- `axis` - L'asse della coordinata. O “x” o “y”.
- `precision` - Numero di decimali.
- `formatting` - Indica il tipo di formattazione. I valori accettabili sono NULL (default), “aligned” o “suffix”.

Esempi:
- `to_dm(6.1545681, 'x', 3)` → `6°9.274'`
- `to_dm(6.1545681, 'y', 4, 'aligned')` → `6°9.2741'N`
- `to_dm(6.1545681, 'y', 4, 'suffix')` → `6°9.2741'N`
### to_dms

Converte una coordinata in gradi, minuti e secondi.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_dms(coordinate, axis, precision, [formatting=])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• coordinate - Un valore di latitudine o longitudine.</td>
</tr>
<tr>
<td></td>
<td>• axis - L’asse della coordinata. O “x” o “y”.</td>
</tr>
<tr>
<td></td>
<td>• precision - Numero di decimali.</td>
</tr>
<tr>
<td></td>
<td>• formatting - Indica il tipo di formattazione. I valori accettabili sono NULL (default), “aligned” o “suffix”.</td>
</tr>
</tbody>
</table>

Esempi	to_dms(6.1545681, 'x', 3) → 6°9′16.445″
	to_dms(6.1545681, 'y', 4, 'aligned') → 6°09′16.4452″N
	to_dms(6.1545681, 'y', 4, 'suffix') → 6°9′16.4452″N

### to_int

Converte una stringa in un numero intero. Non viene restituito nulla se un valore non può essere convertito in numero intero (ad esempio “123asd” non è valido).

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_int(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• string - stringa da convertire a numero intero</td>
</tr>
</tbody>
</table>

| Esempi         | to_int('123') → 123 |

### to_interval

Converte una stringa in un tipo di intervallo. Può essere usato per ricavare giorni, ore, mesi, ecc. da una data.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_interval(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• string - una stringa che rappresenta un intervallo. I formati consentiti includono {n} giorni [n] ore [n] mesi.</td>
</tr>
</tbody>
</table>

Esempi	to_interval('1 day 2 hours') → intervallo: 1,08333 giorni
	to_interval('0.5 hours') → intervallo: 30 minuti
	to_datetime('2012-05-05 12:00:00') - to_interval('1 day 2 hours') → 2012-05-04T10:00:00
to_real

Converte una stringa in un numero reale. Non viene restituito nulla se un valore non può essere convertito in reale (ad esempio “123.56asd” non è valido). I numeri vengono arrotondati dopo aver salvato le modifiche se la precisione è inferiore al risultato della conversione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_real(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• string - stringa da convertire a numero reale</td>
</tr>
<tr>
<td>Esempi</td>
<td>• to_real('123.45') → 123.45</td>
</tr>
</tbody>
</table>

to_string

Converte un numero in stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_string(number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• number - Numero intero o numero reale. Il numero da convertire a stringa.</td>
</tr>
<tr>
<td>Esempi</td>
<td>• to_string(123) → “123”</td>
</tr>
</tbody>
</table>

to_time

Converte una stringa in un oggetto time. Una stringa di formato opzionale può essere fornita per analizzare la stringa; vedi QTime::fromString per ulteriore documentazione sul formato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_time(string, [format], [language])</th>
</tr>
</thead>
</table>
| Argomenti    | • string - stringa che rappresenta un valore time  
• format - formato usato per convertire la stringa in un time  
• language - lingua (minuscola, due o tre lettere, codice lingua ISO 639) usata per convertire la stringa in un time |
| Esempi       | • to_time('12:30:01') → 12:30:01  
• to_time('12:34','HH:mm') → 12:34:00  
• to_time('12:34','HH:mm','fr') → 12:34:00 |

14.3.6 Funzioni personalizzate

Questo gruppo contiene funzioni create dall’utente. Vedi Editor delle Funzioni per maggiori dettagli.
14.3.7 Funzioni di data e ora

Questo gruppo contiene funzioni per gestire dati di data e time. Questo gruppo condivide diverse funzioni con i gruppi Funzioni di conversione (to_date, to_time, to_datetime, to_interval) e Funzioni Stringa (format_date).

Nota: Memorizzazione di data, datetime e intervalli su campi

La possibilità di memorizzare i valori data, time e datetime direttamente sui campi dipende dal fornitore dell'origine dati (ad esempio, Shapefile accetta il formato data, ma non il formato datetime o time). I seguenti sono alcuni suggerimenti per superare questa limitazione:

- date, datetime e time possono essere convertiti e memorizzati in campi di tipo testo usando la funzione format_date().
- Intervals possono essere memorizzati in campi di tipo intero o decimale dopo aver usato una delle funzioni di estrazione della data (ad esempio, day() per ottenere l’intervallo espresso in giorni)

- age
- datetime_from_epoch
- day
- day_of_week
- epoch
- format_date
- hour
- make_date
- make_datetime
- make_interval
- make_time
- minute
- month
- now
- second
- to_date
- to_datetime
- to_interval
- to_time
- week
- year
**age**

Restituisce la differenza tra due date o datetime.

La differenza viene restituita come *Intervallo* e deve essere usata con una delle seguenti funzioni per estrarre informazioni utili:

- year
- month
- week
- day
- hour
- minute
- second

**Sintassi**

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>age(datetime1, datetime2)</th>
</tr>
</thead>
</table>

**Argomenti**

- datetime1 - una stringa, data o datetime che rappresenta la data successiva
- datetime2 - una stringa, data o datetime che rappresenta la data precedente

**Esempi**

- day(age('2012-05-12', '2012-05-02')) \(\rightarrow 10\)
- hour(age('2012-05-12', '2012-05-02')) \(\rightarrow 240\)

**datetime_from_epoch**

Restituisce un datetime la cui data e ora sono il numero di millisecondi, msecs, che sono passati dal 1970-01-01T00:00:00.000, Coordinated Universal Time (Qt.UTC), e convertiti in Qt.LocalTime.

**Sintassi**

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>datetime_from_epoch(int)</th>
</tr>
</thead>
</table>

**Argomenti**

- int - numero (millisecondi)

**Esempi**

- datetime_from_epoch(1483225200000) \(\rightarrow 2017-01-01T00:00:00\)

**day**

Estrae il giorno da una data, o il numero di giorni da un intervallo.

**Variabile Data**

Estrae il giorno da una data o datetime.

**Sintassi**

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>day(date)</th>
</tr>
</thead>
</table>

**Argomenti**

- date - un valore di data o datetime

**Esempi**

- day('2012-05-12') \(\rightarrow 12\)

**Variabile Intervallo**

Calcola la durata in giorni di un intervallo.
### day(interval)

**Sintassi**

| day(interval) |

**Argomenti**

- **intervallo** - valore dell'intervallo da cui ricavare il numero di giorni

**Esempi**

- `day(to_interval('3 days')) → 3`
- `day(to_interval('3 weeks 2 days')) → 23`
- `day(age('2012-01-01','2010-01-01')) → 730`

### day_of_week

Restituisce il giorno della settimana per una data o datetime specificato. Il valore restituito va da 0 a 6, dove 0 corrisponde a una domenica e 6 a un sabato.

**Sintassi**

| day_of_week(date) |

**Argomenti**

- **date** - valore di data o datetime

**Esempi**

- `day_of_week(to_date('2015-09-21')) → 1`

### epoch

Restituisce l'intervallo in millisecondi tra il tempo di riferimento di unix e un dato valore di data.

**Sintassi**

| epoch(date) |

**Argomenti**

- **date** - un valore di data o datetime

**Esempi**

- `epoch(to_date('2017-01-01')) → 1483203600000`

### format_date

Formatta un tipo di data o una stringa in un formato personalizzato. Utilizza le stringhe del formato data/ora di Qt. Vedi `QDateTime::toString`.

---

14.3. Lista delle funzioni
Sintassi: `format_date(datetime, format, [language])`

[ ] indica argomenti facoltativi

**Argomenti**

- `datetime` - data, ora o valore `datetime`
- `format` - Modello di stringa usato per formattare la stringa.

<table>
<thead>
<tr>
<th>Espressione</th>
<th>Risultato</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong><code>d</code></strong></td>
<td>il giorno come numero senza zero iniziale (da 1 a 31)</td>
</tr>
<tr>
<td><strong><code>dd</code></strong></td>
<td>il giorno come numero con uno zero iniziale (da 01 a 31)</td>
</tr>
<tr>
<td><strong><code>ddd</code></strong></td>
<td>il nome abbreviato del giorno nella lingua locale (ad esempio, da “Mon” a “Sun”)</td>
</tr>
<tr>
<td><strong><code>dddd</code></strong></td>
<td>il nome non abbreviato del giorno nella lingua locale (ad esempio, da “lunedì” a “domenica”)</td>
</tr>
<tr>
<td><strong><code>M</code></strong></td>
<td>il mese come numero non preceduto da zero (1-12)</td>
</tr>
<tr>
<td><strong><code>MM</code></strong></td>
<td>il mese come numero preceduto da zero (01-12)</td>
</tr>
<tr>
<td><strong><code>MMM</code></strong></td>
<td>il nome abbreviato del mese localizzato (ad esempio, da “Jan” a “Dec”)</td>
</tr>
<tr>
<td><strong><code>MMMM</code></strong></td>
<td>il nome completo del mese (ad esempio, da “gennaio” a “dicembre”)</td>
</tr>
<tr>
<td><strong><code>yy</code></strong></td>
<td>l’anno come numero addue cifre (00-99)</td>
</tr>
<tr>
<td><strong><code>yyyy</code></strong></td>
<td>l’anno come numero a quattro cifre</td>
</tr>
</tbody>
</table>

Esempi:

- `format_date('2012-05-15','dd.MM.yyyy')` → “15.05.2012”
- `format_date('2012-05-15','d MMMM yyyy','fr')` → “15 maggio 2012”
- `format_date('2012-05-15','dddd')` → “Tuesday”
- `format_date('2012-05-15 13:54:20','dd.MM.yy')` → “15.05.12”
- `format_date('13:54:20','hh:mm AP')` → “01:54 PM”

- `language` - lingua (minuscola, due o tre lettere, codice lingua ISO 639) usata per formattare la data in una stringa personalizzata
**hour**

Estrae la parte di ora da un datetime o da un orario, o il numero di ore da un intervallo.

**Variabile Time**

Estrae la parte dell’ora da un’ora o da un datetime.

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>hour(datetime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• datetime - un valore di tempo o di data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
</tr>
</thead>
<tbody>
<tr>
<td>• hour( to_datetime('2012-07-22 13:24:57')) → 13</td>
</tr>
</tbody>
</table>

**Variabile Intervallo**

Calcola la lunghezza in ore di un intervallo.

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>hour(interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• interval - valore in numero di ore dell’intervallo</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
</tr>
</thead>
<tbody>
<tr>
<td>• hour(to_interval('3 hours')) → 3</td>
</tr>
<tr>
<td>• hour(age('2012-07-22T13:00:00','2012-07-22T10:00:00')) → 3</td>
</tr>
<tr>
<td>• hour(age('2012-01-01','2010-01-01')) → 17520</td>
</tr>
</tbody>
</table>

**make_date**

Genera un valore di data dai numeri di anno, mese e giorno.

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>make_date(year, month, day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• year - Numero dell’anno. Gli anni da 1 a 99 sono interpretati come tali. L’anno 0 non è valido.</td>
<td></td>
</tr>
<tr>
<td>• month - Numero del mese, dove 1=Gennaio</td>
<td></td>
</tr>
<tr>
<td>• day - Numero del giorno, cominciando da 1 per il primo giorno del mese</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
</tr>
</thead>
<tbody>
<tr>
<td>• make_date(2020,5,4) → valore data 2020-05-04</td>
</tr>
</tbody>
</table>

**make_datetime**

Crea un valore datetime dai numeri di anno, mese, giorno, ora, minuto e secondo.
### make_datetime

Crea un valore di datetime dai valori dell'anno, mese, giorno, ora, minuti e secondi.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_datetime(year, month, day, hour, minute, second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• year - Numero dell'anno. Gli anni da 1 a 99 sono interpretati come tali. L'anno 0 non è valido.</td>
</tr>
<tr>
<td></td>
<td>• month - Numero del mese, dove 1=Gennaio</td>
</tr>
<tr>
<td></td>
<td>• day - Numero del giorno, cominciando da 1 per il primo giorno del mese</td>
</tr>
<tr>
<td></td>
<td>• hour - Ora</td>
</tr>
<tr>
<td></td>
<td>• minute - Minuti</td>
</tr>
<tr>
<td></td>
<td>• second - Secondi (i valori frazionari includono i millisecondi)</td>
</tr>
<tr>
<td>Esempi</td>
<td>• make_datetime(2020,5,4,13,45,30.5) → valore del datetime 2020-05-04 13:45:30.500</td>
</tr>
</tbody>
</table>

### make_interval

Crea un valore di intervallo dai valori di anno, mese, settimane, giorni, ore, minuti e secondi.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_interval([years=0], [months=0], [weeks=0], [days=0], [hours=0], [minutes=0], [seconds=0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• years - Numero di anni (presuppone un anno di 365,25 giorni).</td>
</tr>
<tr>
<td></td>
<td>• months - Numero di mesi (presuppone un mese di 30 giorni)</td>
</tr>
<tr>
<td></td>
<td>• weeks - Numero di settimane</td>
</tr>
<tr>
<td></td>
<td>• days - Numero di giorni</td>
</tr>
<tr>
<td></td>
<td>• hours - Numero di ore</td>
</tr>
<tr>
<td></td>
<td>• minutes - Numero di minuti</td>
</tr>
<tr>
<td></td>
<td>• seconds - Numero di secondi</td>
</tr>
<tr>
<td>Esempi</td>
<td>• make_interval(hours:=3) → intervallo: 3 ore</td>
</tr>
<tr>
<td></td>
<td>• make_interval(days:=2, hours:=3) → intervallo: 2,125 giorni</td>
</tr>
<tr>
<td></td>
<td>• make_interval(minutes:=0.5, seconds:=5) → intervallo: 35 secondi</td>
</tr>
</tbody>
</table>

### make_time

Crea un valore temporale dai numeri di ore, minuti e secondi.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_time(hour, minute, second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• hour - Ora</td>
</tr>
<tr>
<td></td>
<td>• minute - Minuti</td>
</tr>
<tr>
<td></td>
<td>• second - Secondi (i valori frazionari includono i millisecondi)</td>
</tr>
<tr>
<td>Esempi</td>
<td>• make_time(13,45,30.5) → valore time 13:45:30.500</td>
</tr>
</tbody>
</table>
### minute

Estrae la parte dei minuti da un datetime o da un orario, o il numero di minuti da un intervallo.

**Variabile Time**

Estrae la parte dei minuti da un tempo o da una data.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>minute(datetime)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td>• datetime - un valore di tempo o di data</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td>• minute(to_datetime('2012-07-22 13:24:57')) → 24</td>
</tr>
</tbody>
</table>

**Variabile Intervallo**

Calcola la lunghezza in minuti di un intervallo.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>minute(interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td>• interval - valore di intervallo calcolato in minuti</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td>• minute(to_interval('3 minutes')) → 3</td>
</tr>
<tr>
<td></td>
<td>• minute(age('2012-07-22T00:00:00','2012-07-22T00:00:00')) → 20</td>
</tr>
<tr>
<td></td>
<td>• minute(age('2012-01-01','2010-01-01')) → 1051200</td>
</tr>
</tbody>
</table>

### month

Estrae la parte di mese da una data, o il numero di mesi da un intervallo.

**Variabile Data**

Estrae la parte del mese da una data o datetime.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>month(date)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td>• date - un valore di data o datetime</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td>• month('2012-05-12') → 05</td>
</tr>
</tbody>
</table>

**Variabile Intervallo**

Calcola la lunghezza in mesi di un intervallo.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>month(interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td>• interval - valore dell'intervallo per restituire il numero di mesi</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td>• month(to_interval('3 months')) → 3</td>
</tr>
<tr>
<td></td>
<td>• month(age('2012-01-01','2010-01-01')) → 4.03333</td>
</tr>
</tbody>
</table>
**now**

Restituisce la data e l’ora attuali. La funzione è statica e restituisce risultati validi durante la valutazione. L’ora restituita è quella in cui viene preparata l’espressione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>now()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esempi</td>
<td>• now() → 2012-07-22T13:24:57</td>
</tr>
</tbody>
</table>

**second**

 Estrae la parte dei secondi da un datetime o da un orario, o il numero di secondi da un intervallo.

**Variabile Time**

Estrae la parte dei secondi da un tempo o da un datetime.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>second(datetime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• datetime - un valore di tempo o di data</td>
</tr>
<tr>
<td>Esempi</td>
<td>• second( to_datetime('2012-07-22 13:24:57') ) → 57</td>
</tr>
</tbody>
</table>

**Variabile Intervallo**

 Calcola la lunghezza in secondi di un intervallo.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>second(interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• interval - valore dell’intervallo per il quale restituire il numero di secondi</td>
</tr>
<tr>
<td>Esempi</td>
<td>• second(to_interval('3 minutes')) → 180</td>
</tr>
<tr>
<td></td>
<td>• second(age('2012-07-22T00:20:00','2012-07-22T00:00:00')) → 1200</td>
</tr>
<tr>
<td></td>
<td>• second(age('2012-01-01','2010-01-01')) → 63072000</td>
</tr>
</tbody>
</table>

**to_date**

Converte una stringa in un oggetto data. Una stringa di formato opzionale può essere fornita per analizzare la stringa; vedi QDate::fromString per ulteriore documentazione sul formato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_date(string, [format], [language])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• stringa - stringa che rappresenta un valore di data</td>
</tr>
<tr>
<td></td>
<td>• format - formato usato per convertire la stringa in una data</td>
</tr>
<tr>
<td></td>
<td>• language - lingua (minuscola, due o tre lettere, codice lingua ISO 639) usata per convertire la stringa in una data</td>
</tr>
<tr>
<td>Esempi</td>
<td>• to_date('2012-05-04') → 2012-05-04</td>
</tr>
<tr>
<td></td>
<td>• to_date('June 29, 2019', 'MMMM d, yyyy') → 2019-06-29</td>
</tr>
<tr>
<td></td>
<td>• to_date('29 juin, 2019', 'd MMMM, yyyy', 'fr') → 2019-06-29</td>
</tr>
</tbody>
</table>
**to_datetime**

Converte una stringa in un oggetto datetime. Una stringa di formato opzionale può essere fornita per analizzare la stringa; vedi QDate::fromString e QTime::fromString per ulteriore documentazione sul formato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_datetime(string, [format], [language])</th>
</tr>
</thead>
</table>
| Argomenti         | • stringa - stringa che rappresenta un valore di data e ora  
|                   |   • format - formato usato per convertire la stringa in un datetime  
|                   |   • language - lingua (minuscola, due o tre lettere, codice lingua ISO 639) usata per convertire la stringa in un datetime  

| Esempi            | to_datetime('2012-05-04 12:50:00') → 2012-05-04T12:50:00  
|                   | to_datetime('June 29, 2019 @ 12:34','MMMM d, yyyy @ HH:mm') → 2019-06-29T12:34  
|                   | to_datetime('29 juin, 2019 @ 12:34','d MMMM, yyyy @ HH:mm','fr') → 2019-06-29T12:34 |

**to_interval**

Converte una stringa in un tipo di intervallo. Può essere usato per ricavare giorni, ore, mesi, ecc. da una data.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_interval(string)</th>
</tr>
</thead>
</table>
| Argomenti         | • string - una stringa che rappresenta un intervallo. I formati consentiti includono {n} giorni {n} ore {n} mesi.  

| Esempi            | to_interval('1 day 2 hours') → intervallo: 1,08333 giorni  
|                   | to_interval('0.5 hours') → intervallo: 30 minuti  
|                   | to_datetime('2012-05-05 12:00:00') - to_interval('1 day 2 hours') → 2012-05-04T10:00:00 |

**to_time**

Converte una stringa in un oggetto time. Una stringa di formato opzionale può essere fornita per analizzare la stringa; vedi QTime::fromString per ulteriore documentazione sul formato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_time(string, [format], [language])</th>
</tr>
</thead>
</table>
| Argomenti         | • string - stringa che rappresenta un valore time  
|                   |   • format - formato usato per convertire la stringa in un time  
|                   |   • language - lingua (minuscola, due o tre lettere, codice lingua ISO 639) usata per convertire la stringa in un time  

| Esempi            | to_time('12:30:01') → 12:30:01  
|                   | to_time('12:34','HH:mm') → 12:34:00  
|                   | to_time('12:34','HH:mm','fr') → 12:34:00 |
### week

Estrae il numero di settimana da una data, o il numero di settimane da un intervallo.

**Variabile Data**

Estrae il numero delle settimane da una data o datetime.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>week(date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• date - un valore di data o datetime</td>
</tr>
<tr>
<td>Esempi</td>
<td>• week('2012-05-12') → 19</td>
</tr>
</tbody>
</table>

**Variabile Intervallo**

Calcola la lunghezza in settimane di un intervallo.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>week(interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• interval - valore dell'intervallo per restituire il numero di mesi</td>
</tr>
</tbody>
</table>
| Esempi       | • week(to_interval('3 weeks')) → 3  
• week(age('2012-01-01','2010-01-01')) → 104.285 |

### year

Estrae la parte di anno da una data, o il numero di anni da un intervallo.

**Variabile Data**

Estrae la parte anno da una data o datetime.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>year(date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• date - un valore di data o datetime</td>
</tr>
<tr>
<td>Esempi</td>
<td>• year('2012-05-12') → 2012</td>
</tr>
</tbody>
</table>

**Variabile Intervallo**

Calcola la lunghezza in anni di un intervallo.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>year(interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• interval - valore dell'intervallo dal quale restituire il numero di anni</td>
</tr>
</tbody>
</table>
| Esempi       | • year(to_interval('3 years')) → 3  
• year(age('2012-01-01','2010-01-01')) → 1.9986 |

**Alcuni esempi:**

Oltre a queste funzioni, le differenze di data, i tempi o le ore che usano l’operatore ‘-’ (meno) restituiscono un intervallo.
Aggiungendo o sottraendo un intervallo a date, datetime o tempi, usando gli operatori + (più) e − (meno), restituisce un datetime.

• Fino alla versione di QGIS 3.0 dà il numero di giorni:

```
{\texttt{to_date('2017-09-29') - to_date(now())}}
\textit{-- Returns } \textit{<interval: 203 days>}
```

• Lo stesso con time:

```
{\texttt{to_datetime('2017-09-29 12:00:00') - now()}}
\textit{-- Returns } \textit{<interval: 202.49 days>}
```

• Ottieni il tempo di 100 giorni a partire da adesso:

```
{\texttt{now() + to_interval('100 days')}}
\textit{-- Returns } \textit{<datetime: 2017-06-18 01:00:00>}
```

### 14.3.8 Campi e Valori

Contiene la lista dei campi di un layer.

Fai doppio clic sul nome di un campo per aggiungerlo all'espressione. Puoi anche digitare il nome del campo (preferibilmente all'interno di virgolette doppie) o il suo alias.

Per recuperare i valori dei campi da utilizzare in un'espressione, seleziona il campo appropriato e, nel widget mostrato, scegli tra 10 Campioni e Tutti i Valori Univoci. I valori richiesti vengono quindi visualizzati e puoi utilizzare la casella Cerca… nella parte superiore dell'elenco per filtrare il risultato. I valori dei campioni sono accessibili anche facendo clic con il tasto destro del mouse su un campo.

Per aggiungere un valore all'espressione che stai scrivendo, fai doppio clic su di essa nell'elenco. Se il valore è di tipo stringa, dovrebbe essere tra virgolette semplici, altrimenti non è necessaria alcuna virgoletta.

### 14.3.9 Funzioni per i File e i Percorsi

Questo gruppo contiene funzioni che manipolano i nomi dei file e dei percorsi.

```
• base_file_name
• file_exists
• file_name
• file_path
• file_size
• file_suffix
• is_directory
• is_file
```
### base_file_name

Restituisce il nome base del file senza il suffisso della cartella o del file.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>base_file_name(path)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• path - un percorso di un file</td>
</tr>
<tr>
<td>Esempi</td>
<td>• base_file_name('/home/qgis/data/country_boundaries.shp') → “country_boundaries”</td>
</tr>
</tbody>
</table>

### file_exists

Restituisce true se un percorso di file esiste.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>file_exists(path)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• path - un percorso di un file</td>
</tr>
<tr>
<td>Esempi</td>
<td>• file_exists('/home/qgis/data/country_boundaries.shp') → true</td>
</tr>
</tbody>
</table>

### file_name

Restituisce il nome di un file (compresa l'estensione del file), escludendo la cartella.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>file_name(path)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• path - un percorso di un file</td>
</tr>
<tr>
<td>Esempi</td>
<td>• file_name('/home/qgis/data/country_boundaries.shp') → “country_boundaries.shp”</td>
</tr>
</tbody>
</table>

### file_path

Restituisce il componente cartella di un percorso di file. Non include il nome del file.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>file_path(path)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• path - un percorso di un file</td>
</tr>
<tr>
<td>Esempi</td>
<td>• file_path('/home/qgis/data/country_boundaries.shp') → “/home/qgis/data”</td>
</tr>
</tbody>
</table>
file_size

Restituisce la dimensione (in byte) di un file.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>file_size(path)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• path - un persorso di un file</td>
</tr>
<tr>
<td>Esempi</td>
<td>• file_size('/home/qgis/data/country_boundaries.geojson') → 5674</td>
</tr>
</tbody>
</table>

file_suffix

Restituisce il suffisso del file (estensione) da un percorso di file.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>file_suffix(path)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• path - un persorso di un file</td>
</tr>
<tr>
<td>Esempi</td>
<td>• file_suffix('/home/qgis/data/country_boundaries.shp') → “shp”</td>
</tr>
</tbody>
</table>

is_directory

Restituisce true se un percorso corrisponde a una cartella.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_directory(path)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• path - un persorso di un file</td>
</tr>
<tr>
<td>Esempi</td>
<td>• is_directory('/home/qgis/data/country_boundaries.shp') → false</td>
</tr>
<tr>
<td></td>
<td>• is_directory('/home/qgis/data/') → true</td>
</tr>
</tbody>
</table>

is_file

Restituisce true se un percorso corrisponde a un file.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_file(path)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• path - un persorso di un file</td>
</tr>
<tr>
<td>Esempi</td>
<td>• is_file('/home/qgis/data/country_boundaries.shp') → true</td>
</tr>
<tr>
<td></td>
<td>• is_file('/home/qgis/data/') → false</td>
</tr>
</tbody>
</table>
### 14.3.10 Funzioni modulo

Questo gruppo contiene funzioni che operano esclusivamente nel contesto del modulo della tabella degli attributi. Per esempio, nelle impostazioni di field's widgets.

- **current_parent_value**
- **current_value**

#### current_parent_value

Utilizzabile solo in un contesto di modulo incorporato, questa funzione restituisce il valore corrente, non salvato, di un campo nel modulo padre che si sta modificando. Questo differirà dagli effettivi valori degli attributi dell’elemento padre per gli elementi che sono attualmente in fase di modifica o che non sono ancora stati aggiunti ad un layer padre. Quando viene usata in un’espressione di filtro del widget value-relation, questa funzione dovrebbe essere racchiusa in una “coalesce()” che può recuperare l’effettivo elemento padre dal layer quando il modulo non è usato in un contesto incorporato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>current_parent_value(field_name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• field_name - un nome di campo nel modulo padre corrente</td>
</tr>
<tr>
<td>Esempi</td>
<td>• current_parent_value( 'FIELD_NAME' ) → Il valore corrente di un campo “FIELD_NAME” nel modulo padre.</td>
</tr>
</tbody>
</table>

#### current_value

Restituisce il valore corrente, non salvato, di un campo nel modulo o nella riga della tabella che si sta modificando. Questo differirà dai valori effettivi dell’attributo dell’elemento per gli elementi che sono attualmente in fase di modifica o che non sono ancora stati aggiunti ad un layer.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>current_value(field_name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• field_name - un nome di campo nel modulo o nella riga della tabella attuale</td>
</tr>
<tr>
<td>Esempi</td>
<td>• current_value( 'FIELD_NAME' ) → Il valore attuale del campo “FIELD_NAME”.</td>
</tr>
</tbody>
</table>

### 14.3.11 Funzioni varie di confronto

Questo gruppo contiene funzioni per confronti vari tra valori.

- **hamming_distance**
- **levenshtein**
- **longest_common_substring**
- **soundex**
**hamming_distance**

Restituisce la distanza di Hamming tra due stringhe. Questo equivale al numero di caratteri nelle posizioni corrispondenti all'interno delle stringhe in ingresso in cui i caratteri sono diversi. Le stringhe in ingresso devono avere la stessa lunghezza e il confronto è sensibile alle maiuscole e alle minuscole.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>hamming_distance(string1, string2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• string1 - una stringa</td>
<td></td>
</tr>
<tr>
<td>• string2 - una stringa</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• hamming_distance('abc','xec') → 2</td>
<td></td>
</tr>
<tr>
<td>• hamming_distance('abc','ABC') → 2</td>
<td></td>
</tr>
<tr>
<td>• hamming_distance(upper('abc'), upper('ABC')) → 0</td>
<td></td>
</tr>
</tbody>
</table>

**levenshtein**

Restituisce la distanza di modifica Levenshtein tra due stringhe. Questo equivale al numero minimo di modifiche dei caratteri (inserzioni, cancellazioni o sostituzioni) necessarie per cambiare una stringa in un'altra.

La distanza di Levenshtein è una misura della somiglianza tra due stringhe. Distanze minori significano che le stringhe sono più simili, e distanze maggiori indicano stringhe più diverse. La distanza è sensibile alle maiuscole e alle minuscole.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>levenshtein(string1, string2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• string1 - una stringa</td>
<td></td>
</tr>
<tr>
<td>• string2 - una stringa</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• levenshtein('kittens','mitten') → 2</td>
<td></td>
</tr>
<tr>
<td>• levenshtein('Kitten','kitten') → 1</td>
<td></td>
</tr>
<tr>
<td>• levenshtein(upper('Kitten'), upper('kitten')) → 0</td>
<td></td>
</tr>
</tbody>
</table>

**longest_common_substring**

Restituisce la più lunga sottostringa comune tra due stringhe. Questa sottostringa è la stringa più lunga che è in una sottostringa delle due stringhe in ingresso. Per esempio, la più lunga sottostringa comune di «ABABC» e «BABCA» è «BABC». La sottostringa è sensibile alle maiuscole e alle minuscole.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>longest_common_substring(string1, string2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• string1 - una stringa</td>
<td></td>
</tr>
<tr>
<td>• string2 - una stringa</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• longest_common_substring('ABABC','BABCA') → “BABC”</td>
<td></td>
</tr>
<tr>
<td>• longest_common_substring('abcDeF','abcdef') → “abc”</td>
<td></td>
</tr>
<tr>
<td>• longest_common_substring(upper('abcDeF'), upper('abcdex')) → “ABCDE”</td>
<td></td>
</tr>
</tbody>
</table>
**soundex**

Restituisce la rappresentazione Soundex di una stringa. Soundex è un algoritmo di corrispondenza fonetica, quindi le stringhe con suoni simili dovrebbero essere rappresentate dallo stesso codice Soundex.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>soundex(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>string - una stringa</td>
</tr>
</tbody>
</table>

Esempi	soundex('robert') → “R163”
---------------	soundex('rupert') → “R163”
	soundex('rubin') → “R150”

### 14.3.12 Funzioni Generali

Questo gruppo contiene funzioni generali assortite.

- env
- eval
- eval_template
- is_layer_visible
- layer_property
- var
- with_variable

**env**

Ottiene una variabile d’ambiente e restituisce il suo contenuto come stringa. Se la variabile non viene trovata, viene restituito NULL. Questo è utile per inserire configurazioni specifiche del sistema come lettere di unità o prefissi di percorso. La definizione delle variabili d’ambiente dipende dal sistema operativo, controlla con il tuo amministratore di sistema o con la documentazione del sistema operativo come questo può essere impostato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>env(name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>name - Il nome della variabile d’ambiente che deve essere recuperata.</td>
</tr>
<tr>
<td>Esempi</td>
<td>env(‘LANG’ ) → “en_US.UTF-8”</td>
</tr>
<tr>
<td></td>
<td>env(‘MY_OWN_PREFIX_VAR’ ) → “Z:”</td>
</tr>
<tr>
<td></td>
<td>env(‘I_DO_NOT_EXIST’ ) → NULL</td>
</tr>
</tbody>
</table>
### eval

Valuta un’espressione passata in una stringa. Utile per espandere i parametri dinamici passati come variabili di contesto o campi.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>eval(expression)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>expression</td>
<td>un’espressione stringa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eval(‘\’nice\’’)</td>
<td>“nice”</td>
</tr>
<tr>
<td>eval(@expression_var)</td>
<td>[whatever the result of evaluating @expression_var might be...]</td>
</tr>
</tbody>
</table>

### eval_template

Valuta un modello passato in una stringa. Utile per espandere i parametri dinamici passati come variabili di contesto o campi.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>eval_template(template)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>template</td>
<td>un modello stringa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eval_template('QGIS [% upper('rocks') %]')</td>
<td>QGIS ROCKS</td>
</tr>
</tbody>
</table>

### is_layer_visible

Restituisce true se il layer specificato è visibile.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_layer_visible(layer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>layer</td>
<td>una stringa, che rappresenta o il nome di un layer o l'ID di un layer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>is_layer_visible('baseraster')</td>
<td>True</td>
</tr>
</tbody>
</table>
**layer_property**

Restituisce una proprietà del layer o un valore di metadati corrispondente.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th><code>layer_property(layer, property)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• <code>layer</code> - una stringa, che rappresenta o il nome di un layer o l'ID di un layer</td>
<td></td>
</tr>
<tr>
<td>• <code>proprietà</code> - una stringa corrispondente alla proprietà da restituire. Le opzioni valide sono:</td>
<td></td>
</tr>
<tr>
<td>- <code>name</code>: nome layer</td>
<td></td>
</tr>
<tr>
<td>- <code>id</code>: layer ID</td>
<td></td>
</tr>
<tr>
<td>- <code>title</code>: stringa del titolo dei metadati</td>
<td></td>
</tr>
<tr>
<td>- <code>abstract</code>: stringa dell'abstract dei metadati</td>
<td></td>
</tr>
<tr>
<td>- <code>keywords</code>: parole chiave metadati</td>
<td></td>
</tr>
<tr>
<td>- <code>data_url</code>: URL metadati</td>
<td></td>
</tr>
<tr>
<td>- <code>attribution</code>: stringa attribuzione metadati</td>
<td></td>
</tr>
<tr>
<td>- <code>attribution_url</code>: URL attribuzione metadati</td>
<td></td>
</tr>
<tr>
<td>- <code>source</code>: fonte del layer</td>
<td></td>
</tr>
<tr>
<td>- <code>min_scale</code>: scala minima di visualizzazione per il layer</td>
<td></td>
</tr>
<tr>
<td>- <code>max_scale</code>: scala massima di visualizzazione per il layer</td>
<td></td>
</tr>
<tr>
<td>- <code>is_editable</code>: se il layer è in modalità di modifica</td>
<td></td>
</tr>
<tr>
<td>- <code>crs</code>: SR del layer</td>
<td></td>
</tr>
<tr>
<td>- <code>crs_definition</code>: definizione completa del SR del layer</td>
<td></td>
</tr>
<tr>
<td>- <code>crs_description</code>: descrizione SR del layer</td>
<td></td>
</tr>
<tr>
<td>- <code>extent</code>: estensione del layer (come oggetto geometrico)</td>
<td></td>
</tr>
<tr>
<td>- <code>distance_units</code>: unità di distanza del layer</td>
<td></td>
</tr>
<tr>
<td>- <code>type</code>: tipo di layer, ad esempio, Vector o Raster</td>
<td></td>
</tr>
<tr>
<td>- <code>storage_type</code>: formato di memorizzazione (solo layer vettoriali)</td>
<td></td>
</tr>
<tr>
<td>- <code>geometry_type</code>: tipo di geometria, ad esempio, Point (solo layer vettoriali)</td>
<td></td>
</tr>
<tr>
<td>- <code>feature_count</code>: conteggio approssimativo degli elementi per il layer (solo layer vettoriali)</td>
<td></td>
</tr>
<tr>
<td>- <code>path</code>: Percorso del file fonte dei dati del layer. Disponibile solo per i layer basati su file.</td>
<td></td>
</tr>
</tbody>
</table>

**Esempi**

- `layer_property('streets','title')` → “Basemap Streets”
- `layer_property('airports','feature_count')` → 120
- `layer_property('landsat','crs')` → “EPSG:4326”

Ulteriori informazioni: `vector`, `raster` e `mesh` proprietà layer

**var**

Restituisce il valore memorizzato in una variabile specificata.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th><code>var(name)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• <code>name</code> - un nome di variabile</td>
<td></td>
</tr>
</tbody>
</table>

**Esempi**

- `var('qgis_version')` → “2.12”

Ulteriori informazioni: List of default `variables`
**with_variable**

Questa funzione imposta una variabile per qualsiasi codice di espressione che sarà fornito come 3° parametro. Questo è utile solo per espressioni complicate, dove lo stesso valore calcolato deve essere usato in posti diversi.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>with_variable(name, value, expression)</th>
</tr>
</thead>
</table>
| Argomenti    | • **name** - il nome della variabile da impostare  
              • **value** - la variabile da impostare  
              • **espressione** - l'espressione per la quale la variabile sarà disponibile |
| Esempi       | • with_variable('my_sum', 1 + 2 + 3, @my_sum * 2 + @my_sum * 5) → 42 |

**14.3.13 Funzioni Geometria**

Questo gruppo contiene funzioni che operano su oggetti geometrici (per esempio buffer, transform, $area).

- *angle_at_vertex*
- *$area*
- *area*
- *azimuth*
- *boundary*
- *bounds*
- *bounds_height*
- *bounds_width*
- *buffer*
- *buffer_by_m*
- *centroid*
- *close_line*
- *closest_point*
- *collect_geometries*
- *combine*
- *contains*
- *convex_hull*
- *crosses*
- *difference*
- *disjoint*
- *distance*
- *distance_to_vertex*
- *end_point*
- *extend*
- exterior_ring
- extrude
- flip_coordinates
- force_rhr
- geom_from_gml
- geom_from_wkb
- geom_from_wkt
- geom_to_wkb
- geom_to_wkt
- $geometry
- geometry
- geometry_n
- hausdorff_distance
- inclination
- interior_ring_n
- intersection
- intersects
- intersects_bbox
- is_closed
- is_empty
- is_empty_or_null
- is_multipart
- is_valid
- $length
- length
- line_interpolate_angle
- line_interpolate_point
- line_locate_point
- line_merge
- line_substring
- m
- m_max
- m_min
- main_angle
- make_circle
- make_ellipse
- make_line
- make_point
• *make_point_m*
• *make_polygon*
• *make_rectangle_3points*
• *make_regular_polygon*
• *make_square*
• *make_triangle*
• *minimal_circle*
• *nodes_to_points*
• *num_geometries*
• *num_interior_rings*
• *num_points*
• *num_rings*
• *offset_curve*
• *order_parts*
• *oriented_bbox*
• *overlaps*
• *overlay_contains*
• *overlay_crosses*
• *overlay_disjoint*
• *overlay_equals*
• *overlay_intersects*
• *overlay_nearest*
• *overlay_touches*
• *overlay_within*
• *$\perimeter$*
• *perimeter*
• *point_n*
• *point_on_surface*
• *pole_of_inaccessibility*
• *project*
• *relate*
• *reverse*
• *rotate*
• *segments_to_lines*
• *shortest_line*
• *simplify*
• *simplify_vw*
• *single_sided_buffer*
angle_at_vertex

Restituisce l'angolo bisettrice (angolo medio) alla geometria per un vertice specificato su una geometria lineare. Gli angoli sono in gradi in senso orario dal nord.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>angle_at_vertex(geometry, vertex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>geometry</td>
<td>- una geometria linea</td>
</tr>
<tr>
<td>vertex</td>
<td>- indice del vertice, partendo da 0; se il valore è negativo, l'indice del vertice selezionato sarà il suo conteggio totale meno il valore assoluto</td>
</tr>
<tr>
<td>Esempi</td>
<td>- angle_at_vertex(geometry:=geom_from_wkt('LineString(0 0, 10 0, 10 10)'),vertex:=1) → 45.0</td>
</tr>
</tbody>
</table>
$area

Restituisce l’area dell’elemento corrente. L’area calcolata da questa funzione rispetta sia l’impostazione dell’ellissoide del progetto corrente che le impostazioni dell’unità di area. Per esempio, se un ellissoide è stato impostato per il progetto allora l’area calcolata sarà ellissoidale, e se nessun ellissoide è impostato allora l’area calcolata sarà planimetrica.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>$area → 42</th>
</tr>
</thead>
</table>

area

Restituisce l’area di un oggetto geometrico poligonale. I calcoli sono sempre planimetrici nel Sistema di Riferimento Spaziale (SR) di questa geometria, e le unità dell’area restituita corrisponderanno alle unità del SR. Questo differisce dai calcoli eseguiti dalla funzione $area, che eseguirà calcoli ellissoidali basati sulle impostazioni dell’ellissoide e dell’unità di area del progetto.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>area(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>geometry - oggetto geometria poligonale</td>
</tr>
<tr>
<td>Esempi</td>
<td>area(geom_from_wkt('POLYGON((0 0, 4 0, 4 2, 0 2, 0 0))')) → 8.0</td>
</tr>
</tbody>
</table>

azimuth

Restituisce l’azimut basato sul nord come angolo in radianti misurato in senso orario dalla verticale sul punto_a al punto_b.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>azimuth(point_a, point_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>point_a - geometria punto</td>
</tr>
<tr>
<td></td>
<td>point_b - geometria punto</td>
</tr>
<tr>
<td>Esempi</td>
<td>degrees( azimuth( make_point(25, 45), make_point(75, 100) ) ) → 42.273689</td>
</tr>
<tr>
<td></td>
<td>degrees( azimuth( make_point(75, 100), make_point(25,45) ) ) → 222.273689</td>
</tr>
</tbody>
</table>

boundary

Restituisce la chiusura del confine concatenato della geometria (cioè il confine topologico della geometria). Per esempio, una geometria poligonale avrà un confine che consiste linee ogni anello del poligono. Alcuni tipi di geometria non hanno un confine definito, ad esempio punti o collezioni di geometrie, e restituiranno NULL.

14.3. Lista delle funzioni
### boundary(geometry)

**Sintassi**

\[
\text{boundary(geometry)}
\]

**Argomenti**

- geometry - una geometria

**Esempi**

- `geom_to_wkt(boundary(geom_from_wkt('Polygon((1 1, 0 0, -1 1, 1 1))')))` → "LineString(1 1, 0 0, -1 1, 1 1)"
- `geom_to_wkt(boundary(geom_from_wkt('LineString(1 1, 0 0, -1 1, 1 1)')))` → "MultiPoint ((1 1),(-1 1))"

Ulteriori informazioni: *Confine* algoritmo

### bounds

Restituisce una geometria che rappresenta il perimetro di delimitazione di una geometria in ingresso. I calcoli sono nel sistema di riferimento spaziale di questa geometria.

**Sintassi**

\[
\text{bounds(geometry)}
\]

**Argomenti**

- geometry - una geometria

**Esempi**

- `bounds($geometria)` → perimetro di delimitazione della geometria dell'elemento corrente
- `geom_to_wkt(bounds(geom_from_wkt('Polygon((1 1, 0 0, -1 1, 1 1))')))` → "Polygon ((-1 0, 1 0, 1 1, -1 1, -1 0))"

Ulteriori informazioni: *Perimetri di delimitazione* algoritmo

### bounds_height

Restituisce l'altezza del perimetro di delimitazione di una geometria. I calcoli sono nel sistema di riferimento spaziale di questa geometria.

**Sintassi**

\[
\text{bounds_height(geometry)}
\]

**Argomenti**

- geometry - una geometria

**Esempi**

- `bounds_height($geometria)` → altezza del perimetro di delimitazione della geometria dell'elemento corrente
- `bounds_height(geom_from_wkt('Polygon((1 1, 0 0, -1 1, 1 1))'))` → 1

402  Capitolo 14. Lavorare con i vettori
### bounds_width

Restituisce la larghezza del perimetro di delimitazione di una geometria. I calcoli sono nel sistema di riferimento spaziale di questa geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>bounds_width(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• bounds_width(geometry) → larghezza del perimetro di delimitazione della geometria dell’elemento corrente</td>
</tr>
<tr>
<td></td>
<td>• bounds_width(geom_from_wkt('Polygon((1 1, 0 0, -1 1, 1 1))')) → 2</td>
</tr>
</tbody>
</table>

### buffer

Restituisce una geometria che rappresenta tutti i punti la cui distanza da questa geometria è inferiore o uguale alla distanza data. I calcoli sono nel sistema di riferimento spaziale di questa geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>buffer(geometry, distance, [segments=8])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[] indica argomenti facoltativi</td>
</tr>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td></td>
<td>• distance - distanza del buffer in unità layer</td>
</tr>
<tr>
<td></td>
<td>• segments - numero di segmenti da usare per rappresentare un quarto di cerchio quando viene usato uno stile di unione circolare. Un numero maggiore ha come risultato un buffer più liscio con più nodi.</td>
</tr>
<tr>
<td>Esempi</td>
<td>• buffer(geometry, 10.5) → poligono bufferizzato di 10.5 unità dell’elemento corrente</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: **Buffer** algoritmo

### buffer_by_m

Crea un buffer lungo una linea geometrica dove il diametro del buffer varia in base ai valori m ai vertici della linea.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>buffer_by_m(geometry, [segments=8])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[] indica argomenti facoltativi</td>
</tr>
<tr>
<td>Argomenti</td>
<td>• geometry - geometria in ingresso. Deve essere una geometria (multi)lineare con m valori.</td>
</tr>
<tr>
<td></td>
<td>• segments - numero di segmenti per approssimare le curve a quarto di cerchio nel buffer.</td>
</tr>
<tr>
<td>Esempi</td>
<td>• buffer_by_m(geometry:=geom_from_wkt('LINESTRINGM(1 2 0.5, 4 2 0.2)'),segments:=8) → Un buffer di larghezza variabile che inizia con un diametro di 0.5 e finisce con un diametro di 0.2 lungo la geometria lineare.</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: **Larghezza buffer variabile (per valore di M)** algoritmo
**centroid**

Restituisce il centro geometrico di una geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>centroid(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• centroid($geometry) → un punto</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: *Centroid* algoritmo

**close_line**

Restituisce una linea chiusa della linea in ingresso aggiungendo il primo punto alla fine della linea, se non è già chiusa. Se la geometria non è una linea o una stringa multi-linea, il risultato sarà NULL.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>close_line(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - un geometria lineare</td>
</tr>
</tbody>
</table>
| Esempi           | • geom_to_wkt(close_line(geom_from_wkt('LINESTRING(0 0, 1 0, 1 1)'))) → "LineString (0 0, 1 0, 1 1, 0 0)"
• geom_to_wkt(close_line(geom_from_wkt('LINESTRING(0 0, 1 0, 1 1, 0 0)'))) → "LineString (0 0, 1 0, 1 1, 0 0)"

**closest_point**

Restituisce il punto della geometria1 che è più vicino alla geometria2.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>closest_point(geometry1, geometry2)</th>
</tr>
</thead>
</table>
| Argomenti        | • geometry1 - la geometria sulla quale trovare il punto più vicino
• geometry2 - la geometria per la quale trovare il punto più vicino a |
| Esempi           | • geom_to_wkt(closest_point(geom_from_wkt('LINESTRING (20 80, 98 190, 110 180, 50 75 )'), geom_from_wkt('POINT(100 100)'))) → "Point(73.0769 115.384)"

**collect_geometries**

Organizza un insieme di geometrie in una geometria in parti multiple.

**Lista di argomenti vari**

Le parti della geometria sono specificate come argomenti separati alla funzione.
### collect_geometries

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>collect_geometries(geometry1, geometry2, ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_to_wkt(collect_geometries(make_point(1,2), make_point(3,4), make_point(5,6))) ➞ “MultiPoint ((1 2),(3 4),(5 6))”</td>
</tr>
</tbody>
</table>

**Variabile Array**

Le parti della geometria sono specificate come un array di parti della geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>collect_geometries(array)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - array di elementi geometrici</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_to_wkt(collect_geometries(array(make_point(1,2), make_point(3,4), make_point(5,6)))) ➞ “MultiPoint ((1 2),(3 4),(5 6))”</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: *Riassemblare geometrie* algoritmo

### combine

Restituisce la combinazione di due geometrie.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>combine(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry1 - una geometria</td>
</tr>
<tr>
<td></td>
<td>• geometry2 - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_to_wkt( combine( geom_from_wkt('LINestring(3 3, 4 4, 5 5)'), geom_from_wkt('LINestring(3 3, 4 4, 2 1)')) ) ➞ “MULTILINESTRING((4 4, 2 1), (3 3, 4 4), (4 4, 5 5))”</td>
</tr>
<tr>
<td></td>
<td>• geom_to_wkt( combine( geom_from_wkt('LINestring(3 3, 4 4)'), geom_from_wkt('LINestring(3 3, 6 6, 2 1)')) ) ➞ “LINestring(3 3, 4 4, 6 6, 2 1)”</td>
</tr>
</tbody>
</table>

### contains

Verifica se una geometria ne contiene un’altra. Restituisce vero se e solo se nessun punto della geometria2 giace nell’esterno della geometria1, e almeno un punto dell’interno della geometria2 giace nell’interno della geometria1.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>contains(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry1 - una geometria</td>
</tr>
<tr>
<td></td>
<td>• geometry2 - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• contains( geom_from_wkt('POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))'), geom_from_wkt('POINT(0.5, 0.5)') ) ➞ true</td>
</tr>
<tr>
<td></td>
<td>• contains( geom_from_wkt('POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))'), geom_from_wkt('LINESTRING(3 3, 4 4, 5 5)') ) ➞ false</td>
</tr>
</tbody>
</table>

14.3. Lista delle funzioni 405
Ulteriori informazioni: *overlay_contains*

**convex_hull**

Restituisce l’inviluppo convesso di una geometria. Rappresenta la minima geometria convessa che racchiude tutte le geometrie dell’insieme.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>convex_hull(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• geometry</td>
<td>una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• geom_to_wkt( convex_hull( geom_from_wkt( 'LINESTRING(3 3, 4 4, 4 10)' ) ) ) → &quot;POLYGON((3 3, 4 10, 4 4, 3 3))&quot;</td>
<td></td>
</tr>
</tbody>
</table>

Ulteriori informazioni: *Poligono convesso* algoritmo

**crosses**

Verifica se una geometria ne attraversa un’altra. Restituisce true se le geometrie fornite hanno alcuni punti interni in comune, ma non tutti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>crosses(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• geometry1</td>
<td>una geometria</td>
</tr>
<tr>
<td>• geometry2</td>
<td>una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• crosses( geom_from_wkt( 'LINESTRING(3 5, 4 4, 5 3)' ), geom_from_wkt( 'LINESTRING(3 3, 4 4, 5 5)' ) ) → true</td>
<td></td>
</tr>
<tr>
<td>• crosses( geom_from_wkt( 'POINT(4 5)' ), geom_from_wkt( 'LINESTRING(3 3, 4 4, 5 5)' ) ) → false</td>
<td></td>
</tr>
</tbody>
</table>

Ulteriore lettura: *overlay_crosses*

**difference**

Restituisce una geometria che rappresenta la parte di geometria1 che non si interseca con geometria2.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>difference(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• geometry1</td>
<td>una geometria</td>
</tr>
<tr>
<td>• geometry2</td>
<td>una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• geom_to_wkt( difference( geom_from_wkt( 'LINESTRING(3 3, 4 4, 5 5)' ), geom_from_wkt( 'LINESTRING(3 3, 4 4)' ) ) ) → “LINESTRING(4 4, 5 5)”</td>
<td></td>
</tr>
</tbody>
</table>

Ulteriori informazioni: *Differenza* algoritmo
### disjoint

Verifica se le geometrie non si intersecano spazialmente. Restituisce true se le geometrie non condividono alcuno spazio insieme.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>disjoint(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>geometry1</td>
<td>una geometria</td>
</tr>
<tr>
<td>geometry2</td>
<td>una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>disjoint( geom_from_wkt( 'POLYGON((0 0, 0 1, 1 1, 1 0, 0 0 ))' ), geom_from_wkt( 'LINESTRING(3 3, 4 4, 5 5)' ) )</td>
<td>→ true</td>
</tr>
<tr>
<td>disjoint( geom_from_wkt( 'LINESTRING(3 3, 4 4, 5 5)' ), geom_from_wkt( 'POINT(4 4)' ) )</td>
<td>→ false</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: overlay_disjoint

### distance

Restituisce la distanza minima (basata sul riferimento spaziale) tra due geometrie in unità proiettate.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>distance(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>geometry1</td>
<td>una geometria</td>
</tr>
<tr>
<td>geometry2</td>
<td>una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>distance( geom_from_wkt( 'POINT(4 4)' ), geom_from_wkt( 'POINT(4 8)' ) )</td>
<td>→ 4</td>
</tr>
</tbody>
</table>

### distance_to_vertex

Restituisce la distanza lungo la geometria ad un vertice specificato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>distance_to_vertex(geometry, vertex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>geometry</td>
<td>una geometria linea</td>
</tr>
<tr>
<td>vertex</td>
<td>indice del vertice, partendo da 0; se il valore è negativo, l'indice del vertice selezionato sarà il suo conteggio totale meno il valore assoluto</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>distance_to_vertex(geometry:=geom_from_wkt('LineString(0 0, 10 0, 10 10)'),vertex:=1)</td>
<td>→ 10.0</td>
</tr>
</tbody>
</table>
**end point**

Restituisce l’ultimo nodo di una geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>end_point(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>geometry - elemento geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>geom_to_wkt(end_point(geom_from_wkt('LINESTRING(4 0, 4 2, 0 2)'))) → “Point (0 2)”</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: *Estrazione vertici specifici* algoritmo

**extend**

Estende l’inizio e la fine della geometria di una linea di una quantità specificata. Le linee sono estese usando il rilevamento del primo e dell’ultimo segmento della linea. Per una multilinea, tutte le parti sono estese. Le distanze sono nel sistema di riferimento spaziale di questa geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>extend(geometry, start_distance, end_distance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>geometry - una geometria (multi)stringa di linee</td>
</tr>
<tr>
<td></td>
<td>start_distance - distanza per estendere l’inizio della linea</td>
</tr>
<tr>
<td></td>
<td>end_distance - distanza per estendere la fine della linea</td>
</tr>
<tr>
<td>Esempi</td>
<td>geom_to_wkt(extend(geom_from_wkt('LineString(0 0, 1 0, 1 1)'),1,2)) → “LineString (-1 0, 1 0, 1 3)”</td>
</tr>
<tr>
<td></td>
<td>geom_to_wkt(extend(geom_from_wkt('MultiLineString((0 0, 1 0, 1 1), (2 2, 0 2, 0 5))'),1,2)) → “MultiLineString ((-1 0, 1 0, 1 3), (3 2, 0 2, 0 7))”</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: *Prolungare linee* algoritmo

**exterior_ring**

Restituisce una linea che rappresenta l’anello esterno di una geometria poligonale. Se la geometria non è un poligono, il risultato sarà NULL.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>exterior_ring(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>geometry - una geometria poligonale</td>
</tr>
<tr>
<td>Esempi</td>
<td>geom_to_wkt(exterior_ring(geom_from_wkt('POLYGON((-1 -1, 4 0, 4 2, 0 2, -1 -1), (0.1 0.1, 0.1 0.2, 0.2 0.2, 0.2 0.1, 0.1 0.1))'))) → “LineString (-1 -1, 4 0, 4 2, 0 2, -1 -1)”</td>
</tr>
</tbody>
</table>
### extrude

Restituisce una versione estrusa della geometria (Multi-)Curve o (Multi-)Linestring in ingresso con un’estensione specificata da \( x \) e \( y \).

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>extrude(geometry, x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• geometry - una geometria poligonale</td>
<td></td>
</tr>
<tr>
<td>• ( x ) - estensione ( x ), valore numerico</td>
<td></td>
</tr>
<tr>
<td>• ( y ) - estensione ( y ), valore numerico</td>
<td></td>
</tr>
</tbody>
</table>

| Esempi                  | geom_to_wkt(extrude(geom_from_wkt('LineString(1 2, 3 2, 4 3)'), 1, 2)) → “Polygon ((1 2, 3 2, 4 3, 5 5, 4 4, 2 4, 1 2))” |
|                        | geom_to_wkt(extrude(geom_from_wkt('MultiLineString((1 2, 3 2, 4 3, 8 3)), 1, 2)) → “MultiPolygon ((1 2, 3 2, 4 4, 2 4, 1 2),(4 3, 8 3, 9 5, 5 5, 4 3))” |

### flip_coordinates

Restituisce una copia della geometria con le coordinate \( x \) e \( y \) scambiate. Utile per riparare le geometrie che hanno avuto i loro valori di latitudine e longitudine invertiti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>flip_coordinates(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• geometry - una geometria</td>
<td></td>
</tr>
</tbody>
</table>

| Esempi           | geom_to_wkt(flip_coordinates(make_point(1, 2))) → “Point (2 1)” |

Ulteriori informazioni: *Scambiare le coordinate \( X \) e \( Y \)* algoritmo

### force_rhr

Forza una geometria a rispettare la Regola-Mano-Destra, in cui l’area che è delimitata da un poligono è a destra del confine. In particolare, l’anello esterno è orientato in senso orario e gli anelli interni in senso antiorario.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>force_rhr(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• geometry - una geometria. Qualsiasi geometria non poligonale viene restituita invariata.</td>
<td></td>
</tr>
</tbody>
</table>

| Esempi           | geom_to_wkt(force_rhr(geometry:=geom_from_wkt('POLYGON((-1 -1, 4 0, 4 2, 0 2, -1 -1))'))) → “Polygon ((-1 -1, 0 2, 4 2, 4 0, -1 -1))” |

Ulteriori informazioni: *Forzare la regola della mano destra* algoritmo
### geom_from_gml

Restituisce una geometria da una rappresentazione GML della geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>geom_from_gml(gml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• gml - rappresentazione GML di una geometria come stringa</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_from_gml('&lt;gml:LineString srsName=&quot;EPSG:4326&quot;&gt;<a href="">gml:coordinates</a>4, 4 5,5 6,6&lt;/gml:coordinates&gt;&lt;/gml:LineString&gt;') → un oggetto geometrico linea</td>
</tr>
</tbody>
</table>

### geom_from_wkb

Restituisce una geometria generata da una rappresentazione Well-Known Binary (WKB).

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>geom_from_wkb(binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• binary - rappresentazione Well-Known Binary (WKB) di una geometria (come blob binario)</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_from_wkb( geom_to_wkb( make_point(4,5) ) ) → un oggetto geometrico punto</td>
</tr>
</tbody>
</table>

### geom_from_wkt

Restituisce una geometria generata da una rappresentazione Well-Known Text (WKT).

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>geom_from_wkt(text)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• text - rappresentazione Well-Known Text (WKT) di una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_from_wkt( 'POINT(4 5)' ) → un oggetto geometrico</td>
</tr>
</tbody>
</table>

### geom_to_wkb

Restituisce la rappresentazione Well-Known Binary (WKB) di una geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>geom_to_wkb(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_to_wkb( $geometry ) → blob binario contenente un oggetto geometrico</td>
</tr>
</tbody>
</table>
### geom_to_wkt

Restituisce la rappresentazione Well-Known Text (WKT) della geometria senza metadati SRID.

**Sintassi**

`geom_to_wkt(geometry, [precision=8])`

[]. indica argomenti facoltativi

**Argomenti**

- `geometry` - una geometria
- `precision` - precisione numerica

**Esempi**

- `geom_to_wkt(make_point(6, 50)) → "POINT(650)"
- `geom_to_wkt(centroid(geom_from_wkt('Polygon((1 1, 0 0, -1 1, 1 1))'))) → "POINT(0 0.66666667)"
- `geom_to_wkt(centroid(geom_from_wkt('Polygon((1 1, 0 0, -1 1, 1 1))')), 2) → "POINT(0 0.67)"

### $geometry

Restituisce la geometria dell’elemento corrente. Può essere usato nel processing con altre funzioni.

**Sintassi**

`$geometry`

**Esempi**

- `geom_to_wkt( $geometry ) → "POINT(650)"

### geometry

Restituisce la geometria di un elemento

**Sintassi**

`geometry(feature)`

**Argomenti**

- `feature` - un elemento

**Esempi**

- `geom_to_wkt( geometry( get_feature( layer, attributeField, value ) ) ) → "POINT(650)"
- `intersects( $geometry, geometry( get_feature( layer, attributeField, value ) ) ) → true`

### geometry_n

Restituisce una geometria specifica da una geometry collection, o NULL se la geometria in ingresso non è geometry collection.

**Sintassi**

`geometry_n(geometry, index)`

**Argomenti**

- `geometry` - geometry collection
- `index` - indice della geometria da restituire, dove 1 è la prima geometria della collezione

**Esempi**

- `geom_to_wkt(geometry_n(geom_from_wkt('GEOMETRYCOLLECTION(POINT(0 1), POINT(0 0), POINT(1 0), POINT(1 1))'), 3)) → "Point (1 0)"

14.3. Lista delle funzioni
**hausdorff_distance**

Restituisce la distanza Hausdorff tra due geometrie. Questa è fondamentalmente una misura di quanto simili o dissimili siano 2 geometrie, con una distanza più bassa che indica geometrie più simili.

La funzione può essere eseguita con un argomento opzionale `densefy_fraction`. Se non specificato, viene utilizzata un'approssimazione alla distanza standard di Hausdorff. Questa approssimazione è esatta o abbastanza vicina per un ampio sottoinsieme di casi utili. Esempi di questi sono:

- Calcolo della distanza tra Linestrings che sono approssimativamente parallele tra loro e approssimativamente uguali in lunghezza. Questo accade nelle reti lineari appaiate.
- Verifica della somiglianza delle geometrie.

Se l'approssimazione predefinita fornita da questo metodo è insufficiente, specifica l'argomento opzionale `densefy_fraction`. Specificando questo argomento si esegue una densificazione dei segmenti prima di calcolare la distanza Hausdorff discreta. Il parametro imposta la frazione di cui densificare ogni segmento. Ogni segmento sarà diviso in un numero di sottosegmenti di uguale lunghezza. La frazione della lunghezza totale è più vicina alla frazione data. Diminuendo il parametro `densefy_fraction` la distanza restituita si avvicinerà alla vera distanza di Hausdorff per le geometrie.

**Sintassi**

```
hausdorff_distance(geometry1, geometry2, [densefy_fraction])
```

**Argomenti**

- `geometry1` - una geometria
- `geometry2` - una geometria
- `densefy_fraction` - quantità di frazione densificata

**Esempi**

```
hausdorff_distance(geometry1:= geom_from_wkt('LINESTRING (0 0, 2 1)'), geometry2:= geom_from_wkt('LINESTRING (0 0, 2 0)')) -> 2
hausdorff_distance(geom_from_wkt('LINESTRING (130 0, 0 0, 0 150)'), geom_from_wkt('LINESTRING (10 10, 10 150, 130 10)')) -> 14.142135623
hausdorff_distance(geom_from_wkt('LINESTRING (130 0, 0 0, 0 150)'), geom_from_wkt('LINESTRING (10 10, 10 150, 130 10)'), 0.5) -> 70.0
```

**inclination**

Restituisce l'inclinazione misurata dallo zenit (0) al nadir (180) del punto_a al punto_b.

**Sintassi**

```
inclination(point_a, point_b)
```

**Argomenti**

- `point_a` - geometria punto
- `point_b` - geometria punto

**Esempi**

```
inclination(make_point(5, 10, 0), make_point(5, 10, 5)) -> 0.0
inclination(make_point(5, 10, 0), make_point(5, 10, 0)) -> 90.0
inclination(make_point(5, 10, 0), make_point(50, 100, 0)) -> 90.0
inclination(make_point(5, 10, 0), make_point(5, 10, -5)) -> 180.0
```
**interior_ring_n**

Restituisce un anello interno specifico da una geometria poligonale, o NULL se la geometria non è un poligono.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>interior_ring_n(geometry, index)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>geometry</strong> - geometria poligono</td>
</tr>
<tr>
<td></td>
<td>• <strong>index</strong> - indice dell'interno da restituire, dove 1 è il primo anello interno</td>
</tr>
<tr>
<td>Esempi</td>
<td>geom_to_wkt(interior_ring_n(geom_from_wkt('POLYGON((-1 -1, 4 0, 4 2, 0 2, -1 -1),(-0.1 -0.1, 0.4 0, 0.4 0.2, 0 0.2, -0.1 -0.1),(-1 -1, 4 0, 4 2, 0 2, -1 -1))'),1)) → &quot;LineString (-0.1 -0.1, 0.4 0, 0.4 0.2, 0 0.2, -0.1 -0.1)&quot;</td>
</tr>
</tbody>
</table>

**intersection**

Restituisce una geometria che rappresenta la porzione condivisa di due geometrie.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>intersection(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>geometry1</strong> - una geometria</td>
</tr>
<tr>
<td></td>
<td>• <strong>geometry2</strong> - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>geom_to_wkt( intersection( geom_from_wkt( 'LINESTRING(3 3, 4 4, 5 5)' ), geom_from_wkt( 'LINESTRING(3 3, 4 4)' ) ) ) → &quot;LINESTRING(3 3, 4 4)&quot;</td>
</tr>
<tr>
<td></td>
<td>geom_to_wkt( intersection( geom_from_wkt( 'LINESTRING(3 3, 4 4, 5 5)' ), geom_from_wkt( 'MULTIPOINT(3.5 3.5, 4 5)' ) ) ) → &quot;POINT(3.5 3.5)&quot;</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: **Intersezione** algoritmo

**intersects**

Verifica se una geometria ne interseca un'altra. Restituisce true se le geometrie si intersecano spazialmente (condividono qualsiasi porzione di spazio) e false se non lo fanno.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>intersects(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>geometry1</strong> - una geometria</td>
</tr>
<tr>
<td></td>
<td>• <strong>geometry2</strong> - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>intersects( geom_from_wkt( 'POINT(4 4)' ), geom_from_wkt( 'LINESTRING(3 3, 4 4, 5 5)' ) ) → true</td>
</tr>
<tr>
<td></td>
<td>intersects( geom_from_wkt( 'POINT(4 5)' ), geom_from_wkt( 'POINT(5 5)' ) ) → false</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: **overlay_intersects**
**intersects_bbox**

Verifica se il rettangolo di selezione di una geometria si sovrappone al rettangolo di selezione di un’altra geometria. Restituisce true se le geometrie intersecano spazialmente il bounding box definito e false se non lo fanno.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>intersects_bbox(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry1 - una geometria</td>
</tr>
<tr>
<td></td>
<td>• geometry2 - una geometria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• intersects_bbox( geom_from_wkt('POINT(4 5)'), geom_from_wkt('LINESTRING(3 3, 4 4, 5 5)') ) → true</td>
</tr>
<tr>
<td></td>
<td>• intersects_bbox( geom_from_wkt('POINT(6 5)'), geom_from_wkt('POLYGON((3 3, 4 4, 5 5, 3 3))') ) → false</td>
</tr>
</tbody>
</table>

**is_closed**

Restituisce true se una stringa di linea è chiusa (i punti di inizio e fine sono coincidenti), o false se una stringa di linea non è chiusa. Se la geometria non è una stringa di linea, il risultato sarà NULL.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_closed(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - un geometria lineare</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• is_closed(geom_from_wkt('LINESTRING(0 0, 1 1, 2 2)')) → false</td>
</tr>
<tr>
<td></td>
<td>• is_closed(geom_from_wkt('LINESTRING(0 0, 1 1, 2 2, 0 0)')) → true</td>
</tr>
</tbody>
</table>

**is_empty**

Restituisce true se una geometria è vuota (senza coordinate), false se la geometria non è vuota e NULL se non c'è nessuna geometria. Vedi anche is_empty_or_null.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_empty(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• is_empty(geom_from_wkt('LINESTRING(0 0, 1 1, 2 2)')) → false</td>
</tr>
<tr>
<td></td>
<td>• is_empty(geom_from_wkt('LINESTRING EMPTY')) → true</td>
</tr>
<tr>
<td></td>
<td>• is_empty(geom_from_wkt('POINT(7 4)')) → false</td>
</tr>
<tr>
<td></td>
<td>• is_empty(geom_from_wkt('POINT EMPTY')) → true</td>
</tr>
</tbody>
</table>
**is_empty_or_null**

Restituisce true se una geometria è NULLA o vuota (senza coordinate) o false in caso contrario. Questa funzione è come l'espressione "$geometry IS NULL o is_empty($geometry)$".

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_empty_or_null(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• is_empty_or_null(NULL) → true</td>
</tr>
<tr>
<td></td>
<td>• is_empty_or_null(geom_from_wkt('LINESTRING(0 0, 1 1, 2 2)')) → false</td>
</tr>
<tr>
<td></td>
<td>• is_empty_or_null(geom_from_wkt('LINESTRING EMPTY')) → true</td>
</tr>
<tr>
<td></td>
<td>• is_empty_or_null(geom_from_wkt('POINT(7 4)')) → false</td>
</tr>
<tr>
<td></td>
<td>• is_empty_or_null(geom_from_wkt('POINT EMPTY')) → true</td>
</tr>
</tbody>
</table>

**is_multipart**

Restituisce true se la geometria è di tipo Parti multiple.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_multipart(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• is_multipart(geom_from_wkt('MULTIPOINT ((0 0),(1 1),(2 2))')) → true</td>
</tr>
<tr>
<td></td>
<td>• is_multipart(geom_from_wkt('POINT (0 0)')) → false</td>
</tr>
</tbody>
</table>

**is_valid**

Restituisce true se una geometria è valida; se è ben formata in 2D secondo le regole dell'OGC.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_valid(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• is_valid(geom_from_wkt('LINESTRING(0 0, 1 1, 2 2, 0 0)')) → true</td>
</tr>
<tr>
<td></td>
<td>• is_valid(geom_from_wkt('LINESTRING(0 0)')) → false</td>
</tr>
</tbody>
</table>

**$length**

Restituisce la lunghezza di una stringa di linee. Se hai bisogno della lunghezza di un bordo di un poligono, usa invece $perimetro. La lunghezza calcolata da questa funzione rispetta sia l'impostazione dell'ellissoide del progetto corrente che le impostazioni dell'unità di distanza. Per esempio, se è stato impostato un ellissoide per il progetto, allora la lunghezza calcolata sarà ellissoideale, e se non è impostato alcun ellissoide, allora la lunghezza calcolata sarà planimetrica.

14.3. Lista delle funzioni 415
length

Restituisce il numero di caratteri in una stringa o la lunghezza di una stringa geometrica.

**Variabile Operatori stringa**

Restituisce il numero di caratteri in una stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>length(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• string - la stringa sulla quale calcolare la lunghezza</td>
</tr>
<tr>
<td>Esempi</td>
<td>• length('hello') → 5</td>
</tr>
</tbody>
</table>

**Variabile geometria**

Calcola la lunghezza di un oggetto geometria linea. I calcoli sono sempre planimetrici nel Sistema di Riferimento Spaziale (SRS) di questa geometria, e le unità della lunghezza restituita corrisponderanno alle unità dell' SRS. Questo differisce dai calcoli eseguiti dalla funzione $length, che eseguirà calcoli ellissoidali basati sulle impostazioni di ellissoide e unità di distanza del progetto.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>length(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - oggetto geometria linea</td>
</tr>
<tr>
<td>Esempi</td>
<td>• length(geom_from_wkt('LINESTRING(0 0, 4 0)')) → 4.0</td>
</tr>
</tbody>
</table>

**line_interpolate_angle**

Restituisce l’angolo parallelo alla geometria ad una distanza specificata lungo una geometria di tipo linestring. Gli angoli sono in gradi in senso orario da nord.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>line_interpolate_angle(geometry, distance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria linea</td>
</tr>
<tr>
<td></td>
<td>• distance - distanza lungo la linea su cui interpolare l’angolo</td>
</tr>
<tr>
<td>Esempi</td>
<td>• line_interpolate_angle(geometry:=geom_from_wkt('LineString(0 0, 10 0)'),distance:=5) → 90.0</td>
</tr>
</tbody>
</table>
**line_interpolate_point**

Restituisce il punto interpolato di una distanza specificata lungo la geometria di una stringa di linee.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>line_interpolate_point(geometry, distance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• geometry</td>
<td>una geometria linea</td>
</tr>
<tr>
<td>• distance</td>
<td>distanza lungo la linea da interpolare</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
</tbody>
</table>
| • geom_to_wkt(line_interpolate_point(geometry:=geom_from_wkt('LineString(0 0, 10 0)'), distance:=5)) ➞ "Point (5 0)"

Ulteriori informazioni: *Interpolare punto su linea* algoritmo

**line_locate_point**

Restituisce la distanza lungo una linestring corrispondente alla posizione più vicina alla linestring di una geometria puntuale specificata.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>line_locate_point(geometry, point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• geometry</td>
<td>una geometria linea</td>
</tr>
<tr>
<td>• point</td>
<td>geometria del punto nella posizione più vicina alla stringa lineare</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
</tbody>
</table>
| • line_locate_point(geometry:=geom_from_wkt('LineString(0 0, 10 0)'), point:=geom_from_wkt('Point(5 0)')) ➞ 5.0

**line_merge**

Restituisce una geometria LineString o MultiLineString, dove tutte le LineString collegate dalla geometria di input sono state fuse in una singola stringa di linee. Questa funzione restituisce NULL se viene passata una geometria che non è una LineString/MultiLineString.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>line_merge(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• geometry</td>
<td>una geometria LineString/MultiLineString</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
</tbody>
</table>
| • geom_to_wkt(line_merge(geom_from_wkt('MULTILINESTRING((0 0, 1 1),(1 1, 2 2)))')) ➞ "LineString(0 0 1 1,1 1 2 2)"
| • geom_to_wkt(line_merge(geom_from_wkt('MULTILINESTRING((0 0, 1 1),(1 1, 21 2)))')) ➞ "MultiLineString(0 0 1 1,1 1 2 2)"
**line_substring**

Restituisce la porzione della geometria di una linea (o curva) che cade tra le distanze iniziale e finale specificate (misurate dall’inizio della linea). I valori Z e M sono interpolati linearmente dai valori esistenti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>line_substring(geometry, start_distance, end_distance)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• geometry</td>
<td>una stringa di linee o una geometria di curve</td>
</tr>
<tr>
<td>• start_distance</td>
<td>distanza dall’inizio della sottostringa</td>
</tr>
<tr>
<td>• end_distance</td>
<td>distanza dalla fine della sottostringa</td>
</tr>
</tbody>
</table>

| Esempi                    | geom_to_wkt(line_substring(geometry:=geom_from_wkt('LineString(0 0, 10 0)'),start_distance:=2,end_distance=6)) → "LineString (2 0,6 0)" |

Ulteriori informazioni: *Sottostringa lineare* algoritmo

**m**

Restituisce il valore m di una geometria di punti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>m(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• geometry</td>
<td>una geometria di punti</td>
</tr>
</tbody>
</table>

| Esempi                    | m( geom_from_wkt( 'POINTM(2 5 4)' ) ) → 4 |

**m_max**

Restituisce il valore massimo m (misura) di una geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>m_max(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• geometry</td>
<td>una geometria contenente m valori</td>
</tr>
</tbody>
</table>

| Esempi                    | m_max( make_point_m( 0,0,1 ) ) → 1 |
|                          | m_max(make_line( make_point_m( 0,0,1 ), make_point_m( -1,-1,2 ), make_point_m( -2,-2,0 ) ) ) → 2 |

**m_min**

Restituisce il valore minimo m (misura) di una geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>m_min(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• geometry</td>
<td>una geometria contenente m valori</td>
</tr>
</tbody>
</table>

| Esempi                    | m_min( make_point_m( 0,0,1 ) ) → 1 |
|                          | m_min(make_line( make_point_m( 0,0,1 ), make_point_m( -1,-1,2 ), make_point_m( -2,-2,0 ) ) ) → 0 |
**main_angle**

Ripristina l'angolo principale di una geometria (in senso orario, in gradi dal Nord), che rappresenta l'angolo del rettangolo di delimitazione minimo orientato che copre completamente la geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>main_angle(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• main_angle(geom_from_wkt('Polygon ((321577 129614, 321581 129618, 321585 129615, 321581 129610, 321577 129614))')) → 38.66</td>
</tr>
</tbody>
</table>

**make_circle**

Crea un poligono circolare.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_circle(center, radius, [segments=36])</th>
</tr>
</thead>
</table>
| Argomenti         | • center - punto centrale del cerchio  
|                   | • radius - raggio del cerchio  
|                   | • segments - parametro opzionale per la segmentazione del poligono. Per impostazione predefinita questo valore è 36 |
| Esempi            | • geom_to_wkt(make_circle(make_point(10,10), 5, 4)) → “Polygon ((10 15, 10 5, 10 5, 10 15))”  
|                   | • geom_to_wkt(make_circle(make_point(10,10,5), 5, 4)) → “PolygonZ ((10 15 5, 10 5 5, 10 5 5, 10 15 5))”  
|                   | • geom_to_wkt(make_circle(make_point(10,10,5,30), 5, 4)) → “PolygonZM ((10 15 5 30, 10 5 5 30, 10 5 5 30, 10 15 5 30))” |

**make_ellipse**

Crea un poligono ellittico.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_ellipse(center, semi_major_axis, semi_minor_axis, azimuth, [segments=36])</th>
</tr>
</thead>
</table>
| Argomenti         | • center - punto centrale dell'ellisse  
|                   | • semi_major_axis - semi-asse maggiore dell'ellisse  
|                   | • semi_minor_axis - semi-asse minore dell'ellisse  
|                   | • azimuth - orientamento dell'ellisse  
|                   | • segments - parametro opzionale per la segmentazione del poligono. Per impostazione predefinita questo valore è 36 |
| Esempi            | • geom_to_wkt(make_ellipse(make_point(10,10), 5, 2, 90, 4)) → “Polygon ((15 10, 10 8, 5 10, 10 12, 15 10))”  
|                   | • geom_to_wkt(make_ellipse(make_point(10,10,5), 5, 2, 90, 4)) → “PolygonZ ((15 10 5, 10 8 5, 5 10 5, 10 12 5, 15 10 5))”  
|                   | • geom_to_wkt(make_ellipse(make_point(10,10,5,30), 5, 2, 90, 4)) → “PolygonZM ((15 10 5 30, 10 8 5 30, 5 10 5 30, 10 12 5 30, 15 10 5 30))” |
**make_line**

Crea una geometria lineare da una serie di geometrie punto.

**Lista di argomenti vari**

I vertici delle linee sono specificati come argomenti separati alla funzione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_line(point1, point2, ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• point - una geometria di punti (o array di punti)</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_to_wkt(make_line(make_point(2,4),make_point(3,5))) → “LineString (2 4 3 5)”</td>
</tr>
<tr>
<td></td>
<td>• geom_to_wkt(make_line(make_point(2,4),make_point(3,5),make_point(9,7))) → “LineString (2 4 3 5 9 7)”</td>
</tr>
</tbody>
</table>

**Variabile Array**

I vertici della linea sono specificati come un array di punti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_line(array)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• array - array di punti</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_to_wkt(make_line(array(make_point(2,4),make_point(3,5),make_point(9,7)))) → “LineString (2 4 3 5 9 7)”</td>
</tr>
</tbody>
</table>

**make_point**

Crea una geometria punto da un valore x e y (e z e m opzionali).

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_point(x, y, [z], [m])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ] indica argomenti facoltativi</td>
</tr>
<tr>
<td>Argomenti</td>
<td>• x - coordinata x di un punto</td>
</tr>
<tr>
<td></td>
<td>• y - coordinata y di un punto</td>
</tr>
<tr>
<td></td>
<td>• z - coordinata opzionale z di un punto</td>
</tr>
<tr>
<td></td>
<td>• m - valore opzionale m di un punto</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_to_wkt(make_point(2,4)) → “Point (2 4)”</td>
</tr>
<tr>
<td></td>
<td>• geom_to_wkt(make_point(2,4,6)) → “PointZ (2 4 6)”</td>
</tr>
<tr>
<td></td>
<td>• geom_to_wkt(make_point(2,4,6,8)) → “PointZM (2 4 6 8)”</td>
</tr>
</tbody>
</table>
**make_point_m**

Crea una geometria punto da una coordinata x, y e un valore m.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th><code>make_point_m(x, y, m)</code></th>
</tr>
</thead>
</table>
| Argomenti | • x - coordinata x di un punto  
          • y - coordinata y di un punto  
          • m - valore m del punto |
| Esempi   | `geom_to_wkt(make_point_m(2, 4, 6))` → “PointM (2 4 6)” |

**make_polygon**

Crea una geometria poligonale da un anello esterno e da una serie opzionale di geometrie di anelli interni.

| Sintassi | `make_polygon(outerRing, [innerRing1], [innerRing2], …)`  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[ ] indica argomenti facoltativi</td>
<td></td>
</tr>
</tbody>
</table>
| Argomenti | • outerRing - geometria di linea chiusa per l'anello esterno del poligono  
          • innerRing - geometria opzionale della linea chiusa per l'anello interno |
| Esempi   | `geom_to_wkt(make_polygon(geom_from_wkt('LINESTRING( 0 0, 0 1, 1 1, 1 0, 0 0 )'))))` → “Polygon ((0 0, 0 1, 1 1, 1 0, 0 0))”  
          `geom_to_wkt(make_polygon(geom_from_wkt('LINESTRING( 0 0, 0 1, 1 1, 1 0, 0 0 )'), geom_from_wkt('LINESTRING( 0.1 0.1, 0.1 0.2, 0.2 0.2, 0.2 0.1, 0.1 0.1 )'))))` → “Polygon ((0 0, 0 1, 1 1, 1 0, 0 0),(0.1 0.1, 0.1 0.2, 0.2 0.2, 0.2 0.1, 0.1 0.1),(0.8 0.8, 0.8 0.9, 0.9 0.9, 0.9 0.8, 0.8 0.8))” |

**make_rectangle_3points**

Crea un rettangolo da 3 punti.

| Sintassi | `make_rectangle_3points(point1, point2, point3, [option=0])`  
| [ ] indica argomenti facoltativi |
| Argomenti | • point1 - Primo punto.  
          • point2 - Secondo punto.  
          • point3 - Terzo punto.  
          • option - Un argomento opzionale per costruire il rettangolo. Per default questo valore è 0. Il valore può essere 0 (distanza) o 1 (proiettato). Opzione distanza: La seconda distanza è uguale alla distanza tra il 2° e il 3° punto. Opzione proiettato: La seconda distanza è uguale alla distanza della proiezione perpendicolare del 3° punto sul segmento o sulla sua estensione. |
| Esempi   | `geom_to_wkt(make_rectangle(make_point(0, 0), make_point(0, 5), make_point(5, 5), 0)))` → “Polygon ((0 0, 0 5, 5 5, 5 0))”  
          `geom_to_wkt(make_rectangle(make_point(0, 0), make_point(0, 5), make_point(5, 3), 1)))` → “Polygon ((0 0, 0 5, 5 5, 5 0))” |
### make_regular_polygon

Crea un poligono regolare.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_regular_polygon(center, radius, number_sides, [circle=0])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ] indica argomenti facoltativi</td>
</tr>
</tbody>
</table>

#### Argomenti

- **center** - centro del poligono regolare
- **radius** - secondo punto. Il primo se il poligono regolare è inscritto. Il punto medio del primo lato se il poligono regolare è circoscritto.
- **number_sides** - Numero di lati/angoli del poligono regolare
- **circle** - Argomento opzionale per costruire il poligono regolare. Per default questo valore è 0. Il valore può essere 0 (inscritto) o 1 (circoscritto)

#### Esempi

- `geom_to_wkt(make_regular_polygon(make_point(0,0), make_point(0,5), 5))` → “Polygon ((0 5, 4.76 1.55, 2.94 -4.05, -2.94 -4.05, -4.76 1.55, 0 5))”
- `geom_to_wkt(make_regular_polygon(make_point(0,0), project(make_point(0,0), 4.0451, radians(36)), 5))` → “Polygon ((0 5, 4.76 1.55, 2.94 -4.05, -2.94 -4.05, -4.76 1.55, 0 5))”

### make_square

Crea un quadrato da una diagonale.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_square(point1, point2)</th>
</tr>
</thead>
</table>

#### Argomenti

- **point1** - Punto iniziale della diagonale
- **point2** - Punto finale della diagonale

#### Esempi

- `geom_to_wkt(make_square(make_point(0,0), make_point(5,5)))` → “Polygon ((0 0, 5 5, 5 5, 0 0))”
- `geom_to_wkt(make_square(make_point(5,0), make_point(5,5)))` → “Polygon ((5 0, 2.5 2.5, 5 5, 7.5 2.5, 5 0))”

### make_triangle

Crea un poligono triangolare.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>make_triangle(point1, point2, point3)</th>
</tr>
</thead>
</table>

#### Argomenti

- **point1** - primo punto del triangolo
- **point2** - secondo punto del triangolo
- **point3** - terzo punto del triangolo

#### Esempi

- `geom_to_wkt(make_triangle(make_point(0,0), make_point(5,5), make_point(0,10)))` → “Triangle ((0 0, 5 5, 0 10))”
- `geom_to_wkt(boundary(make_triangle(make_point(0,0), make_point(5,5), make_point(0,10))))` → “LineString (0 0, 5 5, 0 10, 0 0)”
minimal_circle

Restituisce il cerchio minimo che racchiude una geometria. Rappresenta il cerchio minimo che racchiude tutte le geometrie dell’insieme.

**Sintassi**

\[
\text{minimal\_circle}(\text{geometry}, \text{[segments=36]}])
\]

[[ indica argomenti facoltativi

**Argomenti**

- **geometry** - una geometria
- **segments** - parametro opzionale per la segmentazione del poligono. Per impostazione predefinita questo valore è 36

**Esempi**

- \(\text{geom\_to\_wkt( minimal\_circle( geom\_from\_wkt( 'LINESTRING(0 5, 0 -5, 2 1)' ), 4 ) )} \rightarrow \text{"Polygon ((0 5, 5 -0, -0 -5, 5 0, 0 5)\")}\)
- \(\text{geom\_to\_wkt( minimal\_circle( geom\_from\_wkt( 'MULTIPOINT(1 2, 3 4, 3 2)\') ), 4 )} \rightarrow \text{"Polygon ((3 4, 3 2, 1 2, 1 4, 3 4)\")}\)

Ulteriori informazioni: *Cerchio minimo circoscritto* algoritmo

**nodes_to_points**

Restituisce una geometria multipunto che comprende ogni nodo della geometria in ingresso.

**Sintassi**

\[
\text{nodes\_to\_points}(\text{geometry}, \text{[ignore\_closing\_nodes=false]}])
\]

[[ indica argomenti facoltativi

**Argomenti**

- **geometry** - elemento geometria
- **ignore\_closing\_nodes** - argomento opzionale che specifica se includere i nodi duplicati che chiudono linee o anelli di poligoni. Di default è false, impostato a true per evitare di includere questi nodi duplicati nell’insieme di geometrie differenti in uscita.

**Esempi**

- \(\text{geom\_to\_wkt(nodes\_to\_points(geom\_from\_wkt('LINESTRING(0 0, 1 1, 2 2)'))))} \rightarrow \text{"MultiPoint ((0 0),(1 1),(2 2))\")}\)
- \(\text{geom\_to\_wkt(nodes\_to\_points(geom\_from\_wkt('POLYGON((-1 -1, 4 0, 4 2, 0 2, -1 -1)\')),true))} \rightarrow \text{"MultiPoint ((-1 -1),(4 0),(4 2),(0 2))\")}\)

Ulteriori informazioni: *Estrazione vertici* algoritmo

**num_geometries**

Restituisce il numero di geometrie in un insieme di geometrie differenti, o NULL se la geometria in ingresso non è un insieme di geometrie differenti.

**Sintassi**

\[
\text{num\_geometries}(\text{geometry})
\]

**Argomenti**

- **geometry** - geometry collection

**Esempi**

- \(\text{num\_geometries(geom\_from\_wkt('GEOMETRYCOLLECTION(POINT(0 1), POINT(0 0), POINT(1 0), POINT(1 1))\'))} \rightarrow 4\)
num_interior_rings

Restituisce il numero di anelli interni in un poligono o in una insieme di geometrie differenti, o NULL se la geometria in ingresso non è un poligono o un insieme di geometrie differenti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>num_interior_rings(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - geometria in ingresso</td>
</tr>
<tr>
<td>Esempi</td>
<td>• num_interior_rings(geom_from_wkt('POLYGON((-1 -1, 4 0, 4 2, 0 2, -1 -1),(-0.1 -0.1, 0.4 0, 0.4 0.2, 0 0.2, -0.1 -0.1))')) → 1</td>
</tr>
</tbody>
</table>

num_points

Restituisce il numero di vertici di una geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>num_points(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• num_points($geometry) → numero di vertici nella geometria dell'elemento corrente</td>
</tr>
</tbody>
</table>

num_rings

Restituisce il numero di anelli (compresi quelli esterni) in un poligono o in un insieme di geometrie differenti, o NULL se la geometria di input non è un poligono o un insieme di geometrie differenti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>num_rings(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - geometria in ingresso</td>
</tr>
<tr>
<td>Esempi</td>
<td>• num_rings(geom_from_wkt('POLYGON((-1 -1, 4 0, 4 2, 0 2, -1 -1),(-0.1 -0.1, 0.4 0, 0.4 0.2, 0 0.2, -0.1 -0.1))')) → 2</td>
</tr>
</tbody>
</table>

offset_curve

Restituisce una geometria formata dall’offset di una geometria con una stringa di linee a lato. Le distanze sono nel sistema di riferimento spaziale di questa geometria.
offset_curve(geometry, distance, [segments=8], [join=1], [miter_limit=2.0])

• **geometry** - una geometria (multi)stringa di linee
• **distance** - distanza di offset. I valori positivi saranno bufferizzati a sinistra delle linee, i valori negativi a destra
• **segments** - numero di segmenti da usare per rappresentare un quarto di cerchio quando viene usato uno stile di unione circolare. Un numero maggiore ha come risultato una linea più regolare con più nodi.
• **join** - stile di giunzione per gli angoli, dove 1 = arrotondato, 2 = seghettato e 3 = smussato
• **miter_limit** - limite sul rapporto di seghettatura usato per gli angoli molto stretti (quando si usano solo le giunzioni seghettate)

<table>
<thead>
<tr>
<th>Esempi</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset_curve($geometry, 10.5) → linea spostata a sinistra di 10.5 unità</td>
</tr>
<tr>
<td>offset_curve($geometry, -10.5) → linea spostata a destra di 10.5 unità</td>
</tr>
<tr>
<td>offset_curve($geometry, 10.5, segments=16, join=1) → linea spostata a sinistra di 10.5 unità, usando più segmenti per ottenere una curva più regolare</td>
</tr>
<tr>
<td>offset_curve($geometry, 10.5, join=3) → linea spostata a sinistra di 10.5 unità, usando un join smussato</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: *Linee di offset* algoritmo

**order_parts**

Ordina le parti di una MultiGeometry secondo un determinato criterio

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>order_parts(geometry, orderby, ascending)</th>
</tr>
</thead>
</table>
| Argomenti | • **geometry** - una geometria multi-tipo  
• **orderby** - una espressione stringa che definisce i criteri di ordinamento  
• **ascendente** - booleano, True per ascendente, False per discendente |

<table>
<thead>
<tr>
<th>Esempi</th>
</tr>
</thead>
</table>
| geom_to_wkt(order_parts(geom_from_wkt('MultiPolygon (((1 1, 5 1, 5 5, 1 5, 1 1)),((1 1, 9 1, 9 9, 1 9, 1 1)))'), 'area($geometry)', False)) → "MultiPolygon (((1 1, 9 1, 9 9, 1 9, 1 1)),((1 1, 5 1, 5 5, 1 5, 1 1)))"
| geom_to_wkt(order_parts(geom_from_wkt('LineString(1 2, 3 3, 2, 4 3)'), '1', True)) → "LineString(1 2, 3 2, 4 3)" |

**oriented_bbox**

Restituisce una geometria che rappresenta il rettangolo di delimitazione orientato minimo di una geometria di input.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>oriented_bbox(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>geometry</strong> - una geometria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
</tr>
</thead>
<tbody>
<tr>
<td>geom_to_wkt( oriented_bbox( geom_from_wkt( 'MULTIPOINT(1 2, 3 4, 3 2)') ) ) → &quot;Polygon (3 2, 3 4, 1 4, 1 2, 3 2)&quot;</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: *Perimetro di delimitazione minimo orientato* algoritmo
overlaps

Verifica se una geometria si sovrappone ad un'altra. Restituisce true se le geometrie condividono lo spazio, sono della stessa dimensione, ma non sono completamente contenute l'una dall'altra.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>overlaps(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry1 - una geometria</td>
</tr>
<tr>
<td></td>
<td>• geometry2 - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• overlaps( geom_from_wkt( 'LINESTRING(3 5, 4 4, 5 5, 5 3)' ), geom_from_wkt( 'LINESTRING(3 3, 4 4, 5 5)' ) ) → true</td>
</tr>
<tr>
<td></td>
<td>• overlaps( geom_from_wkt( 'LINESTRING(0 0, 1 1)' ), geom_from_wkt( 'LINESTRING(3 3, 4 4, 5 5)' ) ) → false</td>
</tr>
</tbody>
</table>

overlay_contains

Restituisce se l'elemento corrente ha elementi di un layer di destinazione, o un array di risultati basati su espressioni per gli elementi del layer di destinazione contenuti nell'elemento corrente.

Leggi di più sul sottostante predicato «Contains» di GEOS, come descritto nella funzione PostGIS ST_Contains.
### Sintassi

`overlay_contains(layer, [expression], [filter], [limit], [cache=false])`

[] indica argomenti facoltativi

### Argomenti

- **layer** - il layer per il quale viene verificata la sovrapposizione
- **expression** - un'espressione opzionale che deve essere applicata agli elementi del layer di destinazione. Se non è impostata, la funzione restituisce solo un booleano che indica se c'è almeno una corrispondenza.
- **filter** - un'espressione opzionale per filtrare gli elementi da controllare. Se non è impostata, tutte gli elementi saranno controllati.
- **limit** - un intero opzionale per limitare il numero di elementi risultanti. Se non è impostato, verranno restituite tutti gli elementi trovati.
- **cache** - imposta a true per costruire un indice spaziale locale (la maggior parte delle volte, questo non è desiderato, a meno che non stai lavorando con un fornitore di dati particolarmente lento)

### Esempi

- `overlay_contains('regions')` → true se l'elemento corrente contiene spazialmente una regione
- `overlay_contains('regions', filter:= population > 10000)` → true se l'elemento corrente contiene spazialmente una regione con una popolazione maggiore di 10000
- `overlay_contains('regions', name)` → un array di nomi, per le regioni contenute nell'elemento corrente
- `array_to_string(overlay_contains('regions', name))` → una stringa come lista separata da virgole di nomi, per le regioni contenute nell'elemento corrente
- `array_length(overlay_contains('regions', name))` → il numero di regioni contenute nell'elemento corrente
- `array_sort(overlay_contains(layer:='regions', expression:="name", filter:= population > 10000))` → un array ordinato di nomi, per le regioni contenute nell'elemento corrente e con una popolazione maggiore di 10000
- `overlay_contains(layer:='regions', expression:= geom_to_wkt($geometry), limit:=2)` → un array di geometrie (in WKT), per un massimo di due regioni contenute nell'elemento corrente

### Ulteriori informazioni:

- contains
- array manipulation
- Seleziona per posizione

**overlay_crosses**

Restituisce se l'elemento corrente attraversa spazialmente almeno un elemento di un layer di destinazione, o un array di risultati basati sull'espressione per gli elementi nel layer di destinazione attraversato dall'elemento corrente.

Leggi di più sul sottostante predicato GEOS «Crosses», come descritto nella funzione PostGIS `ST_Crosses`.

### 14.3. Lista delle funzioni
### Sintassi

```python
overlay_crosses(layer, [expression], [filter], [limit], [cache=false])
```

[] indica argomenti facoltativi

### Argomenti

- **layer** - il layer per il quale viene verificata la sovrapposizione
- **expression** - un’espressione opzionale che deve essere applicata agli elementi del layer di destinazione. Se non è impostata, la funzione restituisce solo un booleano che indica se c’è almeno una corrispondenza.
- **filter** - un’espressione opzionale per filtrare gli elementi da controllare. Se non è impostata, tutte gli elementi saranno controllati.
- **limit** - un intero opzionale per limitare il numero di elementi risultanti. Se non è impostato, verranno restituite tutti gli elementi trovati.
- **cache** - imposta a true per costruire un indice spaziale locale (la maggior parte delle volte, questo non è desiderato, a meno che non stai lavorando con un fornitore di dati particolarmente lento)

### Esempi

- `overlay_crosses('regions')` → true se l’elemento corrente attraversa spazialmente una regione
- `overlay_crosses('regions', filter: population > 10000)` → true se l’elemento corrente attraversa spazialmente una regione con una popolazione maggiore di 10000
- `overlay_crosses('regions', name)` → un array di nomi, per le regioni attraversate dall’elemento corrente
- `array_to_string(overlay_crosses('regions', name))` → una stringa come lista separata da virgole di nomi, per le regioni attraversate dall’elemento corrente
- `array_sort(overlay_crosses(layer:='regions', expression:="name", filter: population > 10000))` → un array ordinato di nomi, per le regioni attraversate dall’elemento corrente e con una popolazione maggiore di 10000
- `overlay_crosses(layer:='regions', expression:= geom_to_wkt($geometry), limit:=2)` → un array di geometrie (in WKT), per un massimo di due regioni attraversate dall’elemento corrente

### Ulteriori informazioni:
- `crosses`, `array manipulation`, `Seleziona per posizione` algoritmo

### `overlay_disjoint`

Restituisce se l’elemento corrente è spazialmente disgiunta da tutti gli elementi di un layer di destinazione, o un array di risultati basati sull’espressione per gli elementi nel layer di destinazione che sono disgiunte dall’elemento corrente.

Leggi di più sul sottostante predicato «Disjoint» di GEOS, come descritto nella funzione PostGIS `ST_Dissjoint`. 

428 Capitolo 14. Lavorare con i vettori
### Sintassi

\[
\text{overlay\_disjoint}(\text{layer}, [\text{expression}], [\text{filter}], [\text{limit}], [\text{cache}=false])
\]

[ ] indica argomenti facoltativi

#### Argomenti

- **layer** - il layer per il quale viene verificata la sovrapposizione
- **expression** - un'espressione opzionale che deve essere applicata agli elementi del layer di destinazione. Se non è impostata, la funzione restituisce solo un booleano che indica se c'è almeno una corrispondenza.
- **filter** - un'espressione opzionale per filtrare gli elementi da controllare. Se non è impostata, tutte gli elementi saranno controllati.
- **limit** - un intero opzionale per limitare il numero di elementi risultanti. Se non è impostato, verranno restituite tutti gli elementi trovati.
- **cache** - imposta a true per costruire un indice spaziale locale (la maggior parte delle volte, questo non è desiderato, a meno che non stai lavorando con un fornitore di dati particolarmente lento)

#### Esempi

- \(\text{overlay\_disjoint('regions')}\) → true se l'elemento corrente è spazialmente disgiunto da tutte le regioni
- \(\text{overlay\_disjoint('regions', filter:= population > 10000)}\) → true se l'elemento corrente è spazialmente disgiunto da tutte le regioni con una popolazione maggiore di 10000
- \(\text{overlay\_disjoint('regions', name)}\) → un array di nomi, per le regioni spazialmente disgiunte dall'elemento corrente
- \(\text{array\_to\_string(overlay\_disjoint('regions', name))}\) → una stringa come lista separata da virgole di nomi, per le regioni spazialmente disgiunte dall'elemento corrente
- \(\text{array\_sort(overlay\_disjoint(layer:= 'regions', expression:="name", filter:= population > 10000))}\) → un array ordinato di nomi, per le regioni spazialmente disgiunte dall'elemento corrente e con una popolazione maggiore di 10000
- \(\text{overlay\_disjoint(layer:= 'regions', expression:= geom\_to\_wkt($geometry), limit:=2)}\) → un array di geometrie (in WKT), per un massimo di due regioni spazialmente disgiunte dall'elemento corrente

Ulteriori informazioni: *disjoint, array manipulation, Seleziona per posizione algoritmo*

#### overlay\_equals

Restituisce se l'elemento corrente è spazialmente uguale ad almeno un elemento di un layer di destinazione, o un array di risultati basati su espressioni per gli elementi nel layer di destinazione che sono spazialmente uguali all'elemento corrente.

Leggi di più sul sottostante predicato «Equals» di GEOS, come descritto nella funzione PostGIS \text{ST\_Equals.}
<table>
<thead>
<tr>
<th>Sintassi</th>
<th>overlay equals(layer, [expression], [filter], [limit], [cache=false])</th>
</tr>
</thead>
</table>

**Argomenti**

- **layer** - il layer per il quale viene verificata la sovrapposizione  
- **expression** - un'espressione opzionale che deve essere applicata agli elementi del layer di destinazione. Se non è impostata, la funzione restituisce solo un booleano che indica se c'è almeno una corrispondenza.  
- **filter** - un'espressione opzionale per filtrare gli elementi da controllare. Se non è impostata, tutte gli elementi saranno controllati.  
- **limit** - un intero opzionale per limitare il numero di elementi risultanti. Se non è impostato, verranno restituite tutti gli elementi trovati.  
- **cache** - imposta a true per costruire un indice spaziale locale (la maggior parte delle volte, questo non è desiderato, a meno che non stai lavorando con un fornitore di dati particolarmente lento)

**Esempi**

- overlay equals('regions') → true se l'elemento corrente è spazialmente uguale a una regione  
- overlay equals('regions', filter:= population > 10000) → true se l'elemento corrente è spazialmente uguale a una regione con una popolazione maggiore di 10000  
- overlay equals('regions', name) → un array di nomi, per le regioni spazialmente uguali all'elemento corrente  
- array to string(overlay equals('regions', name)) → una stringa come lista separata da virgole di nomi, per le regioni spazialmente uguali all'elemento corrente  
- array sort(overlay equals(layer:'regions', expression:="name", filter:= population > 10000)) → un array ordinato di nomi, per le regioni spazialmente uguali all'elemento corrente e con una popolazione maggiore di 10000  
- overlay equals(layer:='regions', expression:= geom to wkt($geometry), limit:=2) → un array di geometrie (in WKT), per un massimo di due regioni spazialmente uguali all'elemento corrente

Ulteriori informazioni: array manipulation, Seleziona per posizione algoritmo

**overlay intersects**

Restituisce se l'elemento corrente interseca spazialmente almeno un elemento di un layer di destinazione, o un array di risultati basati sull'espressione per gli elementi nel layer di destinazione intersecati dall'elemento corrente.

Leggi di più sul sottostante predicato «Intersects» di GEOS, come descritto nella funzione PostGIS ST_Intersects.
<table>
<thead>
<tr>
<th>Sintassi</th>
<th>overlay_intersects(layer, [expression], [filter], [limit], [cache=false])</th>
</tr>
</thead>
</table>
| Argomenti | • **layer** - il layer per il quale viene verificata la sovrapposizione  
• **expression** - un'espressione opzionale che deve essere applicata agli elementi del layer di destinazione. Se non è impostata, la funzione restituisce solo un booleano che indica se c'è almeno una corrispondenza.  
• **filter** - un'espressione opzionale per filtrare gli elementi da controllare. Se non è impostata, tutte gli elementi saranno controllati.  
• **limit** - un intero opzionale per limitare il numero di elementi risultanti. Se non è impostato, verranno restituiti tutti gli elementi trovati.  
• **cache** - imposta a true per costruire un indice spaziale locale (la maggior parte delle volte, questo non è desiderato, a meno che non stai lavorando con un fornitore di dati particolarmente lento) |
| Esempi | • overlay_intersects('regions') → true se l'elemento corrente interseca spazialmente una regione  
• overlay_intersects('regions', filter:= population > 10000) → true se l'elemento corrente interseca spazialmente una regione con una popolazione maggiore di 10000  
• overlay_intersects('regions', name) → un array di nomi, per le regioni intersecate dall'elemento corrente  
• array_to_string(overlay_intersects('regions', name)) → una stringa come lista separata da virgole di nomi, per le regioni intersecate dall'elemento corrente  
• array_sort(overlay_intersects(layer:='regions', expression:="name", filter:= population > 10000)) → un array ordinato di nomi, per le regioni intersecate dall'elemento corrente e con una popolazione maggiore di 10000  
• overlay_intersects(layer:='regions', expression:= geom_to_wkt($geometry), limit:=2) → un array di geometrie (in WKT), per un massimo di due regioni intersecate dall'elemento corrente |

Ulteriori informazioni: intersects, array manipulation, Seleziona per posizione algoritmo

**overlay_nearest**

Restituisce se l'elemento corrente ha elemento(i) di un layer di destinazione entro una data distanza, o un array di risultati basati su espressioni per gli elementi nel layer di destinazione entro una distanza dall'elemento corrente.

Nota: questa funzione può essere lenta e consumare molta memoria per i layer grandi.
### Sintassi

`overlay_nearest(layer, [expression], [filter], [limit=1], [max_distance], [cache=false])`

[] indica argomenti facoltativi

### Argomenti

- **layer** - il layer di destinazione
- **expression** - un'espressione opzionale che deve essere applicata agli elementi del layer di destinazione. Se non è impostata, la funzione restituisce solo un booleano che indica se c'è almeno una corrispondenza.
- **filter** - un'espressione opzionale per filtrare gli elementi di destinazione da controllare. Se non è impostata, saranno usati tutti gli elementi nel layer di destinazione.
- **limit** - un intero opzionale per limitare il numero di elementi corrispondenti. Se non impostato, verrà restituita solo l'elemento più vicino. Se impostato a -1, restituisce tutti gli elementi corrispondenti.
- **max_distance** - una distanza opzionale per limitare la ricerca degli elementi corrispondenti. Se non è impostata, saranno usati tutti gli elementi nel layer di destinazione.
- **cache** - imposta a true per costruire un indice spaziale locale (la maggior parte delle volte, questo non è desiderato, a meno che non stai lavorando con un fornitore di dati particolarmente lento)

### Esempi

- `overlay_nearest('airports')` → true se il layer «airports» ha almeno un elemento
- `overlay_nearest('airports', max_distance:= 5000)` → true se c'è un aeroporto entro una distanza di 5000 unità di mappa dall'elemento corrente
- `overlay_nearest('airports', name)` → il nome dell'aeroporto più vicino all'elemento corrente, nel formato di un array
- `array_to_string(overlay_nearest('airports', name))` → il nome dell'aeroporto più vicino all'elemento corrente, come stringa
- `overlay_nearest(layer:='airports', expression:= name, max_distance:= 5000)` → il nome dell'aeroporto più vicino entro una distanza di 5000 unità di mappa dall'elemento corrente, nel formato di un array
- `overlay_nearest(layer:='airports', expression:= name, filter:= "Use"='Civilian', limit:=3)` → un array di nomi, di un massimo di tre aeroporti civili più vicini ordinati per distanza
- `overlay_nearest(layer:='airports', expression:= name, limit:= -1, max_distance:= 5000)` → un array di nomi, di tutti gli aeroporti entro una distanza di 5000 unità di mappa dall'elemento corrente, ordinato per distanza

### Ulteriori informazioni:

- array manipulation
- Unire gli attributi per il più vicino algoritmo

**overlayTouches**

Restituisce se la caratteristica corrente tocca spazialmente almeno un elemento di un layer di destinazione, o un array di risultati basati sull'espressione per gli elementi nel layer di destinazione toccate dall'elemento corrente.

Leggi di più sul sottostante predicato «Touches» di GEOS, come descritto nella funzione PostGIS `ST_Touches`
<table>
<thead>
<tr>
<th>Sintassi</th>
<th>overlayTouches(layer, [expression], [filter], [limit], [cache=false])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] indica argomenti facoltativi</td>
<td></td>
</tr>
</tbody>
</table>

**Argomenti**

- **layer** - il layer per il quale viene verificata la sovrapposizione
- **expression** - un'espressione opzionale che deve essere applicata agli elementi del layer di destinazione. Se non è impostata, la funzione restituisce solo un booleano che indica se c'è almeno una corrispondenza.
- **filter** - un'espressione opzionale per filtrare gli elementi da controllare. Se non è impostata, tutte gli elementi saranno controllati.
- **limit** - un intero opzionale per limitare il numero di elementi risultanti. Se non è impostato, verranno restituite tutti gli elementi trovati.
- **cache** - imposta a true per costruire un indice spaziale locale (la maggior parte delle volte, questo non è desiderato, a meno che non stai lavorando con un fornitore di dati particolarmente lento)

**Esempi**

- `overlayTouches('regions')` → true se l'elemento corrente tocca spazialmente una regione
- `overlayTouches('regions', filter:= population > 10000) → true se l'elemento corrente tocca spazialmente una regione con una popolazione maggiore di 10000
- `overlayTouches('regions', name)` → un array di nomi, per le regioni toccate dall'elemento corrente
- `string_to_array(overlayTouches('regions', name))` → una stringa come lista separata da virgole di nomi, per le regioni toccate dall'elemento corrente
- `array_sort(overlayTouches(layer:='regions', expression:="name", filter:= population > 10000))` → un array ordinato di nomi, per le regioni toccate dall'elemento corrente e con una popolazione maggiore di 10000
- `overlayTouches(layer:='regions', expression:=geom_to_wkt($geometry), limit:=2)` → un array di geometrie (in WKT), per un massimo di due regioni toccate dall'elemento corrente

Ulteriori informazioni: touches, array manipulation, Seleziona per posizione algoritmo

**overlay_within**

Restituisce se l'elemento corrente è spazialmente all'interno di almeno un elemento di un layer di destinazione, o un array di risultati basati sull'espressione per gli elementi nel layer di destinazione che contengono l'elemento corrente.

Leggi di più sul sottostante predicato «Within» di GEOS, come descritto nella funzione PostGIS `ST_Within`.
Sintassi

```
overlay_within(layer, [expression], [filter], [limit], [cache=false])
```

[] indica argomenti facoltativi

Argomenti

- **layer** - il layer per il quale viene verificata la sovrapposizione
- **expression** - un'espressione opzionale che deve essere applicata agli elementi del layer di destinazione. Se non è impostata, la funzione restituisce solo un booleano che indica se c'è almeno una corrispondenza.
- **filter** - un'espressione opzionale per filtrare gli elementi da controllare. Se non è impostata, tutte gli elementi saranno controllati.
- **limit** - un intero opzionale per limitare il numero di elementi risultanti. Se non è impostato, verranno restituite tutti gli elementi trovati.
- **cache** - imposta a true per costruire un indice spaziale locale (la maggior parte delle volte, questo non è desiderato, a meno che non stia lavorando con un fornitore di dati particolarmente lento)

Esempi

- `overlay_within('regions')` → true se l’elemento corrente è spazialmente dentro una regione
- `overlay_within('regions', filter:= population > 10000)` → true se l’elemento corrente è spazialmente dentro una regione con una popolazione maggiore di 10000
- `overlay_within('regions', name)` → un array di nomi, per le regioni che contengono l’elemento corrente
- `array_to_string(overlay_within('regions', name))` → una stringa come lista separata da virgole di nomi, per le regioni che contengono l’elemento corrente
- `array_sort(overlay_within(layer:='regions', expression:="name", filter:= population > 10000))` → un array ordinato di nomi, per le regioni contenenti l’elemento corrente e con una popolazione maggiore di 10000
- `overlay_within(layer:='regions', expression:= geom_to_wkt($geometry), limit:=2)` → un array di geometrie (in WKT), per un massimo di due regioni contenenti l’elemento corrente

Ulteriori informazioni: *within, array manipulation, Seleziona per posizione* algoritmo

**$perimeter**

Restituisce la lunghezza del perimetro dell’elemento corrente. Il perimetro calcolato da questa funzione rispetta sia l'impostazione dell'ellissoide del progetto corrente che le impostazioni dell'unità di distanza. Per esempio, se un ellissoide è stato impostato per il progetto, allora il perimetro calcolato sarà ellissoidale, e se nessun ellissoide è impostato, allora il perimetro calcolato sarà planimetrico.

```
$perimeter
```

Esempi

- `$perimeter` → 42
perimeter

Restituisce il perimetro di un oggetto geometrico poligono. I calcoli sono sempre planimetrici nel Sistema di Riferimento Spaziale (SR) di questa geometria, e le unità del perimetro restituito corrisponderanno alle unità dell'SR. Questo differisce dai calcoli eseguiti dalla funzione `perimeter`, che eseguirà calcoli ellissoidali basati sulle impostazioni dell'ellissoide e dell'unità di distanza del progetto.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>perimeter(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - oggetto geometria poligonale</td>
</tr>
<tr>
<td>Esempi</td>
<td>• perimeter(geom_from_wkt('POLYGON((0 0, 4 0, 4 2, 0 2, 0 0))')) → 12.0</td>
</tr>
</tbody>
</table>

point_n

Restituisce un nodo specifico da una geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>point_n(geometry, index)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - elemento geometria</td>
</tr>
<tr>
<td></td>
<td>• index - indice del nodo da restituire, dove 1 è il primo nodo; se il valore è negativo, l'indice del vertice selezionato sarà il suo conteggio totale meno il valore assoluto</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_to_wkt(point_n(geom_from_wkt('POLYGON((0 0, 4 0, 4 2, 0 2, 0 0))'),2)) → “Point (4 0)”</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: Estrazione vertici specifici algoritmo

point_on_surface

Restituisce un punto il cui posizionamento è sicuro sulla superficie di una geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>point_on_surface(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• punto_su_superficie($geometria) → una geometria punto</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: Punto su Superficie algoritmo
pole_of_inaccessibility

Calcola il polo approssimativo di inaccessibilità per una superficie, che è il punto interno più distante dal confine della superficie. Questa funzione utilizza l'algoritmo “polylabel” (Vladimir Agafonkin, 2016), che è un approccio iterativo per trovare il vero polo di inaccessibilità entro una tolleranza specificata. Tollerenze più precise richiedono più iterazioni e richiederanno più tempo per il calcolo.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>pole_of_inaccessibility(geometry, tolerance)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• geometry</td>
<td>una geometria</td>
</tr>
<tr>
<td>• tolerance</td>
<td>distanza massima tra il punto restituito e la vera posizione del polo</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td></td>
</tr>
</tbody>
</table>
| • geom_to_wkt(pole_of_inaccessibility(geom_from_wkt('POLYGON((0 1, 0 9, 3 10, 3 3, 10 3, 10 1, 0 1))'), 0.1)) → "Point(1.546875 2.546875)"

Ulteriori informazioni: **Polo di inaccessibilità algoritmo**

project

Restituisce un punto proiettato da un punto di partenza utilizzando una distanza, un rilevamento (azimut) e un’elevazione in radianti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>project(point, distance, azimuth, [elevation])</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• punto</td>
<td>punto iniziale</td>
</tr>
<tr>
<td>• distanza</td>
<td>distanza dal progetto</td>
</tr>
<tr>
<td>• azimuth</td>
<td>azimut in radianti in senso orario, dove 0 corrisponde al nord</td>
</tr>
<tr>
<td>• elevation</td>
<td>angolo di inclinazione in radianti</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td></td>
</tr>
</tbody>
</table>
| • geom_to_wkt(project(make_point(1, 2), 3, radians(270))) → “Point(-2, 2)"

Ulteriori informazioni: **Proiettare punti (cartesiano) algoritmo**

relate

Verifica la rappresentazione Dimensional Extended 9 Intersection Model (DE-9IM) della relazione tra due geometrie.

**Variabile Relazioni**

Restituisce la rappresentazione Dimensional Extended 9 Intersection Model (DE-9IM) della relazione tra due geometrie.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>relate(geometry, geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>• geometry</td>
<td>una geometria</td>
</tr>
<tr>
<td>• geometry</td>
<td>una geometria</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td></td>
</tr>
<tr>
<td>• relate(geom_from_wkt( 'LINESTRING(40 40,120 120)' ), geom_from_wkt( 'LINESTRING(40 40,60 120)' ) ) → “FF1F00102”</td>
<td></td>
</tr>
</tbody>
</table>
Variabile abbinamento pattern

Verifica se la relazione DE-9IM tra due geometrie corrisponde a un pattern specificato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>relate(geometry, geometry, pattern)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td></td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td></td>
<td>• pattern - pattern DE-9IM da abbinare</td>
</tr>
<tr>
<td>Esempi</td>
<td>• relate( geom_from_wkt( 'LINESTRING(40 40,120 120)' ), geom_from_wkt( 'LINESTRING(40 40,60 120)' ), '<strong>1F001</strong>' ) → True</td>
</tr>
</tbody>
</table>

**reverse**

Inverte la direzione di una linea invertendo l'ordine dei suoi vertici.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>reverse(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_to_wkt(reverse(geom_from_wkt('LINESTRING(0 0, 1 1, 2 2')'))) → “LINESTRING(2 2, 1 1, 0 0)”</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: Invertire la direzione della linea algoritmo

**rotate**

Restituisce una versione ruotata di una geometria. I calcoli sono nel sistema di riferimento spaziale di questa geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>rotate(geometry, rotation, [center])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td></td>
<td>• rotation - rotazione in senso orario in gradi</td>
</tr>
<tr>
<td></td>
<td>• center - punto centrale di rotazione. Se non specificato, viene usato il centro del rettangolo di delimitazione della geometria.</td>
</tr>
<tr>
<td>Esempi</td>
<td>• rotate($geometria, 45, make_point(4, 5)) → geometria ruotata di 45 gradi in senso orario attorno al punto (4, 5)</td>
</tr>
<tr>
<td></td>
<td>• rotate($geometria, 45) → geometria ruotata di 45 gradi in senso orario attorno al centro del suo rettangolo di delimitazione</td>
</tr>
</tbody>
</table>
**segments_to_lines**

Rispetta una geometria multi-linea che consiste in una linea per ogni segmento nella geometria in ingresso.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>segments_to_lines(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>geometry</td>
<td>- elemento geometria</td>
</tr>
</tbody>
</table>

| Esempi      | geom_to_wkt(segments_to_lines(geom_from_wkt('LINESTRING(0 0, 1 1, 2 2)'))) → MultiLineString ((0 0, 1 1), (1 1, 2 2)) |

Ulteriori informazioni: Esplodere linee algoritmo

**shortest_line**

Rispetta la linea più breve che unisce la geometria1 alla geometria2. La linea risultante inizierà alla geometria1 e finirà alla geometria2.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>shortest_line(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>geometry1</td>
<td>- geometria dalla quale trovare la linea più breve</td>
</tr>
<tr>
<td>geometry2</td>
<td>- geometria per la quale trovare la linea più breve</td>
</tr>
</tbody>
</table>

| Esempi      | geom_to_wkt(shortest_line(geom_from_wkt('LINESTRING (20 80, 98 190, 110 180, 50 75)'), geom_from_wkt('POINT(100 100)'))) → LineString(73.0769, 115.384, 100 100) |

**simplify**

Semplifica una geometria rimuovendo i nodi usando una soglia basata sulla distanza (per esempio l'algoritmo di Douglas Peucker). L'algoritmo preserva le grandi deviazioni nelle geometrie e riduce il numero di vertici in segmenti quasi rettilinei.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>simplify(geometry, tolerance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>geometry</td>
<td>- una geometria</td>
</tr>
<tr>
<td>tolerance</td>
<td>- massima deviazione dai segmenti rettilinei per i punti da rimuovere</td>
</tr>
</tbody>
</table>

| Esempi      | geom_to_wkt(simplify(geometry:=geom_from_wkt('LineString(0 0, 5 0.1, 10 0)'), tolerance:=5)) → LineString(0 0, 10 0) |

Ulteriori informazioni: Semplificazione algoritmo
**simplify_vw**

Semplifica una geometria rimuovendo i nodi usando una soglia basata sull’area (cioè l’algoritmo Visvalingham-Whyatt). L’algoritmo rimuove i vertici che creano piccole aree nelle geometrie, ad esempio piccoli spicchi o segmenti quasi dritti.

**Sintassi**
simplify_vw(geometry, tolerance)

**Argomenti**
- geometry - una geometria
- tolerance - una misura dell’area massima creata da un nodo per il nodo da rimuovere

**Esempi**
- geom_to_wkt(simplify_vw(geometry:=geom_from_wkt('LineString(0 0, 5 0, 5.01 10, 5.02 0, 10 0)'), tolerance:=5)) → “LineString(0 0, 10 0)”

Ulteriori informazioni: Semplificazione algoritmo

**single_sided_buffer**

Restituisce una geometria formata dal buffering di un solo lato di una geometria lineare. Le distanze sono nel sistema di riferimento spaziale di questa geometria.

**Sintassi**
single_sided_buffer(geometry, distance, [segments=8], [join=1], [miter_limit=2.0])

[ ] indica argomenti facoltativi

**Argomenti**
- geometry - una geometria (multi)stringa di linee
- distance - distanza del buffer. I valori positivi saranno bufferizzati a sinistra delle linee, i valori negativi a destra
- segments - numero di segmenti da usare per rappresentare un quarto di cerchio quando viene usato uno stile di unione circolare. Un numero maggiore ha come risultato un buffer più liscio con più nodi.
- join - stile di giunzione per gli angoli, dove 1 = arrotondato, 2 = seghettato e 3 = smussato
- miter_limit - limite sul rapporto di seghettatura usato per gli angoli molto stretti (quando si usano solo le giunzioni seghettate)

**Esempi**
- single_sided_buffer($geometry, 10.5) → linea bufferizzata a sinistra di 10.5 unità
- single_sided_buffer($geometry, -10.5) → linea bufferizzata a destra di 10.5 unità
- single_sided_buffer($geometry, 10.5, segments=16, join=1) → linea bufferizzata a sinistra di 10.5 unità, usando più segmenti per ottenere un buffer più uniforme
- single_sided_buffer($geometry, 10.5, join=3) → linea bufferizzata a sinistra di 10.5 unità, usando un join smussato

Ulteriori informazioni: Buffer su un solo lato algoritmo
smooth

Smussa una geometria aggiungendo nodi extra che arrotondano gli angoli della geometria. Se le geometrie di input contengono valori Z o M, anche questi saranno smussati e la geometria di output manterrà la stessa dimensionalità della geometria di input.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>smooth(geometry, [iterations=1], [offset=0.25], [min_length=-1], [max_angle=180])</th>
</tr>
</thead>
</table>
| Argomenti| • geometry - una geometria  
• iterations - numero di iterazioni di lisciatura da applicare. Numeri più grandi risultano in geometrie più uniformi ma più complesse.  
• offset - valore tra 0 e 0.5 che controlla quanto strettamente la geometria smussata segue la geometria originale. Valori più piccoli risultano in uno smussamento più stretto, valori più grandi risultano in uno smussamento più lasco.  
• min_length - lunghezza minima dei segmenti a cui applicare lo smussamento. Questo parametro può essere usato per evitare di posizionare eccessivi nodi aggiuntivi in segmenti più corti della geometria.  
• max_angle - angolo massimo al nodo per lo smussamento da applicare (0-180). Abbassando l’angolo massimo si possono intenzionalmente conservare gli angoli acuti nella geometria. Per esempio, un valore di 80 gradi manterrà gli angoli retti nella geometria. |
| Esempi | • geom_to_wkt(smooth(geometry:=geom_from_wkt('LineString(0 0, 5 0, 5 5)'),iterations:=1,offset:=0.2, min_length:=-1,max_angle:=180)) → “LineString (0 0, 4 0, 5 1, 5 5)” |

Ulteriori informazioni: **Smussare**

start_point

Restituisce il primo nodo di una geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>start_point(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - elemento geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• geom_to_wkt(start_point(geom_from_wkt('LINESTRING(4 0, 4 2, 0 2)'))) → “Point (4 0)”</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: **Estrazione vertici specifici**
**sym_difference**

Restituisce una geometria che rappresenta le porzioni di due geometrie che non si intersecano.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>sym_difference(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry1 - una geometria</td>
</tr>
<tr>
<td></td>
<td>• geometry2 - una geometria</td>
</tr>
</tbody>
</table>
| Esempi                    | • geom_to_wkt(sym_difference(geom_from_wkt('LINESTRING(3 3, 4 4, 5 5)'), geom_from_wkt('LINESTRING(3 3, 8 8)'))) → "LINESTRING(5 5, 8 8)"

Ulteriori informazioni: *Differenza simmetrica* algoritmo

**tapered_buffer**

Crea un buffer lungo la geometria lineare dove il diametro del buffer varia uniformemente sulla lunghezza della linea.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>tapered_buffer(geometry, start_width, end_width, [segments=8])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometria - geometria in ingresso. Deve essere una geometria (multi)linea.</td>
</tr>
<tr>
<td></td>
<td>• start_width - larghezza del buffer all'inizio della linea,</td>
</tr>
<tr>
<td></td>
<td>• end_width - larghezza del buffer a fine linea.</td>
</tr>
<tr>
<td></td>
<td>• segments - numero di segmenti per approssimare le curve a quarto di cerchio nel buffer.</td>
</tr>
<tr>
<td>Esempi</td>
<td>• tapered_buffer(geometry:=geom_from_wkt('LINESTRING(1 2, 4 2)'),start_width:=1,end_width:=2,segments:=8) → Un buffer rastremato che inizia con un diametro di 1 e finisce con un diametro di 2 lungo la geometria lineare.</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: *Buffer arrotondati* algoritmo

**touches**

Verifica se una geometria tocca un'altra. Restituisce true se le geometrie hanno almeno un punto in comune, ma i loro interni non si intersecano.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>touches(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry1 - una geometria</td>
</tr>
<tr>
<td></td>
<td>• geometry2 - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• touches(geom_from_wkt('LINESTRING(5 3, 4 4)'), geom_from_wkt('LINESTRING(3 3, 4 4, 5 5)')) → true</td>
</tr>
<tr>
<td></td>
<td>• touches(geom_from_wkt('POINT(4 4)'), geom_from_wkt('POINT(5 5)')) → false</td>
</tr>
</tbody>
</table>

Ulteriori informazioni: *overlay_touches*
transform

Restituisce la geometria trasformata da un SR di origine a un SR di destinazione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>transform(geometry, source_auth_id, dest_auth_id)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td></td>
<td>• source_auth_id - l'ID del SR d'origine</td>
</tr>
<tr>
<td></td>
<td>• dest_auth_id - l'ID del SR di destinazione</td>
</tr>
</tbody>
</table>

| Esempi        | geom_to_wkt( transform( make_point(488995.53240249, 7104473.38600835), 'EPSG:2154', 'EPSG:4326' ) ) → "POINT(0 51)"

Ulteriori informazioni: Layer riproiettato algoritmo

translate

Restituisce una versione traslata di una geometria. I calcoli sono nel sistema di riferimento spaziale di questa geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>translate(geometry, dx, dy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td></td>
<td>• dx - delta x</td>
</tr>
<tr>
<td></td>
<td>• dy - delta y</td>
</tr>
</tbody>
</table>

| Esempi        | translate($geometry, 5, 10) → una geometria dello stesso tipo di quella originale

Ulteriori informazioni: Trasla algoritmo

union

Restituisce una geometria che rappresenta l'unione dell'insieme di punti delle geometrie.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>union(geometry1, geometry2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry1 - una geometria</td>
</tr>
<tr>
<td></td>
<td>• geometry2 - una geometria</td>
</tr>
</tbody>
</table>

| Esempi        | geom_to_wkt( union( make_point(4, 4), make_point(5, 5) ) ) → "MULTIPOINT(4 4, 5 5)"
wedge_buffer

Restituisce un buffer a forma di cuneo originato da una geometria di punti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>wedge_buffer(center, azimuth, width, outer_radius, [inner_radius=0.0])</th>
</tr>
</thead>
</table>
| Argomenti | • center - punto centrale (origine) del buffer. Deve essere una geometria di punti.  
• azimuth - angolo (in gradi) per il centro del bordo al punto.  
• width - larghezza del buffer (in gradi). Si noti che il cuneo si estenderà fino alla metà della larghezza angolare su entrambi i lati della direzione dell’azimut.  
• outer_radius - raggio esterno per i buffer  
• inner_radius - raggio interno opzionale per i buffer |
| Esempi | • wedge_buffer(center:=geom_from_wkt('POINT(1 2)'), azimuth:=90, width:=180, outer_radius:=1) → Un buffer a forma di cuneo centrato sul punto (1,2), rivolto a est, con una larghezza di 180 gradi e raggio esterno di 1. |

Ulteriori informazioni: Creare buffer a cuneo algoritmo

within

Verifica se una geometria è all’interno di un’altra. Restituisce true se la geometria1 è completamente dentro la geometria2.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>within(geometry1, geometry2)</th>
</tr>
</thead>
</table>
| Argomenti | • geometry1 - una geometria  
• geometry2 - una geometria |
| Esempi | • within( geom_from_wkt( 'POINT( 0.5 0.5)' ), geom_from_wkt( 'POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))' ) ) → true  
• within( geom_from_wkt( 'POINT( 5 5 )' ), geom_from_wkt( 'POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))' ) ) → false |

Ulteriori informazioni: overlay_within

$sx$

Restituisce la coordinata x dell’elemento del punto corrente. Se l’elemento è una elemento multipunto, allora verrà restituita la coordinata x del primo punto.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>$sx$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esempi</td>
<td>• $sx → 42$</td>
</tr>
</tbody>
</table>
x
Restituisce la coordinata x di una geometria puntiforme, o la coordinata x del centroide per una geometria non puntiforme.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>x(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
</tbody>
</table>
| Esempi     | • x( geom_from_wkt( 'POINT(2 5)' ) ) → 2  
             | • x( $geometria ) → coordinata x del centroide dell’elemento corrente |

$x$_at
Restituisce una coordinata x della geometria dell’elemento corrente.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>$x$_at(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• i - indice del punto di una linea (gli indici iniziano da 0; i valori negativi si applicano dall’ultimo indice, a partire da -1)</td>
</tr>
<tr>
<td>Esempi</td>
<td>• $x$_at(1) → 5</td>
</tr>
</tbody>
</table>

$x$_max
Restituisce la coordinata x massima di una geometria. I calcoli sono nel sistema di riferimento spaziale di questa geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>x_max(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• x_max( geom_from_wkt( 'LINESTRING(2 5, 3 6, 4 8)' ) ) → 4</td>
</tr>
</tbody>
</table>

$x$_min
Restituisce la coordinata x minima di una geometria. I calcoli sono nel sistema di riferimento spaziale di questa geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>x_min(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• x_min( geom_from_wkt( 'LINESTRING(2 5, 3 6, 4 8)' ) ) → 2</td>
</tr>
</tbody>
</table>
$y$

Restituisce la coordinata y dell’elemento puntuale corrente. Se l’elemento è un elemento multipunto, allora verrà restituita la coordinata y del primo punto.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>$y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esempi</td>
<td>$y \rightarrow 42$</td>
</tr>
</tbody>
</table>

$y$

Restituisce la coordinata y di una geometria punto, o la coordinata y del centroide per una geometria non puntuale.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>y(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>y( geom_from_wkt( 'POINT(2 5)' ) ) $\rightarrow 5$</td>
</tr>
<tr>
<td></td>
<td>y( $geometria$ ) $\rightarrow$ coordinata y del centroide dell’elemento corrente</td>
</tr>
</tbody>
</table>

$y_{at}$

Recupera una coordinata y della geometria dall’elemento corrente.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>$y_{at}(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• i - indice del punto di una linea (gli indici iniziano da 0; i valori negativi si applicano dall’ultimo indice, a partire da -1)</td>
</tr>
<tr>
<td>Esempi</td>
<td>$y_{at}(1) \rightarrow 2$</td>
</tr>
</tbody>
</table>

$y_{max}$

Restituisce la coordinata y massima di una geometria. I calcoli sono nel sistema di riferimento spaziale di questa geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>y_max(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>y_max( geom_from_wkt( 'LINESTRING(2 5, 3 6, 4 8)' ) ) $\rightarrow 8$</td>
</tr>
</tbody>
</table>
### y_min

Restituisce la coordinata y minima di una geometria. I calcoli sono nel sistema di riferimento spaziale di questa geometria.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>y_min(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria</td>
</tr>
<tr>
<td>Esempi</td>
<td>• y_min( geom_from_wkt( 'LINESTRING(2 5, 3 6, 4 8)' ) ) → 5</td>
</tr>
</tbody>
</table>

### z

Restituisce la coordinata z di una geometria puntuale, o NULL se la geometria non ha un valore z.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>z(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria di punti</td>
</tr>
<tr>
<td>Esempi</td>
<td>• z( geom_from_wkt( 'POINTZ(2 5 7)' ) ) → 7</td>
</tr>
</tbody>
</table>

### z_max

Restituisce la coordinata z massima di una geometria, o NULL se la geometria non ha un valore z.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>z_max(geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• geometry - una geometria con coordinata z</td>
</tr>
</tbody>
</table>
| Esempi | • z_max( geom_from_wkt( 'POINT ( 0 0 1 )' ) ) → 1  
• z_max( geom_from_wkt( 'MULTIPOINT ( 0 0 1 , 1 1 3 )' ) ) → 3  
• z_max( make_line( make_point( 0,0,0 ), make_point( -1,-1,-2 ) ) ) → 0  
• z_max( geom_from_wkt( 'LINESTRING( 0 0 0, 1 0 2, 1 1 -1 )' ) ) → 2  
• z_max( geom_from_wkt( 'POINT ( 0 0 )' ) ) → NULL |

### z_min

Restituisce la coordinata z minima di una geometria, o NULL se la geometria non ha un valore z.
### 14.3.14 Funzioni per il Layout

Questo gruppo contiene funzioni per manipolare le proprietà degli oggetti del layout di stampa.

- **item_variables**

**item_variables**

Restituisce una mappa di variabili da un oggetto di layout all’interno di questo layout di stampa.

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>item_variables(id)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• id - ID oggetto layout</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• map_get( item_variables('Map 0'), 'map_scale') → scala dell’oggetto “Map 0” nel layout di stampa corrente</td>
<td></td>
</tr>
</tbody>
</table>

Ulteriori informazioni: List of default variables

### 14.3.15 Layer della Mappa

Questo gruppo contiene un elenco dei layer disponibili nel progetto corrente. Questo offre un modo conveniente per scrivere espressioni che si riferiscono a layer multipli, come quando si eseguono query aggrega, attributo o spaziale.

Fornisce anche alcune comode funzioni per manipolare i layer.

- **decode_uri**
**decode_uri**

Prende un layer e decodifica l’uri del fornitore di dati sottostante. Dipende dal dataprovider, quali dati sono disponibili.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>decode_uri(layer, [part])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] indica argomenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>facoltativi</td>
</tr>
</tbody>
</table>

**Argomenti**

- **layer** - Il layer per il quale l’uri dovrebbe essere decodificato.
- **part** - La parte dell’uri da restituire. Se non specificato, verrà restituita una mappa con tutte le parti dell’uri.

**Esempi**

- `decode_uri(@layer)` → `{“layerId”: “0”, “layerName”: “”, “path”: “/home/qgis/shapefile.shp”}
- `decode_uri(@layer)` → `{“layerId”: NULL, “layerName”: “layer”, “path”: “/home/qgis/geopackage.gpkg”}
- `decode_uri(@layer, 'path')` → “C:\my_data\qgis\shape.shp”

### 14.3.16 Funzioni mappa

Questo gruppo contiene funzioni per creare o manipolare chiavi e valori di strutture di dati cartografici (noti anche come oggetti dizionario, coppie chiave-valore o array associativi). A differenza di :ref: `list data structure` dove l’ordine dei valori è importante, l’ordine delle coppie chiave-valore nell’oggetto mappa non è rilevante e i valori sono identificati dalle loro chiavi.

- `from_json`
- `hstore_to_map`
- `json_to_map`
- `map`
- `map_akeys`
- `map_avals`
- `map_concat`
- `map_delete`
- `map_exist`
- `map_get`
- `map_insert`
- `map_to_hstore`
- `map_to_json`
- `to_json`
QGIS Desktop 3.16 User Guide

from_json
Carica una stringa formattata in JSON.
Sintassi
Argomenti
Esempi

from_json(string)
• string - una striga JSON
• from_json('{"qgis":"rocks"}') → { “qgis”: “rocks” }
• from_json('[1,2,3]') → [1,2,3]

hstore_to_map
Crea una mappa da una stringa formattata hstore.
Sintassi
Argomenti
Esempi

hstore_to_map(string)
• string - la stringa in ingresso
• hstore_to_map('qgis=>rocks') → { “qgis”: “rocks” }

json_to_map
Crea una mappa da una stringa formattata in json.
Sintassi
Argomenti
Esempi

json_to_map(string)
• string - la stringa in ingresso
• json_to_map('{"qgis":"rocks"}') → { “qgis”: “rocks” }

map
Restituisce una mappa contenente tutte le chiavi e i valori passati come coppia di parametri.
Sintassi
Argomenti

Esempi

map(key1, value1, key2, value2, …)
• key - una chiave (stringa)
• value - un valore
• map('1','one','2', 'two') → { “1”: “one”, “2”: “two” }

14.3. Lista delle funzioni

449


map_akeys

Restituisce tutte le chiavi di una mappa come array.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>map_akeys(map)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• map - una mappa</td>
</tr>
<tr>
<td>Esempi</td>
<td>• map_akeys(map('1','one','2','two')) → [&quot;1&quot;,&quot;2&quot;]</td>
</tr>
</tbody>
</table>

map_avals

Restituisce tutti i valori di una mappa come array.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>map_avals(map)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• map - una mappa</td>
</tr>
<tr>
<td>Esempi</td>
<td>• map_avals(map('1','one','2','two')) → [&quot;one&quot;,&quot;two&quot;]</td>
</tr>
</tbody>
</table>

map_concat

Restituisce una mappa con tutte le entità delle mappe fornite. Se due mappe contengono la stessa chiave, viene restituito il valore della seconda mappa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>map_concat(map1, map2,...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• map - una mappa</td>
</tr>
<tr>
<td>Esempi</td>
<td>• map_concat(map('1','one','2','overridden'),map('2','two','3','three')) → {&quot;1&quot;:&quot;one&quot;,&quot;2&quot;:&quot;two&quot;,&quot;3&quot;:&quot;three&quot;}</td>
</tr>
</tbody>
</table>

map_delete

Restituisce una mappa con la chiave data e il suo valore corrispondente eliminato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>map_delete(map, key)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• map - una mappa</td>
</tr>
<tr>
<td></td>
<td>• key - la chiave da eliminare</td>
</tr>
<tr>
<td>Esempi</td>
<td>• map_delete(map('1','one','2','two'),'2') → {&quot;1&quot;:&quot;one&quot;}</td>
</tr>
</tbody>
</table>
### map_exist

Restituisce true se la chiave data esiste nella mappa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>map_exist(map, key)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• map</td>
<td>una mappa</td>
</tr>
<tr>
<td>• key</td>
<td>la chiave da cercare</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• map_exist(map('1','one','2','two'),'3')</td>
<td>false</td>
</tr>
</tbody>
</table>

### map_get

Restituisce il valore di una mappa, data la sua chiave. Restituisce NULL se la chiave non esiste.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>map_get(map, key)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• map</td>
<td>una mappa</td>
</tr>
<tr>
<td>• key</td>
<td>la chiave da cercare</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• map_get(map('1','one','2','two'),'2')</td>
<td>“two”</td>
</tr>
<tr>
<td>• map_get(item_variables('Map 0'), 'map_scale')</td>
<td>scala dell’oggetto “Map 0” (se esiste) nel layout di stampa corrente</td>
</tr>
</tbody>
</table>

### map_insert

Restituisce una mappa con una chiave/valore aggiunto. Se la chiave esiste già, il suo valore viene sovrascritto.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>map_insert(map, key, value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• map</td>
<td>una mappa</td>
</tr>
<tr>
<td>• key</td>
<td>la chiave da aggiungere</td>
</tr>
<tr>
<td>• value</td>
<td>il valore da aggiungere</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• map_insert(map('1','one'),'3','three')</td>
<td>{“1”:“one”, “3”:“three”}</td>
</tr>
<tr>
<td>• map_insert(map('1','one','2','overridden'),'2','two')</td>
<td>{“1”:“one”, “2”:“two”}</td>
</tr>
</tbody>
</table>

### map_to_hstore

Fondere gli elementi della mappa in una stringa formatata hstore.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>map_to_hstore(map)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• map</td>
<td>la mappa in ingresso</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• map_to_hstore(map('qgis','rocks'))</td>
<td>“«qgis»=&gt;»rocks»”</td>
</tr>
</tbody>
</table>
map_to_json

Fondere gli elementi della mappa in una stringa formattata json.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>map_to_json(map)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• map - la mappa in ingresso</td>
</tr>
<tr>
<td>Esempi</td>
<td>• map_to_json(map('qgis','rocks')) ➞ {qgis:rocks}</td>
</tr>
</tbody>
</table>

to_json

Creare una stringa formattata JSON da una mappa, un array o un altro valore.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_json(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• value - Il valore in ingresso</td>
</tr>
<tr>
<td>Esempi</td>
<td>• to_json(map('qgis','rocks')) ➞ {qgis:rocks}</td>
</tr>
<tr>
<td></td>
<td>• to_json(array(1,2,3)) ➞ [1,2,3]</td>
</tr>
</tbody>
</table>

14.3.17 Funzioni Matematiche

Questo gruppo contiene funzioni matematiche (ad es. Radice quadrata, seno e coseno).

- abs
- acos
- asin
- atan
- atan2
- azimuth
- ceil
- clamp
- cos
- degrees
- exp
- floor
- inclination
- ln
- log
- log10
- max
- min
### abs

Restituisce il valore assoluto di un numero.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>abs(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• value - un numero</td>
</tr>
<tr>
<td>Esempi</td>
<td>• abs(-2) → 2</td>
</tr>
</tbody>
</table>

### acos

Restituisce l'inverso del coseno di un valore in radianti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>acos(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• value - coseno di un angolo in radianti</td>
</tr>
<tr>
<td>Esempi</td>
<td>• acos(0.5) → 1.0471975511966</td>
</tr>
</tbody>
</table>

### asin

Restituisce il seno inverso di un valore in radianti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>asin(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• value - seno di un angolo in radianti</td>
</tr>
<tr>
<td>Esempi</td>
<td>• asin(1.0) → 1.5707963267949</td>
</tr>
</tbody>
</table>
### atan

Restituisce l'inverso della tangente di un valore in radianti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>atan(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• value - tan di un angolo in radianti</td>
</tr>
<tr>
<td>Esempi</td>
<td>• atan(0.5) → 0.463647609000806</td>
</tr>
</tbody>
</table>

#### atan2

Restituisce l'inverso della tangente di dy/dx utilizzando i segni dei due argomenti per determinare il quadrante del risultato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>atan2(dy, dx)</th>
</tr>
</thead>
</table>
| Argomenti | • dy - differenza di coordinata y  
• dx - differenza di coordinata x |
| Esempi | • atan2(1.0, 1.732) → 0.523611477769969 |

#### azimuth

Restituisce l'azimut basato sul nord come angolo in radianti misurato in senso orario dalla verticale sul punto_a al punto_b.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>azimuth(point_a, point_b)</th>
</tr>
</thead>
</table>
| Argomenti | • point_a - geometria punto  
• point_b - geometria punto |
| Esempi | • degrees( azimuth( make_point(25, 45), make_point(75, 100) ) ) → 42.273689  
• degrees( azimuth( make_point(75, 100), make_point(25,45) ) ) → 222.273689 |

#### ceil

Arrotonda un numero per eccesso

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>ceil(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• value - un numero</td>
</tr>
</tbody>
</table>
| Esempi | • ceil(4.9) → 5  
• ceil(-4.9) → -4 |
### clamp

Limita un valore in ingresso in un intervallo specificato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>clamp(minimum, input, maximum)</th>
</tr>
</thead>
</table>
| Argomenti                 | • **minimum** - il più piccolo valore che l’**input** può assumere.  
                             | • **input** - un valore che sarà limitato nell’intervallo specificato da **minimum** e **maximum**.  
                             | • **maximum** - il più grande valore che l’**input** può assumere |
| Esempi                    | • clamp(1, 5, 10) → 5  
                             |          | input è tra 1 e 10 quindi viene restituito invariato  
                             | • clamp(1, 0, 10) → 1  
                             |          | input è inferiore al valore minimo di 1, quindi la funzione restituisce 1  
                             | • clamp(1, 11, 10) → 10  
                             |          | input è maggiore del valore massimo di 10, quindi la funzione restituisce 10 |

### cos

Restituisce il coseno di un angolo.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>cos(angle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>angle</strong> - angolo in radianti</td>
</tr>
<tr>
<td>Esempi</td>
<td>• cos(1.571) → 0.000796326710733263</td>
</tr>
</tbody>
</table>

### degrees

Converte da radianti a gradi.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>degrees(radians)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>radians</strong> - valore numerico</td>
</tr>
</tbody>
</table>
| Esempi                    | • degrees(3.14159) → 180  
                             | • degrees(1) → 57.2958 |

### exp

Restituisce l’esponenziale di un valore.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>exp(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>value</strong> - numero di cui restituire l’esponente</td>
</tr>
<tr>
<td>Esempi</td>
<td>• exp(1.0) → 2.71828182845905</td>
</tr>
</tbody>
</table>
## floor

Arrotonda un numero per difetto.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>floor(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• value - un numero</td>
</tr>
</tbody>
</table>
| Esempi         | • floor(4.9) → 4  
• floor(-4.9) → -5 |

## inclination

Restituisce l'inclinazione misurata dallo zenit (0) al nadir (180) del punto_a al punto_b.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>inclination(point_a, point_b)</th>
</tr>
</thead>
</table>
| Argomenti      | • point_a - geometria punto  
• point_b - geometria punto |
| Esempi         | • inclination( make_point( 5, 10, 0 ), make_point( 5, 10, 5 ) ) → 0.0  
• inclination( make_point( 5, 10, 0 ), make_point( 5, 10, 0 ) ) → 90.0  
• inclination( make_point( 5, 10, 0 ), make_point( 50, 100, 0 ) ) → 90.0  
• inclination( make_point( 5, 10, 0 ), make_point( 5, 10, -5 ) ) → 180.0 |

## ln

Restituisce il logaritmo naturale di un valore.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>ln(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• value - valore numerico</td>
</tr>
</tbody>
</table>
| Esempi         | • ln(1) → 0  
• ln(2.7182818284590452354) → 1 |

## log

Restituisce il valore del logaritmo del valore e della base indicati.
### log

Restituisce il valore del logaritmo in base 10 dell’espressione passata.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>log10(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>value</strong> - qualsiasi numero positivo</td>
</tr>
<tr>
<td>Esempi</td>
<td>• log10(1) → 0</td>
</tr>
<tr>
<td></td>
<td>• log10(100) → 2</td>
</tr>
</tbody>
</table>

### max

Restituisce il valore più grande in un insieme di valori.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>max(value1, value2, …)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>value</strong> - un numero</td>
</tr>
<tr>
<td>Esempi</td>
<td>• max(2,10.2,5.5) → 10.2</td>
</tr>
<tr>
<td></td>
<td>• max(20.5,NULL,6.2) → 20.5</td>
</tr>
</tbody>
</table>

### min

Restituisce il valore più piccolo in un insieme di valori.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>min(value1, value2, …)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>value</strong> - un numero</td>
</tr>
<tr>
<td>Esempi</td>
<td>• min(20.5,10,6.2) → 6.2</td>
</tr>
<tr>
<td></td>
<td>• min(2,-10.3,NULL) → -10.3</td>
</tr>
</tbody>
</table>
pi

Restituisce il valore di pi greco per i calcoli.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>pi()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esempi</td>
<td>• pi() → 3.14159265358979</td>
</tr>
</tbody>
</table>

radians

Converte da gradi a radianti

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>radians(degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• degrees - valore numerico</td>
</tr>
</tbody>
</table>
| Esempi   | • radians(180) → 3.14159  
|          | • radians(57.2958) → 1 |

rand

Restituisce un numero intero casuale all’interno dell’intervallo specificato dal parametro minimo e massimo (incluso). Se viene fornito un valore di riferimento, il valore restituito sarà sempre lo stesso, a seconda del valore di riferimento.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>rand(min, max, [seed=NULL])</th>
</tr>
</thead>
</table>
| Argomenti| • min - un intero che rappresenta il più piccolo numero casuale possibile desiderato  
|          | • max - un intero che rappresenta il più grande numero casuale possibile desiderato  
|          | • seed - qualsiasi valore da usare come valore di riferimento |
| Esempi   | • rand(1, 10) → 8 |

randf

Restituisce un numero reale casuale all’interno dell’intervallo specificato dal parametro minimo e massimo (incluso). Se viene fornito un valore di riferimento, il valore restituito sarà sempre lo stesso, a seconda del valore di riferimento.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>randf([min=0.0], [max=1.0], [seed=NULL])</th>
</tr>
</thead>
</table>
| Argomenti| • min - un numero reale che rappresenta il più piccolo numero casuale possibile desiderato  
|          | • max - un numero reale che rappresenta il più grande numero casuale possibile desiderato  
|          | • seed - qualsiasi valore da usare come valore di riferimento |
| Esempi   | • randf(1, 10) → 4.59258286403147 |
**round**

Arrotonda un numero al numero di cifre decimali.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>round(value, [places=0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] indica argomenti facoltativi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argomenti</th>
</tr>
</thead>
</table>
| • **valore** - numero decimale da arrotondare  
  • **places** - Interzo opzionale che rappresenta il numero di cifre decimali da arrotondare. Può essere negativo. |

<table>
<thead>
<tr>
<th>Esempi</th>
</tr>
</thead>
</table>
| • round(1234.567, 2) → 1234.57  
  • round(1234.567) → 1235 |

**scale_exp**

Trasforma un dato valore da un dominio in ingresso a un intervallo in uscita utilizzando una curva esponenziale. Questa funzione può essere usata per semplificare i valori all’interno o all’esterno dell’intervallo in uscita specificato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>scale_exp(value, domain_min, domain_max, range_min, range_max, exponent)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Argomenti</th>
</tr>
</thead>
</table>
| • **value** - Un valore nel dominio in ingresso. La funzione restituirà un corrispondente valore scalato nel campo in uscita.  
  • **domain_min** - Specifica il valore minimo nel dominio in ingresso, il valore più piccolo che il valore in ingresso dovrebbe prendere.  
  • **domain_max** - Specifica il valore massimo nel dominio in ingresso, il valore più grande che il valore in ingresso dovrebbe prendere.  
  • **range_min** - Specifica il valore minimo nell’intervallo in uscita, il valore più piccolo che dovrebbe essere emesso dalla funzione.  
  • **range_max** - Specifica il valore massimo nell’intervallo in uscita, il valore più grande che dovrebbe essere emesso dalla funzione.  
  • **esponente** - Un valore positivo (maggiore di 0), che determina il modo in cui i valori in ingresso sono mappati nell’intervallo in uscita. Esponenti grandi faranno sì che i valori in uscita siano «facilitati», iniziando lentamente prima di accelerare man mano che i valori in ingresso si avvicinano al massimo del dominio. Esponenti più piccoli (meno di 1) faranno sì che i valori in uscita si «attenuino», dove la mappatura inizia velocemente ma rallenta man mano che si avvicina al massimo del dominio. |

<table>
<thead>
<tr>
<th>Esempi</th>
</tr>
</thead>
</table>
| • scale_exp(5, 0, 10, 0, 100, 2) → 25  
  attenuando in ingresso, usando un esponente di 2  
  • scale_exp(3, 0, 10, 0, 100, 0.5) → 54.772  
  attenuando in uscita, usando un esponente di 0.5 |
scale_linear

Trasforma un dato valore da un dominio in ingresso a un intervallo in uscita usando l'interpolazione lineare.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>scale_linear(value, domain_min, domain_max, range_min, range_max)</th>
</tr>
</thead>
</table>
| Argomenti | • value - Un valore nel dominio in ingresso. La funzione restituirà un corrispondente valore scalato nel campo in uscita.  
• domain_min - Specifica il valore minimo nel dominio in ingresso, il valore più piccolo che il valore in ingresso dovrebbe prendere.  
• domain_max - Specifica il valore massimo nel dominio in ingresso, il valore più grande che il valore in ingresso dovrebbe prendere.  
• range_min - Specifica il valore minimo nell'intervallo in uscita, il valore più piccolo che dovrebbe essere emesso dalla funzione.  
• range_max - Specifica il valore massimo nell'intervallo in uscita, il valore più grande che dovrebbe essere emesso dalla funzione. |
| Esempi | • scale_linear(5,0,10,0,100) → 50  
• scale_linear(0.2,0,1,0,360) → 72  
scalare un valore tra 0 e 1 a un angolo tra 0 e 360  
• scale_linear(1500,1000,10000,9,20) → 9.6111111  
scalare una popolazione che varia tra 1000 e 10000 a una dimensione di carattere tra 9 e 20 |

sin

Restituisce il seno di un angolo.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>sin(angle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• angle - angolo in radianti</td>
</tr>
<tr>
<td>Esempi</td>
<td>• sin(1.571) → 0.999999682931835</td>
</tr>
</tbody>
</table>

sqrt

Restituisce la radice quadrata di un valore.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>sqrt(value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• value - un numero</td>
</tr>
<tr>
<td>Esempi</td>
<td>• sqrt(9) → 3</td>
</tr>
</tbody>
</table>
tan

Restituisc la tangente di un angolo.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>tan(angle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• angle - angolo in radianti</td>
</tr>
<tr>
<td>Esempi</td>
<td>• tan(1.0) → 1.5574077246549</td>
</tr>
</tbody>
</table>

14.3.18 Operatori

Questo gruppo contiene operatori (e.g., +, -, *). Si noti che per la maggior parte delle funzioni matematiche di seguito se uno dei input è NULL il risultato è NULL.

<table>
<thead>
<tr>
<th>Funzioni</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>a + b</td>
<td>Somma di due valori (a più b)</td>
</tr>
<tr>
<td>a - b</td>
<td>Sottrazione tra due valori (a meno b).</td>
</tr>
<tr>
<td>a × b</td>
<td>Moltiplicazione tra due valori (a moltiplicato per b)</td>
</tr>
<tr>
<td>a / b</td>
<td>Divisione tra due valori (a diviso per b)</td>
</tr>
<tr>
<td>a % b</td>
<td>Resto della divisione di a diviso b (ad esempio, 7 % 2 = 1 o 2 si entra nel 7 tre volte con il resto di 1)</td>
</tr>
<tr>
<td>a ^ b</td>
<td>Elevazione a potenza di due valori (ad esempio, 2^2=4 o 2^3=8)</td>
</tr>
<tr>
<td>a &lt; b</td>
<td>Confronta due valori e restituisce 1 se il valore di sinistra è inferiore al valore di destra (a è minore di b)</td>
</tr>
<tr>
<td>a &lt;= b</td>
<td>Confronta due valori e restituisce 1 se il valore sinistro è minore o uguale al valore destro</td>
</tr>
<tr>
<td>a &lt;&gt; b</td>
<td>Confronta due valori e restituisce 1 se non sono uguali</td>
</tr>
<tr>
<td>a = b</td>
<td>Confronta due valori e restituisce 1 se sono uguali</td>
</tr>
<tr>
<td>a &lt;= b</td>
<td>Confronta due valori e restituisce 1 se a è minore o uguale a b</td>
</tr>
<tr>
<td>a ^ b</td>
<td>Elevazione a potenza di due valori (ad esempio, 2^2=4 o 2^3=8)</td>
</tr>
<tr>
<td>a &lt; b</td>
<td>Confronta due valori e restituisce 1 se il valore di sinistra è inferiore al valore di destra (a è minore di b)</td>
</tr>
<tr>
<td>a &lt;= b</td>
<td>Confronta due valori e restituisce 1 se il valore sinistro è minore o uguale al valore destro</td>
</tr>
<tr>
<td>a ~ b</td>
<td>a corrisponde al valore assoluto di b</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>“\n”</td>
<td>Inserisce una nuova riga in una stringa</td>
</tr>
<tr>
<td>LIKE</td>
<td>Restituisce 1 se il primo parametro corrisponde al filtro scelto</td>
</tr>
<tr>
<td>ILIKE</td>
<td>Restituisce 1 se il primo parametro corrisponde senza distinzione tra maiuscole e minuscole al filtro scelto (ILIKE può essere usato al posto di LIKE per rendere la corrispondenza senza distinzione tra maiuscole e minuscole)</td>
</tr>
<tr>
<td>a IS b</td>
<td>Verifica se due valori sono identici. Restituisce 1 se a è uguale a b</td>
</tr>
<tr>
<td>a OR b</td>
<td>Restituisce 1 quando la condizione a o la condizione b è vera</td>
</tr>
<tr>
<td>a AND b</td>
<td>Restituisce 1 quando le condizioni a e b sono vere</td>
</tr>
<tr>
<td>NOT</td>
<td>Inverte una condizione</td>
</tr>
<tr>
<td>«Column_name»</td>
<td>Valore del campo Column_name, fare attenzione a non confondere con l'apice semplice, vedi sotto</td>
</tr>
<tr>
<td>“string”</td>
<td>valore stringa, fare attenzione a non confondere con gli apici doppi, vedi sopra</td>
</tr>
<tr>
<td>NULL</td>
<td>valore nullo</td>
</tr>
<tr>
<td>a IS NULL</td>
<td>a ha valore nullo</td>
</tr>
<tr>
<td>a IS NOT NULL</td>
<td>a contiene un valore</td>
</tr>
<tr>
<td>a IN (value[,value])</td>
<td>a ha valore contenuto nei valori in lista</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 14.1 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Funzioni</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>a NOT IN (value[,value])</td>
<td>il valore di a non è tra i valori in lista</td>
</tr>
</tbody>
</table>

Alcuni esempi:

- Unire una stringa e un valore da un nome di colonna:

  `'My feature'\'s id is: ' || \"gid\"`

- Verifica se il campo dell’attributo «description» inizia con la stringa “Hello” nel valore (notare la posizione del carattere %):

  `"description" LIKE 'Hello%'`

### 14.3.19 Funzioni di Processing

Questo gruppo contiene funzioni che operano su algoritmi di processing.

- **parameter**

  Restituisce il valore di un parametro in ingresso dell’algoritmo di processing.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>parameter(name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>name</strong> - nome del parametro in ingresso corrispondente</td>
</tr>
<tr>
<td>Esempi</td>
<td>• parameter('BUFFER_SIZE') → 5.6</td>
</tr>
</tbody>
</table>

### 14.3.20 Funzioni Raster

Questo gruppo contiene funzioni che operano sui layer raster.

- **raster_statistic**

  Restituisce statistiche da un layer raster.
raster_statistic(layer, band, property)

**Argomenti**

- **layer** - una stringa, che rappresenta il nome di un layer raster o l’ID del layer
- **band** - intero che rappresenta il numero di banda del layer raster, a partire da 1
- **proprietà** - una stringa corrispondente alla proprietà da restituire. Le opzioni valide sono:
  - min: valore minimo
  - max: valore massimo
  - avg: valore medio (media)
  - stdev: deviazione standard dei valori
  - range: gamma di valori (max - min)
  - sum: somma di tutti i valori del raster

**Esempi**

- `raster_statistic('lc', 1, 'avg')` → Valore medio dalla banda 1 del layer raster “lc”
- `raster_statistic('ac2010', 3, 'min')` → Valore minimo dalla banda 3 del layer raster “ac2010”

raster_value

Restituisce il valore raster trovato nel punto specificato.

raster_value(layer, band, point)

**Argomenti**

- **layer** - il nome o l’id di un layer raster
- **band** - il numero di banda da cui campionare il valore.
- **point** - geometria di punti (per le geometrie multi parte che hanno più di una parte, verrà restituito un valore NULL)

**Esempi**

- `raster_value('dem', 1, make_point(1,1))` → 25

### 14.3.21 Funzioni relative ai record e agli attributi

Questo gruppo contiene funzioni che operano sugli identificativi dei record.

- attribute
- attributes
- $currentfeature
- display_expression
- get_feature
- get_feature_by_id
- $id
- is_selected
- muptip
- num_selected
- represent_value
attribute

Restituisce un attributo da un elemento.

**Variabile 1**

Restituisce il valore di un attributo dell’elemento corrente.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>attribute(attribute_name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• attribute_name</td>
<td>nome dell’attributo da restituire</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• attribute('name')</td>
<td>valore memorizzato nell’attributo “nome” per l’elemento corrente</td>
</tr>
</tbody>
</table>

**Variabile 2**

Permette di specificare il nome dell’elemento e dell’attributo di destinazione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>attribute(feature, attribute_name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• feature</td>
<td>un elemento</td>
</tr>
<tr>
<td>• attribute_name</td>
<td>nome dell’attributo da restituire</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• attribute(@atlas_feature, 'name')</td>
<td>valore memorizzato nell’attributo “name” per l’elemento corrente dell’atlante</td>
</tr>
</tbody>
</table>

attributes

Restituisce una mappa contenente tutti gli attributi di un’elemento, con i nomi del campo come chiavi della mappa.

**Variabile 1**

Restituisce una mappa di tutti gli attributi dell’elemento corrente.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>attributes()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• attributes()['name']</td>
<td>valore memorizzato nell’attributo “name” per l’elemento corrente</td>
</tr>
</tbody>
</table>

**Variabile 2**

Permette di specificare l’elemento di destinazione.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>attributes(feature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td>• feature</td>
<td>un elemento</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td>• attributes(@atlas_feature)['name']</td>
<td>valore memorizzato nell’attributo “name” per l’elemento dell’atlante corrente</td>
</tr>
</tbody>
</table>
Ulteriori informazioni: *Funzioni mappa*

**$\text{currentfeature}$**

Restituisce l’elemento corrente da valutare. Questo può essere usato con la funzione “attribute” per valutare i valori degli attributi dell’elemento corrente.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>$\text{currentfeature}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• attribute( $currentfeature, 'nome' ) \rightarrow valore memorizzato nell’attributo “nome” per l’elemento corrente</td>
</tr>
</tbody>
</table>

**display_expression**

Restituisce l’espressione di visualizzazione per un data elemento in un layer. L’espressione viene valutata per impostazione predefinita. Può essere usata con zero, uno o più argomenti, vedi sotto per i dettagli.

**Nessun parametro**

Se chiamata senza parametri, la funzione valuterà l’espressione di visualizzazione dell’elemento corrente nel layer corrente.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>display_expression()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• display_expression() \rightarrow L’espressione di visualizzazione dell’elemento corrente nel layer corrente.</td>
</tr>
</tbody>
</table>

**“feature” come parametro**

Se chiamato solo con un parametro “feature”, la funzione valuterà la caratteristica specificata dal layer corrente.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>display_expression(feature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• feature - L’elemento da valutare.</td>
</tr>
<tr>
<td>Esempi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• display_expression(@atlas_feature) \rightarrow L’espressione di visualizzazione dell’elemento dell’atlante corrente.</td>
</tr>
</tbody>
</table>

**Parametri layer e feature**

Se la funzione viene chiamata sia con un layer che con una feature, valuterà l’elemento specificato dal layer specificato.
**display_expression**

Sintassi: `display_expression(layer, feature, [evaluate=true])`

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>layer</code></td>
<td>Il layer (o il suo ID o nome)</td>
</tr>
<tr>
<td><code>feature</code></td>
<td>L’elemento da valutare.</td>
</tr>
<tr>
<td><code>evaluate</code></td>
<td>Se l’espressione deve essere valutata. Se false, l’espressione sarà restituita solo come stringa letterale (che potrebbe potenzialmente essere valutata in seguito usando la funzione “eval”).</td>
</tr>
</tbody>
</table>

Esempio: `display_expression('streets', get_feature_by_id('streets', 1))` → L’espressione di visualizzazione dell’elemento con ID 1 sul layer “streets”.

**get_feature**

Restituisce il primo elemento di un layer che corrisponde ad un dato valore di attributo.

Sintassi: `get_feature(layer, attribute, value)`

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>layer</code></td>
<td>nome o ID del layer</td>
</tr>
<tr>
<td><code>attribute</code></td>
<td>nome dell’attributo</td>
</tr>
<tr>
<td><code>value</code></td>
<td>valore dell’attributo da accoppiare</td>
</tr>
</tbody>
</table>

Esempio: `get_feature('streets','name','main st')` → primo elemento trovato nel layer «streets» con valore «main st» nel campo «name»

**get_feature_by_id**

Restituisce l’elemento con un id su un layer.

Sintassi: `get_feature_by_id(layer, feature_id)`

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>layer</code></td>
<td>layer, nome layer o id layer</td>
</tr>
<tr>
<td><code>feature_id</code></td>
<td>l’id dell’elemento che si vuole acquisire</td>
</tr>
</tbody>
</table>

Esempio: `get_feature_by_id('streets', 1)` → l’elemento con l’id 1 nel layer «streets»

Ulteriori informazioni: $id
**$id**

Restituisce l’id dell’elemento della riga corrente.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>$id</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Esempi</strong></td>
<td>• $id \rightarrow 42</td>
</tr>
</tbody>
</table>

**is_selected**

Restituisce True se un’elemento è selezionato. Può essere usato con zero, uno o due argomenti, vedi sotto per i dettagli.

**Nessun parametro**

Se chiamata senza parametri, la funzione restituisce vero se l’elemento corrente nel layer corrente è selezionato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_selected()</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Esempi</strong></td>
<td>• is_selected() → True se l’elemento corrente nel layer corrente è selezionato.</td>
</tr>
</tbody>
</table>

**“feature” come parametro**

Se chiamata solo con un parametro “feature”, la funzione restituisce true se l’elemento specificato dal layer corrente è selezionato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_selected(feature)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td>• feature - L’elemento che dovrebbe essere controllato per la selezione.</td>
</tr>
</tbody>
</table>
| **Esempi** | • is_selected(@atlas_feature) → True se un elemento selezionato sul layer corrente è l’elemento attivo dell’atlante.  
• is_selected(get_feature(@layer, 'name', 'Main St.')) → True se l’elemento univoco denominato «Main St.» sul layer corrente è selezionato.  
• is_selected(get_feature_by_id(@layer, 1)) → True se l’elemento con l’id 1 sul layer corrente è selezionato. |

**Due parametri**

Se la funzione è chiamata sia con un layer che con un elemento, restituirà true se l’elemento specificato dal layer specificato è selezionato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>is_selected(layer, feature)</th>
</tr>
</thead>
</table>
| **Argomenti** | • layer - Il layer (il suo ID o nome) su cui la selezione sarà verificata.  
• feature - L’elemento che dovrebbe essere controllato per la selezione. |
| **Esempi** | • is_selected('streets', get_feature('streets', 'name', "street_name")) → True se la strada dell’edificio corrente è selezionata (assumendo che il layer dell’edificio abbia un campo chiamato “street_name” e il layer “streets” abbia un campo chiamato “name” con valori univoci).  
• is_selected('streets', get_feature_by_id('streets', 1)) → True se l’elemento con id 1 sul layer «streets» è selezionato. |
**maptip**

Restituisce il suggerimento per un dato elemento in un layer. L’espressione viene valutata di default. Può essere usata con zero, uno o più argomenti, vedi sotto per i dettagli.

**Nessun parametro**

Se chiamata senza parametri, la funzione elaborerà il suggerimento dell’elemento corrente nel layer corrente.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>maptip()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esempi</td>
<td>• maptip() → Il suggerimento dell’elemento corrente nel layer corrente.</td>
</tr>
</tbody>
</table>

**“feature” come parametro**

Se chiamato solo con un parametro “feature”, la funzione valuterà la caratteristica specificata dal layer corrente.

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>maptip(feature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• feature - L’elemento da valutare.</td>
<td></td>
</tr>
<tr>
<td>Esempi</td>
<td>• maptip(@atlas_feature) → Il suggerimento dell’elemento corrente dell’atlante.</td>
</tr>
</tbody>
</table>

**Parametri layer e feature**

Se la funzione viene chiamata sia con un layer che con una feature, valuterà l’elemento specificato dal layer specificato.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>maptip(layer, feature, [evaluate=true])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ ] indica argomenti facoltativi</td>
<td></td>
</tr>
</tbody>
</table>
| Argomenti | • layer - Il layer (o il suo ID o nome)  
| | • feature - L’elemento da valutare.  
| | • evaluate - Se l’espressione deve essere valutata. Se false, l’espressione sarà restituita solo come stringa letterale (che potrebbe potenzialmente essere valutata in seguito usando la funzione “eval_template”). |
| Esempi    | • maptip('streets', get_feature_by_id('streets', 1)) → Il suggerimento dell’elemento con ID 1 sul layer “streets”.  
| | • maptip('a_layer_id', $currentfeature, 'False') → Il suggerimento del dato elemento non valutato. |

**num_selected**

Restituisce il numero di elemento selezionati su un dato layer. Per impostazione predefinita lavora sul layer su cui viene valutata l’espressione.

| Sintassi | num_selected([layer=current layer]) |
| [ ] indica argomenti facoltativi |
| Argomenti | • layer - Il layer (o il suo ID o nome) su cui la selezione sarà controllata. |
| Esempi    | • num_selected() → Il numero di elementi selezionati sul layer corrente.  
| | • num_selected('streets') → Il numero di elementi selezionati sul layer streets |
**represent_value**

Restituisce il valore di rappresentazione configurato per un valore di campo. Dipende dal tipo di widget configurato. Spesso è utile per i widget “Value Map”.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>represent_value(value, fieldName)</th>
</tr>
</thead>
</table>
| Argomenti | • **value** - Il valore che dovrebbe essere risolto. Molto probabilmente un campo.  
            • **fieldName** - Il nome del campo per il quale dovrebbe essere caricata la configurazione del widget. (Opzionale) |
| Esempi   | • `represent_value("field_with_value_map")` → Descrizione per il valore  
            • `represent_value('static value', 'field_name')` → Descrizione per il valore statico |

Ulteriori informazioni: *widget types*

**sqlite_fetch_and_increment**

Gestire i valori autoincrementanti nei database sqlite.

I valori predefiniti di SQLite possono essere applicati solo per l’inserimento e non preimpostati.

Questo rende impossibile acquisire una chiave primaria incrementata tramite AUTO_INCREMENT prima di creare la riga nel database. Nota a margine: con postgres, questo funziona tramite l’opzione `evaluate default values`.

Quando si aggiungono nuovi elementi con le relazioni, è davvero bello poter già aggiungere figli per un genitore, mentre il modulo dei genitori è ancora aperto e quindi la funzione genitore non è impegnata.

Per aggirare questa limitazione, questa funzione può essere usata per gestire i valori di sequenza in una tabella separata sui formati basati su sqlite come gpkg.

La tabella delle sequenze sarà filtrata per un id di sequenza (filter_attribute e filter_value) e il valore corrente del campo `id_` sarà incrementato di 1 e il valore incrementato restituito.

Se le colonne aggiuntive richiedono di specificare dei valori, la mappa default_values può essere usata per questo scopo.

**Nota**

Questa funzione modifica la tabella sqlite di destinazione. È concepita per l’uso con configurazioni di valori predefiniti per gli attributi.

Quando il parametro del database è un layer e il layer è in modalità transazione, il valore sarà recuperato solo una volta durante la durata di una transazione e messo in cache e incrementato. Questo rende insicuro lavorare sullo stesso database da diversi processi in parallelo.
Sintassi

```sql
sqlite_fetch_and_increment(database, table, id_field, filter_attribute, filter_value, [default_values])
```

[ ] indica argomenti facoltativi

**Argomenti**

- **database** - Percorso al file sqlite o al layer geopackage
- **table** - Nome della tabella che gestisce le sequenze
- **id_field** - Nome del campo che contiene il valore corrente
- **filter_attribute** - Nome del campo che contiene un identificatore univoco per questa sequenza. Deve avere un indice UNIVOCO.
- **filter_value** - Nome della sequenza da utilizzare.
- **default_values** - Mappa con valori predefiniti per le colonne aggiuntive della tabella. I valori devono essere completamente quotati. Le funzioni sono ammesse.

**Esempi**

```sql
sqlite_fetch_and_increment(@layer, 'sequence_table', 'last_unique_id', 'sequence_id', 'global', map('last_change', 'date''now''', 'user', '''' || @user_account_name || '''' || ')) → 0
```

Ulteriori informazioni: *Proprietà Progetto - Sorgenti Dati, Creare una relazione uno a molti o molti a molti*

**uuid**

Genera un Universally Unique Identifier (UUID) per ogni riga usando il metodo Qt QUuid::createUuid. Ogni UUID è lungo 38 caratteri.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>uuid()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esempi</td>
<td><code>uuid() → &quot;{0bd2f60f-f157-4a6d-96af-d4ba4cb366a1}&quot;</code></td>
</tr>
</tbody>
</table>

### 14.3.22 Relazioni

Questo gruppo contiene la lista delle relations disponibili nel progetto corrente, con la loro descrizione. Fornisce un accesso rapido all'ID della relazione per scrivere un'espressione (ad esempio con la funzione relation_aggregate) o per personalizzare un modulo.

### 14.3.23 Funzioni Stringa

Questo gruppo contiene le funzioni che operano sulle stringhe (ad esempio sostituisce, converte in maiuscolo).

- **ascii**
- **char**
- **concat**
- **format**
- **format_date**
ascii

Restituisce il codice unicode associato al primo carattere di una stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>ascii(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>string</strong> - la stringa da convertire in codice unicode</td>
</tr>
<tr>
<td>Esempi</td>
<td>• ascii('Q') → 81</td>
</tr>
</tbody>
</table>

char

Restituisce il carattere associato a un codice unicode.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>char(code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>code</strong> - un numero di codice unicode</td>
</tr>
<tr>
<td>Esempi</td>
<td>• char(81) → “Q”</td>
</tr>
</tbody>
</table>
concat

Concatena diverse stringhe in una sola. I valori NULL sono convertiti in stringhe vuote. Altri valori (come i numeri) sono convertiti in stringhe.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>concat(string1, string2, ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• string - un valore stringa</td>
</tr>
</tbody>
</table>

| Esempi | • concat('sun', 'set') → “sunset”<br>• concat('a', 'b', 'c', 'd', 'e') → “abcde”<br>• concat('Anno ', 1984) → “Anno 1984”<br>• concat('The Wall', NULL) → “The Wall” |

**Informazioni sulla concatenazione dei campi**

Puoi anche concatenare stringhe o valori di campo usando gli operatori || o +`, con alcune caratteristiche speciali:

- L’operatore + significa anche sommare l’espressione, quindi se avete un operando intero (campo o valore numerico), questo può essere soggetto a errori ed è meglio usare gli altri:

  ```
 'My feature id is: ' + "gid" -> triggers an error as gid returns an integer
  ```

- Quando uno degli argomenti è un valore NULL, sia || che + restituiranno un valore NULL. Per restituire gli altri argomenti indipendentemente dal valore NULL, potete usare la funzione concat:

  ```
 'My feature id is: ' + NULL == NULL
 'My feature id is: ' || NULL == NULL
 concat('My feature id is: ', NULL) == My feature's id is
  ```

**format**

Formatta una stringa usando gli argomenti forniti.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>format(string, arg1, arg2, ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• string - Una stringa con segnaposto per gli argomenti. Usa %1, %2, ecc. per i segnaposto. I segnaposto possono essere ripetuti.&lt;br&gt;• arg - qualsiasi tipo. Qualsiasi numero di argomenti.</td>
</tr>
</tbody>
</table>

| Esempi | • format('This %1 a %2', 'is', 'test') → “This is a test” |

**format_date**

Formatta un tipo di data o una stringa in un formato personalizzato. Utilizza le stringhe del formato data/ora di Qt. Vedi QDateTime::toString.
### Sintassi

`format_date(datetime, format, [language])`

[] indica argomenti facoltativi

### Argomenti

- **datetime** - data, ora o valore datetime
- **format** - Modello di stringa usato per formattare la stringa.

<table>
<thead>
<tr>
<th>Espressione</th>
<th>Risultato</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>il giorno come numero senza zero iniziale (da 1 a 31)</td>
</tr>
<tr>
<td>dd</td>
<td>il giorno come numero con uno zero iniziale (da 01 a 31)</td>
</tr>
<tr>
<td>ddd</td>
<td>il nome abbreviato del giorno nella lingua locale (ad esempio, da “Mon” a “Sun”)</td>
</tr>
<tr>
<td>dddd</td>
<td>il nome non abbreviato del giorno nella lingua locale (ad esempio, da “lunedì” a “domenica”)</td>
</tr>
<tr>
<td>M</td>
<td>il mese come numero non preceduto da zero (1-12)</td>
</tr>
<tr>
<td>MM</td>
<td>il mese come numero preceduto da zero (01-12)</td>
</tr>
<tr>
<td>MMM</td>
<td>il nome abbreviato del mese localizzato (ad esempio, da “Jan” a “Dec”)</td>
</tr>
<tr>
<td>MMMM</td>
<td>il nome completo del mese (ad esempio, da “gennaio” a “dicembre”)</td>
</tr>
<tr>
<td>yy</td>
<td>l’anno come numero a due cifre (00-99)</td>
</tr>
<tr>
<td>yyyy</td>
<td>l’anno come numero a quattro cifre</td>
</tr>
</tbody>
</table>

**Esempi**

- `format_date('2012-05-15','dd.MM.yyyy') → “15.05.2012”
- `format_date('2012-05-15','d MMMM yyyy','fr') → “15 maggio 2012”
- `format_date('2012-05-15','dddd') → “Tuesday”
- `format_date('2012-05-15 13:54:20','dd.MM.yyyy') → “15.05.12”
- `format_date('13:54:20','hh:mm AP') → “01:54 PM”

- **language** - lingua (minuscola, due o tre lettere, codice lingua ISO 639) usata per formattare la data in una stringa personalizzata

<table>
<thead>
<tr>
<th>Esempi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>format_date('2012-05-15', 'dd.MM.yyyy')</td>
<td>→ “15.05.2012”</td>
</tr>
<tr>
<td>format_date('2012-05-15', 'd MMMM yyyy', 'fr')</td>
<td>→ “15 maggio 2012”</td>
</tr>
<tr>
<td>format_date('2012-05-15', 'dddd')</td>
<td>→ “Tuesday”</td>
</tr>
<tr>
<td>format_date('2012-05-15 13:54:20', 'dd.MM.yyyy')</td>
<td>→ “15.05.12”</td>
</tr>
<tr>
<td>format_date('13:54:20', 'hh:mm AP')</td>
<td>→ “01:54 PM”</td>
</tr>
</tbody>
</table>

---

14.3. Lista delle funzioni 473
**format_number**

Restituisce un numero formattato con il separatore locale per le migliaia. Inoltre tronca le cifre decimali al numero di posizioni fornite.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>format_number(number, places, [language])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>number</strong> - numero da formattare</td>
</tr>
<tr>
<td></td>
<td>• <strong>places</strong> - intero che rappresenta il numero di posizioni decimali a cui troncare la stringa.</td>
</tr>
<tr>
<td></td>
<td>• <strong>language</strong> - lingua (minuscolo, due o tre lettere, ISO 639 language code) usata per formattare il numero in una stringa</td>
</tr>
<tr>
<td>Esempi</td>
<td>• format_number(1000000.332,2) → “10,000,000.33”</td>
</tr>
<tr>
<td></td>
<td>• format_number(1000000.332,2,'fr') → “10 000 000.33”</td>
</tr>
</tbody>
</table>

**left**

Restituisce una sottostringa che contiene gli $n$ caratteri più a sinistra della stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>left(string, length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>string</strong> - una stringa</td>
</tr>
<tr>
<td></td>
<td>• <strong>length</strong> - intero. Il numero di caratteri da sinistra della stringa da restituire.</td>
</tr>
<tr>
<td>Esempi</td>
<td>• left('Hello World',5) → “Hello”</td>
</tr>
</tbody>
</table>

**length**

Restituisce il numero di caratteri in una stringa o la lunghezza di una stringa geometrica.

**Variabile Operatori stringa**

Restituisce il numero di caratteri in una stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>length(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argomenti</td>
<td>• <strong>string</strong> - la stringa sulla quale calcolare la lunghezza</td>
</tr>
<tr>
<td>Esempi</td>
<td>• length('hello') → 5</td>
</tr>
</tbody>
</table>

**Variabile geometria**

Calcola la lunghezza di un oggetto geometria linea. I calcoli sono sempre planimetrici nel Sistema di Riferimento Spaziale (SRS) di questa geometria, e le unità della lunghezza restituita corrisponderanno alle unità dell'SR. Questo differisce dai calcoli eseguiti dalla funzione $\text{length}$, che eseguirà calcoli ellissoidali basati sulle impostazioni di ellissoide e unità di distanza del progetto.
### length(geometry)

**Sintassi**

```
length(geometry)
```

**Argomenti**

- `geometry` - oggetto geometria linea

**Esempi**

```
length(geom_from_wkt('LINESTRING(0 0, 4 0)')) → 4.0
```

### lower

Converte una stringa in lettere minuscole.

**Sintassi**

```
lower(string)
```

**Argomenti**

- `string` - la stringa da convertire in minuscolo

**Esempi**

```
lower('HELLO World') → "hello world"
```

### lpad

Restituisce una stringa riempita a sinistra alla larghezza specificata, usando un carattere di riempimento. Se la larghezza di destinazione è inferiore alla lunghezza della stringa, la stringa viene troncata.

**Sintassi**

```
lpad(string, width, fill)
```

**Argomenti**

- `string` - stringa da riempire
- `width` - lunghezza della nuova stringa
- `fill` - carattere con cui riempire lo spazio rimanente

**Esempi**

```
lpad('Hello', 10, 'x') → "xxxxxHello"
lpad('Hello', 3, 'x') → "Hel"
```

### regexp_match

Restituisce la prima posizione corrispondente a un’espressione regolare all’interno di una stringa unicode, o 0 se la sottostringa non viene trovata.

**Sintassi**

```
regexp_match(input_string, regex)
```

**Argomenti**

- `input_string` - la stringa da testare in base all’espressione regolare
- `regex` - L’espressione regolare da testare. I caratteri di backslash devono essere sottoposti a doppio escape (ad esempio, «\\s» per trovare un carattere di spazio bianco o «\\b» per trovare un confine di parola).

**Esempi**

```
regexp_match('QGIS ROCKS','\\sROCKS') → 5
regexp_match('Budač','udač\b') → 2
```
**regexp_replace**

Restituisce una stringa con l'espressione regolare fornita sostituita.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>regexp_replace(input_string, regex, replacement)</th>
</tr>
</thead>
</table>
| Argomenti | • **input_string** - la stringa in cui sostituire le corrispondenze  
• **regex** - L'espressione regolare da sostituire. I caratteri di backslash devono essere sottoposti a doppio escape (ad esempio, «\\s» per identificare uno spazio bianco).  
• **replacement** - La stringa che sostituirà qualsiasi occorrenza corrispondente all'espressione regolare fornita. I gruppi individuati possono essere inseriti nella stringa in sostituzione usando \1, \2, ecc. |

| Esempi | • regexp_replace('QGIS SHOULD ROCK','\sSHOULD\s',' DOES ')  
→ “QGIS DOES ROCK”  
• regexp_replace('ABC123','\d+','') → “ABC”  
• regexp_replace('my name is John','(.*) is (.*)','\2 is \1') → “John is my name” |

**regexp_substr**

Restituisce la porzione di una stringa che corrisponde a un’espressione regolare fornita.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>regexp_substr(input_string, regex)</th>
</tr>
</thead>
</table>
| Argomenti | • **input_string** - la stringa in cui trovare le corrispondenze  
• **regex** - L'espressione regolare da confrontare. I caratteri di backslash devono essere sottoposti a doppio escape (ad esempio, «\\s» per trovare un carattere di spazio bianco). |

| Esempi | • regexp_substr('abc123','(\d+)') → “123” |

**replace**

Restituisce una stringa con la stringa, l'array o la mappa di stringhe fornita sostituita.

**Variabile di stringa e array**

Restituisce una stringa con la stringa o l'array di stringhe fornito sostituito da una stringa o un array di stringhe.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>replace(string, before, after)</th>
</tr>
</thead>
</table>
| Argomenti | • **string** - la stringa in ingresso  
• **before** - la stringa o l'array di stringhe da sostituire  
• **after** - la stringa o l'array di stringhe da usare come sostituzione |

| Esempi | • replace('QGIS SHOULD ROCK','SHOULD','DOES') → “QGIS DOES ROCK”  
• replace('QGIS ABC',array('A','B','C'),array('X','Y','Z')) → “QGIS XYZ”  
• replace('QGIS',array('Q','S'),'') → “GI” |

**Variabile mappa**
Restituisce una stringa con le chiavi della mappa fornite sostituite dai valori associati.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>replace(string, map)</th>
</tr>
</thead>
</table>
| Argomenti         | • string - la stringa in ingresso  
                    • map - la mappa contenente chiavi e valori |
| Esempi            | • replace('APP SHOULD ROCK',map('APP','QGIS','SHOULD','DOES')) → “QGIS DOES ROCK” |

**right**

Restituisce una sottostringa che contiene gli $n$ caratteri più a destra della stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>right(string, length)</th>
</tr>
</thead>
</table>
| Argomenti         | • string - una stringa  
                    • Lunghezza - intero. Il numero di caratteri da destra della stringa da restituire. |
| Esempi            | • right('Hello World',5) → “World” |

**rpad**

Restituisce una stringa con un riempimento a destra alla larghezza specificata, usando un carattere di riempimento. Se la larghezza di destinazione è inferiore alla lunghezza della stringa, la stringa viene troncata.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>rpad(string, width, fill)</th>
</tr>
</thead>
</table>
| Argomenti         | • string - stringa da riempire  
                    • width - lunghezza della nuova stringa  
                    • fill - carattere con cui riempire lo spazio rimanente |
| Esempi            | • rpad('Hello', 10, 'x') → “Helloxxxxx”  
                    • rpad('Hello', 3, 'x') → “Hel” |

**strpos**

Restituisce la prima posizione corrispondente di una sottostringa all’interno di un’altra stringa, o 0 se la sottostringa non viene trovata.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>strpos(haystack, needle)</th>
</tr>
</thead>
</table>
| Argomenti         | • haystack - stringa su cui fare la ricerca  
                    • puntino - stringa da cercare |
| Esempi            | • strpos('HELLO WORLD','WORLD') → 7  
                    • strpos('HELLO WORLD','GOODBYE') → 0 |
**substr**

Restituisce una parte di una stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>substr(string, start, [length])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ ] indica argomenti facoltativi</td>
<td></td>
</tr>
</tbody>
</table>

**Argomenti**

- **string** - la stringa in ingresso completa
- **start** - intero che rappresenta la posizione iniziale da estrarre a partire da 1; se start è negativo, la stringa restituita inizierà alla fine della stringa meno il valore di start
- **length** - intero che rappresenta la lunghezza della stringa da estrarre; se la lunghezza è negativa, la stringa restituita ometterà la lunghezza data di caratteri dalla fine della stringa

**Esempi**

- `substr('HELLO WORLD', 3, 5)` → “LWO”
- `substr('HELLO WORLD', 6)` → “WORLD”
- `substr('HELLO WORLD', -5)` → “WORLD”
- `substr('HELLO', 3, -1)` → “LL”
- `substr('HELLO WORLD', -5, 2)` → “WO”
- `substr('HELLO WORLD', -5, -1)` → “WORL”

**title**

Converte tutte le parole di una stringa titolo (tutte le parole minuscole con lettera maiuscola iniziale).

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>title(string)</th>
</tr>
</thead>
</table>

**Argomenti**

- **string** - la stringa da convertire in titolo

**Esempi**

- `title('hello WOrld')` → “Hello World”

**to_string**

Converte un numero in stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>to_string(number)</th>
</tr>
</thead>
</table>

**Argomenti**

- **number** - Numero intero o numero reale. Il numero da convertire a stringa.

**Esempi**

- `to_string(123)` → “123”

**trim**

Rimuove tutti gli spazi bianchi iniziali e finali (spazi, tabulazioni, ecc.) da una stringa.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>trim(string)</th>
</tr>
</thead>
</table>

**Argomenti**

- **string** - stringa da tagliare

**Esempi**

- `trim(' hello world ')` → “hello world”
**upper**

**string** - la stringa da convertire in minuscolo.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>upper(string)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>string</td>
<td>- la stringa da convertire in maiuscolo</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td></td>
</tr>
<tr>
<td>upper('hello WOrld')</td>
<td>“HELLO WORLD”</td>
</tr>
</tbody>
</table>

**wordwrap**

Restituisce una stringa avvolta in un numero massimo/minimo di caratteri.

<table>
<thead>
<tr>
<th>Sintassi</th>
<th>wordwrap(string, wrap_length, [delimiter_string])</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Argomenti</strong></td>
<td></td>
</tr>
<tr>
<td>string</td>
<td>- la stringa da avvolgere</td>
</tr>
<tr>
<td>wrap_length</td>
<td>- un intero. Se wrap_length è positivo, il numero rappresenta il numero massimo ideale di caratteri da avvolgere; se è negativo, il numero rappresenta il numero minimo di caratteri da avvolgere.</td>
</tr>
<tr>
<td>delimitatore_stringa</td>
<td>- Stringa delimitatrice opzionale per avvolgere una nuova linea.</td>
</tr>
<tr>
<td><strong>Esempi</strong></td>
<td></td>
</tr>
<tr>
<td>wordwrap('UNIVERSITY OF QGIS',13)</td>
<td>“UNIVERSITY OF&lt;br&gt;QGIS”</td>
</tr>
<tr>
<td>wordwrap('UNIVERSITY OF QGIS',-3)</td>
<td>“UNIVERSITY&lt;br&gt;OF QGIS”</td>
</tr>
</tbody>
</table>

### 14.3.24 Espressioni utente

Questo gruppo contiene le espressioni salvate come *user expressions*.

### 14.3.25 Variabili

Questo gruppo contiene variabili dinamiche relative all’applicazione, al file di progetto e ad altre impostazioni. La disponibilità delle variabili dipende dal contesto:

- dalla finestra di dialogo  
  - Seleziona tramite una espressione
- dalla finestra di dialogo  
  - Calcolatore campo
- dalla finestra di dialogo  
  - Proprietà layer
- dal layout di stampa

Per usare queste variabili in un’espressione, dovrebbero essere precedute dal carattere @ (ad esempio, @row_number).

<table>
<thead>
<tr>
<th>Variabile</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>algorithm_id</td>
<td>L’ID univoco di un algoritmo</td>
</tr>
<tr>
<td>animation_end_time</td>
<td>Fine dell’intervallo temporale complessivo dell’animazione (come valore datetime)</td>
</tr>
<tr>
<td>animation_interval</td>
<td>Durata temporale complessiva dell’animazione (come valore di intervallo)</td>
</tr>
<tr>
<td>animation_start_time</td>
<td>Inizio dell’intervallo temporale complessivo dell’animazione (come valore datetime)</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Variabile</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>atlas_feature</td>
<td>L’elemento corrente dell’atlante (come oggetto)</td>
</tr>
<tr>
<td>atlas_featureid</td>
<td>L’ID dell’elemento corrente dell’atlante</td>
</tr>
<tr>
<td>atlas_featurenumber</td>
<td>Il numero dell’elemento corrente nel layout dell’atlante</td>
</tr>
<tr>
<td>atlas_filename</td>
<td>Il nome del file dell’atlante corrente</td>
</tr>
<tr>
<td>atlas_geometry</td>
<td>La geometria dell’elemento corrente dell’atlante</td>
</tr>
<tr>
<td>atlas_layerid</td>
<td>L’ID del layer corrente di copertura dell’atlante</td>
</tr>
<tr>
<td>atlas_layername</td>
<td>Il nome del layer corrente di copertura dell’atlante</td>
</tr>
<tr>
<td>atlas_pagename</td>
<td>Il nome della pagina corrente dell’atlante</td>
</tr>
<tr>
<td>atlas_totalfeatures</td>
<td>Il numero totale di elementi nell’atlante</td>
</tr>
<tr>
<td>canvas_cursor_point</td>
<td>L’ultima posizione del cursore sulla mappa nelle coordinate geografiche del progetto</td>
</tr>
<tr>
<td>cluster_color</td>
<td>Il colore dei simboli all’interno di un cluster, o NULL se i simboli hanno colori misti</td>
</tr>
<tr>
<td>cluster_size</td>
<td>Il numero di simboli contenuti in un cluster</td>
</tr>
<tr>
<td>current_feature</td>
<td>L’elemento che si sta modificando nel modulo degli attributi o nella riga della tabella</td>
</tr>
<tr>
<td>current_geometry</td>
<td>La geometria dell’elemento che si sta modificando nel modulo o nella riga della tabella</td>
</tr>
<tr>
<td>current_parent_feature</td>
<td>rappresenta l’elemento correntemente in fase di modifica nel modulo padre. Utilizzabile solo in un contesto di modulo incorporato.</td>
</tr>
<tr>
<td>current_parent_geometry</td>
<td>rappresenta la geometria dell’elemento correntemente in fase di modifica nel modulo padre. Utilizzabile solo in un contesto di modulo incorporato.</td>
</tr>
<tr>
<td>form_mode</td>
<td>Per cosa è usato il modulo, come AddFeatureMode, SingleEditMode, MultiEditMode, SearchMode, AggregateSearchMode o IdentifyMode come stringa.</td>
</tr>
<tr>
<td>frame_duration</td>
<td>Durata temporale di ogni fotogramma dell’animazione (come valore di intervallo)</td>
</tr>
<tr>
<td>frame_number</td>
<td>Numero di fotogramma corrente durante la riproduzione dell’animazione</td>
</tr>
<tr>
<td>frame_rate</td>
<td>Numero di fotogrammi al secondo durante la riproduzione dell’animazione</td>
</tr>
<tr>
<td>fullextent_maxx</td>
<td>Valore x massimo dall’intera estensione della mappa (compresi tutti i layer)</td>
</tr>
<tr>
<td>fullextent_maxy</td>
<td>Valore y massimo dall’intera estensione della mappa (compresi tutti i layer)</td>
</tr>
<tr>
<td>fullextent_minx</td>
<td>Valore x minimo dall’intera estensione della mappa (compresi tutti i layer)</td>
</tr>
<tr>
<td>fullextent_miny</td>
<td>Valore y minimo dall’intera estensione della mappa (compresi tutti i layer)</td>
</tr>
<tr>
<td>geometry_part_count</td>
<td>Il numero di parti nella geometria dell’elemento visualizzato</td>
</tr>
<tr>
<td>geometry_part_num</td>
<td>Il numero di parte della geometria corrente per l’elemento in corso di rappresentazione</td>
</tr>
<tr>
<td>geometry_point_count</td>
<td>Il numero di punti nella parte della geometria visualizzata</td>
</tr>
<tr>
<td>geometry_point_num</td>
<td>Il punto corrente nella parte della geometria visualizzata</td>
</tr>
<tr>
<td>grid_axis</td>
<td>L’asse corrente di annotazione della griglia (per esempio, “x” per la longitudine, “y” per la latitudine)</td>
</tr>
<tr>
<td>grid_number</td>
<td>Il valore corrente di annotazione della griglia</td>
</tr>
<tr>
<td>item_id</td>
<td>L’ID utente dell’oggetto layout (non necessariamente univoco)</td>
</tr>
<tr>
<td>item_uuid</td>
<td>L’ID univoco dell’oggetto layout</td>
</tr>
<tr>
<td>layer</td>
<td>Il layer corrente</td>
</tr>
<tr>
<td>layer_id</td>
<td>L’ID del layer corrente</td>
</tr>
<tr>
<td>layer_ids</td>
<td>Gli ID di tutti i layer della mappa nel progetto corrente come elenco</td>
</tr>
<tr>
<td>layer_name</td>
<td>Il nome del layer corrente</td>
</tr>
<tr>
<td>layers</td>
<td>Tutti i layer della mappa nel progetto corrente come elenco</td>
</tr>
<tr>
<td>layout_dpi</td>
<td>La risoluzione della composizione (DPI)</td>
</tr>
<tr>
<td>layout_name</td>
<td>Il nome del layer</td>
</tr>
<tr>
<td>layout_numpages</td>
<td>Il numero di pagine nel layout</td>
</tr>
<tr>
<td>layout_page</td>
<td>Il numero di pagina dell’oggetto corrente nel layout</td>
</tr>
<tr>
<td>layout_pageheight</td>
<td>L’altezza della pagina attiva nel layout (in mm)</td>
</tr>
<tr>
<td>layout_pagewidth</td>
<td>La larghezza della pagina attiva nel layout (in mm)</td>
</tr>
<tr>
<td>legend_column_count</td>
<td>Il numero di colonne nella legenda</td>
</tr>
<tr>
<td>legend_filter_by_map</td>
<td>Indica se il contenuto della legenda è filtrato dalla mappa</td>
</tr>
<tr>
<td>legend_filter_out_atlas</td>
<td>Indica se l’atlante è filtrato dalla legenda</td>
</tr>
<tr>
<td>Variabile</td>
<td>Descrizione</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>legend_split_layers</td>
<td>Indica se i layer possono essere divisi nella legenda</td>
</tr>
<tr>
<td>legend_title</td>
<td>Il titolo della legenda</td>
</tr>
<tr>
<td>legend_wrap_string</td>
<td>Il carattere(i) usato per comporre il testo della legenda</td>
</tr>
<tr>
<td>map_crs</td>
<td>Il sistema di riferimento delle coordinate della mappa corrente</td>
</tr>
<tr>
<td>map_crs_acronym</td>
<td>L’acronimo del sistema di riferimento delle coordinate della mappa corrente</td>
</tr>
<tr>
<td>map_crs_definition</td>
<td>La definizione completa del sistema di riferimento delle coordinate della mappa corrente</td>
</tr>
<tr>
<td>map_crs_description</td>
<td>Il nome del sistema di riferimento delle coordinate della mappa corrente</td>
</tr>
<tr>
<td>map_crs_ellipsoid</td>
<td>L’acronimo dell’ellissoide del sistema di riferimento delle coordinate della mappa corrente</td>
</tr>
<tr>
<td>map_crs_proj4</td>
<td>La definizione Proj4 del sistema di riferimento delle coordinate della mappa corrente</td>
</tr>
<tr>
<td>map_crs_wkt</td>
<td>La definizione WKT del sistema di riferimento delle coordinate della mappa corrente</td>
</tr>
<tr>
<td>map_end_time</td>
<td>La fine dell’intervallo temporale della mappa (come valore datetime)</td>
</tr>
<tr>
<td>map_extent</td>
<td>La geometria che rappresenta l’estensione della mappa</td>
</tr>
<tr>
<td>map_extent_center</td>
<td>Il punto al centro della mappa</td>
</tr>
<tr>
<td>map_extent_height</td>
<td>L’altezza della mappa</td>
</tr>
<tr>
<td>map_extent_width</td>
<td>La larghezza della mappa</td>
</tr>
<tr>
<td>map_id</td>
<td>L’ID della destinazione corrente della mappa. Questo sarà “canvas” per la rappresentazione sull’area grafica, e l’ID dell’oggetto per la rappresentazione della mappa nel layout</td>
</tr>
<tr>
<td>map_interval</td>
<td>La durata dell’intervallo temporale della mappa (come valore di intervallo)</td>
</tr>
<tr>
<td>map_layer_ids</td>
<td>L’elenco degli ID dei layer di mappa visibili nella mappa</td>
</tr>
<tr>
<td>map_layers</td>
<td>L’elenco dei layer della mappa visibili nella mappa</td>
</tr>
<tr>
<td>map_rotation</td>
<td>La rotazione corrente della mappa</td>
</tr>
<tr>
<td>map_scale</td>
<td>La scala corrente della mappa</td>
</tr>
<tr>
<td>map_start_time</td>
<td>L’inizio dell’intervallo temporale della mappa (come valore datetime)</td>
</tr>
<tr>
<td>map_units</td>
<td>Le unità di misura della mappa</td>
</tr>
<tr>
<td>model_path</td>
<td>Percorso completo (incluso il nome del file) del modello corrente (o percorso del progetto se il modello è incorporato in un progetto).</td>
</tr>
<tr>
<td>model_folder</td>
<td>Cartella contenente il modello corrente (o la cartella del progetto se il modello è incorporato in un progetto).</td>
</tr>
<tr>
<td>model_name</td>
<td>Nome del modello corrente</td>
</tr>
<tr>
<td>model_group</td>
<td>Gruppo per modello corrente</td>
</tr>
<tr>
<td>notification_message</td>
<td>Contenuto del messaggio di notifica spedito dalla sorgente (disponibile solo per azioni provenienti da notifiche dal sorgente).</td>
</tr>
<tr>
<td>parent</td>
<td>Si riferisce alla geometria del layer padre, fornendo accesso ai suoi attributi e alla sua geometria quando si filtra una funzione aggregate.</td>
</tr>
<tr>
<td>project_abstract</td>
<td>L’abstract del progetto, preso dai metadati del progetto</td>
</tr>
<tr>
<td>project_area_units</td>
<td>L’unità di area per il progetto corrente, usata quando si calcolano le aree delle geometrie</td>
</tr>
<tr>
<td>project_author</td>
<td>L’autore del progetto, preso dai metadati del progetto</td>
</tr>
<tr>
<td>project_creation_date</td>
<td>La data di creazione del progetto, presa dai metadati del progetto</td>
</tr>
<tr>
<td>project_crs</td>
<td>Il sistema di riferimento delle coordinate del progetto</td>
</tr>
<tr>
<td>project_crs_acronym</td>
<td>L’acronimo del sistema di riferimento delle coordinate del progetto</td>
</tr>
<tr>
<td>project_crs_definition</td>
<td>La definizione completa del sistema di riferimento delle coordinate del progetto</td>
</tr>
<tr>
<td>project_crs_description</td>
<td>La descrizione del sistema di riferimento delle coordinate del progetto</td>
</tr>
<tr>
<td>project_crs_ellipsoid</td>
<td>L’ellissoide del sistema di riferimento delle coordinate del progetto</td>
</tr>
<tr>
<td>project_crs_proj4</td>
<td>La rappresentazione Proj4 del sistema di riferimento delle coordinate del progetto</td>
</tr>
<tr>
<td>project_crs_wkt</td>
<td>La rappresentazione WKT (well known text) del sistema di riferimento delle coordinate del progetto</td>
</tr>
</tbody>
</table>

continues on next page
### Tabella 14.2 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Variabile</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>project_distance_units</td>
<td>L’unità di distanza per il progetto corrente, usata quando si calcolano le lunghezze delle geometrie e le distanze</td>
</tr>
<tr>
<td>project_ellipsoid</td>
<td>Il nome dell’ellissoide del progetto corrente, usato quando si calcolano aree geodetiche o lunghezze di geometrie</td>
</tr>
<tr>
<td>project_filename</td>
<td>Il nome del file del progetto corrente</td>
</tr>
<tr>
<td>project_folder</td>
<td>La cartella del progetto corrente</td>
</tr>
<tr>
<td>project_home</td>
<td>Il percorso iniziale del progetto corrente</td>
</tr>
<tr>
<td>project_identifier</td>
<td>L’identificatore del progetto, preso dai metadati del progetto</td>
</tr>
<tr>
<td>project_keywords</td>
<td>Le parole chiave del progetto, prese dai metadati del progetto</td>
</tr>
<tr>
<td>project_last_saved</td>
<td>Data/ora dell’ultimo salvataggio del progetto.</td>
</tr>
<tr>
<td>project_path</td>
<td>Il percorso completo (incluso il nome del file) del progetto corrente</td>
</tr>
<tr>
<td>project_title</td>
<td>Il titolo del progetto corrente</td>
</tr>
<tr>
<td>qgis_locale</td>
<td>Il linguaggio corrente di QGIS</td>
</tr>
<tr>
<td>qgis_os_name</td>
<td>Il nome del sistema operativo corrente, ad esempio “windows”, “linux” o “osx”.</td>
</tr>
<tr>
<td>qgis_platform</td>
<td>La piattaforma QGIS, ad esempio “desktop” o “server”.</td>
</tr>
<tr>
<td>qgis_release_name</td>
<td>Il nome della versione corrente di QGIS</td>
</tr>
<tr>
<td>qgis_short_version</td>
<td>La stringa breve della versione corrente di QGIS</td>
</tr>
<tr>
<td>qgis_version</td>
<td>La stringa della versione corrente di QGIS</td>
</tr>
<tr>
<td>qgis_version_no</td>
<td>L’attuale numero di versione QGIS</td>
</tr>
<tr>
<td>row_number</td>
<td>Memorizza il numero della riga corrente</td>
</tr>
<tr>
<td>snapping_results</td>
<td>Dà accesso ai risultati dell’aggancio durante la digitalizzazione di una geometria (disponibile solo nella funzionalità di aggiunta)</td>
</tr>
<tr>
<td>scale_value</td>
<td>Il valore corrente della distanza della barra della scala</td>
</tr>
<tr>
<td>symbol_angle</td>
<td>L’angolo del simbolo usato per rappresentare l’elemento (valido solo per i simboli di marcatori)</td>
</tr>
<tr>
<td>symbol_color</td>
<td>Il colore del simbolo usato per rappresentare l’elemento</td>
</tr>
<tr>
<td>symbol_count</td>
<td>Il numero di elementi rappresentati dal simbolo (nella legenda del layout)</td>
</tr>
<tr>
<td>symbol_id</td>
<td>L’ID interno del simbolo (nella legenda del layout)</td>
</tr>
<tr>
<td>symbol_label</td>
<td>L’etichetta per il simbolo (un’etichetta definita dall’utente o l’etichetta predefinita generata automaticamente - nella legenda del layout)</td>
</tr>
<tr>
<td>symbol_layer_count</td>
<td>Numero totale di livelli di simboli nel simbolo</td>
</tr>
<tr>
<td>symbol_layer_index</td>
<td>Indice del layer del simbolo corrente</td>
</tr>
<tr>
<td>symbol_marker_column</td>
<td>Numero di colonna per il simbolo (valido solo per i pattern puntiformi).</td>
</tr>
<tr>
<td>symbol_marker_row</td>
<td>Numero di riga per il simbolo (valido solo per i pattern puntiformi).</td>
</tr>
<tr>
<td>user_account_name</td>
<td>Il nome utente corrente dell’account nel sistema operativo</td>
</tr>
<tr>
<td>user_full_name</td>
<td>Il nome utente dell’utente corrente nel sistema operativo</td>
</tr>
<tr>
<td>value</td>
<td>Il valore corrente</td>
</tr>
<tr>
<td>with_variable</td>
<td>Consente di impostare una variabile da utilizzare all’interno di un’espressione ed evitare di ricalcolare ripetutamente lo stesso valore</td>
</tr>
<tr>
<td>zoom_level</td>
<td>Livello di zoom del tassello visualizzato (derivato dalla corrente scala della mappa). Normally nell’intervallo [0, 20].</td>
</tr>
</tbody>
</table>

#### Alcuni esempi:

- Restituire la coordinata X del centro di un oggetto della mappa nel layout:

```sql
x(map_get(item_variables('map1'), 'map_extent_center'))
```

- Restituire, per ogni elemento nel layer corrente, il numero di aeroporti sovrapposti:

```sql
aggregate(layer:='airport', aggregate:'count', expression:'code',
 filter:intersects($geometry, geometry(@parent)))
```

- Ottenere l'object_id del primo punto agganciato di una linea:
14.3.26 Funzioni recenti

Questo gruppo contiene le funzioni usate di recente. A seconda del contesto di utilizzo (selezione di elementi, calcolatore di campi, generica), le espressioni applicate di recente vengono aggiunte alla lista corrispondente (fino a dieci espressioni), ordinate dalla più alla meno recente. Questo rende facile recuperare e riapplicare rapidamente le espressioni usate in precedenza.

14.4 Lavorare con la tabella degli attributi

La tabella degli attributi visualizza informazioni sugli oggetti di un layer selezionato. Ogni riga nella tabella rappresenta un oggetto (con geometria o meno) e ogni colonna contiene una particolare informazione sull’oggetto. Gli oggetti nella tabella possono essere cercati, selezionati, spostati o anche modificati.

14.4.1 Premessa: Tabelle spaziali e non spaziali

QGIS ti consente di caricare layers spaziali e non spaziali. Attualmente sono incluse tabelle supportate da OGR e a testo delimitato, nonché sorgenti PostgreSQL, MSSQL, SpatiaLite, DB2 e Oracle. Tutti il layer caricati sono elencati nel pannello Layer. Se un layer è abilitato spazialmente o meno determina se è possibile interagire con esso sulla mappa.

Le tabelle non spaziali possono essere visualizzate e modificate utilizzando la vista tabella degli attributi. Inoltre, possono essere utilizzate per ricerche sul campo. Ad esempio, puoi utilizzare le colonne di una tabella non spaziale per definire i valori degli attributi, o un intervallo di valori che possono essere aggiunti a uno specifico layer vettoriale durante la digitalizzazione. Dai un’occhiata piú da vicino al widget di modifica nella sezione Proprietà Modulo Attributi per saperne di piú.

14.4.2 Introduzione all’interfaccia della tabella degli attributi

Per aprire la tabella degli attributi di un layer vettoriale, attiva il layer cliccandoci sopra in Pannello dei Layer. Poi, dal menu principale Layer, scegli Apri tabella attributi. E’ anche possibile cliccare con il tasto destro del mouse sul layer e scegliere Apri tabella attributi dal menu a discesa, oppure cliccare sul pulsante Apri tabella attributi nella barra degli strumenti Attributi. Se preferisci le scorciatoie, F6 aprirà la tabella degli attributi. Shift+F6 aprirà la tabella degli attributi filtrata per le geometrie selezionate e Ctrl+F6 aprirà la tabella degli attributi filtrata per le geometrie visibili.

Si aprirà una nuova finestra che mostra gli attributi delle geometrie del layer (figure_attributes_table). In base all’impostazione in Impostazioni -> Opzioni -> Sorgenti dei dati, la tabella degli attributi si aprirà in una finestra agganciata o in una finestra normale. Il numero totale di geometrie nel layer e il numero di geometrie attualmente selezionate/filtrate sono mostrati nel titolo della tabella degli attributi anche se il layer è spazialmente limitato.
Fig. 14.68: Tabella degli attributi per il layer regions

I pulsanti nella parte superiore della finestra della tabella degli attributi forniscono le seguenti funzionalità:

Tabella 14.3: Strumenti Disponibili

<table>
<thead>
<tr>
<th>Icona</th>
<th>Elenco</th>
<th>Azione</th>
<th>Scorciatoio</th>
</tr>
</thead>
<tbody>
<tr>
<td>🍃</td>
<td></td>
<td>Attivare/disattivare modalità modifica</td>
<td>Ctrl+E</td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Attivare modalità modifica multipla</td>
<td></td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Salva modifiche</td>
<td></td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Ricarica la tabella</td>
<td></td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Aggiungi elemento</td>
<td></td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Elimina elementi selezionati</td>
<td></td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Taglia gli elementi selezionati nel blocco appunti</td>
<td>Ctrl+X</td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Copia gli elementi selezionati nel blocco appunti</td>
<td>Ctrl+C</td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Incolla elementi dagli appunti</td>
<td>Ctrl+V</td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Seleziona elementi usando una Espressione</td>
<td></td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Seleziona Tutto</td>
<td>Ctrl+A</td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Inverti la selezione</td>
<td>Ctrl+R</td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Deseleziona tutto</td>
<td>Ctrl+Shift+A</td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Filtra/Seleziona elementi usando un modulo</td>
<td>Ctrl+F</td>
</tr>
<tr>
<td>🍃</td>
<td></td>
<td>Sposta la selezione in cima</td>
<td>Ctrl+P</td>
</tr>
</tbody>
</table>
Tabella 14.3 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Icona</th>
<th>Etichetta</th>
<th>Azione</th>
<th>Scorciatoi</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Icona" /></td>
<td>Zoom mappa alle righe selezionate</td>
<td></td>
<td>Ctrl+J</td>
</tr>
<tr>
<td><img src="image2.png" alt="Icona" /></td>
<td>Nuovo campo</td>
<td>Aggiungi un nuovo campo ai dati originari</td>
<td>Ctrl+W</td>
</tr>
<tr>
<td><img src="image3.png" alt="Icona" /></td>
<td>Elimina campo</td>
<td>Rimuovi un campo dall’origine dati</td>
<td>Ctrl+W</td>
</tr>
<tr>
<td><img src="image4.png" alt="Icona" /></td>
<td>Apri calcolatore campi</td>
<td>Aggiornare il campo per molti elementi in una riga</td>
<td>Ctrl+I</td>
</tr>
<tr>
<td><img src="image5.png" alt="Icona" /></td>
<td>Formattazione condizionale</td>
<td>Abilitare formattazione tabella</td>
<td>Ctrl+i</td>
</tr>
<tr>
<td><img src="image6.png" alt="Icona" /></td>
<td>Aggancia Tabella degli Attributi</td>
<td>Permette di agganciare/sganciare la tabella degli attributi</td>
<td>Ctrl+i</td>
</tr>
<tr>
<td><img src="image7.png" alt="Icona" /></td>
<td>Azioni</td>
<td>Elenca le azioni relative al layer</td>
<td>Ctrl+i</td>
</tr>
</tbody>
</table>

Nota: A seconda del formato dei dati e della libreria OGR creata con la versione di QGIS, alcuni strumenti potrebbero non essere disponibili.

Sotto questi pulsanti c’è la barra di Calcolo Rapido Campo (abilitata solo in modalità modifica), che ti consente di applicare rapidamente filtri e calcoli a tutti o parte degli elementi nel vettore. Per i calcoli usa le stesse expressions del Calcolatore di campi (vedi Modifica dei valori nella tabella degli attributi).

Visualizzazione Tabella e Visualizzazione Modulo

QGIS fornisce due modi di visualizzazione per manipolare facilmente i dati nella tabella degli attributi:

- La **Vista tabella**, visualizza i valori di più geometrie in modalità tabellare, ogni riga rappresenta una geometria e ogni colonna un campo.

- La **Vista modulo** mostra *feature identifiers* in un primo pannello e mostra solo gli attributi dell’identificatore cliccato nel secondo. C’è un menu a tendina in cima al primo pannello dove l’“identificatore” può essere specificato usando un attributo (*Anteprima colonna*) o una *Espressione*. Il pull-down include anche le ultime 10 espressioni per il riutilizzo. La vista modulo usa la configurazione dei campi del layer (vedi *Proprietà Modulo Attributi*). Puoi sfogliare gli identificatori degli elementi con le frecce sul fondo del primo pannello. Una volta che hai evidenziato la caratteristica in giallo nella lista, essa è selezionata in giallo sulla mappa. Usa lo **in cima alla tabella degli attributi per zoomare sull’elemento. Cliccando su una voce della lista (senza usare i rettangoli) l’elemento lampeggia in rosso una volta in modo da poter vedere dove si trova.

Puoi passare da una modalità all’altra cliccando sull’apposita icona in basso a destra della finestra di dialogo.

Puoi anche specificare la modalità di *Vista predefinita* all’apertura della tabella degli attributi nel menu *Impostazioni ➤ Opzioni ➤ Sorgente dei dati*. Può essere “Ricorda ultima vista”, “Vista tabella” o “Vista modulo”.

14.4. Lavorare con la tabella degli attributi 485
Configurare le colonne

Fai click con il pulsante destro del mouse in un'intestazione di colonna quando sei in visualizzazione tabella per accedere agli strumenti che ti consentono di definire ciò che può essere visualizzato e come nella tabella degli attributi.

Nascondere e organizzare colonne e attivare azioni

Facendo click con il pulsante destro del mouse in un'intestazione di colonna, puoi scegliere di nasconderla dalla tabella degli attributi. Per modificare contemporaneamente il comportamento di più colonne, mostrare una colonna o cambiare l'ordine delle colonne, scegli Organizza colonne …. Nella nuova finestra di dialogo puoi:

- selezionare/deselezionare le colonne da visualizzare o nascondere
- trascinare e rilasciare gli oggetti per riordinare le colonne nella tabella degli attributi. Si noti che questa modifica riguarda la visualizzazione della tabella e non modifica l'ordine dei campi nell'origine dati del layer
- abilitare una nuova colonna virtuale Azioni che visualizza in ciascuna riga una casella a discesa o un elenco di pulsanti di azioni per ciascuna riga, per ulteriori informazioni sulle azioni, vedi Proprietà Azioni.
Cambiare la larghezza delle colonne

La larghezza delle colonne può essere impostata tramite un click destro sull’intestazione della colonna e selezionare:

- **Imposta larghezza**... per immettere il valore desiderato. Per impostazione predefinita, il valore corrente viene visualizzato nel widget
- **DimensioneAuto** per ridimensionare al meglio la colonna.

Può essere modificata anche trascinando il limite a destra della colonna con il mouse tenendo premuto il tasto sinistro. La nuova dimensione della colonna viene mantenuta per il layer e viene ripristinata all’apertura successiva della tabella degli attributi.

Ordinare le colonne

La tabella può essere ordinata su qualsiasi colonna, facendo click sull’intestazione della colonna. Una piccola freccia indica l’ordine di ordinamento (verso il basso significa far scendere i valori dalla riga superiore in basso, verso l’alto significa far salire i valori dalla riga superiore in basso). Puoi anche ordinare le righe con l’opzione di ordinamento del menu contestuale dell’intestazione di colonna e scrivere un’espressione, ad esempio per ordinare la riga con più colonne puoi scrivere `concat(col0, col1)`.

Nella visualizzazione modulo, l’identificatore degli elementi può essere ordinato utilizzando l’opzione `Ordina tramite anteprima espressione`.

**Suggerimento: Ordinamento in base a colonne di diversa tipologia**

Il tentativo di ordinare una tabella degli attributi in base a colonne di stringhe e a tipi numerici può portare a risultati inaspettati a causa dell’espressione `concat("USE", "ID")` che restituisce i valori delle stringhe (cioè, Borough105' < 'Borough6'). Puoi aggirare questo problema usando ad esempio (`"USE", lpad("ID", 3, 0)`) che restituisce 'Borough105' > 'Borough006'.

Formattazione delle celle della tabella utilizzando condizioni

Le impostazioni di formattazione condizionale possono essere utilizzate per evidenziare le geometrie della tabella degli attributi che in particolare vuoi mettere a fuoco, utilizzando condizioni specifiche per le geometrie:

- geometria (ad esempio, identificazione delle geometrie multi-parti, piccole aree o in una estensione limitata della mappa ...);
- o valore del campo (ad esempio, confrontando i valori con una soglia, identificando le celle vuote ...)

Puoi abilitare il pannello di formattazione condizionale cliccando su `in alto a destra nella finestra attributi in visualizzazione tabella` (non disponibile in visualizzazione modulo).

Il nuovo pannello consente all’utente di aggiungere nuove regole per modificare la visualizzazione del `Campo` o `Riga intera`. L’aggiunta di una nuova regola apre un modulo per definire:

- il nome della regola;
- una condizione che utilizza una qualsiasi delle funzioni del `expression builder`;
- la formattazione: può essere scelta da un elenco di formati predefiniti o creata in base a proprietà come:
  - colori di sfondo e testo;
  - uso dell’icona;
  - grassetto, corsivo, sottolineato o testo barrato;
  - carattere.
14.4.3 Interagire con gli elementi nella tabella degli attributi

Selezionare elementi

Nella vista tabella, ogni riga nella tabella degli attributi visualizza gli attributi di una specifica geometria nel layer. Selezionando una sola riga si seleziona una geometria e allo stesso modo, selezionando una geometria nella mappa (in caso di geometria del layer attivato), viene selezionata la corrispondente riga nella tabella degli attributi. Se viene modificato un insieme di geometrie selezionate nella mappa (o nella tabella degli attributi), la selezione viene aggiornata anche nella tabella degli attributi (o nella visualizzazione della mappa).

Le righe possono essere selezionate facendo clic sul numero di riga sul lato sinistro della riga. È possibile contrassegnare più righe tenendo premuto il tasto Ctrl. Una selezione continua può essere effettuata tenendo premuto il tasto Shift e facendo click su più intestazioni di riga sul lato sinistro delle righe. Sono selezionate tutte le righe tra la posizione corrente del cursore e la riga cliccata. Spostando la posizione del cursore nella tabella degli attributi, facendo click su una cella nella tabella, non cambia la selezione di riga. Cambiare la selezione nella finestra principale non sposta la posizione del cursore nella tabella degli attributi.

Nella impostazione visualizzazione della tabella degli attributi, le geometrie vengono identificate per default nel pannello di sinistra per il valore del loro campo visualizzato (vedere Proprietà Suggerimenti). Questo identificatore può essere sostituito utilizzando l'elenco a discesa nella parte superiore del pannello, selezionando un campo esistente o utilizzando un'espressione personalizzata. Puoi inoltre scegliere di ordinare l'elenco delle geometrie dal menu a discesa.

Fai click su un valore nel pannello di sinistra per visualizzare gli attributi della geometria nella destra. Per selezionare una geometria, devi fare click all'interno del simbolo quadrato a sinistra dell'identificatore. Per impostazione predefinita, il simbolo diventa giallo. Come nella visualizzazione tabella, puoi eseguire la selezione di più geometrie utilizzando le combinazioni di tasti precedentemente esposte.
Oltre a selezionare le geometrie con il mouse, è possibile eseguire la selezione automatica in base all’attributo della geometria utilizzando gli strumenti disponibili nella barra degli strumenti della tabella degli attributi, ad esempio (vedi la sezione Selezione automatica e la successiva per ulteriori informazioni e casi d’uso):

- Seleziona con Espressione…
- Seleziona Elementi per Valore…
- Deselezionare tutti gli elementi dal layer
- Seleziona Tutti gli elementi
- Inverti Selezione Elementi.

È anche possibile selezionare gli elementi utilizzando Filtrare e selezionare elementi usando moduli.

Filtrare elementi

Una volta che hai selezionato le geometrie nella tabella degli attributi, potresti voler visualizzare solo questi record nella tabella. Questo può essere fatto facilmente utilizzando la voce Mostra gli elementi selezionati dall’elenco a discesa in basso a sinistra della finestra di dialogo della tabella degli attributi. Questa lista offre i seguenti filtri:

- Mostra tutti gli elementi
- Mostra Elementi Selezionati
- Mostra Elementi visibili nella mappa
- Mostra Elementi Modificati e Nuovi
- Filtro campo: consente all’utente di eseguire il filtro in base al valore di un campo: scegliere una colonna da un elenco, digitare un valore e premere Enter per filtrare. Quindi, nella tabella degli attributi vengono visualizzati solo gli elementi corrispondenti.
- Filtro avanzato (Espressione) - Apre la finestra di dialogo del costruttore di espressioni. Al suo interno, puoi creare complex expressions per selezionare righe nella tabella. Ad esempio, puoi filtrare elementi della tabella utilizzando più di un campo. Quando viene applicato, l’espressione del filtro apparirà in fondo al modulo.

E’ anche possibile filter features using forms.

Nota: Filtrare records fuori dalla tabella degli attributi non consente di eliminare gli elementi dal layer; essi sono semplicemente momentaneamente nascosti dalla tabella e si possono selezionare sulla mappa ovvero si può rimuovere il filtro. Per filtri che nascondono gli elementi dal layer, utilizzare il Query Builder.

Suggerimento: Aggiornare il filtraggio della sorgente dati con Mostra gli elementi visibili nella mappa

Quando per motivi di prestazione, gli elementi visualizzati nella tabella degli attributi sono limitati nella visualizzazione mappa alla sua apertura (vedi Data Source Options per come fare), selezionando Mostra gli elementi visibili nella mappa su una nuova estensione di visibilità della mappa si aggiorna la precedente restrizione spaziale.
Filtrare e selezionare elementi usando moduli

Facendo clic su Filtrare/Seleziona usando un modulo e premendo Ctrl+F la finestra di dialogo della tabella degli attributi passerà alla visualizzazione modulo e tutti i widget verranno sostituiti con le sue opzioni di ricerca.

Da questo punto in poi, questa funzionalità dello strumento è simile a quella descritta in Seleziona Elementi per Valore, dove si trovano le descrizioni di tutti gli operatori e le modalità di selezione.

Fig. 14.71: Filtro tramite modulo della tabella degli attributi

Quando si selezionano/filtrano le geometrie dalla tabella degli attributi, c’è un pulsante Filtra elementi che permette di definire e raffinare i filtri. Il suo utilizzo attiva l’opzione Filtro avanzato (Espressione) e visualizza la corrispondente espressione del filtro in un widget di testo modificabile nella parte inferiore del modulo.

Se ci sono elementi già selezionati, puoi reimpostare il filtro usando l’elenco a discesa accanto al pulsante in basso a destra Filtra elementi. Le opzioni sono:

- Filtra all’interno («AND»)
- Estendi filtro («OR»)

Per cancellare il filtro seleziona l’opzione Seleziona tutto dal menu a discesa in basso a sinistra, oppure cancella l’espressione e fai clic su Applica oppure premi Invio.

14.4.4 Usare le azioni sugli oggetti

Gli utenti hanno diverse possibilità di manipolare elementi con il menu contestuale come:

- Seleziona tutto (Ctrl+A) selezionare tutti gli elementi;
- Copiare il contenuto di una cella negli appunti con Copia contenuto cella;
- Zoomare all’elemento senza doverlo selezionare in anticipo;
- Spostarsi sulla geometria senza doverla selezionare in anticipo;
- Flash feature, per evidenziarla sulla mappa;
- Apri modulo: attiva la tabella degli attributi nella vista modulo con un focus sulla geometria cliccata.
Fig. 14.72: Copiare il contenuto di una cella

Se vuoi utilizzare i dati degli attributi in programmi esterni (ad esempio Excel, LibreOffice, QGIS o un’applicazione Web personalizzata), seleziona una o più righe e utilizza il pulsante [Copia righe selezionate negli appunti] o premi Ctrl+C. Nel menu **Impostazioni** ► **Opzioni**… ► **Sorgenti Dati**, puoi definire il formato da incollare con le opzioni in **Copia geometrie come**:

- Testo normale, nessuna geometria,
- Testo normale, geometria WKT,
- GeoJSON

Puoi anche visualizzare un elenco di azioni in questo menu contestuale. Questa opzione è attivata nella scheda **Proprietà vettore** ► **Azioni**. Vedi **Proprietà Azioni** per ulteriori informazioni sulle azioni.

14.4. Lavorare con la tabella degli attributi
Salvare le geometrie selezionate come nuovo layer

Le geometrie selezionate possono essere salvate in qualsiasi formato vettoriale supportato da OGR e anche trasformate in un altro sistema di riferimento di coordinate (SR). Nel menu contestuale del layer, dal Panello Layer, fai clic su [Esporta ► Salva con nome…] per definire il nome del file di output, il formato e il SR (vedi la sezione Creare nuovi layer da layer esistente). Per salvare la selezione, assicurati che sia selezionata l’opzione [Salva solo le geometrie selezionate]. È anche possibile specificare le opzioni di creazione OGR all’interno della finestra di dialogo.

14.4.5 Modifica dei valori nella tabella degli attributi

La modifica dei valori degli attributi può essere eseguita:

- digitando il nuovo valore direttamente nella cella, se la tabella degli attributi è in visualizzazione tabella o modulo. Le modifiche vengono quindi effettuate per cella, elemento per elemento;
- utilizzando il field calculator: aggiorna in una riga un campo che può già esistere o essere creato ma per geometrie multiple Può essere utilizzato per creare campi virtuali.
- utilizzando la modalità calculation bar: come sopra, ma solo per il campo esistente;
- o utilizzando la modalità multi edit: aggiorna in una riga più campi per più geometrie

Usare il Calcolatore di campo

Il pulsante [Avvi calcolatore di campi] nella tabella degli attributi ti consente di eseguire calcoli sulla base dei valori di attributi esistenti o di funzioni definite, per esempio, per calcolare la lunghezza o l’area di elementi geometrici. I risultati possono essere usati per aggiornare un campo esistente, o scritti in un nuovo campo (che può essere un campo virtual).

Il calcolatore di campi è disponibile su qualsiasi layer che supporta la modifica. Quando fai click sull’icona del calcolatore di campi si apre la finestra di dialogo (vedi Fig. 14.73). Se il layer non è in modalità di modifica, viene mostrato un avvertimento e l’uso del calcolatore di campi causerà la messa in modalità di modifica del layer prima che il calcolo venga effettuato.

La finestra di dialogo Expression Builder offre un’interfaccia completa per definire un’espressione e applicarla a un campo esistente o appena creato. Per utilizzare la finestra di dialogo del calcolatore di campo, devi scegliere se vuoi:

1. applica il calcolo su tutto il layer o solo sulle geometrie selezionate
2. crea un nuovo campo per il calcolo o aggiorna un campo esistente.
Se scegli di aggiungere un nuovo campo, devi immettere un nome campo, un tipo di campo (intero, reale, data o stringa) e, se necessario, la lunghezza totale del campo e la precisione del campo. Ad esempio, se scegli una lunghezza del campo di 10 e una precisione del campo di 3, significa che hai 6 cifre prima del punto, poi il punto e altre 3 cifre per la precisione.

Un breve esempio illustra come funziona il calcolatore di campo quando si utilizza la scheda *Espressione*. Vogliamo calcolare la lunghezza in km del layer *railroads* dal dataset di esempio di QGIS:

1. Carica lo shapefile *railroads.shp* in QGIS e premi Apri tabella attributi.
2. Fai clic su **Attiva modifiche** e apri la finestra di dialogo Calcolatore di campi.
3. Seleziona la casella di controllo *Crea un nuovo campo* per salvare i calcoli in un nuovo campo.
4. Imposta **Nome campo in uscita a length_km**.
5. Seleziona **Numero decinale (real)** come **Tipo campo in uscita**
6. Imposta la **Lunghezza campo in uscita a 10** e la **Precisione a 3**
7. Fai doppio clic su $length$ nel gruppo *Geometria* per aggiungere la lunghezza della geometria nella casella di espressione del calcolatore di campo.
8. Completa l'espressione digitando / 1000 nella casella Espressione del Calcolatore campo e fai click su **OK**.
9. Puoi ora trovare un nuovo campo *length_km* nella tabella degli attributi.
QGIS Desktop 3.16 User Guide

Creare un Campo Virtuale

Un campo virtuale è un campo basato su un’espressione calcolata on the fly, il che significa che il suo valore viene aggiornato automaticamente non appena il parametro sottostante cambia. L’espressione viene impostata una sola volta; non è più necessario ricalcolare il campo ogni volta che i valori sottostanti cambiano. Ad esempio, puoi utilizzare un campo virtuale se vuoi che un’area venga valutata quando si digitalizzano poligoni ovvero calcolare automaticamente una durata tra date che possono cambiare (ad esempio, utilizzando la funzione `now()`).

Nota: Uso dei Campi Virtuali

- I campi virtuali non sono permanenti negli attributi del layer, nel senso che sono solo salvati e disponibili nei file di progetto dove sono stati creati.
- Un campo può essere impostato virtuale solo al momento della sua creazione. I campi virtuali sono evidenziati con uno sfondo viola nella scheda campi della finestra di dialogo delle proprietà del layer per distinguere da normali campi fisici o uniti. La loro espressione può essere modificata in seguito premendo il pulsante di espressione nella colonna Commento. Una finestra di editor di espressioni verrà aperta per modificare l’espressione del campo virtuale.

La barra di calcolo campo rapido

Mentre il calcolatore di campo è sempre disponibile, la barra di calcolo campo rapido in cima alla tabella di attributo è visibile solo se il layer è in modalità di modifica. Grazie al motore calcolatore tramite espressione, offre un accesso più rapido per modificare un campo già esistente.

1. Seleziona il campo presente da aggiornare nell’elenco a discesa.
2. Compila la casella di testo con un’espressione che direttamente scrivi o crei utilizzando il pulsante espressione $E$.
3. Fai clic sul pulsante Aggiorna tutto, Aggiorna selezione o Aggiornamento filtrato in base alle tue esigenze.

Fig. 14.74: La barra di calcolo campo rapido
Modifica multipla di campi

A differenza degli strumenti precedenti, la modalità modifica multipla consente di modificare più attributi di diversi elementi simultaneamente. Quando il layer viene impostato in modifica, sono disponibili strumenti di modifica multipla:

- utilizzando il pulsante Attiva modalità modifica multipla nella barra degli strumenti all’interno della finestra di dialogo della tabella degli attributi,
- o selezionando il menu Modifica ► Modifica gli attributi delle geometrie selezionate

Nota: A differenza dello strumento dalla tabella degli attributi, premendo l’opzione Modifica ► Modifica gli attributi delle geometrie selezionate viene fornita una finestra di dialogo per definire le modifiche degli attributi. Di conseguenza, è necessario selezionare le geometrie prima dell’esecuzione.

Per modificare più campi di una riga:

1. Seleziona le geometrie che vuoi modificare.

2. Dalla barra degli strumenti della tabella degli attributi, fai click sul pulsante . In questo modo, la finestra di dialogo viene visualizzata nella sua maschera. La selezione delle geometrie potrebbe essere effettuata anche in questo punto.

3. Al lato destro della tabella degli attributi vengono visualizzati i campi (e i valori) delle geometrie selezionate. Nuovi widget appaiono accanto a ciascun campo che consentono di visualizzare lo stato di modifica multipla corrente:

- il campo contiene valori diversi per le geometrie selezionate. Viene visualizzato vuoto e ogni geometria conserverà il suo valore originale. Puoi ripristinare il valore del campo dall’elenco a discesa del widget.
- tutte le geometrie selezionate hanno lo stesso valore per questo campo e il valore visualizzato nel modulo verrà mantenuto.
- il campo è stato modificato e il valore inserito verrà applicato a tutte le geometrie selezionate. Viene visualizzato un messaggio nella parte superiore della finestra di dialogo, invitandoti a applicare o annullare la modifica.

Facendo clic su uno di questi widget puoi o impostare il valore corrente per il campo o ripristinare il valore originale, il che significa che puoi ripristinare le modifiche campo per campo.
4. Apporta le modifiche ai campi desiderati.

5. Fai clic su Applica modifiche nel messaggio testuale superiore o a qualsiasi geometria del pannello di sinistra.

Le modifiche verranno applicate a tutte le geometrie selezionate. Se non è selezionata alcuna geometria, l'intera tabella viene aggiornata con le tue modifiche. Le modifiche vengono eseguite come un singolo comando di modifica. Quindi, premendo Annulla vengono ripristinate contemporaneamente le modifiche degli attributi per tutte le geometrie selezionate.

Nota: La modalità di modifica multipla è disponibile solo per i moduli generati automaticamente o personalizzati drag and drop (vedi Personalizzare un modulo per i tuoi dati); non è supportato da moduli personalizzati UI.

14.4.6 Creare una relazione uno a molti o molti a molti

Le relazioni sono una tecnica utilizzata spesso nelle banche dati. Il concetto è che le geometrie (righe) di layer diversi (tabelle) possono appartenersi a vicenda.

Introduzione alle relazioni 1-N

Come esempio hai un layer con tutte le regioni dell’Alaska (poligono) con alcuni attributi sul suo nome e il tipo regione e un ID univoco (che funge da chiave primaria).

Poi hai caricato un altro layer di punti o una tabella con informazioni sugli aeroporti che si trovano nelle regioni e desideri anche tenere traccia di questi. Se vuoi aggiungerli al layer regioni, devi creare rapporti uno a molti utilizzando chiavi esterne, in quanto in molte regioni esistono più aeroporti.
Layer in relazione 1-N

QGIS non fa differenza tra una tabella e un layer vettoriale. Fondamentalmente, un layer vettoriale è una tabella con una geometria. Quindi puoi aggiungere la tua tabella come un layer vettoriale. Per mostrare la relazione 1-n, puoi caricare lo shapefile `airports` e lo shapefile `airports` che contiene un campo chiave esterna (`fk_region`) al layer regions. Ciò significa che ogni aeroporto appartiene esattamente ad una regione, mentre ogni regione può avere un certo numero di aeroporti (una tipica relazione uno a molti).

Chiavi esterne nelle relazioni 1-N

Oltre agli attributi già esistenti nella tabella degli attributi degli aeroporti, avrai bisogno di un altro campo `fk_region` che funge da chiave esterna (se hai un database, probabilmente vorrai definire un vincolo su di esso).

Questo campo `fk_region` conterrà sempre un id di una regione. Può essere visto come un puntatore alla regione a cui appartiene. E si può progettare un modulo di modifica personalizzato per l'editing e QGIS si fa carico della sua definizione. Funziona con diverse fonti dati (quindi puoi anche usarlo con shapefile e csv) e tutto quello che devi fare è definire in QGIS le relazioni tra le tue tabelle.

Definire relazioni 1-N


- **Nome** sarà il titolo. Dovrebbe essere un testo comprensibile, che indica a cosa serve la relazione. In questo caso nominala semplicemente `airport_relation`.

- **Layer di riferimento (genitore)** considerato anche come layer genitore, è quello con la chiave primaria, quindi qui è il layer `regions`. Devi definire la chiave primaria del layer di riferimento, ch in questo caso è `ID`.

- **il layer referente**, considerato come layer figlio è quello con il campo chiave che punta sul layer padre. In questo caso il layer `airports` e dovrai aggiungere un campo di referimento chiamato `fk_region`.

**Nota:** A volte, è necessario più di un singolo campo per identificare in modo univoco gli elementi in un livello. La creazione di una relazione con un tale layer richiede una **chiave composta**, cioè più di una singola
coppia di campi corrispondenti. Usa il pulsante \[\text{Aggiungi una nuova coppia di campi come parte di una chiave esterna composta}\] per aggiungere tutte le coppie necessarie.

- **id** sarà utilizzato per scopi interni e deve essere univoco. Ti potrebbe essere necessario per creare *custom forms*. Se lo lasci vuoto, verrà generato automaticamente per te, ma puoi assegnare un nome per avere una più chiara modalità di gestione.

- **Forza della relazione** definisce la forza della relazione tra il layer genitore e il layer figlio. Il tipo di default *Association* significa che il layer genitore è semplicemente collegato a quello del figlio mentre il tipo *Composition* permette di duplicare anche le caratteristiche del figlio quando si duplicano quelle del genitore.

![Fig. 14.77: Aggiungi una relazione tra i layer regions e airports](image)

Dalla scheda *Relazioni*, puoi anche premere il pulsante \[\text{Scopri Relazioni}\] per recuperare le relazioni disponibili dai provider dei layer caricati. Questo è possibile per i layer memorizzati in provider di dati come PostgreSQL o SpatiaLite.

**Moduli per relazioni 1-N**

Ora che QGIS sa la relazione, sarà usato per migliorare il modulo che genera. Poiché non abbiamo modificato il modulo predefinito (autogenerato) aggiungerà semplicemente un nuovo widget nel nostro modulo. Quindi, selezioniamo la regione del layer nella legenda e utilizziamo lo strumento di identificazione. A seconda delle impostazioni, il modulo si potrebbe aprire direttamente o dovrai scegliere di aprirlo nella finestra di dialogo di identificazione in azioni.
Come puoi vedere, gli aeroporti assegnati a questa particolare regione vengono tutti mostrati in una tabella. E ci sono anche alcuni pulsanti disponibili. Guardiamoli brevemente

- Il pulsante 
  serve per attivare la modalità di modifica. Tieni presente che imposta la modalità di modifica per il layer airports, anche se siamo nel modulo di un elemento del layer regions. Ma la tabella rappresenta le geometrie del layer airports.

- Il pulsante 
  serve per salvare tutte le modifiche.

- Il pulsante 
  aggiungerà un nuovo record alla tabella degli attributi del layer degli aeroporti. E assegnerà il nuovo aeroporto alla regione corrente per impostazione predefinita.

- Il è lo stesso di , ma ti permette di digitalizzare prima la geometria dell'aeroporto nella mappa. Nota che l'icona cambia a seconda del tipo di geometria.

- Il pulsante 
  ti permette di copiare una o più geometrie figlie.

- Il pulsante 
  eliminerà definitivamente l'aereoporto selezionato.

- Il simbolo 
  aprirà una nuova finestra di dialogo in cui è possibile selezionare qualsiasi aeroporto esistente che verrà assegnato alla regione corrente. Questo può essere utile se si è creato accidentalmente l'aeroporto sulla regione sbagliata.

- Il simbolo 
  scollegherà gli aeroporti selezionati dalla regione corrente, lasciandoli non assegnati (la chiave esterna viene impostata su NULL).

- Con il pulsante 
  puoi ingrandire la mappa sulla geometria figlia selezionata.
• I due pulsanti e a destra ti consentono di passare dalla visualizzazione tabellare alla visualizzazione modulo, dove poi puoi visualizzare tutti gli aeroporti nel loro rispettivo modulo.

Nell'esempio precedente il layer ha delle geometrie (quindi non è solo una tabella alfanumerica) quindi i passi precedenti creeranno una voce nella tabella degli attributi del layer che non ha alcuna caratteristica geometrica corrispondente. Per aggiungere la geometria:

1. Scegli Apri tabella attributi per il layer.
2. Seleziona il record che è stato aggiunto in precedenza all'interno del modulo per la geometria del layer selezionato.
3. Utilizza lo strumento di digitalizzazione Add Part per collegare una geometria al record della tabella degli attributi selezionata.

Se lavori sulla tabella dell'aeroporto, il widget Relation Reference viene automaticamente impostato per il campo fk_region (quello usato per creare la relazione), vedi Relation Reference widget.

Nel modulo aeroporto vedrai il pulsante sul lato destro del campo fk_region: se clicchi sul pulsante si aprirà il modulo del layer regione. Questo widget ti permette di aprire facilmente e rapidamente i moduli delle geometrie padri collegate.

![Airports - Feature Attributes](image)

**Fig. 14.79: Finestra di dialogo identificazione aeroporti in relazione con regioni**

Il widget Relation Reference ha anche un'opzione per incorporare il modulo del layer genitore all'interno di quello figlio. È disponibile nel menu Properties ► Attributes Form del layer airport: seleziona il campo fk_region e attiva l'opzione Show embedded form.

Se ora guardi alla finestra di dialogo delle geometrie, vedrai che il modulo della regione è incorporato all'interno del modulo aeroportuale e avrà anche una combinazione di opzioni di scelta, che ti consentono di assegnare l'attuale aeroporto ad un'altra regione.
Inoltre se attivi la modalità di modifica del layer airport, il campo *fk_region* ha anche una funzione di autocompletamento: mentre scrivi vedrai tutti i valori del campo *id* del layer region. Qui è possibile digitalizzare un poligono per il layer region usando il pulsante se hai scelto l'opzione Consenti l'aggiunta di nuovi elementi nel menu Proprietà ▶ Modulo attributi del layer airport.

Il layer figlio può anche essere usato nello strumento Seleziona Elementi per Valore per selezionare gli elementi del layer padre in base agli attributi dei loro figli.

In Fig. 14.80, vengono selezionate tutte le regioni nelle quali l'altitudine media degli aeroporti è superiore a 500 metri sul livello del mare.

Scopriraï che nel modulo sono disponibili molte funzioni di aggregazione diverse.

Fig. 14.80: Selezionare elementi genitori con i valori dei figli
Introduzione alle relazioni molti-a-molti (N-M)

Le relazioni N-M sono relazioni molti a molti rapporti tra due tabelle. Ad esempio, i layer `airports` e `airlines`: un aeroporto serve compagnie aeree e una compagnia aerea opera in diversi aeroporti.

Questo codice SQL crea le tre tabelle necessarie per una relazione N-M in uno schema PostgreSQL/PostGIS denominato `locations`. Puoi eseguire il codice utilizzando Database ➤ DB Manager…. per PostGIS o strumenti esterni come pgAdmin. La tabella aeroporti memorizza il layer `airports` e la tabella compagnie aeree memorizza il layer `airlines`. In entrambe le tabelle per chiarezza vengono usati pochi campi. La parte *utile* è la tabella `airports_airlines`<sup>`.` Ne abbiamo bisogno per elencare tutte le compagnie aeree per tutti gli aeroporti (o viceversa). Questo tipo di tabella è conosciuta come *tabella pivot*. Le relazioni in questa tabella costringono a far sì che un aeroporto possa essere associato ad una compagnia aerea solo se entrambi esistono già nei loro layer.

```
CREATE SCHEMA locations;

CREATE TABLE locations.airports
(id serial NOT NULL,
 geom geometry(Point, 4326) NOT NULL,
 airport_name text NOT NULL,
 CONSTRAINT airports_pkey PRIMARY KEY (id));

CREATE INDEX airports_geom_idx ON locations.airports USING gist (geom);

CREATE TABLE locations.airlines
(id serial NOT NULL,
 geom geometry(Point, 4326) NOT NULL,
 airline_name text NOT NULL,
 CONSTRAINT airlines_pkey PRIMARY KEY (id));

CREATE INDEX airlines_geom_idx ON locations.airlines USING gist (geom);

CREATE TABLE locations.airports_airlines
(id serial NOT NULL,
 airport_fk integer NOT NULL,
 airline_fk integer NOT NULL,
 CONSTRAINT airports_airlines_pkey PRIMARY KEY (id),
 CONSTRAINT airports_airlines_airport_fk_fkey FOREIGN KEY (airport_fk)
 REFERENCES locations.airports (id)
 ON DELETE CASCADE
 ON UPDATE CASCADE
 DEFERRABLE INITIALLY DEFERRED,
 CONSTRAINT airports_airlines_airline_fk_fkey FOREIGN KEY (airline_fk)
 REFERENCES locations.airlines (id)
 ON DELETE CASCADE
 ON UPDATE CASCADE
 DEFERRABLE INITIALLY DEFERRED
);
```

Al posto di PostgreSQL puoi anche utilizzare GeoPackage. In questo caso, le tre tabelle possono essere create manualmente utilizzando il menu Database ➤ DB Manager…. In GeoPackage non ci sono schemi, quindi il prefisso _localizzazione_ non è necessario.

Chiavi esterne vincolanti nella tabella `airports_airlines` non possono essere creati usando Table ➤ Create Table…. o Table ➤ Edit Table…. pertanto devono essere creati usando Database ➤ SQL Window……. GeoPackage non supporta le istruzioni ADD CONSTRAINT quindi la tabella `airports_airlines` dovrebbe essere creata in due fasi:

1. Imposta la tabella solo con il campo `id` usando Table ➤ Create Table…..
2. Usando Database ➤ Finestra SQL....., digita ed esegui questo codice SQL:

```
ALTER TABLE airports_airlines
ADD COLUMN airport_fk INTEGER
REFERENCES airports (id)
ON DELETE CASCADE
ON UPDATE CASCADE
DEFERRABLE INITIALLY DEFERRED;

ALTER TABLE airports_airlines
ADD COLUMN airline_fk INTEGER
REFERENCES airlines (id)
ON DELETE CASCADE
ON UPDATE CASCADE
DEFERRABLE INITIALLY DEFERRED;
```

Poi, in QGIS, dovresti impostare due relazioni *one-to-many relations* come sopra spiegato:

- una relazione tra la tabella `airlines` e la tabella `pivot`;
- e una seconda tra la tabella `airports` e la tabella `pivot`.

Un modo più semplice per farlo (solo per PostgreSQL) è quello di utilizzare il comando *Scopri relazioni* in Progetto ➤ Proprietà ➤ Relazioni. QGIS leggerà automaticamente tutte le relazioni nel tuo database e devi solo selezionare le due che ti servono. Ricordati di caricare prima le tre tabelle del progetto QGIS.

![Fig. 14.81: Relazioni e automatismi](image)

Se vuoi rimuovere un *airport* o una *airline*, QGIS non rimuoverà i record associati nella tabella `airports_airlines`. Questo compito sarà fatto dal database se specifichi i corretti *vincoli* nella creazione della tabella pivot come nell'esempio corrente.

**Nota:** Combining the relation N-M with the group of automatic transactions

Dovresti abilitare la modalità *Crea automaticamente la transizione dei gruppi quando possibile* in Project Proprietà ➤ Sorgente dei dati ➤ se stai lavorando in tale contesto. QGIS dovrebbe essere in grado di aggiungere o aggiornare le righe in tutte le tabelle (compagnie aeree, aeroporti e tabelle pivot).

Infine dobbiamo selezionare la cardinalità di destra in Layer Properties ➤ Attributes Form per i layer `airports` e `airlines`. Per il primo dovremmo scegliere l'opzione *airlines (id)* e per il secondo l'opzione *airports (id)*.
Ora puoi associare un aeroporto con una compagnia aerea (o una compagnia aerea con un aeroporto) usando *Add child feature* o *Link existing child feature* nei sottomoduli. Un record verrà automaticamente inserito nella tabella `airports_airlines`.

**Nota:** Utilizzo cardinalità **Relazione molti ad uno**
A volte non è opportuno nascondere la tabella pivot in una relazione N-M. Principalmente perché ci sono attributi nella relazione che possono avere valori solo quando si stabilisce una relazione. Se le tabelle sono layer (hanno un campo geometrico) potrebbe essere interessante attivare l’opzione *On map identification* opzione (*Layer Properties ➤ Attributes Form ➤ Available widgets ➤ Fields*) per i campi chiave esterna nella tabella pivot.

**Nota:** **Chiave primaria tabella pivot**

Evita di utilizzare più campi nella chiave primaria in una tabella pivot. QGIS accetta una singola chiave primaria, quindi un vincolo come

```sql
constraint airports_airlines_airlines_pkey primary key (airport_fk, airline_fk)
```

non funzionerà.

### 14.5 Modifica

QGIS ha varie funzionalità per la modifica di vettori e tabelle OGR, SpatiaLite, PostGIS, MSSQL Spatial e Oracle Spatial.

**Nota:** La procedura per la modifica dei layers GRASS è diversa, per dettagli vedi la sezione *Digitalizzare e modificare layer vettoriali GRASS*.

**Suggerimento:** **Modifiche concorrenti**

Questa versione di QGIS non tiene traccia se qualcun altro sta modificando la stessa elemento nello stesso momento in cui lo stai facendo tu. L’ultima persona che salva le modifiche vince.

#### 14.5.1 Impostare la Tolleranza di Aggancio e il raggio di ricerca degli elementi

Per un editing ottimale e preciso delle geometrie dei layer vettoriali, è necessario impostare un valore appropriato di tolleranza di aggancio e raggio di ricerca per i vertici degli elementi.

**Tolleranza di aggancio**

Quando aggiungi un nuovo vertice o ne sposti uno esistente, la tolleranza di aggancio è la distanza che QGIS usa per cercare il vertice o il segmento più vicino a cui stai cercando di collegarti. Se non si è all’interno della tolleranza di aggancio, QGIS lascerà il vertice dove si rilascia il pulsante del mouse, invece di agganciarlo a un vertice o segmento esistente.

L’impostazione della tolleranza di aggancio influenza su tutti gli strumenti che lavorano con la tolleranza.

Puoi abilitare / disabilitare le opzioni di aggancio usando il pulsante [Abilita aggancio](https://github.com/grass70/Grass70) sulla *Barra degli Strumenti di Aggancio* premendo s. La modalità di aggancio, il valore di tolleranza e le unità possono anche essere configurate in questa barra degli strumenti.

La configurazione delle impostazioni di aggancio può anche essere impostata in *Progetto ➤ Opzioni di Aggancio*..

Ci sono tre opzioni per selezionare il layer o il layer su cui effettuare l’aggancio:

- **Tutti i Layer**: impostazione rapida per tutti i layer visibili nel progetto in modo che il puntatore agganci tutti i vertici e/o segmenti. Nella maggior parte dei casi è sufficiente usare questa modalità di aggancio, ma fai attenzione quando la usi per progetti con molti layer vettoriali, perché può influire sulle prestazioni.

- **Layer Attivo**: viene utilizzato solo per il layer attivo, un modo utile per garantire la coerenza topologica all’interno del layer da modificare.
• **Configurazione avanzata**: ti permette di abilitare e regolare la modalità di aggancio e la tolleranza su base layer (vedi Fig. 14.84). Se hai bisogno di modificare un layer e agganciare i suoi vertici ad un altro, assicurati che il layer di destinazione sia selezionato e aumenta la tolleranza di aggancio ad un valore più alto. L’aggancio non avverrà su un layer che non è controllato nella finestra di dialogo delle opzioni di aggancio.

Per quanto riguarda la tipologia di aggancio, puoi scegliere tra **Vertice**, **Segmento** e **Vertice e Segmento**. I valori di tolleranza possono essere impostati sia in **unità di mappa** del progetto che in **pixel**. Il vantaggio di scegliere i **pixel** è che mantiene l’aggancio costante a diverse scale di mappa. Da 10 a 12 pixel è normalmente un buon valore, ma dipende dai DPI del tuo schermo. L’uso di unità di mappa permette di mettere in relazione la tolleranza con le distanze reali dal terreno. Per esempio, se hai una distanza minima tra gli elementi, questa opzione può essere utile per assicurarti di non aggiungere vertici troppo vicini tra loro.

![Fig. 14.84: Opzioni di aggancio (modalità Configurazione Avanzata)](image)

**Nota:** Per impostazione predefinita, possono essere agganciate solo le geometrie visibili (le geometrie la cui simbologia è visualizzata, ad eccezione dei layer in cui la simbologia è «Nessun simbolo»). Puoi abilitare l’aggancio sulle geometrie invisibili selezionando **Abilita aggancio su elementi invisibili (non mostrati sulla mappa)** nella scheda **Impostazioni ▶ Opzioni ▶ Digitalizzazione**.

**Suggerimento: Abilitare l’aggancio per default**
Puoi impostare l’aggancio come abilitato di default su tutti i nuovi progetti nella scheda **Impostazioni ▶ Opzioni ▶ Digitalizzazione**. Puoi anche impostare la modalità di aggancio di default, il valore di tolleranza e le unità, che popoleranno la finestra di dialogo **Aggancio**.

**Abilita aggancio alle intersezioni**
Un’altra opzione disponibile è quella di usare **Abilita Aggancio all’Intersezione**, che ti permette di agganciare alle intersezioni geometriche dei layer abilitati all’aggancio, anche se non ci sono vertici nelle intersezioni.

**Icone di aggancio**
QGIS mostrerà diverse icone di **aggancio** a seconda del tipo di **aggancio**:
Aggancio a un vertice: icona a forma di scatola
Aggancio su un segmento: icona a forma di clessidra
Aggancio a un'intersezione: icona a forma di croce

Nota che è possibile cambiare il colore di queste icone nella parte Digitalizzazione delle tue impostazioni.

**Raggio di ricerca**

*Raggio di ricerca per le modifiche dei vertici* è la distanza che QGIS usa per cercare il vertice da selezionare quando si clicca sulla mappa. Se non sei all'interno del raggio di ricerca, QGIS non troverà e non selezionerà alcun vertice da modificare. Il raggio di ricerca per le modifiche dei vertici può essere definito sotto la scheda *Impostazioni* ➤ *Opzioni* ➤ *Digitalizzazione* (qui è dove si definiscono i valori di default dell'aggancio).

La tolleranza di aggancio e il raggio di ricerca sono impostati in *unità di mappa o pixel*. Potrebbe essere necessario sperimentare per ottenere risultati correttamente. Se specifichi una tolleranza troppo grande, QGIS potrebbe agganciare il vertice sbagliato, specialmente se hai a che fare con un gran numero di vertici nelle immediate vicinanze. Più piccolo è il raggio di ricerca, più difficile sarà individuare ciò che vuoi spostare.

**Limitare l’aggancio a un intervallo di scala**

In alcuni casi il processo di aggancio può diventare molto lento. Questo è spesso causato dalla quantità di elementi in alcuni layer che richiedono una pesante indicizzazione per essere calcolati e mantenuti. Esistono alcuni parametri per abilitare l'aggancio solo quando la vista della mappa è all'interno di un intervallo di scala adeguato. Questo permette di fare il costo calcolo degli indici relativo all'aggancio solo ad una scala in cui il disegno è adeguato.

Il limite di scala per l'aggancio è configurato in *Progetto* ➤ *Opzioni di Aggancio*…. La limitazione dell’aggancio alla scala è disponibile solo in modalità *Configurazione Avanzata*.

Per limitare l'aggancio a un intervallo di scala, hai tre modalità disponibili:

- **Disabilitato**: L'aggancio è abilitato qualunque sia la scala corrente della mappa. Questa è la modalità predefinita.
- **Globale**: L’aggancio è limitato e abilitato solo quando la scala corrente della mappa è compresa tra un valore minimo globale e uno massimo globale. Quando si seleziona questa modalità due widget diventano disponibili per configurare la gamma di scale in cui l'aggancio è abilitato.
- **Per layer**: Il limite della scala di aggancio è definito per ogni layer. Quando si seleziona questa modalità due colonne diventano disponibili per configurare le scale minima e massima per ogni layer.

Si prega di notare che le scale minime e massime seguono la convenzione di QGIS: la scala minima è la scala più "ridotta" mentre la scala massima è la più "ingrandita". Una scala minima o massima impostata su «0» o «non impostata» è considerata non limitante.
14.5.2 Modifiche topologiche

Oltre a queste opzioni di aggancio, la finestra di dialogo Opzioni di aggancio… (Progetto ► Opzioni di Aggancio…) e la barra degli strumenti Aggancio… ti permettono di abilitare / disabilitare alcune altre funzionalità topologiche.

Abilitare la modifica topologica

Il pulsante [Abilita Modifica Topologica] aiuta quando si modificano e si gestiscono elementi con confini comuni. Con questa opzione abilitata, QGIS «rileva» i confini comuni. Quando si spostano i vertici/segmenti comuni, QGIS li sposta anche nelle geometrie degli elementi vicini.

La modifica topologica funziona con le geometrie di layer diversi, purché i layer siano visibili e siano in modalità di modifica.

Evitare la sovrapposizione di nuovi poligoni

Quando la modalità di aggancio è impostata su Configurazione Avanzata, per i layer poligonali, c’è un’opzione chiamata [Evita sovrapposizione sul layer attivo']. Questa opzione impedisce di disegnare nuovi elementi che si sovrappongono a quelli esistenti nel layer selezionato, velocizzando la digitalizzazione di poligoni adiacenti.

Con evitare la sovrapposizione abilitata, se hai già un poligono, puoi digitalizzarne un secondo in modo che si intersechino. QGIS taglierà poi il secondo poligono al confine di quello esistente. Il vantaggio è che non è necessario digitalizzare tutti i vertici del confine comune.

Nota: Se la nuova geometria è totalmente coperta da quella esistente, viene cancellata e QGIS mostrerà un messaggio di errore.

Avvertimento: Usare con cautela l’opzione Evita intersezioni

Poiché questa opzione taglia nuove geometrie sovrapposte di qualsiasi layer poligonale, potresti ottenere geometrie inaspettate se dimentichi di deselezionare questa opzione quando non è più necessaria.

Controllo Geometria

Un plugin di base che può aiutare l’utente a controllare la validità della geometria. Puoi trovare ulteriori informazioni su questo plugin in Plugin Controllo Geometria.

Tracciamento Automatico

Generalmente, quando stai utilizzando gli strumenti di registrazione sulla mappa (aggiungi geometria, aggiungi parte, aggiungi anello, rimodella e dividi), è necessario fare clic su ogni vertice della geometria. Con la modalità di tracciamento automatico, puoi accelerare il processo di digitalizzazione in quanto non è più necessario posizionare manualmente tutti i vertici durante la digitalizzazione:

1. Abilita lo strumento [Abilita ricalco] (nella barra degli strumenti Aggancio) premendo l’icona o il tasto T.
2. [Snap to] un vertice o segmento di una geometria che vuoi disegnare.
3. Muovi il mouse su un altro vertice o segmento che vorresti agganciare e, invece della solita linea retta, l’elastico di digitalizzazione rappresenta un percorso dall’ultimo punto che hai agganciato alla posizione corrente. Lo strumento funziona anche con le geometrie curve.

QGIS utilizza in realtà la topologia delle geometrie sottostanti per costruire il percorso più breve tra i due punti. Il tracciamento richiede l’attivazione dell’aggancio in layer tracciabili per costruire il percorso. Dovresti
inoltre agganciare a un vertice o segmento esistente durante la digitalizzazione e assicurarti che i due nodi siano collegabili topologicamente con i contorni delle geometrie esistenti, altrimenti QGIS non è in grado di collegarli e quindi traccia una singola linea retta.

4. Clicca e QGIS posiziona i vertici intermedi seguendo il percorso visualizzato.

Sblocca l'icona \Abilita ricalco\ e imposta l'opzione \Offset\ per digitalizzare un percorso parallelo agli elementi invece di tracciarle. Un valore positivo sposta il nuovo disegno sul lato sinistro della direzione di tracciamento e un valore negativo fa il contrario.

Nota: Regolare la scala della mappa o le impostazioni di aggancio per un tracciamento ottimale
Se ci sono troppi contorni nella visualizzazione della mappa, il tracciamento è disattivato per evitare una elaborazione potenzialmente lunga della costruzione del tracciamento e un sovraccarico di memoria. Dopo aver ingrandito o disattivato alcuni layers, il tracciamento viene nuovamente abilitato.

Nota: Non aggiunge punti topologici
Questo strumento non aggiunge punti alle geometrie dei poligoni esistenti anche se la \Modifica topologica\ è abilitata. Se la precisione geometrica è attivata sul layer modificato, la geometria risultante potrebbe non seguire esattamente una geometria esistente.

Suggerimento: Attiva o disattiva rapidamente il tracciamento automatico premendo il tasto T
Premendo il tasto T, il tracciamento può essere abilitato/disabilitato in qualsiasi momento (anche durante la digitalizzazione di un elemento), così è possibile digitalizzare parti dell’elemento con tracciamento abilitato e altre parti con tracciamento disabilitato. Gli strumenti si comportano come al solito quando il tracciamento è disabilitato.

Suggerimento: Convertire il tracciamento in geometrie curve
Usando \Impostazioni\ ➤ \Opzioni\ ➤ \Digitalizzazione\ ➤ \Abilita ricalco\ puoi creare geometrie curve durante la digitalizzazione. Vedi \digitizing options\.

14.5.3 Modifica di un layer esistente
Di default, i dati sono caricati in QGIS in modalità di sola lettura. Questa è una salvaguardia per evitare di modificare accidentalmente un layer se c'è uno spostamento involontario del mouse. Comunque, puoi sempre modificare un layer se ciò è consentito dalla sorgente dati e se il dato medesimo è anche scrivibile (ad esempio i suoi file non sono in modalità di sola lettura).

Suggerimento: Limitare l’autorizzazione di modifica ai layer all’interno di un progetto
Dalla \Progetto\ ➤ \Proprietà…\ ➤ \Sorgenti Dati\ ➤ \Capabilities di Layer\, puoi scegliere di impostare qualsiasi layer in sola lettura indipendentemente dal permesso del fornitore dati. Questo può essere un modo pratico, in un ambiente multi-utente, per evitare che utenti non autorizzati possano erroneamente modificare i layer (per esempio, Shapefile), e quindi potenzialmente corrompere i dati. Nota che questa impostazione si applica solo all’interno del progetto corrente.

In generale, gli strumenti per modificare i layer vettoriali sono divisi in una barra degli strumenti di digitalizzazione e una barra degli strumenti di digitalizzazione avanzata, descritta nella sezione \Digitalizzazione avanzata\. Puoi selezionare e deselectare entrambi sotto \Visualizza\ ➤ \Barre degli strumenti\.

Utilizzando gli strumenti di digitalizzazione di base, è possibile eseguire le seguenti funzioni:
Tabella modifiche: Strumenti di base per la modifica di layer vettoriali

Nota che durante l’utilizzo di uno degli strumenti di digitalizzazione, puoi fare zoom or pan nella visualizzazioni mappa senza perdere l’operatività dello strumento.

Tutte le sessioni di modifica iniziano selezionando l’opzione che si trova cliccando con il tasto destro del mouse sul nome del layer nella legenda, nella finestra di dialogo degli attributi, o nella barra degli strumenti di digitalizzazione o nel menu Layer.

Una volta che il layer è in modalità modifica, ulteriori pulsanti di modifica diventeranno disponibili nella barra degli strumenti e i marcatori verranno visualizzati ai vertici di tutte le geometrie a meno che non si selezioni l’opzione Usa simboli solo per le geometrie selezionate in Impostazioni ➤ Opzioni… ➤ Digitalizzazione.

**Suggerimento: Salvataggio ad intervalli regolari**

Ricordati di usare Salva modifiche vettore regolarmente, in modo da consentire il salvataggio delle tue modifiche recenti e per verificarne che le stesse siano accettate dalla fonte di dati.

**Aggiungere Elementi**

A seconda del tipo di layer, puoi utilizzare le icone sulla barra degli strumenti per aggiungere nuovi elementi al layer corrente.

Per aggiungere un elemento senza geometria, fari clic sul pulsante Aggiungi Record e puoi inserire gli attributi nel modulo elemento che si apre. Per creare elementi con gli strumenti abilitati spazialmente, si digitalizza prima la geometria e poi si inseriscono i suoi attributi. Per digitalizzare la geometria:

1. Fai clic con il tasto sinistro del mouse sull’area della mappa per creare il primo punto della tua nuova geometria. Per le geometrie puntuali, questo dovrebbe essere sufficiente e attiva, se necessario, il modulo per compilare gli attributi. Dopo aver impostato geometry precision nelle proprietà del layer puoi qui usare snap to grid per creare elementi basati su una distanza regolare.

2. Per le geometrie lineari o poligonali, continua a cliccare a sinistra per ogni punto aggiuntivo che vuoi catturare e utilizza automatic tracing per accelerare la digitalizzazione. Questo creerà linee rette consecutive tra i vertici posizionati.
Nota: Premendo il tasto Canc o Backspace viene ripristinato l’ultimo nodo che hai aggiunto.

3. Quando non hai altri punti da inserire, fai clic con il tasto destro del mouse in un punto qualsiasi dell’area della mappa per confermare che hai finito di inserire geometrie per tale elemento.

Nota: Mentre digitalizzi le geometrie lineari o poligonali, puoi fare avanti e indietro tra gli strumenti lineari Aggiungi elemento e circular string tools per creare geometrie curve composte.

Suggerimento: Personalizza il tracciamento ad elastico durante la digitalizzazione

Mentre si genera il poligono, il tracciamento ad elastico rosso di default può nascondere le geometrie o i luoghi sottostanti per i quali potresti desiderare di catturare un punto. Ciò può essere cambiato impostando un’opacità inferiore (o un canale alfa) al Colore di riempimento nel menu Impostazioni ➤ Opzioni… ➤ Digitalizzazione. Puoi inoltre evitare l’uso del tracciamento ad elastico selezionando Non agganciare linea elastica durante l’edit dei nodi.

4. Apparirà la finestra degli attributi, che vi permetterà di inserire le informazioni per il nuovo elemento. Fig. 14.85 mostra l’impostazione degli attributi per un nuovo fiume fittizio in Alaska. Tuttavia, nel menu Digitalizzazione sotto il menu Impostazioni ➤ Opzioni, puoi anche attivare:

- ✔ Non aprire il modulo dopo la creazione di ogni geometria per evitare l’apertura del modulo;

- o ✔ Ripeti i valori degli attributi usati per ultimi per avere i campi automaticamente riempiti all’apertura del modulo e doverli solo eventualmente cambiare.

Fig. 14.85: Attivare la finestra di dialogo dei valori degli attributi dopo aver digitalizzato una nuova geometria vettoriale

**Strumento Vertice**

Nota: QGIS 3 cambiamenti principali

In QGIS 3, lo strumento nodo è stato completamente ridisegnato e rinominato in strumento vertice. Prima lavorava con l’ergonomia «clicca e trascina», e ora usa un flusso di lavoro «clicca - clicca». Questo permette importanti miglioramenti come approfittare del pannello avanzato di digitalizzazione con lo Strumento Vertice mentre si digitalizzano o si modificano oggetti di più livelli allo stesso tempo.

Per qualsiasi layer vettoriale modificabile, lo strumento Strumento Vertice (Layer Corrente) fornisce capacità di manipolazione dei vertici delle caratteristiche simili ai programmi CAD. È possibile selezionare semplicemente più vertici in una volta e spostarli, aggiungerli o cancellarli del tutto. Lo strumento vertice supporta anche la funzione di modifica topologica. Questo strumento è persistente nella selezione, quindi quando viene fatta qualche operazione, la selezione rimane attiva per questo elemento e strumento.
È importante impostare la proprietà \texttt{Impostazioni \rightarrow Options} \texttt{\rightarrow Digitalizzazione} \texttt{\rightarrow Raggio di ricerca per la modifica dei vertici} a un numero maggiore di zero. Altrimenti, QGIS non riconoscerà il vertice da editare.

**Suggerimento: Indicatori dei vertici**

L'attuale versione di QGIS supporta tre tipi di indicatori di vertice: “Cerchio semi trasparente”, “Croce” e “Nessuno”. Per cambiare lo stile dell'indicatore, scegli \texttt{Impostazioni Opzioni \rightarrow Digitalizzazione}, e seleziona la voce appropriata.

**Operazioni di base**

Inizia attivando lo strumento \texttt{Strumento Vertice (vettore corrente)}. Cerchi rossi appariranno quando passi sopra i vertici.

- **Selezione vertici**: Puoi selezionare i vertici cliccando su di essi uno alla volta tenendo premuto il tasto \texttt{Shift}, oppure cliccando e trascinando un rettangolo intorno ad alcuni vertici. Quando un vertice è selezionato, il suo colore cambia in blu. Per aggiungere altri vertici alla selezione corrente, teni premuto il tasto \texttt{Shift} mentre clicchi. Per rimuovere i vertici dalla selezione, tieni premuto \texttt{Ctrl}.

- **Modalità di selezione vertici batch**: La modalità di selezione batch può essere attivata premendo \texttt{Shift+R}. Seleziona un primo nodo con un solo clic, quindi passa il mouse \textit{senza cliccare} su un altro vertice. Questo selezionerà dinamicamente tutti i nodi nel mezzo usando il percorso più breve (per i poligoni).

![Fig. 14.86: Selezione batch dei vertici usando \texttt{Shift+R}](image)

Premendo \texttt{Ctrl} inverterà la selezione, selezionando il percorso più lungo il contorno dell'elemento. Terminando la selezione del nodo con un secondo clic, oppure premendo \texttt{Esc} si uscirà dalla modalità batch.

- **Aggiungere vertici**: Per aggiungere un vertice, un nuovo nodo virtuale appare sul centro del segmento. Basta afferrarlo per aggiungere un nuovo vertice. Un doppio clic su qualsiasi punto del confine crea anche un nuovo nodo. Per le linee, un nodo virtuale viene proposto anche alle due estremità di una linea per estenderla.
• **Eliminazione dei vertici**: Selezionare i vertici e cliccare il tasto Delete. Cancellare tutti i vertici di un elemento genera, se compatibile con la sorgente dati, un elemento senza geometria. Nota che questo non cancella tutto l’elemento, ma solo la parte geometrica. Per cancellare completamente un elemento usa lo strumento Elimina selezionati.

• **Spostamento vertici**: Seleziona tutti i vertici che vuoi spostare, clicca su un vertice o contorno selezionato e clicca nuovamente sulla nuova posizione desiderata. Tutti i vertici selezionati si sposteranno insieme. Se è attivato l’aggancio, l’intera selezione può spostarsi al vertice o alla linea più vicina. Puoi usare i vincoli del pannello di digitalizzazione avanzata per la distanza, gli angoli e l’esatta posizione X Y prima del secondo clic. Qui puoi usare la funzione aggancia-alla-griglia. Dopo aver impostato un valore per la geometry precision nelle proprietà del layer, appare una griglia in funzione del livello di zoom in accordo con la precisione geometrica.

Ogni modifica fatta con il vertice è memorizzata come una voce separata nella finestra di dialogo Annulla. Ricorda che tutte le operazioni supportano la modifica topologica quando questa è attivata. È supportata anche la proiezione al volo, e lo Strumento Vertice fornisce suggerimenti per identificare un vertice passando il puntatore su di esso.
Il Pannello Modifica Vertice

Quando si utilizza lo strumento *Strumento Vertice* su un'ageometria, è possibile fare clic destro per aprire il pannello *Editor Vertice* che elenca tutti i vertici della geometria con le loro coordinate $x$, $y$ ($z$, $m$ se applicabile) e $r$ (per il raggio, in caso di geometria circolare). Basta selezionare una riga nella tabella per selezionare il vertice corrispondente nella mappa e viceversa. Basta cambiare una coordinata nella tabella e la posizione del vertice viene aggiornata. Puoi anche selezionare più righe e cancellarle totalmente.

Nota: Comportamento modificato in QGIS 3.4

Cliccando con il tasto destro del mouse su una geometria, viene immediatamente visualizzato l'editor dei vertici e si blocca questa geometria, disabilitando così la modifica di qualsiasi altra geometria. Durante il blocco, una geometria è esclusiva per l'editing: La selezione e lo spostamento di vertici e segmenti cliccando o trascinando è possibile solo per questa geometria. Nuovi vertici possono essere aggiunti solo alla geometria bloccata. Inoltre, il pannello dell'editor dei vertici ora si apre automaticamente quando si attiva lo strumento vertice e la sua posizione/stato del vertice viene ricordato in tutti gli usi.

Fig. 14.89: Pannello Editor Vertice con selezione di alcuni nodi

Tagliare, copiare ed incollare elementi

Le geometrie selezionate possono essere tagliate, copiate e incollate tra i layers nello stesso progetto QGIS, a patto che i layers di destinazione siano impostati in precedenza in modalità *Attiva modifica*.

Suggerimento: Trasformare il poligono in linea e viceversa usando copia/incolla

Copiare una linea e incollarla in un vettore poligonale: QGIS copia nel layer di destinazione un poligono il cui confine corrisponde alla geometria chiusa della geometria lineare. Questo è un modo rapido per generare diverse geometrie con gli stessi dati.

Le geometrie possono anche essere incollate ad applicazioni esterne come testo. Ciò, le geometrie sono rappresentate in formato CSV, con i dati di geometria che appaiono nel formato OGC Well-Known Text (WKT). Le geometrie WKT e GeoJSON dall'esterno di QGIS possono anche essere incollate ad un layer all'interno di QGIS.

Quando la funzione di copia e incolla è utile? Beh, si scopre che è possibile modificare più di un layer alla volta e copiare/incollare le geometrie tra i layers. Perché vogliamo farlo? Diciamo che dobbiamo fare un po' di lavoro su
un nuovo layer, ma abbiamo solo bisogno di uno o due laghi, non i 5.000 del nostro layer big_lakes. Possiamo creare un nuovo layer e utilizzare copia/incolla per copiare i laghi necessari.

Ad esempio, copiamo alcuni laghi in un nuovo layer:

1. Caricare il layer dal quale vogliamo copiare gli elementi (layer sorgente)
2. Caricare o creare il layer nel quale vogliamo incollare gli elementi copiati (layer di destinazione)
3. Impostare entrambi i layer in modalità modifica
4. Rendere attivo il layer sorgente cliccando sul relativo nome nella legenda
5. Utilizza lo strumento per selezionare la geometria(e) sul layer sorgente
6. Fare clic sullo strumento Copia geometrie
7. Rendere attivo il layer di destinazione cliccando sul relativo nome nella legenda
8. Fare clic sullo strumento Incolla geometrie
9. Terminare le modifiche e salvare

Cosa succede se i layer di origine e di destinazione presentano schemi diversi (i nomi dei campi e i tipi non sono gli stessi)? QGIS popola ciò che corrisponde e ignora il resto. Se non ti interessa che gli attributi che vengano copiati nel layer di destinazione, non importa come progetti i campi e i tipi di dati. Se vuoi assicurarti che tutto - la geometria e i suoi attributi - sia copiato, assicurati che gli schemi corrispondano.

Nota: Congruenza degli elementi incollati

Se i tuoi layer di origine e destinazione utilizzano la stessa proiezione, le geometrie incollate avranno geometria identica al layer di origine. Però, se il layer di destinazione è in una proiezione diversa, QGIS non può garantire che la geometria sia identica. Questo è semplicemente perché ci sono piccoli errori di arrotondamento coinvolti nella conversione tra le proiezioni.

Suggerimento: Copiare attributo tipo stringa

Se hai creato una nuova colonna nella tua tabella degli attributi con il tipo “stringa” e vuoi incollare i valori da un’altra colonna di attributo che ha una lunghezza maggiore, la lunghezza della dimensione della colonna verrà estesa allo stesso valore. Questo perché il driver di GDAL Shapefile dalla versione GDAL/OGR 1.10 è capace di estendere automaticamente campi stringa e interi per ospitare dinamicamente la lunghezza dei dati da inserire.

Eliminare Elementi Selezionati

Se vogliamo cancellare un’intero elemento (attributo e geometria), possiamo farlo selezionando prima la geometria usando lo strumento regolare. La selezione può essere fatta anche dalla tabella degli attributi. Una volta che hai impostato la selezione, premi Delete o Backspace o usa lo strumento per cancellare gli elementi. Più elementi selezionati possono essere cancellati in una volta sola.

Anche lo strumento sulla barra degli strumenti di digitalizzazione può essere utilizzato per eliminare le geometrie. Questo elimina effettivamente le geometrie ma le mette anche su “appunti spaziali“. Quindi, dobbiamo tagliare la geometria per eliminarla. Potremmo però utilizzare lo strumento per riportarci indietro, dandoci la possibilità di annullare l’eliminazione. Taglia, copia e incolla sono opzioni attive sulle geometrie attualmente selezionate, il che significa che possiamo operare su più di una alla volta.
Annullare e risprinistinare

Gli strumenti Annulla e Ripristina ti permettono di annullare o rifare operazioni di modifica vettoriale. C’è anche un widget agganciabile, che mostra tutte le operazioni nella cronologia di annullamento/ripristino (vedi Fig. 14.90). Questo widget non è visualizzato per impostazione predefinita; può essere visualizzato facendo clic con il tasto destro del mouse sulla barra degli strumenti e attivando la casella di controllo Pannello Annulla/Ripristina. La funzionalità Annulla/Ripristina è comunque attiva, anche se il widget non è visualizzato.

![Fig. 14.90: Ripristinare e annullare nelle fasi di digitalizzazione](image)

Quando viene premuto Annulla o Ctrl+Z (oCmd+Z) lo stato di tutte le geometrie e gli attributi vengono riportati allo stato in cui erano avevano prima di quella modifica. Le modifiche diverse dalle operazioni normali di modifica vettore (ad esempio, le modifiche apportate da un plugin) potrebbero o non potrebbero essere ripristinate a seconda di come sono state eseguite le modifiche.

Per utilizzare il widget della cronologia Annulla/Ripristina, fai clic per selezionare un’operazione nell’elenco della cronologia. Tutte le geometrie verranno ripristinate allo stato in cui si trovavano dopo l’operazione selezionata.

Salvare i layer modificati

Quando un layer è in modalità di modifica, tutte le modifiche rimangono nella memoria di QGIS. Pertanto, non vengono eseguite/salvate immediatamente nei dati di origine o nel disco. Se vuoi salvare le modifiche al layer corrente ma vuoi continuare a modificare senza lasciare la modalità di modifica, puoi fare clic sul pulsante ![Salva modifiche vettore](image). Quando disattivi la modalità con ![Attiva modifiche](image) (o esci da chiude QGIS per qualche ragione), ti viene anche chiesto se vuoi salvare le modifiche o eliminarle.

Se le modifiche non possono essere salvate (ad esempio, il disco è pieno o gli attributi hanno valori fuori gamma), lo stato di QGIS nello stato di memoria viene preservato. Ciò consente di regolare le modifiche e di riprovare.

Suggerimento: Integrità dei dati

È sempre una buona idea eseguire il backup dei dati originari prima di iniziare a modificare. Mentre gli autori di QGIS hanno fatto ogni sforzo per preservare l’integrità dei tuoi dati, non offriamo alcuna garanzia a questo proposito.
Salvare più layers contemporaneamente

Questa funzione si riferisce alla digitalizzazione di più layers. Scegli Salva vettore selezionato/i per salvare tutte le modifiche apportate in più layer. Hai anche l'opportunità di Rollback per il vettore selezionato/i, in modo che la digitalizzazione possa essere annullata per uno/tutti i layer selezionato/i. Se vuoi interrompere la modifica dei layer selezionati un modo semplice è attivare l’opzione Annulla per il vettore selezionato/i.

Le stesse funzioni sono disponibili per la modifica di tutti i layer del progetto.

Suggerimento: Utilizza gruppo di transazioni per modificare, salvare o ripristinare contemporaneamente le modifiche di più layers

Quando lavori con layer dello stesso database PostGreSQL, attiva l’opzione Crea automaticamente gruppi di transazioni dove possibile in Progetto ► Proprietà …. ► Sorgenti di dati per sincronizzare il loro comportamento (entrate o uscite dalla modalità di modifica, salvare o ripristinare le modifiche allo stesso tempo).

**14.5.4 Digitalizzazione avanzata**

<table>
<thead>
<tr>
<th>Icona</th>
<th>Azione</th>
<th>Icona</th>
<th>Azione</th>
</tr>
</thead>
<tbody>
<tr>
<td>✆️</td>
<td>Attivare gli strumenti di digitalizzazione avanzata</td>
<td>🎨</td>
<td>Attivare tracciamento</td>
</tr>
<tr>
<td>🤪</td>
<td>Spostare Elemento(i)</td>
<td>🎨</td>
<td>Copiare e Spostare Elemento(i)</td>
</tr>
<tr>
<td>🤪</td>
<td>Ruotare Elemento(i)</td>
<td>🎨</td>
<td>Semplificare Elemento</td>
</tr>
<tr>
<td>✈️</td>
<td>Aggiungere buco</td>
<td>✈️</td>
<td>Aggiungere Parte</td>
</tr>
<tr>
<td>✈️</td>
<td>Riempire buco</td>
<td>✈️</td>
<td>Invertire Parte</td>
</tr>
<tr>
<td>✈️</td>
<td>Eliminare buco</td>
<td>✈️</td>
<td>Eliminare Parte</td>
</tr>
<tr>
<td>✈️</td>
<td>Curva di Offset</td>
<td>✈️</td>
<td>Modificare forma Elementi</td>
</tr>
<tr>
<td>✈️</td>
<td>Dividere Parti</td>
<td>✈️</td>
<td>Spezzare Elementi</td>
</tr>
<tr>
<td>✈️</td>
<td>Fondere Attributi degli Elementi Selezionati</td>
<td>✈️</td>
<td>Fondere Elementi Selezionati</td>
</tr>
<tr>
<td>✈️</td>
<td>Ruotare Simboli Punto</td>
<td>✈️</td>
<td>Offset dei simboli per i punti</td>
</tr>
<tr>
<td>✈️</td>
<td>Tronca o Estendi Elemento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Barra degli strumenti di digitalizzazione avanzata

14.5. Modifica
**Spostare Elemento(i)**

Lo strumento \( \text{Spostare Elemento(i)} \) ti permette di spostare geometrie esistenti:

1. Selezionare Elemento(i) da spostare.
2. Fai clic sull’area di disegno della mappa per indicare il punto di origine dello spostamento; puoi fare affidamento sulla capacità di aggancio per selezionare un punto preciso.

Puoi anche sfruttare i vantaggi di *advanced digitizing constraints* per impostare con precisione le coordinate del punto di origine. In questo caso:

   1. Per prima cosa fai clic sul pulsante per abilitare il pannello.
   2. Digita \( x \) e inserisci il valore corrispondente al punto di origine che vuoi utilizzare. Quindi premi il pulsante accanto all’opzione per bloccare il valore.
   3. Fai lo stesso per la coordinata \( y \).
   4. Clicca sulla mappa e il tuo punto di partenza è posizionato alle coordinate indicate.

3. Spostati sulla mappa per indicare il punto di destinazione dello spostamento, utilizzando ancora la modalità aggancio o, come sopra, utilizzando il pannello di digitalizzazione avanzata che rende disponibili vincoli complementari di posizionamento di *distanza* e *angolo* per posizionare il punto finale della traslazione.


Allo stesso modo, puoi creare una copia traslata delle geometrie utilizzando lo strumento \( \text{Copia e Spostare Elemento(i)} \).

**Nota:** Se non viene selezionata alcuna geometria quando si clicca per la prima volta sulla mappa con uno degli strumenti *Spostare Elemento(i)* o *Copia e Spostare Elemento(i)*, allora solo la geometria sotto il mouse è influenzata dall’azione. Quindi, vuoi spostare più geometrie, queste dovrebbero essere prima selezionate.

**Ruotare Elemento(i)**

Utilizza lo strumento \( \text{Ruotare geometria(e)} \) per ruotare una o più geometrie nell’area di disegno della mappa:

1. Premi l’icona \( \text{Ruotare geometria(e)} \).
2. Quindi fai clic sulla geometria per ruotare. Il centroide della geometria è indicato come centro di rotazione, viene visualizzata un’anteprima della geometria ruotata e si apre un widget che mostra l’angolo di *Rotazione* corrente.
3. Fai clic sull’area di disegno della mappa quando sei soddisfatto del nuovo posizionamento o inserisci manualmente l’angolo di rotazione nella casella di testo. Puoi anche utilizzare la casella *Aggancia a °* per definire i valori di rotazione.
4. Se vuoi ruotare più geometrie contemporaneamente, devono essere prima selezionate e la rotazione è di default intorno al centroide delle geometrie combinate.

Puoi anche utilizzare un punto di ancoraggio diverso dal centroide predefinito: premi il pulsante Ctrl, clicca sulla mappa e quel punto sarà usato come nuovo centro di rotazione.

Se tieni premuto *Shift* prima di cliccare sulla mappa, la rotazione verrà eseguita in passi di 45 gradi, che possono essere modificati successivamente nel widget di input dell’utente.

Per annullare la rotazione della geometria, premi il pulsante *ESC* oppure fai clic sull’icona \( \text{Ruotare geometria(e)} \).
Semplificare Elemento

Lo strumento Semplifica geometria ti permette di rimodellare interattivamente una geometria di linee o poligoni riducendo o addensando il numero di vertici, fintanto che la geometria rimane valida:

1. Seleziona lo strumento Semplifica geometria.
2. Fai clic sulla geometria o trascina un rettangolo sopra le geometrie.
3. Si apre una finestra di dialogo che ti permette di definire il Metodo da applicare, per esempio se vuoi:
   • **simplify the geometry**, il che significa meno vertici dell’originale. I metodi disponibili sono Semplifica per distanza, Semplifica agganciando al reticolo o Semplifica per area (Visvalingam). Devi quindi indicare il valore di Tolleranza in Unità del Layer, Pixel o Unità mappa da utilizzare per la semplificazione. Più alta è la tolleranza, più vertici possono essere cancellati.
   • oppure **densify the geometries** con nuovi vertici grazie all’opzione Lisciatura: per ogni vertice esistente, due vertici sono posti su ciascuno dei segmenti da esso originati, ad una distanza Offset che rappresenta la percentuale della lunghezza del segmento. Puoi anche impostare il numero di Iterazioni con cui il posizionamento deve essere elaborato: più iterazioni, più vertici e più liscia è la geometria.

Le tue impostazioni saranno salvate quando esci da un progetto o da una sessione di modifica. In questo modo puoi tornare agli stessi parametri la prossima volta che semplificherai una geometria.

4. In fondo alla finestra di dialogo viene mostrato un riepilogo delle modifiche applicabili, che elenca il numero di elementi e il numero di vertici (prima e dopo l’operazione e il rapporto che la modifica rappresenta). Inoltre, nell’area di disegno della mappa, la geometria prevista viene visualizzata sopra quella esistente, utilizzando il colore dell’elastico.

5. Quando la geometria stimata risponde alle tue esigenze, clicca su **OK** per applicare la modifica. Altrimenti, per interrompere l’operazione, puoi premere **Canc** o fare clic con il tasto destro del mouse sulla mappa.

**Nota:** A differenza dell’opzione di semplificazione delle geometrie nel menu **Impostazioni ➤ Opzioni ➤ Visualizzazione**, che semplifica la geometria solo nella visualizzazione, lo strumento Semplifica geometria modifica permanentemente la geometria dell’oggetto nell’origine dei dati.

Aggiungere Parte

Puoi attivare Aggiungi parte a una geometria selezionata generando una geometria multipunto, multilinea o multipoligono. La nuova parte deve essere digitalizzata al di fuori di quella esistente che deve essere selezionata in precedenza.

Lo strumento Aggiungi parte può essere utilizzato anche per aggiungere una geometria a un oggetto senza geometrie. Innanzitutto, seleziona l’oggetto nella tabella degli attributi e digitalizza la nuova geometria con lo strumento Aggiungi parte.
Eliminare Parte

Lo strumento Elimina parte ti consente di eliminare parti da più geometrie (ad esempio, per eliminare i poligoni da una geometria multi-poligono). Questo strumento funziona con tutte le geometrie a più parti: punto, linea e poligono. Inoltre, può essere utilizzato per rimuovere completamente la componente geometrica di un oggetto. Per eliminare una parte, basta cliccare all’interno della parte che si vuole eliminare.

Aggiungere buco

Puoi creare poligoni con buchi utilizzando l’icona Aggiungi buco nella barra degli strumenti. Ciò significa che all’interno di un’area esistente è possibile digitalizzare ulteriori poligoni che si presentano come un “buco”, quindi rimane solo l’area tra i confini dei poligoni esterni e interni come un poligono bucato.

Riempire buco

Lo strumento Fill Ring ti aiuta a creare una geometria poligonale che si inserisce totalmente in un’altra senza alcuna area di sovrapposizione: questa è la nuova geometria che copre un foro all’interno di quella esistente. Per creare una tale geometria:

1. Seleziona lo strumento Riempire buco.
2. Disegna un nuovo poligono in sovrapposizione alla geometria esistente: QGIS aggiunge un elemento alla geometria (come se si usasse lo strumento Aggiungi buco) e crea un nuovo elemento la cui geometria corrisponde a tale buco (come se traced lungo i confini interni con lo strumento Aggiungi elemento poligonale).
3. In alternativa, se il buco è già presente nella geometria, posiziona il mouse sopra il buco e clicca con il tasto sinistro del mouse mentre premi Shift: in quel punto viene disegnata una nuovo elemento che riempie il buco.

Si apre il modulo Attributi della nuova geometria, pre-compilata con i valori della geometria «genitore» e/o fields constraints.

Eliminare buco

Lo strumento Elimina buco ti consente di eliminare i buchi all’interno di un poligono esistente, facendo clic all’interno del buco. Questo strumento funziona solo con geometrie poligonali e multi-poligonali. Non cambia niente quando viene utilizzato su un anello esterno al poligono.

Modificare forma Elementi

Puoi cambiare la forma di linee e poligoni utilizzando lo strumento Modifica la forma nella barra degli strumenti. Per le linee, sostituisce la linea originale a partire dalla prima intersezione fino all’ultima intersezione.
Suggerimento: Estendere le geometrie di vettori lineari con lo strumento di modifica forma

Utilizza lo strumento Modifica la forma per estendere le geometrie esistenti di vettori lineari: aggancia al primo o ultimo vertice della linea e disegna una nuova. Validare e la geometria del vettore è il risultato della combinazione delle due righe.

Per i poligoni, si rimodella il bordo del poligono. Per farlo funzionare, la linea dello strumento di modifica forma deve attraversare almeno due volte il limite del poligono. Per disegnare la riga, fare clic sulla visualizzazione della mappa per aggiungere vertici. Per finire, basta fare clic con il pulsante destro del mouse. Come con le linee, viene considerato solo il segmento tra le prime e le ultime intersezioni. I segmenti della linea di modifica forma che si trovano all’interno del poligono lo ridurranno e quelli esterni al poligono lo estenderanno.

Con i poligoni, la modifica forma può talvolta portare a risultati non voluti. È principalmente utile per sostituire le parti più piccole di un poligono, non per fare grandi cambiamenti, da notare che la linea di modifica forma non può attraversare poligoni con buchi in quanto ciò genererebbe un poligono non valido.
**Nota:** Lo strumento di rimodellamento può alterare la posizione di partenza di un anello poligonale o di una linea chiusa. Quindi, il punto che è rappresentato “due volte” non sarà più lo stesso. Questo non può essere un problema per la maggior parte delle applicazioni, ma è qualcosa da considerare.

**Curve di Offset**

Lo strumento [Curve di Offset](#) effettua spostamenti paralleli di layers lineari. Lo strumento può essere applicato al layer modificato (le geometrie sono modificate) o anche ai layers di sfondo (nel qual caso crea copie delle linee/anelli e li aggiunge al layer modificato). È quindi ideale per la creazione di layer di distanza. Viene visualizzata la finestra di dialogo [Pannello Input Utente](#) che mostra la distanza di spostamento.

Per creare uno spostamento di un vettore linea, devi entrare in modalità di modifica e attivare lo strumento [Curve di offset](#). Quindi fai clic su una geometria per spostarla. Sposta il mouse e fai clic su dove vuoi oppure anche immetti la distanza desiderata nel widget di input dell'utente. Puoi salvare le modifiche con lo strumento [Salva modifica vettore](#). La finestra di dialogo Opzioni di QGIS (scheda Digitalizzazione quindi sezione [Strumento per la curva di offset](#)) ti consente di configurare alcuni parametri come lo [Stile unione](#), [Segmenti di quadrante](#), [Limite di smusso](#).

**Inversione linea**

Cambiare la direzione di una linea geometrica può essere utile per scopi cartografici o quando si prepara l’analisi della rete.

Per cambiare la direzione di una linea:

1. Attiva lo strumento di inversione linea cliccando su [Inverti linea](#).
2. Clicca sulla linea. La direzione della linea viene invertita.

**Spezzare Elementi**

Usa lo strumento [Spezza elementi](#) per dividere una geometria in due o più geometrie nuove e indipendenti, cioè ogni geometria corrisponde ad una nuova riga della tabella degli attributi.

Per dividere una linea o un poligono:

1. Seleziona lo strumento [Dividi geometrie](#).
2. Disegna una linea tra le geometrie che vuoi dividere. Se una selezione è attiva, solo le geometrie selezionate vengono suddivise. Quando impostato, default values or clauses sono applicate ai campi corrispondenti e altri attributi della geometria principale sono copiati di default nelle nuove geometrie.
3. Puoi quindi modificare, come al solito, uno qualsiasi degli attributi di qualsiasi geometria risultante.

**Suggerimento:** Dividere una polilinea in nuove geometrie con un solo clic

Usando lo strumento [Spezza elementi](#), aggancia e clicca su un vertice esistente di una polilinea per dividere tale geometria in due nuove geometrie.
Dividere Parti

In QGIS è possibile dividere le parti di una geometria a più parti di modo che il numero di parti viene aumentato. Basta disegnare una riga sulla parte che desideri dividere usando l'icona `Dividi parti`.

Suggerimento: Dividere una polilinea in nuove geometrie con un solo clic

Utilizzando lo strumento `Dividi parti`, aggancia e clicca su un vertice esistente di una geometria di una polilinea per dividere la geometria in due nuove polilinee appartenenti alla stessa geometria.

Fondere elementi selezionati

Lo strumento `Unisci gli elementi selezionati` ti consente di creare una nuova geometria unendo quelle esistenti: le loro geometrie vengono unite per generare una nuova. Se le geometrie non hanno confini comuni, viene creata una geometria multipoligono/multilinea/multipunti.

1. Per prima cosa seleziona le geometrie che vuoi combinare.

2. Poi premi il pulsante `Unisci gli elementi selezionati`.

3. Nella nuova finestra di dialogo, la scritta *Fondi (Merge)* in fondo alla tabella mostra gli attributi della geometria risultante. Puoi modificare uno qualsiasi di questi valori:
   - sostituendone manualmente il valore nella cella corrispondente;
   - selezionando una riga nella tabella e premendo *Prendi gli attributi dall'elemento selezionato* per utilizzare i valori di questa geometria;
   - premendo *Salta tutti i campi* per utilizzare attributi vuoti;
   - oppure, espandendo il menu a tendina nella parte superiore della tabella, seleziona una qualsiasi delle opzioni di cui sopra da applicare solo al campo corrispondente. Qui, puoi anche scegliere di aggregare gli attributi iniziali delle geometrie (Minimo, Massimo, Mediano, Somma, Conteggio, Concatenazione….. a seconda del tipo di campo. vedi *Pannello Statistiche* per l'elenco completo delle funzioni).

Nota: Se il layer ha valori predefiniti o contenuti presenti nei campi, questi sono usati come valori iniziali per la geometria risultante dalla fusione.

4. Premi OK per applicare le modifiche. Una singola (multi)geometria viene creata nel layer, sostituendo quelle precedentemente selezionate.

Fondere attributi degli elementi selezionati (merge)

Lo strumento `Unire gli attributi degli elementi selezionati` ti consente di applicare gli stessi attributi agli elementi senza fondere i loro confini. La finestra di dialogo è la stessa del precedente strumento `Unisci gli elementi selezionati` ma a differenza di quello strumento, gli oggetti selezionati vengono mantenuti con la loro geometria mentre alcuni dei loro attributi vengono resi identici.
Ruotare Simboli Punto

La funzione Ruota Simboli Punto ti permette di cambiare individualmente la rotazione di simboli di punti nella mappa.

1. Per prima cosa, devi indicare il campo in cui memorizzare il valore di rotazione. Questo viene fatto assegnando un campo proprietà rotazione al simbolo data-defined:

   1. Nella finestra di dialogo Proprietà vettore ▶ Simbologia, seleziona la finestra di dialogo dell’editor dei simboli.
   2. Fai clic sul widget Sovrascrittura definita dai dati vicino (preferibilmente) all’opzione Rotazione del livello superiore dei livelli del Simbolo.

   Puoi anche selezionare la voce Memorizzazione dati nel progetto per generare un campo auxiliary data storage per controllare il valore di rotazione.

   Nota: Assicurarsi di assegnare lo stesso campo a tutti i layer di simboli

   L’impostazione del campo di rotazione definito dai dati al livello più alto dell’albero dei simboli lo propaga automaticamente a tutti i livelli dei simboli, un prerequisito per eseguire la rotazione dei simboli grafici con lo strumento Ruota i simboli del punto. Infatti, se un livello simbolo non ha lo stesso campo collegato alla sua proprietà di rotazione, lo strumento non funzionerà.

Fig. 14.93: Ruotare un simbolo puntuale

2. Poi clicca su un simbolo di punto nella mappa con lo strumento Ruota Simboli Punto

3. Muovi il mouse. Verrà visualizzata una freccia rossa con il valore di rotazione (vedi Fig. 14.93). Se tieni premuto il tasto Ctrl mentre ti muovi, la rotazione sarà fatta in passi di 15 gradi.

4. Quando ottieni il valore dell’angolo desiderato, clicca di nuovo. Il simbolo viene visualizzato con questa nuova rotazione e il campo associato viene aggiornato di conseguenza.

   Puoi cliccare con il tasto destro del mouse per interrompere la rotazione del simbolo.
Offset dei simboli per i punti

Lo strumento \( \text{Applica Offset al Simbolo del Punto} \) ti permette di cambiare interattivamente la posizione renderizzata dei simboli di punti nell’area di disegno della mappa. Questo strumento si comporta come lo strumento \( \text{Ruota Simboli del Punto} \) tranne che richiede di collegare un campo alla proprietà definita dai dati Offset \((X,Y)\) di ogni layer del simbolo. Il campo sarà quindi popolato con le coordinate di offset per gli elementi il cui simbolo viene spostato nella mappa.

1. Associa un campo al widget definito dai dati della proprietà Offset \((X,Y)\) del simbolo. Se il simbolo è fatto con molti livelli, si potrebbe voler assegnare il campo a ciascuno di essi.

2. Seleziona lo strumento \( \text{Applica Offset al Simbolo del Punto} \).

3. Fai clic su un simbolo di punto.

4. Spostati in una nuova posizione.


Puoi cliccare con il tasto destro del mouse per interrompere l’offset del simbolo.

**Nota:** Lo strumento \( \text{Applica Offset al Simbolo del Punto} \) non sposta il punto stesso; dovresti usare lo strumento \( \text{Strumento Vertice (vettore corrente)} \) o lo strumento \( \text{Muovi elemento(i)} \) per questo scopo.

Troncare/Estendere Elemento

Quando una linea digitalizzata è troppo corta o troppo lunga per agganciarsi ad un’altra linea (manca o attraversa la linea), è necessario poter estendere o accorciare il segmento.

Lo strumento \( \text{Tronca/Estendi Elemento} \) permette anche di modificare (multi)linee e (multi)poligoni. Inoltre, non si tratta necessariamente della fine delle linee; qualsiasi segmento di una geometria può essere modificato.

**Nota:** Questo può portare a geometrie non valide.

**Nota:** Devi attivare l’aggancio dei segmenti perché questo strumento funzioni.

Lo strumento chiede di selezionare un limite (un segmento) rispetto al quale un altro segmento sarà esteso o tagliato. A differenza dello strumento vertice, viene eseguito un controllo per modificare solo il layer che si sta modificando.

Quando entrambi i segmenti sono in 3D, lo strumento esegue un’interpolazione sul limite del segmento per ottenere il valore Z.

Nel caso di un taglio, dovete selezionare la parte che sarà accorciata cliccando su di essa.
14.5.5 Digitalizzare forme

La Barra degli strumenti di digitalizzazione di forme offre una serie di strumenti per disegnare forme regolari e geometrie curve.

Aggiungere arco circolare


La creazione di geometrie con questi strumenti segue la stessa regola degli altri strumenti di digitalizzazione: clicca con il tasto sinistro per posizionare i vertici e con il tasto destro del mouse per completare la geometria. Durante il disegno della geometria, puoi passare da uno strumento all’altro e agli strumenti geometria lineare, creando delle geometrie composte.

Nota: Le geometrie curve vengono memorizzate come tali solo nei gestori di dati compatibili

Anche se QGIS consente di digitalizzare geometrie curve in qualsiasi formato di dati modificabile, è necessario utilizzare un gestore di dati (ad esempio PostGIS, gestore layer in memoria, GML o WFS) che supporta le curve per memorizzare le geometrie come curve, altrimenti QGIS segmentizza gli archi circolari.

Disegnare cerchi

C’è un insieme di strumenti per disegnare cerchi. Gli strumenti sono descritti di seguito.

I cerchi sono convertiti in stringhe circolari. Pertanto, come spiegato in Aggiungere arco circolare, se consentito dal fornitore di dati, sarà salvato come una geometria curva, altrimenti, QGIS segmenta gli archi circolari.

- Aggiungi cerchio da 2 punti: I due punti definiscono il diametro e l’orientamento del cerchio. (Clic sinistro, clic destro)
- Aggiungi cerchio da 3 punti: Disegna un cerchio da tre punti noti sul cerchio. (Clic sinistro, clic sinistro, clic destro)
- Aggiungi cerchio dal centro e da un punto: Disegna un cerchio con un dato centro e un punto sul cerchio (clic sinistro, clic destro). Se usato con il Il Pannello di Digitalizzazione Avanzata questo strumento può diventare uno strumento «Aggiungi cerchio dal centro e raggio» impostando e bloccando il valore della distanza dopo il primo clic.
- Aggiungi Cerchio da 3 Tangenti (non parallele): Disegna un cerchio che è tangente a tre segmenti. Nota che devi attivare l’aggancio ai segmenti (Vedi Impostare la Tolleranza di Aggancio e il raggio di ricerca degli elementi). Clicca su un segmento per aggiungere una tangente. Se due tangenti sono parallele, appare un messaggio di errore e l’input viene cancellato. (Clic sinistro, clic sinistro, clic destro)
- Aggiungi Cerchio da 2 Tangenti e un Punto: Simile al cerchio da 3 tangenti, tranne che devi selezionare due tangenti, inserire un raggio e selezionare il centro desiderato.
Disegnare Ellissi

C'è un insieme di strumenti per disegnare ellissi. Gli strumenti sono descritti di seguito.

Le ellissi non possono essere convertite come stringhe circolari, quindi saranno sempre segmentate.

- **Aggiungi Ellisse da un Centro e 2 Punti**: Disegna un'ellisse con un dato centro, asse maggiore e minore. (Clic sinistro, clic sinistro, clic destro)

- **Aggiungi Ellisse da un Centro e da un Punto**: Disegna un'ellisse in un rettangolo di delimitazione con il centro e un angolo. (Clic sinistro, clic destro)

- **sup: Aggiungi Ellisse da Estensione**: Disegna un'ellisse in un rettangolo di delimitazione con due angoli opposti. (Clic sinistro, clic destro)

- **Aggiungi Ellisse da Fuochi**: Disegna un'ellisse da 2 punti per i fuochi e un punto sull'ellisse. (Clic sinistro, clic sinistro, clic destro)

Disegnare Rettangoli

C'è un insieme di strumenti per disegnare rettangoli. Gli strumenti sono descritti di seguito.

- **Aggiungi Rettangolo da un Centro e da un Punto**: Disegna un rettangolo dal centro e da un suo angolo. (Clic sinistro, clic destro)

- **rectangleExtent** **Aggiungi Rettangolo da Estensione**: Disegna un rettangolo da due angoli opposti. (Clic sinistro, clic destro)

- **Aggiungi Rettangolo da 3 punti (distanza dal 2° e 3° punto)**: Disegna un rettangolo orientato da tre punti. Il primo e il secondo punto determinano la lunghezza e l’angolo del primo lato. Il terzo punto determina la lunghezza dell’altro lato. Si può usare **Il Pannello di Digitalizzazione Avanzata** per impostare la lunghezza dei lati. (Clic sinistro, clic sinistro, clic destro)

- **Aggiungi Rettangolo da 3 Punti (Distanza dal punto proiettato sul segmento p1 e p2)**: Come lo strumento precedente, ma la lunghezza del secondo lato è calcolata dalla proiezione del terzo punto sul primo lato. (Clic sinistro, clic sinistro, clic destro)

![Disegno di un rettangolo da 3 punti](image)

Fig. 14.94: Disegna un rettangolo da 3 punti usando la distanza (destra) e la proiezione (sinistra)
Disegnare Poligoni Regolari

C’è un insieme di strumenti per disegnare poligoni regolari. Gli strumenti sono descritti di seguito. Clicca con il tasto sinistro del mouse per posizionare il primo punto. Appare una finestra di dialogo dove è possibile impostare il numero di lati del poligono. Clicca con il tasto destro per completare il poligono regolare.

- **Aggiungi Poligono Regolare da 2 Punti**: Disegna un poligono regolare in cui i due punti determinano la lunghezza e l’angolo del primo lato.
- **Aggiungi Poligono Regolare da un Centro e da un Punto**: Disegna un poligono regolare dal punto centrale fornito. Il secondo punto determina l’angolo e la distanza dal centro di un lato.
- **Aggiungi Poligono Regolare da un Centro e un Angolo**: Come lo strumento precedente, ma il secondo punto determina l’angolo e la distanza da un vertice.

14.5.6 Il Pannello di Digitalizzazione Avanzata

Durante la cattura, la rimodellazione, la suddivisione delle geometrie nuove o esistenti, puoi anche utilizzare il pannello Digitalizzazione Avanzata. Puoi digitalizzare linee esattamente parallele o perpendicolari ad una particolare angolazione o bloccare le linee ad angoli specifici. Inoltre, puoi immettere direttamente le coordinate così da poter definire in modo preciso la nuova geometria.

![Fig. 14.95: Il Pannello di Digitalizzazione Avanzata](image)

Il pannello *Digitalizzazione Avanzata* può essere aperto sia con un clic destro sulla barra degli strumenti, dal menu **Visualizza ➤ Pannelli ➤** o premendo **Ctrl+4**. Una volta che il pannello è visibile, fai clic sul pulsante per attivare l’insieme di strumenti.

**Nota:** Gli strumenti non sono abilitati se la visualizzazione mappa è in coordinate geografiche.
Concetti

Lo scopo dello strumento di Digitalizzazione Avanzata è quello di bloccare le coordinate, le lunghezze e gli angoli quando si sposta il mouse durante la digitalizzazione nella area di visualizzazione mappa.
Puoi inoltre creare vincoli con riferimenti relativi o assoluti. Il riferimento relativo significa che i successivi valori dei vincoli saranno relativi al vertice o al segmento precedente.

Impostazioni di aggancio

Fai clic sul pulsante 🌆 per definire le impostazioni dello strumento Digitalizzazione Avanzata. Puoi utilizzare lo strumento di aggancio ai comuni angoli. Le opzioni sono:

- Non agganciare agli angoli comuni
- Agganciare agli angoli 30°
- Agganciare agli angoli 45°
- Agganciare agli angoli 90°

Puoi anche controllare le modalità di aggancio alle geometrie. Le opzioni sono:

- Non agganciare a vertici o segmenti
- Agganciare in base alle impostazioni del progetto
- Agganciare su tutti i layer

Tasti di scelta rapida

Per velocizzare l’uso del pannello di Digitalizzazione Avanzata, sono disponibili un paio di scorciatoie da tastiera:

<table>
<thead>
<tr>
<th>Key</th>
<th>Simple</th>
<th>Ctrl+o Alt+</th>
<th>Shift+</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Impostare distanza</td>
<td>Bloccare distanza</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Impostare angolo</td>
<td>Bloccare angolo</td>
<td>Attivare l'angolo riferito all’ultimo segmento</td>
</tr>
<tr>
<td>X</td>
<td>Impostare la coordinata X</td>
<td>Bloccare la coordinata X</td>
<td>Spostare la posizione X all’ultimo vertice</td>
</tr>
<tr>
<td>Y</td>
<td>Impostare la coordinata Y</td>
<td>Bloccare la coordinata Y</td>
<td>Spostare la posizione Y all’ultimo vertice</td>
</tr>
<tr>
<td>C</td>
<td>Attivare modalità costruzione</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Attivare modalità perpendicolare e parallela</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Digitalizzazione a riferimento assoluto

Quando si disegna una nuova geometria da zero, è molto utile avere la possibilità di avviare la digitalizzazione dei vertici in corrispondenza di determinate coordinate.
Ad esempio, per aggiungere un nuovo elemento a un layer poligonale, fai clic sul pulsante 🌆. Puoi scegliere le coordinate X e Y da cui vuoi iniziare a modificare la geometria, quindi:

- Fai clic sulla casella di testo X (o usa la scorciatoia da tastiera X).
- Immetti il valore della coordinata X desiderato e premi Invio oppure fai clic sul pulsante a destra per bloccare il mouse sull’asse X sulla mappa.
- Fai clic sulla casella di testo Y (o usa la scorciatoia da tastiera Y).
- Immetti il valore della coordinata Y desiderato e premi Invio oppure fai clic sul pulsante a destra per bloccare il mouse sull’asse Y sulla mappa.
Due linee tratteggiate in blu e una croce verde identificano le coordinate esatte che hai immesso. Inizia la digitalizzazione facendo clic sulla mappa; la posizione del mouse è bloccata alla croce verde.

Puoi continuare la digitalizzazione a mano libera, aggiungere una nuova coppia di coordinate oppure digitare la **lunghezza** (distanza) e l’**angolo** del segmento.

Se vuoi disegnare un segmento di una data lunghezza, fai clic sulla casella *d* (*distanza*) (scorciatoia da tastiera *d*), digita il valore della distanza (in unità di mappa) e premi ***Invio*** oppure fai clic sul pulsante 🔄 a destra per bloccare il mouse sulla mappa alla lunghezza del segmento. Nella visualizzazione mappa, il punto cliccato è circondato da un cerchio il cui raggio è il valore immesso nella casella di testo distanza.

Infine, puoi anche scegliere l’angolo del segmento. Come descritto in precedenza, fai clic sulla casella di testo *a* (**angolo**) (scorciatoia da tastiera *a*), digitare il valore dell’angolo (in gradi) e premi ***Invio*** oppure fai clic sul pulsante a destra per bloccarlo. In questo modo il segmento forma l’angolo desiderato:
Digitalizzazione riferimento relativo

Invece di utilizzare valori assoluti di angoli o coordinate, puoi anche utilizzare valori relativi all’ultimo vertice o segmento digitalizzato.

Per gli angoli, puoi fare clic sul pulsante a sinistra della casella di testo $a$ (o premi Shift+A) per attivare angoli relativi al segmento precedente. Con questa opzione, gli angoli vengono misurati tra l’ultimo segmento e il puntatore del mouse.

Per le coordinate, fai clic sui pulsanti $x$ o $y$ (oppure premi Shift+X o Shift+Y) per attivare le coordinate relative al vertice precedente. Con queste opzioni attivate, la misurazione delle coordinate considererà l’ultimo vertice come origine degli assi X e Y.

Blocco continuo

Sia in riferimento assoluto che relativo, la digitalizzazione, l’angolo, la distanza, i vincoli x e y possono essere bloccati in modo continuo facendo clic sui pulsanti Blocco continuo. L’utilizzo di blocco continuo ti consente di digitalizzare più punti o vertici utilizzando gli stessi vincoli.

Linee parallele e perpendicolari

Tutti gli strumenti sopra descritti possono essere combinati con gli strumenti Parallelo e Perpendicolare. Questi due strumenti consentono di disegnare segmenti perfettamente perpendicolari o paralleli ad un altro segmento.

Per disegnare un segmento perpendicolare, durante la modifica fai clic sull’icona Perpendicolare (scorciatoia da tastiera p) per attivarla. Prima di disegnare la linea perpendicolare, fai clic sul segmento di una geometria esistente alla quale desideri essere perpendicolari (la linea della geometria esistente verrà colorata in arancio chiaro); dovresti vedere una linea punteggiata blu dove verrà attivata la tua geometria.
Per disegnare una geometria parallela, i passaggi sono gli stessi: fai clic sull'icona Parallelo (scorciatoia da tastiera doppio `)`), fai clic sul segmento che vuoi utilizzare come riferimento e inizia a disegnare la tua geometria.

Solo questi due strumenti determinano l'angolo corretto perpendicolare e parallelo e bloccano questo parametro durante la modifica.

**Modalità di costruzione**

Puoi attivare e disattivare la modalità costruzione cliccando sull'icona Modalità di costruzione o con la scorciatoia da tastiera `c`. Mentre si è in modalità di costruzione, cliccando sulla mappa non verranno aggiunti nuovi vertici, ma si cattureranno le posizioni dei clic, in modo che possano essere utilizzate come punti di riferimento per bloccare i valori relativi a distanza, angolo o X e Y.

Ad esempio, la modalità di costruzione può essere usata per disegnare un certo punto in una distanza esatta da un punto esistente.
Con un punto esistente nella mappa e la modalità di aggancio correttamente attivata, puoi disegnare facilmente altri punti a determinate distanze e angoli da esso. Oltre al pulsante , devi attivare anche la modalità *costruzione* facendo clic sull'icona Modalità di costruzione o con la scorciatoia da tastiera c.

Fai clic accanto al punto dal quale vuoi calcolare la distanza e fai clic sulla casella d (clic scorciatoia), digita la distanza desiderata e premi *Enter* per bloccare la posizione del mouse nella mappa:

![Fig. 14.101: Distanza da un punto](image1)

Prima di aggiungere il nuovo punto, premi c per uscire dalla modalità di costruzione. Adesso puoi cliccare sulla mappa e il punto verrà posizionato alla distanza immessa.

Puoi anche utilizzare il vincolo di angolo per creare, ad esempio, un altro punto alla stessa distanza dell'originale, ma ad un angolo particolare dal punto appena aggiunto. Fai clic sull'icona Modalità di costruzione o con la scorciatoia da tastiera c per accedere alla modalità di costruzione. Fai clic sul punto aggiunto di recente, quindi sull'altro per impostare un segmento di direzione. Quindi fai clic sulla casella di testo d (clic scorciatoia da tastiera) digita la distanza desiderata e premi *Invio*. Fai clic sulla casella di testo a (la scorciatoia da tastiera a) digitare l'angolo desiderato e premere *Invio*. La posizione del mouse sarà bloccata sia in distanza che in angolo.

![Fig. 14.102: Distanza ed angolo fra punti](image2)
Prima di aggiungere il nuovo punto, premi \( \square \) per uscire dalla modalità di costruzione. Adesso puoi cliccare sulla mappa e il punto verrà posizionato alla distanza e all'angolo inserito. Ripetendo il processo, è possibile aggiungere più punti.

![Fig. 14.103: Punti a distanza ed angolo fissato](image)

### 14.5.7 Il processamento di modifiche al layer sul posto

*Processing menu* fornisce accesso ad un ampio set di strumenti per analizzare e creare nuove geometrie in base alle proprietà delle geometrie di input o alle loro relazioni con altre geometrie (all'interno dello stesso layer o meno). Mentre il comportamento comune è quello di creare nuovi layer come output, alcuni algoritmi permettono anche di modificare il layer di input. Questo è un modo pratico per automatizzare la modifica di più geometrie utilizzando operazioni avanzate e complesse.

**Modificare geometrie sul posto:**

1. Seleziona il layer da modificare nel pannello *Layer*.
2. Seleziona le geometrie interessate. Puoi saltare questo passaggio, nel qual caso la modifica si applicherà a tutto il layer.
3. Premi il pulsante *Modifica elementi sul posto* nella parte superiore del *Processing toolbox*. L'elenco degli algoritmi è filtrato, mostrando solo quelli compatibili con le modifiche sul-posto, ad esempio:
   - Lavorano a livello della geometria e non a livello di layer.
   - Non cambiano la struttura del layer, ad esempio aggiungendo o rimuovendo campi.
   - Non cambiano il tipo di geometria, ad esempio da layer lineare a layer puntuale.
4. Trova l’algoritmo che vuoi eseguire e fai doppio clic su di esso.

Nota: Se l’algoritmo non necessita di parametri aggiuntivi impostati dall’utente (esclusi i soliti parametri del layer di ingresso e di uscita), l’algoritmo viene eseguito immediatamente senza comparsa di finestre di dialogo.

1. Se sono necessari parametri diversi dai consueti layer di ingresso o di uscita, si apre la finestra di dialogo dell’algoritmo. Compila le informazioni richieste.

2. Fai clic su Modifica elementi selezionati o Modifica tutti gli elementi a seconda della selezione attiva. Le modifiche vengono applicate al layer inserite nel buffer di modifica: il layer viene infatti commutato in modalità di modifica con modifiche non salvate come indicato dall’icona accanto al nome del layer.

5. Come al solito, premi Salva modifiche layer per effettuare il commit dei cambiamenti nel layer. Puoi anche premere Annulla per annullare tutte le modifiche.
Lavorare con i dati raster

15.1 Proprietà raster

Per visualizzare e impostare le proprietà di un layer raster, fai doppio clic sul nome del layer nella legenda della mappa, oppure fai clic con il tasto destro del mouse sul nome del layer e scegli Proprietà dal menu contestuale. In questo modo si aprirà la finestra di dialogo Proprietà layer.

Ci sono diverse schede nella finestra di dialogo:

- Information
- Source
- Symbology
- Transparency
- Histogram
- Rendering
- Pyramids
- Metadata
- Legend
- QGIS Server

Suggerimento: Aggiornamenti in tempo reale

Il Pannello Stile Layer ti fornisce alcune delle funzionalità comuni della finestra di dialogo delle proprietà del Layer ed è una utile finestra non modale che puoi usare per velocizzare la configurazione degli stili del layer e visualizzare le tue modifiche sulla mappa.
Nota: Poiché le proprietà (simbologia, etichetta, azioni, valori predefiniti, moduli…) dei layer incorporati (vedi *Progetti nidificati*) sono estratte dal file di progetto originale, e per evitare modifiche che possano compromettere questo comportamento, la finestra di dialogo delle proprietà del layer è resa non disponibile per questi layer.

15.1.1 Proprietà Informazioni

La scheda **Informazioni** è di sola lettura e rappresenta un posto interessante per ottenere rapidamente informazioni riassunte e metadati per il layer corrente. Le informazioni fornite sono:

- in base alla fonte dati del layer (formato di memorizzazione, percorso, tipo di dati, estensione, larghezza/altezza, compressione, dimensione dei pixel, statistiche sulle bande, numero di colonne, numero di righe e valore per nessun dato del raster…);
- prelevate da *provided metadata*: accesso, collegamenti, contatti, storia… così come le informazioni del dataset (SR, Estensione, bande…).

15.1.2 Proprietà Sorgente

La scheda **Sorgente** mostra le informazioni di base sul raster selezionato, inclusi:

- Il **Nome layer** da visualizzare nel Pannello Layer;
- il **Sistema di riferimento (SR) Assegnato**: Mostra il **Coordinate Reference System (CRS)** del layer. Puoi cambiare il SR del layer, selezionandone uno usato recentemente nell'elenco a discesa o cliccando sul pulsante [Seleziona SR](vedi [Scelta del sistema di riferimento delle coordinate](#)). Usa questa procedura solo se il SR del layer è sbagliato o non specificato. Se vuoi riproiettare i tuoi dati, usa un algoritmo di riproiezione di Processing o [Save it as new dataset](#).

![Fig. 15.1: Proprietà Raster](image)
15.1.3 Proprietà Simbologia

Visualizzazione banda

QGIS offre molti diversi Tipi visualizzazione. La scelta delle modalità di visualizzazione dipende dal tipo di dati e dalle informazioni che si desidera evidenziare.

1. **Multiband color** - se il file viene fornito come multibanda con diverse bande (ad esempio una immagine satellitare con diverse bande)

2. **Paletted/Unique values** - per file a banda singola con tavolozza indicizzata (ad esempio una mappa topografica digitale) o per l’uso generale delle tavolozze per la visualizzazione di layer raster.

3. **Singleband gray** - (una banda) l’immagine sarà visualizzata in grigio. QGIS sceglierà questa visualizzazione se il file non ha né multibande né una tavolozza (ad esempio una mappa in rilievo ombreggiata).

4. **Singleband pseudocolor** - questa visualizzazione può essere utilizzata per i file con una tavolozza continua o una mappa a colori (ad esempio una mappa altimetrica).

5. **Hillshade** - Crea una ombreggiatura da una banda.

6. **Contours** - Crea curve di livello al volo da una banda raster.

Colori Banda Multipla

Con la visualizzazione colore multibanda, le tre bande selezionate dall’immagine saranno usate come componente rossa, verde o blu dell’immagine a colori. QGIS recupera automaticamente i valori Min e Max per ogni banda del raster e scala la colorazione di conseguenza. Puoi controllare le gamme di valori nella sezione Min/Max Value Settings.

Può anche essere applicato un metodo Miglioramento contrasto ai valori: “Nessun miglioramento”, “Stira a MinMax”, “Stira e taglia a MinMax” and “Taglia a MinMax”.

**Nota: Miglioramento contrasto**

Quando si aggiungono raster GRASS, l’opzione Miglioramento contrasto sarà sempre impostata automaticamente su «Stira a MinMax», indipendentemente dal fatto che sia impostata su un altro valore nelle opzioni generali di QGIS.
Suggerimento: Visualizzare una singola banda di un raster multibanda

Se vuoi visualizzare una singola banda di un’immagine multibanda (ad esempio, Rossa), potresti pensare di impostare le bande Verde e Blu su Non impostato. Ma il modo migliore per fare ciò è di impostare il tipo di immagine su Banda singola grigia, e poi selezionare Rosso come Gray band da utilizzare.

Valori a tavolozza/Univoci

Questa è l’opzione normale di visualizzazione per i file a banda singola che includono già una tabella di colori, dove ad ogni valore di pixel viene assegnato un determinato colore. In questo caso, la tavolozza viene visualizzata automaticamente.

Può essere usato per tutti i tipi di bande raster, assegnando un colore ad ogni valore raster univoco.

Se vuoi modificare un colore, devi solo fare doppio clic sul colore e viene visualizzata la finestra di dialogo Cambia colore.

Inoltre puoi assegnare un’etichetta ai valori di colore. L’etichetta compare quindi nella legenda del layer raster.

Cliccando con il tasto destro del mouse sulle righe selezionate nella tabella dei colori, viene visualizzato un menu contestuale per:

- Cambia Colore... per la selezione operata
- Cambia Opacità… per la selezione operata
- Cambia Etichetta… per la selezione operata

Fig. 15.3: Simbologia Raster - Visualizzazione valori a tavolozza univoci

Il menu a tendina, che si apre cliccando il pulsante … (Opzioni avanzate) sotto la mappa dei colori a destra, offre il caricamento della mappa dei colori (Carica Mappa Colore da file…) e l’esportazione (Esporta Mappa Colore su file…), e il caricamento delle classi (Carica classi dal Layer).

**Banda singola griglia**

Questa visualizzazione ti permette di visualizzare un singolo layer di banda con un Gradiente colore: “Da nero a bianco” o “Da bianco a nero”. Puoi cambiare la gamma dei valori del colore (Min e Max) in Min/Max Value Settings. Può anche essere applicato un metodo Miglioramento contrasto ai valori: “Nessun miglioramento”, “Stira a MinMax”, “Stira e taglia a MinMax” and “Taglia a MinMax”.

15.1. Proprietà raster
**Banda singola falso colore**

Questa è l’opzione di visualizzazione per i file a banda singola che includono una tavolozza continua. Puoi anche creare mappe di colore per una banda di un raster multibanda.

Usando una *Banda singola falso colore* per il layer e un *values range*, sono disponibili tre tipi di *Interpolazione* del colore:

- Discreto (un simbolo \( \leq \) appare nell’intestazione della colonna *Valore*’)
- Lineare
• Esatto (un simbolo = appare nell’intestazione della colonna Valore’)

Il menù a tendina Scala colore elenca le scale colore disponibili. Puoi crearne una nuova e modificare o salvare quella attualmente selezionata. Il nome della scala colore sarà salvato nella configurazione e nel file QML.

La Unità etichetta suffisso è un’etichetta aggiunta dopo il valore nella legenda.

Per la classificazione Modalità “Intervallo Uguale”, devi solo selezionare il numero di Classi e premere il pulsante Classifica. Per Modalità “Continuo”, QGIS crea automaticamente le classi a seconda di Min e Max.

Il pulsante Aggiungi valori manualmente aggiunge un valore alla tabella. Il pulsante Rimuovi le righe selezionate elimina un valore dalla tabella. Un doppio clic nella colonna Valore ti permette di inserire un valore specifico. Un doppio clic nella colonna Colore apre la finestra di dialogo Seleziona colore, dove puoi selezionare un colore da applicare a quel valore. Inoltre, puoi anche aggiungere etichette per ogni colore, ma questo valore non sarà visualizzato quando usi lo strumento di identificazione elemento.

Cliccando con il tasto destro del mouse sulle righe selezionate nella tabella dei colori, viene visualizzato un menu contestuale per:

• Cambia Colore… per la selezione operata
• Cambia Opacità… per la selezione operata

Puoi usare i pulsanti Carica mappa colore da file e Esporta mappa colore su file per caricare una tabella colori esistente o per salvare la tabella colori per un uso successivo.

La Ritaglia valori dell’intervallo permette a QGIS di non visualizzare il pixel maggiore del valore Max.

**Ombreggiatura**

Visualizzare una banda di un layer Raster usando l’ombreggiatura

![Band Rendering](https://example.com/fig15_6.png)

Fig. 15.6: Simbologia Raster - Visualizzazione ombreggiatura

Opzioni:

• **Banda**: La banda del raster da usare.
• **Altitudine**: L’angolo di elevazione della sorgente luminosa (il valore predefinito è 45°).
• **Azimut**: L’azimut della sorgente luminosa (il valore predefinito è 315°).
- **Fattore Z**: Fattore di scala per i valori della banda raster (il valore predefinito è 1).
- **Multidirezionale**: Specifica se deve essere usata l'ombreggiatura multidirezionale (il valore predefinito è off`).

**Contours**

Questa visualizzazione disegna curve di livello che sono calcolate al volo dalla banda raster di origine.

![Fig. 15.7: Simbologia raster - Visualizzazione curve di livello](image)

Opzioni:

- **Banda in ingresso**: la banda raster da usare.
- **Intervallo Curve di livello**: la distanza tra due curve di livello consecutive
- **Simbolo Contorno**: il simbolo da applicare alle curve di livello comuni.
- **Index contour interval**: the distance between two consecutive *index contours*, that is the lines shown in a distinctive manner for ease of identification, being commonly printed more heavily than other contour lines and generally labeled with a value along its course.
- **Simbolo Curve di livello Indice**: il simbolo da applicare alle curve di livello dell'indice
- **Ridimensionamento raster**: Indica di quanto la visualizzazione sarà ridotta di scala rispetto alla fonte dei dati. Il valore predefinito è 1.0, cioè nessun ridimensionamento.

Per esempio, se si generano curve di livello sul riquadro raster di input con la stessa dimensione del riquadro raster di output, le linee generate potrebbero contenere troppi dettagli. Questo dettaglio può essere ridotto dal fattore «ridimensionamento «, richiedendo una risoluzione inferiore del raster di origine. Per un raster 1000x500 con ridimensionamento 10, il visualizzatore richiederà alla fonte dati un raster 100x50. Un ridimensionamento più alto rende le linee di contorno più semplificate (a costo di perdere qualche dettaglio).
Impostazione dei valori min e max

Per default, QGIS riporta i valori Min e Max della/e banda/e del raster. Alcuni valori molto bassi e/o alti possono avere un impatto negativo sul processo di restituzione del raster. Il riquadro Impostazione dei valori di Min e Max ti aiuta a controllare il processo di restituzione.

Sono disponibili le opzioni:

- **Definito dall'utente**: I valori predefiniti Min e Max della(e) banda(i) possono essere sovrascritti.
- **Taglio conteggio Cumulativo**: Rimuove i valori estremi. L'intervallo standard dei valori è compreso tra "2%" e 98%, ma può essere adattato manualmente.
- **Min / max**: Utilizza l'intera gamma di valori nella banda dell'immagine.
- **Media +/- deviazione standard x**: Crea una tabella di colori che considera solo i valori entro la deviazione standard o entro deviazioni standard multiple. Questo è utile quando in un layer raster hai una o due celle con valori anormalmente alti che hanno un impatto negativo sulla visualizzazione del raster.

Il calcolo dei valori minimi e massimi delle bande viene effettuato in base a:

- **Estensione statistiche**: può essere **Intero raster, Vista attuale o Mappa aggiornata**. **Mappa aggiornata** significa che i valori min/max usati per la restituzione in mappa cambieranno con l'estensione della mappa (stretching dinamico).
- **Accuratezza**, che può essere o **Stimato (più veloce)** o **Attuale (più lento)**.

Nota: Per alcune impostazioni, potrebbe essere necessario premere il pulsante **Applica** della finestra di dialogo delle proprietà del layer per visualizzare i valori minimi e massimi effettivi nei widget.

Visualizzazione colore

Per ogni tipologia di Visualizzazione Banda, una impostazione Visualizzazione Colore.

Puoi ottenere speciali effetti di visualizzazione per i tuoi file raster usando uno dei metodi di fusione (vedi Metodi di fusione).

Ulteriori impostazioni possono essere fatte modificando Luminosità, Saturazione, Gamma e Contrasto. Puoi anche usare un'opzione Scala di grigi, dove puoi scegliere tra “Spento”, “Per luminosità”, “Per lucentezza” e “Per media”. Per una **Tinta** nella tabella dei colori, puoi modificare la “Forza”.

15.1. Proprietà raster
Ricampionamento

L’opzione *Ricampionamento* ha effetto quando si ingrandisce e si riduce un’immagine. Le modalità di ricampionamento possono ottimizzare l’aspetto della mappa. Esse calcolano una nuova matrice di valori di grigio mediante una trasformazione geometrica.

![Color Rendering](color_rendering.png)

Fig. 15.9: Simbologia Raster - Visualizzazione del colore e impostazioni del Ricampionamento

Quando si applica il metodo “Vicino più prossimo”, la mappa può acquisire una struttura pixelata quando si ingrandisce. Questo aspetto può essere migliorato usando il metodo “Bilineare” o “Cubico”, che causano la sfocatura dei dettagli grafici. L’effetto è un’immagine più omogenea. Questo metodo può essere applicato per esempio alle mappe raster topografiche digitali.

Nella parte inferiore della scheda *Simbologia*, puoi vedere una miniatura del layer, della legenda e della tavolozza.

### 15.1.4 Proprietà Trasparenza

QGIS ha la possibilità di impostare il livello di trasparenza di un layer raster. Usa il cursore della trasparenza per impostare fino a che punto i layer sottostanti (se ce ne sono) dovrebbero essere visibili attraverso il layer raster corrente. Questo è molto utile se si sovrappongono strati raster (per esempio, una mappa di rilievo ombreggiata sovrapposta ad una mappa raster classificata). Questo renderà l’aspetto della mappa più tridimensionale.
Inoltre puoi inserire un valore del raster che deve essere trattato come Valori nulli aggiuntivi.

Un modo ancora più flessibile per personalizzare la trasparenza è disponibile nella sezione Opzioni di Trasparenza Personalizzate:

- **Usa Banda trasparenza** per applicare la trasparenza per un’intera banda.
- **Fornisci una lista di pixel** per impostare la trasparenza con i corrispondenti livelli di trasparenza:
  
  1. Clicca sul pulsante **Aggiungi valori manualmente**. Apparirà così una nuova riga.
  2. Inserisci i valori **Rosso**, **Verde** e **Blu** del pixel e regola la **Percentuale Trasparenza** da applicare.
  3. In alternativa, puoi ottenere i valori dei pixel direttamente dal raster usando il pulsante **Aggiungi i valori dal display**. Poi inserisci il valore di trasparenza.
  4. Ripeti i passi per regolare più valori con una trasparenza personalizzata.
  5. Premi il pulsante **Applica** e dai una controllata alla mappa.

Come puoi vedere è molto semplice impostare una trasparenza personalizzata, però richiede comunque un po’ di lavoro. Proprio per questo puoi usare il pulsante **Esporta su file** per salvare la lista dei valori su un file esterno. Il pulsante **Importa da file** ti permette di caricare le impostazioni di trasparenza e applicarle al raster selezionato.

**Fig. 15.10: Trasparenza Raster**

15.1. Proprietà raster 547
15.1.5 Proprietà Istogramma

La scheda \textit{Istogramma} ti permette di visualizzare la distribuzione dei valori nel tuo raster. L'istogramma viene generato quando si preme il pulsante \textit{Calcola l'istogramma}. Tutte le bande esistenti saranno visualizzate insieme. Puoi salvare l'istogramma come immagine con il pulsante .

Nella parte inferiore dell'istogramma, puoi selezionare una banda raster nel menu a discesa e \textit{Imposta stile min/max per}. Il menu a discesa \textit{Preferiti/Azioni} offre opzioni avanzate per personalizzare l'istogramma:

- Con l'opzione \textit{Visibilità}, puoi visualizzare gli istogrammi per le singole bande. Dovrai selezionare l'opzione \textit{Mostra banda selezionata}.
- Le \textit{Opzioni Min/max} permettono di “Mostra sempre i simboli min/max”, “Zoom a min/max” e “Aggiorna stile a min/max”.
- L'opzione \textit{Azioni} ti permette di “Ripristina” o “Ricalcola l'istogramma” dopo aver cambiato i valori minimi o massimi della(e) banda(e).

Fig. 15.11: Istogramma del raster
15.1.6 Proprietà Visualizzazione

Nella scheda Visualizzazione, è possibile:

- **Imposta Visibilità Dipendente dalla Scala** per il layer: Puoi impostare la scala Massimo (incluso) e Minimo (escluso), definendo un intervallo di scale in cui il layer sarà visibile. Sarà nascosto al di fuori di questo intervallo. Il pulsante Imposta alla scala corrente dell'estensione della mappa ti aiuta ad usare la scala corrente della mappa come confine. Vedi Visualizzazione in funzione della scala per maggiori informazioni.

- **Aggiorna layer a intervalli (secondi)**: imposta un timer per aggiornare automaticamente i singoli layer. Gli aggiornamenti della mappa sono differiti per evitare di aggiornare più volte se più di un layer ha un intervallo di aggiornamento automatico impostato.

![Fig. 15.12: Visualizzazione Raster](image)

15.1.7 Proprietà Piramidi

Layer raster ad alta risoluzione possono rallentare la navigazione in QGIS. Creando copie a risoluzione inferiore dei dati (piramidi), le prestazioni possono essere notevolmente migliorate, poiché QGIS seleziona la risoluzione più adatta da utilizzare a seconda del livello di zoom.

Per creare piramidi devi avere i permessi di scrittura nella cartella contenente il dato originale: in questa cartella verranno salvate le copie a bassa risoluzione.

Dall’elenco Risoluzioni, seleziona le risoluzioni alle quali vuoi creare i livelli della piramide cliccando su di esse.

Se scegli Interno (se possibile) dal menu a tendina Formato panoramica, QGIS proverà a costruire le piramidi internamente.

Nota: Si prega di notare che la costruzione di piramidi può alterare il file di dati originale, e una volta create non possono essere rimosse. Se vuoi conservare una versione “non piramidata” del tuo raster, fai una copia di backup prima di costruire la piramide.
Se scegli Esterno e Esterno (immagine Erdas) le piramidi verranno create in un file accanto al raster originale con lo stesso nome e un’estensione .ovr.

Diversi Metodi di ricampionamento possono essere usati per il calcolo della piramide:

- Vicino più prossimo (metodo Nearest Neighbour)
- Media
- Gauss
- Cubico
- Spline Cubica
- Laczos
- Moda
- Nessuno

Infine, fai clic su Costruisci piramidi per avviare il processo.

**Fig. 15.13: Piramidi raster**
15.1.8 Proprietà Metadati

La scheda Metadati ti fornisce le opzioni per creare e modificare un report dei metadati sul tuo layer. Vedi vector layer metadata properties per ulteriori informazioni.

![Metadati Raster](image)

Fig. 15.14: Metadati Raster

15.1.9 Proprietà Legenda

La scheda Legenda ti fornisce una lista di widget che puoi inserire all'interno dell'albero dei layer nel Pannello Layer. L'idea è quella di avere un modo per accedere rapidamente ad alcune azioni che sono spesso usate con il layer (impostazioni trasparenza, filtraggio, selezione, stile o altre cose…).

Per impostazione predefinita, QGIS fornisce un widget di trasparenza, ma questo può essere integrato da plugin che registrano i propri widget e assegnano azioni personalizzate ai layer che gestiscono.
15.1.10 Proprietà Server QGIS

Dalla scheda QGIS Server, possono essere ottenute informazioni per Descrizione, Attribuzione, URL Metadati e LegendUrl.
15.2 Analisi raster

15.2.1 Calcolatore raster

Il Calcolatore Raster nel menu Raster ti permette di eseguire calcoli sulla base dei valori dei pixel raster esistenti (vedi Fig. 15.17). I risultati vengono scritti in un nuovo layer raster in un formato supportato da GDAL.
La lista **Bande raster** elenca i raster caricati che possono essere utilizzati. Per aggiungere un raster nella finestra Espressione del calcolatore di raster, fai doppio click sul suo nome nella finestra Bande raster. Puoi usare gli operatori per costruire un’espressione oppure puoi scriverla direttamente nella finestra delle Espressioni del calcolatore di raster.

Nella sezione **Risultato del layer** devi definire il nome del raster in output. Hai diverse opzioni per scegliere l’estensione dell’area di calcolo: sulla base del raster in input, su coordinate X e Y oppure sulla base del numero di righe e colonne, per impostare la risoluzione finale del raster in output. Se il raster in input ha una risoluzione diversa, i valori verranno ricampionati con l’algoritmo del vicino più prossimo.

La sezione **Operatori** contiene tutti gli operatori disponibili. Per aggiungere un operatore alla casella di espressione del calcolatore raster, clicca sul pulsante appropriato. Sono disponibili calcoli matematici (+, −, *, ...) e funzioni trigonometriche (\(\sin, \cos, \tan\),...). Le espressioni condizionali (\(=, \neq, <, \geq, \ldots\)) restituiscono 0 per falso o 1 per vero, e quindi possono essere usate con altri operatori e funzioni.

Selezionando la casella di controllo **Aggiungi al progetto** il raster finale verrà aggiunto automaticamente alla legenda e lo potrai visualizzare sulla mappa.

**Suggerimento:** Vedi anche l’algoritmo *Calcolatore raster*. 

---

**Fig. 15.17: Calcolatore raster**
### Esempi

#### Convertire unità di misura dell'elevazione da metri a piedi

Per creare un raster con altimetria in piedi a partire da un raster con altimetria in metri devi utilizzare il fattore di conversione di 3,28 piedi per metro. L’espressione è:

```
"elevation@1" * 3.28
```

#### Utilizzare una maschera

Se vuoi usare una maschera su parti di un raster - perché, per esempio, sei interessato solo ai valori di altezza superiori allo 0 - puoi usare l’espressione seguente per creare un solo passaggio una maschera e applicare il risultato al raster:

```
("elevation@1" >= 0) * "elevation@1"
```

In altre parole, per ogni cella maggiore o uguale a 0 imposta il valore uguale a 1, in questo modo si mantiene il valore originario moltiplicandolo per 1. Altrimenti imposta 0, il che imposta il valore del raster a 0. In questo modo creerai la maschera al volo.

Se vuoi classificare un raster, ad esempio, in due classi di elevazione, puoi utilizzare la seguente espressione per creare un raster con due valori 1 e 2 in un solo passo:

```
("elevation@1" < 50) * 1 + ("elevation@1" >= 50) * 2
```

In altre parole, per ogni cella minore di 50 imposta il valore su 1. Per ogni cella maggiore o uguale a 50 imposta il valore su 2.

### 15.2.2 Allineamento Raster

Questo strumento è in grado di prendere diversi raster come input e di allinearli perfettamente, il che significa:

- riproiettare allo stesso SR,
- ricampionare alla stessa dimensione di cella e offset nella griglia,
- ritagliare a una regione di interesse,
- ridimensionare i valori quando necessario.

Tutti i raster saranno salvati in altri file.

Per prima cosa, apri gli strumenti da **Raster ▶ Allinea Raster...** e clicca sul pulsante **Aggiungi raster** per scegliere un raster esistente in QGIS. Seleziona un file di output per salvare il raster dopo l’allineamento, il metodo di ricampionamento e se gli strumenti hanno bisogno di **Risca la valori in base alla dimensione della cella**. Il metodo di ricampionamento può essere (vedi Fig. 15.18):

- **Vicino più prossimo** (Nearest Neighbor)
- **Bilineare** (2x2 kernel)
- **Cubica** (4x4 kernel): Approssimazione Convoluzione Cubica
- **Cubica B-Spline** (4x4 kernel): Approssimazione B-Spline Cubica
- **Lanczos** (6x6 kernel): interpolazione limitata a bande di Lanczos
- **Media**: calcola la media di tutti i pixel che non contengono NODATA
- **Moda**: seleziona il valore che appare più spesso tra tutti i punti campionati
- **Massimo**, **Minimo**, **Mediana**, **Primo Quartile** (Q1) o **Terzo Quartile** (Q3) di tutti i pixel diversi da NODATA

15.2. Analisi raster
Nella finestra di dialogo principale **Allinea raster**, puoi scegliere una o più opzioni (vedi Fig. 15.19):

- **Seleziona Layer di riferimento**,
- **Trasforma in un nuovo SR**,
- **Settaggio ad una diversa Dimensione cella**,
- **Settaggio ad un differente Offset reticolo**,
- **Ritaglia all’estensione**: può essere definito dall’utente, ritagliato a un layer o all’estensione della mappa
- **Dimensioni in uscita**,
- **Aggiungi i raster allineati alla mappa**.
Il Georeferenziatore è uno strumento per generare world file per i raster. Ti permette di riferire i raster a sistemi di coordinate geografiche o proiettate creando un nuovo GeoTiff o aggiungendo un world file all’immagine esistente. L’approccio di base per la georeferenziazione di un raster consiste nel localizzare punti sul raster per i quali puoi determinare accuratamente le coordinate.

**Funzioni**

<table>
<thead>
<tr>
<th>Icona</th>
<th>Azione</th>
<th>Icona</th>
<th>Azione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carica un raster</td>
<td></td>
<td>Avvia la georeferenziazione</td>
</tr>
<tr>
<td></td>
<td>Genera uno script GDAL</td>
<td></td>
<td>Carica punti GCP (Ground Control Point)</td>
</tr>
<tr>
<td></td>
<td>Salva Punti GCP come…</td>
<td></td>
<td>Imposta la trasformazione</td>
</tr>
<tr>
<td></td>
<td>Aggiunge un nuovo punto</td>
<td></td>
<td>Elimina un punto</td>
</tr>
<tr>
<td></td>
<td>Sposta un punto GCP</td>
<td></td>
<td>Sposta</td>
</tr>
<tr>
<td></td>
<td>Ingrandisce la vista</td>
<td></td>
<td>Rimpicciolisce la vista</td>
</tr>
<tr>
<td></td>
<td>Zoom sul layer</td>
<td></td>
<td>Zoom precedente</td>
</tr>
<tr>
<td></td>
<td>Zoom successivo</td>
<td></td>
<td>Collegare il georeferenziatore a QGIS</td>
</tr>
<tr>
<td></td>
<td>Collegare QGIS al georeferenziatore</td>
<td></td>
<td>Stiramento completo dell’istogramma</td>
</tr>
<tr>
<td></td>
<td>Stiramento locale dell’istogramma</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**15.3 Georeferenziatore**
Tabella Georeferenziatore: Strumenti del Georeferenziatore

### 15.3.1 Utilizzo del plugin

Per le coordinate X e Y (espresse in gradi, primi e secondi DMS (dd mm ss.ss), in gradi decimali DD (dd.dd) o le coordinate proiettate (mmmm.mm) espresse in metri), che corrispondono ai punti selezionati sull’immagine, puoi usare due procedure alternative:

- Alcune volte nei raster sono presenti punti con le coordinate scritte sull’immagine. In questo caso puoi inserire manualmente le coordinate.
- Usando layer già georeferenziati. Può trattarsi di dati vettoriali o raster che contengono gli stessi oggetti/geometrie presenti nell’immagine che si desidera georeferenziare e con la proiezione che vuoi per la tua immagine. In questo caso, puoi inserire le coordinate facendo click sul dataset di riferimento caricato nell’area della mappa QGIS.

La procedura usuale per la georeferenziazione di un’immagine comporta la selezione di più punti sul raster, specificando le loro coordinate, e scegliendo un tipo di trasformazione appropriato. Sulla base dei parametri e dei dati di input, il georeferenziatore calcolerà i parametri del world file. Più coordinate si forniscono, migliore sarà il risultato.

Il primo passo è avviare QGIS e cliccare su **Raster ➤ Georeferenziatore…** che appare nella barra dei menu di QGIS. La finestra di dialogo del georeferenziatore appare come mostrato in Fig. 15.20.

Per questo esempio, stiamo usando una carta topografica del South Dakota di SDGS. Può essere successivamente visualizzata insieme ai dati della cartella GRASS spearfish60. Puoi scaricare la carta topografica da qui: https://grass.osgeo.org/sampledata/spearfish_toposheet.tar.tar.gz.

![Fig. 15.20: Finestra di dialogo Georeferenziatore](image.png)
Aggiungere punti di controllo (GCP)

1. Per iniziare la georeferenziazione di un raster non referenziato, dobbiamo caricarlo usando il pulsante Aggiunge un nuovo punto. Il raster verrà visualizzato nell’area di lavoro principale della finestra di dialogo. Una volta caricato il raster, possiamo iniziare a inserire i punti di riferimento.

2. Usando il pulsante Aggiunge un nuovo punto, aggiungi punti all’area di lavoro principale e inserisci le loro coordinate (vedi Figura Fig. 15.21). Per questa procedura hai tre opzioni:
   - Cliccare su un punto del raster ed inserire le coordinate X/Y manualmente.
   - Cliccare su un punto nell’immagine raster ed usare il pulsante Dalla mappa per inserire le coordinate X e Y con l’aiuto di una mappa georeferenziata già caricata nella vista mappa di QGIS.
   - Utilizzando il pulsante , puoi spostare i GCP in entrambe le finestre, nel caso in cui fossero posizionati in maniera errata.

3. Continua a inserire i punti. Dovresti aver almeno quattro punti, e più coordinate puoi fornire, migliore sarà il risultato. Ci sono strumenti aggiuntivi per lo zoom e la panoramica dell’area di lavoro al fine di localizzare un numero di punti GCP appropriato.

![Fig. 15.21: Aggiungi punti all’immagine raster](image)

I punti che vengono aggiunti alla mappa saranno memorizzati in un file di testo separato ([nome del file].points) di solito insieme all’immagine raster. Questo ci permette di riaprire il Georeferenziatore in un secondo momento e aggiungere nuovi punti o cancellare quelli esistenti per ottimizzare il risultato. Il file dei punti contiene valori della forma: mapX, mapY, pixelX, pixelY. Puoi usare i pulsanti Carica punti GCP e per gestire i file.
Impostare una trasformazione

Dopo aver aggiunto i GCP all’immagine raster, devi definire le impostazioni di trasformazione del processo di georeferenziazione.

Fig. 15.22: Definizione delle impostazioni di trasformazione del georeferenziatore

Algoritmi di trasformazione disponibili

Sono disponibili diversi algoritmi di trasformazione, che dipendono dal tipo e dalla qualità dei dati in ingresso, dalla natura e dalla quantità di distorsione geometrica che si è disposti a introdurre nel risultato finale, e dal numero di punti di controllo a terra (GCP).

Attualmente sono disponibili le seguenti tipologie di trasformazione:

- L’algoritmo **Lineare** è usato per creare un world file ed è diverso dagli altri algoritmi, poiché non trasforma effettivamente i pixel raster. Permette il posizionamento (traslazione) dell’immagine e il ridimensionamento uniforme, ma non la rotazione o altre trasformazioni. È il più adatto se la tua immagine è una mappa raster di buona qualità, in un SR noto, ma mancano solo le informazioni di georeferenziazione. Sono necessari almeno 2 GCP.

- La trasformazione **Helmert** permette anche la rotazione. È particolarmente utile se il tuo raster è una mappa locale di buona qualità o un’immagine aerea ortorettificata, ma non allineata con il rilevamento della griglia nel tuo SR. Sono necessari almeno 2 GCP.

- L’algoritmo **Polynomial 1** permette una trasformazione affine più generale, in particolare anche un taglio uniforme. Le linee rette rimangono diritte (cioè, i punti collineari rimangono collineari) e le linee parallele rimangono parallele. Questo è particolarmente utile per la georeferenziazione di cartogrammi di dati, che possono essere stati tracciati (o raccolti) con diverse dimensioni di pixel a terra in diverse direzioni. Sono necessari almeno 3 GCP.

- Gli algoritmi **Polinomiali** 2-3 usano polinomi di 2° o 3° grado più generali invece di una semplice trasformazione affine. Questo permette loro di tenere conto della curvatura o di altre deformazioni sistematiche
dell’immagine, per esempio mappe fotografiche con bordi curvi. Sono richiesti almeno 6 (rispettivamente 10) GCP. Gli angoli e la scala locale non sono conservati o trattati uniformemente in tutta l’immagine. In particolare, le lineerette possono diventare curve, e ci può essere una distorsione significativa introdotta ai bordi o lontano da qualsiasi GCP derivante dall’estrapolazione dei polinomi adattati a dati troppo lontani.

• L’algoritmo **Proiettivo** generalizza il polinomio 1 in un modo diverso, permettendo trasformazioni che rappresentano una proiezione centrale tra 2 piani non paralleli, l’immagine e il quadro della mappa. Le linee dritte rimangono dritte, ma il parallelismo non è conservato e la scala dell’immagine varia costantemente con il cambiamento di prospettiva. Questo tipo di trasformazione è più utile per georeferenziare fotografie angolate (piuttosto che scansioni piane) di mappe di buona qualità, o immagini aeree oblique. È richiesto un minimo di 4 GCP.

• Infine, l’algoritmo **Thin Plate Spline** (TPS) «rubber sheet foglio di gomma» il raster usando polinomi multipli locali per far corrispondere i GCP specificati, con una curvatura complessiva della superficie minimizzata. Le aree lontane dai GCP saranno spostate attorno ai risultato per adattarsi alla corrispondenza dei GCP, ma per il resto saranno deformate localmente al minimo. TPS è molto utile per la georeferenziazione di mappe danneggiate, deformate, o comunque leggermente imprecise, o di immagini aeree poco ortorettificate. È anche utile per la georeferenziazione approssimativa e la riproiezione implicita di mappe con tipi di proiezioni o parametri sconosciuti, ma dove una griglia regolare o un insieme denso di GCP ad-hoc può essere abbinato a uno layer di mappa di riferimento. Tecnicamente richiede un minimo di 10 GCP, ma di solito di più per avere successo. In tutti gli algoritmi eccetto TPS, se vengono specificati più GCP minimi, i parametri saranno adattati in modo da minimizzare l’errore residuo complessivo. Questo è utile per minimizzare l’impatto degli errori di registrazione, cioè leggere imprecisioni nei clic del puntatore o nelle coordinate digitate, o altre piccole deformazioni locali dell’immagine. In assenza di altri GCP per fare la compensazione, tali errori o deformazioni potrebbero tradursi in distorsioni significative, specialmente vicino ai bordi dell’immagine georeferenziata. Tuttavia, se vengono specificati più GCP del minimo, essi corrisponderanno solo approssimativamente nel risultato. Al contrario, TPS farà corrispondere precisamente tutti i GCP specificati, ma potrebbe introdurre deformazioni significative tra i GCP vicini con errori di registrazione.

**Metodo di ricampionamento**

Il tipo di ricampionamento che scegliere dipenderà probabilmente dai tuoi dati in ingresso e dall’obiettivo finale. Se non vuoi cambiare le statistiche del raster (a parte quelle implicite nella scalatura geometrica non uniforme se usi trasformazioni diverse da Lineare, Helmert o Polynomial 1), potresti scegliere “Nearest neighbour”. Al contrario, il “ricampionamento cubico”, per esempio, genererà di solito un risultato visivamente più uniforme.

Puoi scegliere tra cinque diversi metodi di ricampionamento:

1. Vicino più prossimo
2. Lineare
3. Cubico
4. Spline Cubica
5. Lanczos

**Definizione delle impostazioni di trasformazione**

Ci sono diverse opzioni che devono essere definite per l’output georeferenziato di un raster.

• La casella di controllo **Crea il file di georeferenziazione** è attiva solo se scegli la trasformazione lineare, quando il raster non viene fisicamente deformato. In questo caso, il campo **Output raster** non viene attivato, perché verrà creato solo un nuovo file world.

• Per tutti gli altri tipi di trasformazione devi definire un **Raster in output**. Come modalità predefinita, viene creato un nuovo file ([nomefile]_modificato) nella stessa cartella del raster di partenza insieme all’immagine raster originale.

• Devi poi scegliere il **SR** (Sistema di riferimento) per il Raster georiferito (vedi **Lavorare con le proiezioni**).
QGIS Desktop 3.16 User Guide

- Se vuoi, puoi creare delle mappe PDF e anche dei report PDF. Il report fornisce informazioni sui parametri di informazione utilizzati, una rappresentazione degli scarti e una lista con tutti i GCP e i loro errori RMS.

- Inoltre puoi attivare la casella di controllo impostare risoluzione finale e definire la risoluzione in pixel del raster di output. La risoluzione predefinita orizzontale e verticale è 1.

- La casella di controllo Utilizzare 0 per la trasparenza quando necessario può essere attivata, se i pixel con il valore 0 devono essere visualizzati trasparenti. Nel nostro esempio toposheet, tutte le aree bianche sarebbero trasparenti.

- Infine la casella di controllo Carica in QGIS una volta eseguito carica automaticamente il raster di output nella vista mappa di QGIS a trasformazione terminata.

**Mostra e modifica le proprietà del raster**

Cliccando sull’opzione Proprietà raster nel menu Impostazioni si apre la finestra di dialogo Layer properties del file raster che vuoi georiferenziare.

**Configurare il georeferenziatore**

- Puoi definire se visualizzare le coordinate e/o gli IDs dei GCP.
- Imposta le unità dei residui, pixel e unità di mappa.
- Per i report PDF, è possibile definire un margine sinistro e destro ed è anche possibile impostare il formato carta per la mappa PDF.
- Infine puoi attivare la casella di controllo Mostra la finestra del georeferenziatore agganciata.

**Eseguire la trasformazione**

Dopo aver acquisito tutti i GCP e definite tutte le impostazioni di trasformazione, basta premere il pulsante Inizia la georeferenziazione per creare il nuovo raster georeferenziato.
16.1 Cos’è una mesh?

Una mesh è una griglia non strutturata, di solito con componenti temporali e di altro tipo. La componente spaziale contiene un insieme di vertici, bordi e facce nello spazio 2D o 3D:

- **vertici** - Punti XY(Z) (nel sistema di riferimento delle coordinate del layer)
- **bordi** - collegano coppie di vertici
- **Faccia** - una faccia è un insieme di bordi che formano una forma chiusa - tipicamente un triangolo o un poligono a quattro lati (quadrilatero), raramente poligoni con più vertici.

![Differenti tipologie di dati mesh](image)

QGIS è attualmente in grado di visualizzare i dati delle mesh utilizzando triangoli o rettangoli regolari.
Mesh contiene le informazioni sulla struttura spaziale. Inoltre, la mesh può avere set di dati (gruppi) che assegnano un valore ad ogni vertice. Ad esempio, avere una mesh triangolare con vertici numerati come mostrato nell'immagine seguente:

![Fig. 16.2: Griglia triangolare con vertici numerati](image)

Ogni vertice può memorizzare insiemi di dati diversi (tipicamente quantità multiple), e questi insiemi di dati possono anche avere una dimensione temporale. Pertanto un singolo file può contenere insiemi di dati multipli.

La tabella seguente dà un’idea delle informazioni che possono essere memorizzate nei set di dati delle mesh. Le colonne della tabella rappresentano gli indici dei vertici delle mesh, ogni riga rappresenta un set di dati. I set di dati possono avere diversi tipi di dati. In questo caso, memorizza la velocità del vento a 10m in momenti particolari (t1, t2, t3).

In modo simile, il set di dati della mesh può anche memorizzare valori vettoriali per ogni vertice. Ad esempio, il vettore della direzione del vento in corrispondenza degli orari indicati:

Velocità del vento a 10 metri	1	2	3	...
Velocità del vento a 10 metri al tempo=t1	17251	24918	32858	...
Velocità del vento a 10 metri al tempo=t2	19168	23001	36418	...
Velocità del vento a 10 metri al tempo=t3	21085	30668	17251	...
...	...	...	...	...
Direzione del vento a 10 metri al tempo=t1	[20,2]	[20,3]	[20,4.5]	...
Direzione del vento a 10 metri al tempo=t2	[21,3]	[21,4]	[21,5.5]	...
Direzione del vento a 10 metri al tempo=t3	[22,4]	[22,5]	[22,6.5]	...
...	...	...	...	...

Possiamo visualizzare i dati assegnando i colori ai valori (analogamente a come viene fatto con visualizzazione raster *Singleband pseudocolor*) e interpolando i dati tra i vertici secondo la topologia della mesh. Generalmente alcune
grandezze sono vettori 2D piuttosto che semplici valori scalari (ad esempio direzione del vento). Per tali quantità è utile visualizzare le frecce che indicano le direzioni.

Fig. 16.3: Possibile visualizzazione di dati mesh

16.2 Formati supportati

QGIS accede ai dati della mesh utilizzando MDAL drivers. Quindi, i formati supportati nativamente sono:

- NetCDF: Formato generico per dati scientifici
- GRIB: Formato comunemente utilizzato in meteorologia
- XMDF: Ad esempio, il flusso di inondazione del pacchetto di modellazione TUFLOW
- DAT: Output di vari pacchetti di modellazione idrodinamica (ad esempio BASEMENT, HYDRO_AS-2D, TUFLOW)
- 3Di: Formato del package di modellizzazione 3Di basato sulle regole e previsioni sul clima (http://cfconventions.org/)
- Alcuni esempi di dataset mesh sono disponibili all’indirizzo https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/

Per caricare un set di dati mesh in QGIS, usa la scheda Mesh nella finestra di dialogo Gestore della Sorgenti Dati. Leggi Caricare un layer mesh per maggiori dettagli.
16.3 Proprietà del Dataset Mesh

16.3.1 Proprietà Informazioni

La scheda **Informazioni** è di sola lettura e rappresenta un posto interessante per avere rapidamente informazioni e metadati riassunti sul layer corrente. Le informazioni fornite sono (in base al fornitore del layer) uri, conteggio dei vertici, conteggio delle facce e conteggio dei gruppi dei dataset.

![Fig. 16.4: Proprietà del Layer Mesh](image)

16.3.2 Proprietà Sorgente

La scheda **Sorgente** visualizza le informazioni di base sulla mesh selezionata, tra cui:

- il nome del Layer da visualizzare nel pannello *Nome vettore*
- impostazione del sistema di riferimento delle coordinate: Visualizza il *Coordinate Reference System (CRS)* del layer. Puoi cambiare il SR del layer selezionandone uno usato recentemente nell'elenco a discesa o cliccando sul pulsante **Seleziona SR** (vedi *Scelta del sistema di riferimento delle coordinate*). Usa questo processo solo se il SR applicato al layer è sbagliato o se non ne è stato applicato nessuno.

Utilizza il pulsante **Assign Extra Dataset to Mesh** per aggiungere altri gruppi al layer del mesh corrente.

16.3.3 Proprietà Simbologia

Fai clic sul pulsante **Simbologia** per attivare la finestra di dialogo come mostrato nell'immagine seguente:
Le proprietà della simbologia sono divise in diverse schede

- **General**
- **Contours Symbology**
- **Vectors Symbology**
- **Rendering**

**Generale**

La scheda **General** contiene le seguenti informazioni:

- gruppi disponibili nel dataset mesh
- nel(i) gruppo(i) selezionato(i), ad esempio, se il layer ha una dimensione temporale
- metadati se disponibili
- **blending mode** disponibili per i dataset selezionati.

Il cursore, la casella combinata e i pulsanti |<, <, >| ti permettono di esplorare un’altra dimensione dei dati, se disponibile. Quando il cursore si muove, i metadati vengono presentati di conseguenza. Vedi la figura sottostante **Mesh groups** come esempio. L’area di visualizzazione della mappa mostrerà anche il gruppo di dati selezionato.
Puoi applicare la simbologia a ciascun gruppo utilizzando le schede.

**Simbologia dei contorni**

In *Gruppi*, fai clic su per visualizzare i contorni con i parametri di visualizzazione predefiniti.

Nella scheda puoi vedere e cambiare le opzioni di visualizzazione corrente dei contorni per il gruppo selezionato, come mostrato qui sotto in Fig. 16.7:
Fig. 16.7: Stile dei contorni in un layer Mesh

Utilizza la barra di scorrimento o la casella combinata per impostare l'opacità del gruppo corrente.

Usa Carica per regolare i valori minimi e massimi del gruppo corrente.

La lista Interpolazione contiene tre opzioni per visualizzare i contorni: Lineare, Discreto e Esatto.

Il widget Scala di colori apre color ramp drop-down shortcut.

La Unità etichetta suffisso è un'etichetta aggiunta dopo il valore della legenda.

Selezionando Continuo nella classificazione Modalità, QGIS crea automaticamente le classi considerando i valori Min e Max. Con “Intervallo Uguale”, devi solo selezionare il numero di classi utilizzando la casella combinata Classi e premere il pulsante Classifica.

Simbologia Vettori

Nella scheda [ ] clicca su [ ] per visualizzare i vettori se disponibili. L’area di disegno della mappa visualizzerà i vettori nel gruppo selezionato con parametri predefiniti. Clicca sulla scheda [ ] per cambiare i parametri di visualizzazione dei vettori come mostrato nell’immagine sottostante:

![Immagine di Simbologia Vettori](image.png)

Fig. 16.8: Stile dei vettori in un layer Mesh

La larghezza della linea può essere impostata utilizzando la casella combinata o digitando il valore. Il widget colore apre la finestra di dialogo Cambia colore, dove puoi selezionare un colore da applicare ai vettori.

Inserisci i valori per Min e Max per filtrare i vettori in base alla loro grandezza.

Spuntando la casella di controllo [Visualizza su Reticolo Utente] e specificando i valori Spaziatura X e Spaziatura Y, QGIS visualizzerà i vettori con la spaziatura impostata.

Con le opzioni Opzioni Intestazione, QGIS permette di impostare la forma della punta della freccia specificando larghezza e lunghezza (in percentuale).

La Lunghezza della Freccia dei vettori può essere visualizzata in QGIS in tre modi diversi:
- Definito da Minimo e Massimo: Definisci la lunghezza minima e massima per i vettori, QGIS regolerà di conseguenza la loro visualizzazione
- Scalato a Magnitudine: Definisci il fattore (moltiplicatore) da utilizzare
- Fisso: tutti i vettori sono mostrati con la stessa lunghezza

**Visualizzazione**

Nella scheda 🗺, QGIS offre due possibilità per visualizzare la griglia, come mostrato in Fig. 16.9:
- Visualizzazione Nativa Mesh che visualizza quadrilateri
- Visualizzazione Mesh Triangolare che visualizza triangoli

La larghezza della linea e il colore possono essere modificati in questa finestra di dialogo ed entrambe le visualizzazioni della griglia possono essere disattivate.
17.1 Cosa sono i Tasselli Vettoriali?

I tasselli vettoriali sono pacchetti di dati geografici, impacchettati in «tasselli» predefiniti di forma approssimativamente quadrata per il trasferimento sul web. Combinano tasselli di mappe raster prerenderizzate e tasselli di mappe vettoriali. Il server di tasselli vettoriali restituisce dati di mappe vettoriali, che sono stati ritagliati ai confini di ogni tassello, invece di un’immagine di mappa prerenderizzata. I tasselli ritagliati rappresentano i livelli di zoom del servizio di tasselli vettoriali, derivati da un approccio piramidale. Usando questa struttura, il trasferimento dei dati è ridotto rispetto alle mappe vettoriali senza tasselli. Solo i dati all’interno della vista corrente della mappa e al livello di zoom corrente devono essere trasferiti. Inoltre, rispetto a una mappa raster tassellata, anche il trasferimento dei dati è notevolmente ridotto, poiché i dati vettoriali sono tipicamente molto più piccoli di una bitmap renderizzata. I tasselli vettoriali non hanno alcuna informazione di stile assegnata, quindi QGIS ha bisogno di applicare uno stile cartografico per visualizzare i dati.
17.2 Formati supportati

C’è il supporto per i tasselli vettoriali attraverso:

- fonti remote (HTTP/S) - con modello XYZ - \texttt{type=xyz\&url=http://example.com/\{z\}/\{x\}/\{y\}.pbf}
- file locali - con modello XYZ - per esempio \texttt{type=xyz\&url=file:///path/to/tiles/\{z\}/\{x\}/\{y\}.pbf}
- database locale di MBTiles - per esempio \texttt{type=mbtiles\&url=file:///path/to/file.mbtiles}.
Con i Layout di stampa e i Report puoi creare mappe e atlanti, stamparli o salvarli come file immagine, PDF o SVG.

18.1 Panoramica sul Layout di stampa

Il layout di stampa fornisce capacità sempre maggiori di impaginazione e stampa. Permette di aggiungere oggetti come la mappa QGIS, etichette di testo, immagini, legende, barre di scala, forme di base, frecce, tabelle di attributi e cornici HTML. Puoi dimensionare, raggruppare, allineare, posizionare e ruotare ogni oggetto e regolare le sue proprietà per creare il tuo layout. Il layout può essere stampato o esportato in formati immagine, PostScript, PDF o SVG. Puoi salvare il layout come modello e caricarlo di nuovo in un'altra sessione. Infine, la generazione di diverse mappe basate su un modello può essere fatta attraverso il generatore di atlante.

18.1.1 Sessione di esempio per i principianti

Prima di iniziare a lavorare con il layout di stampa, devi caricare qualche layer raster o vettoriale nell'area mappa di QGIS e adattare le relative proprietà in base alle tue esigenze. Dopo che tutto viene visualizzato e simboleggiato a tuo piacimento, clicca sull'icona **Nuovo Layout di stampa** nella barra degli strumenti oppure scegli **Progetto ➤ Nuovo Layout di stampa**.... Ti verrà chiesto di scegliere un titolo per il nuovo layout. Per mostrare come creare una mappa segui le seguenti istruzioni.

1. Sul lato sinistro, seleziona il pulsante della barra degli strumenti **Aggiungi Mappa** e disegna un rettangolo sull'area grafica tenendo premuto il tasto sinistro del mouse. All'interno del rettangolo disegnato la visualizzazione della mappa QGIS sull'area grafica.

2. Seleziona il pulsante della barra degli strumenti **Aggiungi Barra di Scala** e clicca con il tasto sinistro del mouse sull'area grafica del layout di stampa. Una barra di scala verrà aggiunta all'area grafica.

3. Seleziona il pulsante della barra degli strumenti **Aggiungi Legenda** e traccia un rettangolo sull'area grafica tenendo premuto il tasto sinistro del mouse. All'interno del rettangolo tracciato verrà disegnata la legenda.

4. Seleziona l'icona **Seleziona/Sposta oggetto** per selezionare la mappa sul foglio e spostarla di un po'.
5. Mentre l’oggetto mappa è ancora selezionato puoi modificare le dimensioni della mappa. Fai clic tenendo premuto il pulsante sinistro del mouse, in un piccolo rettangolo bianco in uno degli angoli dell’oggetto mappa e scegli una nuova posizione per modificare la sua dimensione.

6. Fai clic sulla scheda Proprietà dell’oggetto sul lato sinistro e cerca le impostazioni per l’orientamento. Cambia il valore dell’impostazione Rotazione mappa a “15,00 °”. Dovresti vedere cambiato l’orientamento della mappa.

7. Ora, puoi stampare o esportare il tuo layout di stampa in formati immagine, PDF o SVG con gli strumenti di esportazione nel menu Layout.

8. Infine, puoi salvare il layout di stampa all’interno del file di progetto con il pulsante Salva Progetto. Puoi aggiungere elementi multipli al layout di stampa. Puoi anche avere più di una mappa, legenda o barra di scala nel layout di stampa, su una o più pagine. Ogni elemento ha le proprie proprietà e, nel caso della mappa, la propria estensione. Se vuoi rimuovere un qualsiasi elemento dal layout puoi farlo con il tasto Cancella o il tasto Backspace.

18.1.2 Il Gestore del Layout

Il Gestore del Layout è la finestra principale per gestire i layout di stampa nel progetto. Fornisce una panoramica dei layout di stampa esistenti e dei report del progetto e offre strumenti per farlo:

- cercare un layout;
- aggiungere un nuovo layout di stampa o un nuovo report da zero, un modello o la duplicazione di uno esistente;
- rinominarli o cancellarli;
- aprirli in un progetto.

Per aprire la finestra di dialogo Gestore del Layout:

- dalla finestra di dialogo principale di QGIS, seleziona il menu Progetto ➤ Gestore del Layout… oppure fai clic sul pulsante Mostra Gestore del Layout in Barra del Progetto;
- da un layout di stampa o dalla finestra di dialogo dei report, seleziona il menu Layout ➤ Gestore del Layout o fai clic sul pulsante Gestore del Layout in Barra del Layout.

![Fig. 18.1: Il Gestore del Layout di Stampa](image)

Il Gestore del Layout elenca nella sua parte superiore tutti i layout di stampa o report disponibili nel progetto con gli strumenti per:
mostrare la selezione: puoi selezionare più report e/o stampare il/i layout di stampa e aprirli con un solo clic. Facendo doppio clic si apre anche un nome;

duplicare il layout di stampa selezionato o il rapporto (disponibile solo se ne è selezionato uno): crea una nuova finestra di dialogo utilizzando come modello quello selezionato. Ti verrà chiesto di scegliere un nuovo titolo per il nuovo layout;

rinominare il report o il layout (disponibile solo se ne è selezionato uno): ti verrà chiesto di scegliere un nuovo titolo per il layout;

rimuovere il layout: il(i) layout di stampa selezionato(i) verrà eliminato(i) dal progetto.

Nella parte inferiore, è possibile creare nuovi layout di stampa o report da zero o da un modello. Per impostazione predefinita, QGIS cercherà i modelli nel profilo utente e nelle directory dei modelli dell’applicazione (accessibili con i due pulsanti in fondo al pannello), ma anche in qualsiasi cartella dichiarata come Percorso(i) per cercare modelli di stampa aggiuntivi in Impostazioni ► Opzioni ► Layout. I modelli trovati sono elencati nella casella a scelta multipla. Seleziona un elemento e premi il pulsante Crea… per generare un nuovo report o stampare il layout.

Puoi anche utilizzare modelli di layout da una cartella personalizzata; in tal caso, seleziona Specifico nell’elenco a discesa dei modelli, sfoglia per selezionare il modello e premi Crea…

---

Suggerimento: Creazione di layout di stampa basati su modelli dal pannello Browser

Trascinando e rilasciando un modello di layout di stampada qualsiasi file del tipo .qpt sulla mappa o facendo doppio clic nel Browser panel si genera un nuovo layout di stampa dal modello.

---

18.1.3 Menu, strumenti e pannelli del Layout di stampa

L’apertura del layout di stampa fornisce un riquadro bianco che rappresenta la superficie della carta quando si utilizza l’opzione di stampa. Inizialmente si trovano pulsanti a sinistra accanto al riquadro per aggiungere elementi del layout di stampa: la mappa QGIS corrente QGIS, le etichette di testo, immagini, leggende, barre di scala, forme di base, frecce, tabelle degli attributi e cornici HTML. In questa barra degli strumenti si trovano anche pulsanti per navigare, ingrandire un’area e scorrere la vista sul layout e pulsanti per selezionare qualsiasi elemento del layout e per spostare il contenuto dell’oggetto mappa.

Fig. 18.2 mostra la visualizzazione iniziale del layout di stampa prima che venga aggiunto qualsiasi elemento.
Fig. 18.2: Layout di stampa

Sulla destra accanto all’area di stampa trovi due gruppi di pannelli. Quello superiore contiene i pannelli Oggetti e Storico dei comandi e quello inferiore contiene i pannelli Layout, Proprietà dell’oggetto e Atlante.

- Il pannello Oggetti fornisce un elenco di tutti gli oggetti del layout di stampa aggiunti all’area di stampa e dei modi per interagire globalmente con essi (vedi Il Pannello Oggetti per maggiori informazioni).

- Il pannello Storico dei comandi mostra una cronologia di tutte le modifiche apportate alla composizione. Con un clic del mouse, è possibile annullare e ripetere i passaggi fatti sulla composizione avanti e indietro fino ad un certo stato.

- Il pannello Layout ti permette di impostare parametri generali da applicare al layout di stampa quando lo esporti o stai lavorando su di esso (vedi Il Pannello Layout per maggiori dettagli);

- Il pannello Proprietà oggetto mostra le proprietà per l’oggetto selezionato. Fai clic sull’icona per selezionare un oggetto (ad esempio, legenda, barra di scala o etichetta) sull’area di stampa. Poi clicca sul pannello Proprietà oggetto e personalizza le impostazioni per l’oggetto selezionato (vedi Oggetti del Layout per informazioni dettagliate sulle impostazioni di ciascun oggetto).

- Il pannello Atlante ti permette di abilitare la generazione di un atlante per il layout corrente e ti dà accesso ai suoi parametri (vedi Generazione Atlante per informazioni dettagliate sull’utilizzo della generazione dell’atlante).

Nella parte inferiore della finestra del layou di stampa, troverai una barra di stato con la posizione del mouse, il numero attuale della pagine e un menu a tendina per selezionare il livello di zoom, il numero degli oggetti selezionati - se applicabile e se attivata la generazione di un atlante - il numero degli oggetti.

Nella parte superiore della finestra del layout di stampa puoi trovare menu e altre barre degli strumenti. Tutti gli strumenti per il layout di stampa sono disponibili nei menu e come icone in una barra degli strumenti.

Le barre degli strumenti e i pannelli possono essere disattivati e attivati utilizzando il pulsante destro del mouse su qualsiasi barra degli strumenti o attraverso Visualizza ▶ Barre degli strumenti o Visializza ▶ Panelli ▶.
Menu e Strumenti

Menu Layout

Il menu Layout fornisce l’azione per gestire il layout:

- Salva il file di progetto direttamente dalla finestra del layout di stampa.
- Crea un nuovo layout di stampa con [New Layout]...
- [Duplicate Layout]... crea un nuovo layout di stampa duplicando quello attuale.
- Rimuovi il layout corrente con [Delete Layout]...
- Apri [Layout Manager]...

Una volta completato il layout, con le icone [Save as Model] e [Add Objects from Model], puoi salvare lo stato corrente di una sessione del layout di stampa come .qpt template e caricare nuovamente il modello in un’altra sessione.

Nel menu Layout, ci sono potenti strumenti per condividere le rappresentazioni prodotte con QGIS e inserirle in relazioni e pubblicazioni. Gli strumenti sono: [Export as Image]... [Export as PDF]... [Export as SVG]... [Export as in PDF] e [Print]...

Di seguito è riportato un elenco di tutti gli strumenti disponibili in questo menu con alcune utili informazioni.

<table>
<thead>
<tr>
<th>Strumento</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Save Project]</td>
<td>Ctrl+S</td>
<td>Layout</td>
<td>Introduzione ai progetti QGIS</td>
</tr>
<tr>
<td>[New Layout]</td>
<td>Ctrl+N</td>
<td>Layout</td>
<td>Il Gestore del Layout</td>
</tr>
<tr>
<td>[Duplicate Layout]</td>
<td></td>
<td>Layout</td>
<td>Il Gestore del Layout</td>
</tr>
<tr>
<td>[Delete Layout]</td>
<td></td>
<td>Layout</td>
<td>Il Gestore del Layout</td>
</tr>
<tr>
<td>[Layout Manager]</td>
<td></td>
<td>Layout</td>
<td>Il Pannello Layout</td>
</tr>
<tr>
<td>[Page Properties]</td>
<td></td>
<td>Layout</td>
<td>Lavorare con le proprietà della pagina</td>
</tr>
<tr>
<td>[Add Pages]</td>
<td></td>
<td>Layout</td>
<td>Creare un oggetto nel Layout</td>
</tr>
<tr>
<td>[Add Objects from Model]</td>
<td></td>
<td>Layout</td>
<td>Il Gestore del Layout</td>
</tr>
<tr>
<td>[Export as Image]</td>
<td></td>
<td>Layout</td>
<td>Esportare in formato Immagine</td>
</tr>
<tr>
<td>[Export as SVG]</td>
<td></td>
<td>Layout</td>
<td>Esportare in formato SVG</td>
</tr>
<tr>
<td>[Export as PDF]</td>
<td></td>
<td>Layout</td>
<td>Esportare in formato PDF</td>
</tr>
<tr>
<td>[Set Page]</td>
<td>Ctrl+Shift+P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Print]</td>
<td>Ctrl+P</td>
<td>Layout</td>
<td>Creare un Output</td>
</tr>
<tr>
<td>[Close]</td>
<td>Ctrl+Q</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18.1. Panoramica sul Layout di stampa
Il menu **Modifica** offre strumenti per manipolare gli elementi del layout di stampa. Include azioni comuni come gli strumenti di selezione, la funzione di Copia/Taglia/Incolla e annulla/ripristina (vedi *Pannello Storico dei comandi: Annulla e Ripristina azioni*) per elementi del layout.

Quando si usa l’azione Incolla, gli elementi verranno incollati in base alla posizione corrente del mouse. Usando l’azione **Modifica** ► **Incolla sul posto** o premendo **Ctrl+Shift+V** incollerà gli elementi nella pagina corrente, nella stessa posizione in cui si trovavano nella loro pagina iniziale. Garantisce di copiare/incollare gli elementi nello stesso posto, da pagina a pagina.

Di seguito è riportato un elenco di tutti gli strumenti disponibili in questo menu con alcune utili informazioni.

<table>
<thead>
<tr>
<th>Strumento</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annulla (ultimo cambiamento)</td>
<td>Ctrl+Z</td>
<td>Layout</td>
<td><em>Pannello Storico dei comandi: Annulla e Ripristina azioni</em></td>
</tr>
<tr>
<td>Rifai (ripeti il cambiamento precedente)</td>
<td>Ctrl+Y</td>
<td>Layout</td>
<td><em>Pannello Storico dei comandi: Annulla e Ripristina azioni</em></td>
</tr>
<tr>
<td>Elimina</td>
<td>Del</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taglia</td>
<td>Ctrl+X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copia</td>
<td>Ctrl+C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incolla</td>
<td>Ctrl+V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incolla sul posto</td>
<td>Ctrl+Shift+V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seleziona tutto</td>
<td>Ctrl+A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deseleziona tutto</td>
<td>Ctrl+Shift+A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverti selezione</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seleziona il prossimo oggetto Sotto</td>
<td>Ctrl+Alt+[</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seleziona il prossimo oggetto Sopra</td>
<td>Ctrl+Alt+]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sposta Layout</td>
<td>P</td>
<td>Barra di Navigazione</td>
<td></td>
</tr>
<tr>
<td>Zoom</td>
<td>Z</td>
<td>Barra di Navigazione</td>
<td></td>
</tr>
<tr>
<td>Seleziona/Sposta Oggetto</td>
<td>V</td>
<td>Barra di Navigazione</td>
<td>Interagire con gli oggetti del layout</td>
</tr>
<tr>
<td>Sposta Contenuto</td>
<td>C</td>
<td>Barra di Navigazione</td>
<td>L’Oggetto Mappa</td>
</tr>
<tr>
<td>Modifica nodi</td>
<td></td>
<td>Barra di Navigazione</td>
<td>Oggetti Forma a Nodi</td>
</tr>
</tbody>
</table>
Menu Visualizza

Il menu Visualizza dà accesso agli strumenti di navigazione e aiuta a configurare il comportamento generale del layout di stampa. Oltre ai comuni strumenti di zoom, hai strumenti per:

- **Aggiorna** (se trovi la visualizzazione in uno stato inconsistente);
- abilitando una grid puoi agganciare gli oggetti quando li sposti o li crei. L’impostazione del reticolo viene effettuata in Impostazioni ► Opzioni di layout… o in Layout Panel;
- gestisci guide puoi agganciare gli oggetti quando li sposti o li crei. Il reticolo è costituito da linee rosse che puoi creare cliccando sul righello (sopra o a sinistra del layout) e trascinare e rilasciare nella posizione desiderata;
- Guide intelligenti: utilizza altri oggetti del layout come linee di allineamento da agganciare in modo dinamico quando l’utente sposta o rimodella un oggetto.
- Azzerata tutte le guide rimuove tutte le guide;
- Mostra i perimetri di delimitazione mostra un riquadro a contorno degli oggetti.
- Mostra righelli ai bordi del layout.
- Mostra pagine o rendi le pagine trasparenti. Spesso le composizioni di stampa sono realizzate per creare composizioni in realtà da non stampare, ad esempio per essere incluse in presentazioni o in altri elaborati nei quali si vuole esportare quanto realizzato con uno sfondo totalmente trasparente. A volte è indicato come «infinite canvas» in software di editing grafico.

Nel layout puoi cambiare il livello di zoom usando la rotellina del mouse o la casella combinata nella barra di stato. Se devi passare alla modalità pan mentre stai lavorando nell’area della composizione di stampa, puoi tenere premuta Spacebar la barra spaziatrice o la rotellina del mouse. Con Ctrl+Spacebar, puoi temporaneamente cambiare la modalità di visualizzazione a Ingrandisci e con Ctrl+Shift+Spacebar, a Rimpicciolisci.

I pannelli e le barre degli strumenti possono essere abilitati dal menu Visualizza ►. Per massimizzare lo spazio disponibile per interagire con una composizione puoi selezionare l’opzione Visualizza ► Attiva visibilità pannello oppure premi Ctrl+Tab; tutti i pannelli sono nascosti e solo i pannelli precedentemente visibili vengono ripristinati quando non selezionati.

È anche possibile passare ad una modalità a schermo intero per avere più spazio con cui interagire premendo F11 o usando Visualizza ► Schermo intero.
### Menu Oggetti

Il menu **Oggetti** aiuta a configurare la posizione degli elementi nel layout e le relazioni tra di essi (vedi *Interagire con gli oggetti del layout*).
<table>
<thead>
<tr>
<th>Strumento</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raggruppa</td>
<td>Ctrl+G</td>
<td>Barra delle azioni</td>
<td>Raggruppamento degli oggetti</td>
</tr>
<tr>
<td>Sblocca tutto</td>
<td>Ctrl+Shift+G</td>
<td>Barra delle azioni</td>
<td>Raggruppamento degli oggetti</td>
</tr>
<tr>
<td>Muovi in alto</td>
<td>Ctrl+ ]</td>
<td>Barra delle azioni</td>
<td>Alineamento</td>
</tr>
<tr>
<td>Sblocca tutto</td>
<td>Ctrl+Shift+ ]</td>
<td>Barra delle azioni</td>
<td>Alineamento</td>
</tr>
<tr>
<td>Muovi in basso</td>
<td>Ctrl+ {</td>
<td>Barra delle azioni</td>
<td>Alineamento</td>
</tr>
<tr>
<td>Sposta in fondo</td>
<td>Ctrl+ Shift+ {</td>
<td>Barra delle azioni</td>
<td>Alineamento</td>
</tr>
<tr>
<td>Blocca gli oggetti selezionati</td>
<td>Ctrl+L</td>
<td>Barra delle azioni</td>
<td>Bloccare gli oggetti</td>
</tr>
<tr>
<td>Blocca tutto</td>
<td>Ctrl+Shift+L</td>
<td>Barra delle azioni</td>
<td>Bloccare gli oggetti</td>
</tr>
<tr>
<td>Allinea Elementi</td>
<td></td>
<td>Barra delle azioni</td>
<td>Alineamento</td>
</tr>
<tr>
<td>Distribuisci Elementi</td>
<td></td>
<td>Barra delle azioni</td>
<td>Spostamento e ridimensionamento degli oggetti</td>
</tr>
<tr>
<td>Ridimensiona</td>
<td></td>
<td>Barra delle azioni</td>
<td>Spostamento e ridimensionamento degli oggetti</td>
</tr>
</tbody>
</table>

**Menu Aggiungi oggetto**

Qesti sono strumenti per creare oggetti di layout. Ognuno di essi è descritto in dettaglio nel capitolo Oggetti del Layout.
<table>
<thead>
<tr>
<th>Strumento</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggiungi Mappa</td>
<td>Barra di Navigazione</td>
<td>L'Oggetto Mappa</td>
</tr>
<tr>
<td>Aggiungi Immagine</td>
<td>Barra di Navigazione</td>
<td>L'Oggetto Immagine</td>
</tr>
<tr>
<td>Aggiungi Etichetta</td>
<td>Barra di Navigazione</td>
<td>L'Oggetto Etichetta</td>
</tr>
<tr>
<td>Aggiungi Legenda</td>
<td>Barra di Navigazione</td>
<td>L'Oggetto Legenda</td>
</tr>
<tr>
<td>Aggiungi Barra di Scala</td>
<td>Barra di Navigazione</td>
<td>L'oggetto Barra di Scala</td>
</tr>
<tr>
<td>Aggiungi Freccia Nord</td>
<td>Barra di Navigazione</td>
<td>L' Oggetto Freccia Nord</td>
</tr>
<tr>
<td>Aggiungi Forma</td>
<td>Barra di Navigazione</td>
<td>Oggetto Forma Regolare</td>
</tr>
<tr>
<td>Aggiungi Rettangolo</td>
<td>Barra di Navigazione</td>
<td>Oggetto Forma Regolare</td>
</tr>
<tr>
<td>Aggiungi Ellisse</td>
<td>Barra di Navigazione</td>
<td>Oggetto Forma Regolare</td>
</tr>
<tr>
<td>Aggiungi Triangolo</td>
<td>Barra di Navigazione</td>
<td>Oggetto Forma Regolare</td>
</tr>
<tr>
<td>Aggiungi Simbolo</td>
<td>Barra di Navigazione</td>
<td></td>
</tr>
<tr>
<td>Aggiungi Freccia</td>
<td>Barra di Navigazione</td>
<td>L'oggetto Freccia</td>
</tr>
<tr>
<td>Aggiungi Nodo</td>
<td>Barra di Navigazione</td>
<td>Oggetti Forma a Nodi</td>
</tr>
<tr>
<td>Aggiungi Poligono</td>
<td>Barra di Navigazione</td>
<td>Oggetti Forma a Nodi</td>
</tr>
<tr>
<td>Aggiungi Polilinea</td>
<td>Barra di Navigazione</td>
<td>Oggetti Forma a Nodi</td>
</tr>
<tr>
<td>Aggiungi HTML</td>
<td>Barra di Navigazione</td>
<td>La cornice HTML</td>
</tr>
<tr>
<td>Aggiungi Tabella Attributi</td>
<td>Barra di Navigazione</td>
<td>L'oggetto tabella degli attributi</td>
</tr>
<tr>
<td>Aggiungi Tabella fissata</td>
<td>Barra di Navigazione</td>
<td>L'oggetto tabella fissa</td>
</tr>
<tr>
<td>Aggiungi Mappa 3D</td>
<td>Barra di Navigazione</td>
<td>L'Oggetto Mappa 3D</td>
</tr>
</tbody>
</table>
Menu Atlante

<table>
<thead>
<tr>
<th>Strumento</th>
<th>Scorciatoia</th>
<th>Barra degli Strumenti</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteprima Atlante</td>
<td>Ctrl+Alt+/</td>
<td>Barra dell'Atlante</td>
<td>Anteprima e generazione dell'atlante</td>
</tr>
<tr>
<td>Prima geometria</td>
<td>Ctrl+&lt;</td>
<td>Barra dell'Atlante</td>
<td>Anteprima e generazione dell'atlante</td>
</tr>
<tr>
<td>Geometria precedente</td>
<td>Ctrl+,</td>
<td>Barra dell'Atlante</td>
<td>Anteprima e generazione dell'atlante</td>
</tr>
<tr>
<td>Geometria successiva</td>
<td>Ctrl+.</td>
<td>Barra dell'Atlante</td>
<td>Anteprima e generazione dell'atlante</td>
</tr>
<tr>
<td>Ultima geometria</td>
<td>Ctrl+&gt;</td>
<td>Barra dell'Atlante</td>
<td>Anteprima e generazione dell'atlante</td>
</tr>
<tr>
<td>Stampa atlante…</td>
<td></td>
<td>Barra dell'Atlante</td>
<td>Anteprima e generazione dell'atlante</td>
</tr>
<tr>
<td>Esporta atlante come immagini</td>
<td></td>
<td>Barra dell'Atlante</td>
<td>Anteprima e generazione dell'atlante</td>
</tr>
<tr>
<td>Esporta atlante come SVG…</td>
<td></td>
<td>Barra dell'Atlante</td>
<td>Anteprima e generazione dell'atlante</td>
</tr>
<tr>
<td>Esporta atlante come PDF…</td>
<td></td>
<td>Barra dell'Atlante</td>
<td>Anteprima e generazione dell'atlante</td>
</tr>
<tr>
<td>Impostazioni atlante</td>
<td></td>
<td>Barra dell'Atlante</td>
<td>Generazione Atlante</td>
</tr>
</tbody>
</table>

Menu Impostazioni

Il menu Impostazioni ► Opzioni Layout… è un collegamento a Impostazioni ► Opzioni ► Menu layout della mappa principale di QGIS. Qui, puoi impostare alcune opzioni che verranno utilizzate di default su qualsiasi nuovo layout di stampa:

- **Definizioni predefinite del Layout** ti consente di specificare il carattere predefinito da utilizzare.
- Con **Reticolo**, puoi impostare lo stile del reticolo e il suo colore. Esistono tre tipi di reticolo: **Punti**, **Pieno** e **Croci**.
- **Opzioni predefinite delle guide e del reticolo** definisce la spaziatura, l’offset del reticolo e la tolleranza di aggancio (vedi **Guide e Reticolo** per maggiori dettagli);
- **Percorsi Layout**: per gestire la lista di percorsi personalizzati per la ricerca di modelli di stampa.

Menu contestuali

A seconda di dove fai clic con il tasto destro del mouse nella finestra di dialogo del layout di stampa, apri un menu contestuale con varie funzioni:

- Cliccando con il tasto destro del mouse sulla barra dei menu o su qualsiasi barra degli strumenti, ottieni l’elenco dei pannelli di layout e delle barre degli strumenti che puoi attivare o disattivare con un solo clic.
- Cliccando con il tasto destro del mouse su un righello e puoi selezionare **Mostra guide**, **Aggancia alle guide**, **Gestisci guide…** che apre il **Guide panel** o **Azzerà guide**. È anche possibile nascondere i righelli.
- Fai clic con il tasto destro del mouse sull’area del layout di stampa e:
– Sarai in grado di *Annullare e Rifare* i recenti cambiamenti, oppure *Copiare* qualsiasi oggetto (disponibile solo se non è stato selezionato nessun oggetto).
– Se fai clic su una pagina, puoi anche accedere al pannello *Page Properties* o *Rimuovi Pagina*.
– Se fai clic su un oggetto selezionato, puoi tagliarlo o copiarlo e aprire il pannello *Item Properties*.
– Se viene selezionato più di un oggetto, puoi raggrupparli e/o disaggregarli se almeno un gruppo è già presente nella selezione.

• Facendo clic con il pulsante destro del mouse all'interno di una casella di testo o del widget casella numerica di qualsiasi pannello del layout vengono fornite opzioni di modifica per manipolarne il contenuto.

**Il Pannello Layout**

Nel pannello *Layout* puoi definire le impostazioni globali per la composizione in corso di realizzazione.

![Fig. 18.3: Impostazioni Layout nel Layout di stampa](image)

586 Capitolo 18. Layout di stampa
Impostazioni generali

In un layout di stampa, si può usare più di un oggetto mappa. La Mappa di riferimento rappresenta l’oggetto mappa da usare come mappa principale del layout. Viene assegnata finché c’è un oggetto mappa nel layout. Il layout userà questa mappa in tutte le sue proprietà e variabili che calcolano le unità o la scala. Questo include l’esportazione del layout di stampa in formati georeferenziati.

Inoltre, i nuovi oggetti del layout come la barra della scala, la legenda o la freccia nord hanno per default le loro impostazioni (orientamento, layer visualizzati, scala,...) legate all’oggetto mappa su cui sono disegnati, e ricadono sulla mappa di riferimento se non c’è una mappa sovrapposta.

Guide e Reticolo

Puoi mettere alcuni segni di riferimento sull’area della composizione di stampa per meglio posizionare alcuni oggetti. Questi segni possono essere:

- semplici linee orizzontali o verticali (chiamate Guide) poste nella posizione desiderata (vedi Il Pannello Guide per la creazione delle guide).
- o un Reticolo regolare: una rete di linee orizzontali e verticali sovrapposte alla composizione di stampa.

Impostazioni come Spaziatura reticolo o Offset reticolo possono essere regolate in questo gruppo così come la Tolleranza di aggancio da utilizzare per gli oggetti. La tolleranza è la distanza massima al di sotto della quale il cursore del mouse viene agganciato a un reticolo o a una guida, mentre si sposta, ridimensiona o crea un oggetto.

Se il reticolo o le guide devono essere mostrate è impostato nel menu Visualizza. Li puoi anche decidere se possono essere utilizzati per agganciare gli oggetti del layout. Quando sia una linea del reticolo che una linea guida rientrano nella tolleranza di un punto, le guide avranno sempre la precedenza - dato che sono state impostate manualmente (quindi, si suppone che siano state collocate esplicitamente in posizioni di aggancio altamente desiderabili, e dovrebbero essere selezionate sopra il reticolo generale).

Nota: Nel menu Impostazioni ► Layout, puoi anche impostare i parametri del reticolo e delle guide sopra esposti. Tuttavia, queste opzioni si applicano solo come impostazione predefinita alle nuove composizioni di stampa.

Impostazioni per l’esportazione

Puoi definire una risoluzione da utilizzare per tutte le mappe esportate in Risoluzione di esportazione. Questa impostazione può essere sovrascritta ogni volta che esporti una mappa.

A causa di alcune opzioni di visualizzazione avanzate (blending mode, effects…), un oggetto del layout potrebbe aver bisogno di rasterizzazione per essere esportato correttamente. QGIS lo rasterizza individualmente senza forzare la rasterizzazione per ogni altro elemento. Questo permette di stampare o salvare come PostScript o PDF per mantenere gli oggetti il più possibile come vettori, ad esempio, un elemento di mappa con opacità di layer non costringerà le etichette, le barre di scala, ecc. ad essere anch’esse rasterizzate. Tuttavia, puoi:

- forzare la rasterizzazione di tutti gli oggetti selezionando Stampa come raster;
- oppure utilizzare l’opzione opposta, ad esempio Esporta sempre come vettori, per forzare l’esportazione per mantenere gli oggetti come vettori quando sono esportati in un formato compatibile. Nota che in alcuni casi, questo potrebbe far sì che l’output abbia un aspetto diverso dal layout.

Quando il formato lo rende possibile (ad esempio, .TIF, .PDF) l’esportazione di un layout di stampa risulta di default un file georeferenziato (in base alla voce Mappa di Riferimento nel gruppo Impostazioni generali). Per altri formati, l’output georeferenziato richiede di generare un world file selezionando Salva il file world. Il world file viene creato accanto alla mappa(es) esportata, ha il nome della pagina di output con la voce della mappa di riferimento e contiene informazioni per georeferenziarla facilmente.

18.1. Panoramica sul Layout di stampa 587
Ridimensionare il layout in base al contenuto

Usando lo strumento *Ridimensiona Layout al contenuto* in questo gruppo, si crea un’unica composizione di pagina la cui estensione copre il contenuto corrente del layout di stampa (con alcuni opzioni sui *margini* intorno ai limiti di taglio).

Si noti che questo comportamento è diverso dall’opzione *crop to content* con la quale tutti gli elementi sono posizionati su una pagina reale e unica in sostituzione di tutte le pagine esistenti.

**Variabili**

*Variabili* elenca tutte le variabili disponibili a livello di layout (che include tutte le variabili globali e di progetto).

Permette all’utente di gestire variabili anche a livello di layout. Fai clic sul pulsante ‏+‏ per aggiungere una nuova variabile personalizzata a livello di layout. Allo stesso modo, seleziona una variabile personalizzata a livello di layout dall’elenco e fai clic sul pulsante ‏−‏ per rimuoverla.

Maggiori informazioni sull’utilizzo delle variabili nella sezione *General Tools*.

**Lavorare con le proprietà della pagina**

Un layout può essere suddiviso in più pagine. Ad esempio, una prima pagina può mostrare una mappa e una seconda pagina può mostrare la tabella degli attributi associata a un layer, mentre una terza mostra una cornice HTML che collega al sito web della tua organizzazione. Oppure puoi aggiungere molti tipi di oggetti in ogni pagina.

**Aggiungere una nuova pagina**

Inoltre, è possibile creare un layout utilizzando diverse dimensioni e/o orientamento delle pagine. Per aggiungere una pagina, seleziona lo strumento ‏+</‏ Aggiungi Pagine… dal menu *Layout* o *Barra del Layout*. Si apre la finestra di dialogo *Inserisci Pagine* e ti viene chiesto di riempirla:

- il numero di pagine da inserire;
- la posizione della(e) pagina: prima o dopo una data pagina o alla fine del layout di stampa;
- *Page size*: potrebbe essere di un formato *predefinito* (A4, B0, Legal, Letter, ANSI A, Arch A e loro derivati) e un tipo di risoluzione, come 1920x1080 o 1024x768) con associata *Direzione* (Verticale o Orizzontale).
La dimensione della pagina può anche essere in un formato personalizzato; devi inserire la sua Larghezza e Altezza (con il rapporto di dimensioni bloccato se necessario) e selezionare l’unità da utilizzare tra mm, cm, px, pt, in, ft..... La conversione dei valori immessi viene applicata automaticamente quando si passa da un’unità all’altra.

![Insert Pages dialog](image)

Fig. 18.5: Creare una nuova pagina nel Layout di stampa

**Aggiornamento delle proprietà della pagina**

Ogni pagina può essere personalizzata successivamente attraverso il pannello Pagina Proprietà dell’oggetto. Fai clic con il tasto destro del mouse su una pagina e seleziona Proprietà pagina..... Si apre il pannello Proprietà oggetto con impostazioni come:

- La scheda Dimensione pagina prima descritta. Puoi modificare ogni proprietà usando le opzioni di sovrascrittura definita dai dati (vedi Explorare Sovrascrittura definita dai dati con atlante per un caso d’uso);

- [Escludi pagina dalle esportazioni](image) per controllare se la pagina corrente con il suo contenuto deve essere inclusa nel layout output;

- il Sfondo della pagina corrente usando il color o symbol che vuoi.

![Page Size properties](image)

Fig. 18.6: Finestra di dialogo Proprietà pagina
Il Pannello Guide

Le Guide sono riferimenti a linee verticali o orizzontali che puoi posizionare su una pagina di layout per assisterti nel posizionamento degli oggetti, quando li crei, li sposti o li ridimensioni. Per essere attive, le guide richiedono che le opzioni Visualizza ► Mostra Guide e Visualizza ► Aggancia alle Guide siano selezionate. Per creare una guida, ci sono due metodi diversi:

- se l’opzione Visualizza ► Mostra Guide è impostata, trascina una guida e rilascia il pulsante del mouse nell’area della pagina, nella posizione desiderata.
- per una maggiore precisione, usa il pannello Guide dalla Visualizza ► Barra degli Strumenti ► o selezionando Gestisci guide per la pagina… dal menu contestuale della pagina.

Il pannello Guide permette la creazione di linee di aggancio in posizioni specifiche:

1. Seleziona la Pagina a cui vuoi aggiungere le guide

2. Fai clic sul pulsante Aggiungi nuova guida e inserisci le coordinate della linea orizzontale o verticale. L’origine è nell’angolo in alto a sinistra. Sono disponibili diverse unità di misura.

Il pannello permette anche di regolare la posizione delle guide esistenti alle coordinate esatte: fai doppio clic e sostituisci il valore.


4. Per eliminare una guida, selezionala e premi il pulsante Rimuovi guide selezionate. Usa Azzera tutte le guide per rimuovere tutte le guide nella pagina corrente.

Suggerimento: Aggancio ad oggetti di layout esistenti
Oltre al reticolo e alle griglie, puoi utilizzare gli oggetti esistenti come riferimenti di aggancio quando si spostano, ridimensionano o creano nuovi oggetti; queste sono chiamate guide intelligenti e richiedono la selezione Visualizza ►Guide intelligenti per essere controllate. Ogni volta che il puntatore del mouse è vicino al limite di un elemento, appare una croce di aggancio.

**Il Pannello Oggetti**

Il pannello Oggetti offre alcune opzioni per gestire la selezione e la visibilità degli oggetti. Tutti gli oggetti aggiunti all'area di disegno del layout (inclusi items group) sono mostrati in una lista e selezionando un oggetto viene anche selezionata la riga corrispondente della lista e selezionando una riga della lista viene selezionato l'oggetto corrispondente nell'area di stampa del layout. Questo è quindi un modo pratico per selezionare un oggetto posto dietro ad un altro. Si noti che la riga selezionata è indicata in grassetto.

Per ogni oggetto selezionato puoi:

- impostarlo o meno visibile;
- bloccarlo o meno nella posizione;
- ordinare la sua posizione nella lista. Puoi spostare su e giù ogni oggetto nell'elenco con un click e trascinare. L'oggetto più in alto dell'elenco verrà portato in primo piano nel layout di stampa. Per default ogni nuovo oggetto aggiunto viene posizionato in fondo alla lista.
- modificare l'ID dell'oggetto facendo doppio clic sul testo;
- fai clic con il tasto destro del mouse su un oggetto e copialo, cancellalo o apri il suo properties panel.

Una volta che hai trovato la giusta posizione per un oggetto lo puoi bloccare selezionando in on la casella. Gli oggetti bloccati non possono essere selezionati nell'area di stampa. Gli oggetti bloccati possono essere sbloccati selezionando l'oggetto nella lista del pannello Oggetti e passando a non selezionata la relativa casella oppure puoi usare l'icona nella barra degli strumenti.

**Pannello Storico dei comandi: Annulla e Ripristina azioni**

Durante il processo di layout è possibile annullare e ripristinare le modifiche. Questo può essere fatto con gli strumenti di ripristino disponibili nel menu Modifica, nella barra degli strumenti Layout o nel menu contestuale ogni volta che si fa clic con il tasto destro del mouse nell'area del layout di stampa:

- Annulla l'ultimo cambiamento
- Ripristina l'ultimo cambiamento

Questo può anche essere fatto con un clic del mouse all'interno del pannello Annulla storico (vedi Fig. 18.8). Il pannello Storico dei comandi elenca le ultime azioni fatte all'interno del layout di stampa. Basta selezionare il punto a cui si vuole tornare e una volta fatta una nuova azione tutte le azioni fatte dopo quella selezionata saranno rimosse.

![Fig. 18.8: Storico dei comandi nella stampa Layout](image)

---

**18.1. Panoramica sul Layout di stampa**

591
18.2 Oggetti del Layout

18.2.1 Opzioni comuni degli Oggetti del Layout

QGIS fornisce un'ampia gamma di oggetti per il layout di una mappa. Possono essere di mappa, legenda, barra di scala, immagine, tabella, freccia nord, tipo immagine….. Tuttavia, condividono alcune opzioni e comportamenti comuni che vengono di seguito trattati.

Creare un oggetto nel Layout

Gli oggetti possono essere creati utilizzando diversi strumenti, sia da zero o sulla base di oggetti esistenti.

Per creare un oggetto di layout da zero:

1. Seleziona lo strumento corrispondente o dal menu Aggiungi Oggetto o dalla barra Strumenti.

2. Poi:
   - Clicca sulla pagina e immetti la dimensione e le informazioni di posizionamento richieste nella finestra di dialogo Proprietà nuovo oggetto che compare (per i dettagli, vedi Posizione e Dimensione);

   ![Fig. 18.9: Finestra di dialogo Proprietà nuovo oggetto](image)

   - Oppure tieni premuto il clic sinistro e trascina per definire la dimensione iniziale e il posizionamento dell'oggetto. Puoi contare sull'aggancio di griglie e guide per un posizionamento migliore.

Nota: Poiché possono avere forme particolari, il disegno di oggetti nodi o frecce non funziona con i metodi con un solo clic né con clic e trascina; devi fare clic e posizionare ogni nodo dell'oggetto. Vedi layout_node_node_based_shape_item per maggiori dettagli.

Puoi anche:

1. Selezionare un oggetto esistente con il pulsante Seleziona/Sposta oggetto dalla barra Strumenti

2. Usare il menu contestuale o gli strumenti del menu Modifica per copiare/tagliare l'oggetto e incollarlo nella posizione del mouse come nuovo oggetto.

Puoi anche utilizzare il comando Incolla sul posto (Ctrl+Shift+V) per duplicare un oggetto da una pagina all'altra e posizionarlo nella nuova pagina alle stesse coordinate dell'originale.

Inoltre, puoi creare oggetti utilizzando un modello di layout di stampa (per i dettagli, vedi Il Gestore del Layout) tramite il comando Layout ➤ Aggiungi Oggetti da modello….

Suggerimento: Aggiungere elementi di layout utilizzando il file browser
Dal tuo file browser o usando il pannello Browser, trascina e rilascia un modello di layout di stampa (.qpt file) in una finestra di dialogo di layout di stampa e QGIS aggiunge automaticamente tutti gli elementi di quel modello al layout.

**Interagire con gli oggetti del layout**

Ogni oggetto all’interno del layout di stampa può essere spostato e ridimensionato per creare un layout perfetto. Per entrambe le operazioni il primo passo è quello di attivare lo strumento Seleziona/Sposta oggetto e cliccare sull’oggetto.

Puoi selezionare più oggetti con il pulsante Seleziona/Sposta oggetto: fai clic e trascina gli oggetti o tieni premuto il pulsante Shift e fai clic su ciascuno degli oggetti desiderati. Per deselezionare un oggetto, clicca su di esso tenendo premuto il pulsante Shift.

Ogni volta che c’è una selezione, il conteggio degli oggetti selezionati viene visualizzato sulla barra di stato. All’interno del menu Modifica menu, è possibile trovare azioni per selezionare tutti gli oggetti, cancellare tutte le selezioni, invertire la selezione corrente e altro ancora…..

**Spostamento e ridimensionamento degli oggetti**

A meno che l’opzione Visualizza ► Mostra i Perimetri di Delimitazione non sia deselezionata, un oggetto selezionato mostrerà dei quadrati sui suoi confini; spostando uno di essi con il mouse ridimensionerà l’oggetto nella direzione corrispondente. Durante il ridimensionamento, tenendo premuto Shift manterrà il rapporto di aspetto. Tenendo premuto Alt si dimensiona dal centro dell’oggetto.

Per spostare un oggetto del layout, selezionarlo con il mouse e muoverlo tenendo premuto il tasto sinistro. Se è necessario limitare i movimenti all’asse orizzontale o verticale, basta tenere premuto il tasto Shift sulla tastiera mentre si muove il mouse. Puoi anche spostare un oggetto selezionato usando il tasto Arrow keys sulla tastiera; se il movimento è troppo lento, puoi accelerarlo tenendo premuto Shift. Se hai bisogno di maggiore precisione, usa le proprietà Posizione e Dimensione, o aggancio al reticolo/guide come spiegato sopra per la creazione dell’oggetto.

Il ridimensionamento o lo spostamento di più oggetti contemporaneamente è fatto allo stesso modo come per un singolo oggetto. QGIS fornisce tuttavia alcuni strumenti avanzati per ridimensionare automaticamente una selezione di oggetti seguendo regole diverse:

- l’altezza di ogni oggetto corrisponde al più alto o a quella più corto oggetto selezionato;
- la larghezza di ogni oggetto corrisponde al più largo o più stretto oggetto selezionato;
- ridimensiona gli oggetti in quadrati: ogni oggetto viene ridimensionato in forma quadrata.

Allo stesso modo, sono disponibili strumenti automatici per organizzare la posizione di più oggetti i distribuendoli in modo equidistante:

- al bordo (sinistro, destro, superiore o inferiore) degli oggetti;
- centrando gli oggetti sia orizzontalmente che verticalmente.
Raggruppamento degli oggetti

Raggruppare gli oggetti ti permette di manipolare un insieme di oggetti come un unico oggetto: si possono facilmente ridimensionare, spostare, eliminare, copiare gli oggetti nel loro insieme.

Per creare un gruppo di oggetti, selezionane più di uno e premi il pulsante \( \text{Raggruppa} \) nel menu \textit{Oggetti} o nella barra delle \textit{Azioni} o dal menu tasto destro del mouse. Una riga denominata \textit{Group} viene aggiunta al pannello \textit{Oggetti} e può essere bloccata o nascosta come qualsiasi altro \textit{Items panel's object}. Gli oggetti raggruppati sono \textbf{non selezionabili singolarmente} sulla mappa; utilizza il pannello \textit{Oggetti} per la selezione diretta e accedi al pannello delle proprietà dell’oggetto.

Bloccare gli oggetti

 Una volta che hai trovato la posizione corretta per un oggetto, puoi bloccarlo usando il pulsante \( \text{Blocca Oggetti Selezionati} \) nel menu \textit{Oggetti} o nella barra degli strumenti \textit{Azioni} o spuntando la casella accanto all’oggetto nel pannello \textit{Oggetti}. Gli oggetti bloccati \textbf{non} sono selezionabili nell’area di disegno.

Gli oggetti bloccati possono essere sbloccati selezionando l’oggetto nel pannello \textit{Oggetti} e deselezionando la casella di spunta oppure puoi utilizzare le icone sulla barra degli strumenti.

Allineamento

Lo spostamento in alto o in basso nella gerarchia visiva degli oggetti si trova all’interno del menu a discesa \( \text{Muovi in alto} \). Scegli un oggetto nell’area di stampa del layout e seleziona la funzione corrispondente per alzare o abbassare l’oggetto selezionato rispetto agli altri oggetti. Questo ordine è mostrato nel pannello \textit{Oggetti}. Puoi anche alzare o abbassare gli oggetti nel pannello \textit{Oggetti} cliccando e trascinando l’etichetta di un oggetto in questa lista.

![Fig. 18.10: Allineamento alle linee di aiuto nel layout di stampa](image)

594 Capitolo 18. Layout di stampa
Ci sono diverse opzioni di allineamento disponibili nel menu a tendina (sup: Allinea Oggetti (vedi Fig. 18.10). Per usare una funzione di allineamento, devi prima selezionare gli oggetti e poi cliccare su una delle icone di allineamento:

- Allinea a sinistra o Allinea a destra;
- Allinea in alto o Allinea in fondo;
- Allinea al centro orizzontale o Allinea al centro Verticale.

Tutti gli oggetti selezionati saranno quindi allineati al loro comune rettangolo di delimitazione. Quando si spostano oggetti sull’area di disegno, le linee di aiuto all’allineamento appaiono quando i bordi, i centri o gli angoli sono allineati.

**Proprietà comuni Oggetti**

Gli oggetti del layout hanno un insieme di proprietà comuni che si trovano in fondo al pannello :guilabel: Proprietà dell'oggetto: Posizione e Dimensione, Rotazione, Cornice, Sfondo, ID oggetto, Variabili e Visualizzazione (Vedi Fig. 18.11).

![Fig. 18.11: Gruppi di Proprietà comuni in Proprietà dell'Oggetto](image-url)
Nota: L'icona \( \text{Sovrascrittura definita dai dati} \) accanto alla maggior parte delle opzioni significa che puoi associare quella proprietà ad un layer, agli attributi degli oggetto, alla geometria o a qualsiasi altra proprietà di layout, usando expressions o variables. Per ulteriori informazioni vedi data_definita.

- Il gruppo Posizione e Dimensione ti permette di definire la dimensione e la posizione del riquadro che contiene l'oggetto (vedi Posizione e Dimensione per maggiori informazioni).
- La Rotazione imposta la rotazione dell'oggetto (in gradi).
- La \( \text{Cornice} \) mostra o nasconde la cornice intorno all'oggetto. Usa i widget Colore, \( \text{Spessore e Stile unione} \) per regolare queste proprietà.
- Utilizza il menu Sfondo per impostare un colore di sfondo. Fai clic sul pulsante [Colore] per visualizzare una finestra di dialogo in cui puoi scegliere un colore o un'impostazione personalizzata. La trasparenza può essere regolata modificando le impostazioni del campo alfa.
- Utilizza il pulsante ID oggetto per creare una relazione con altri oggetti del layout di stampa. Questo viene utilizzato con il server QGIS e altri potenziali client web. Puoi impostare un ID su un oggetto (ad esempio, una mappa o un'etichetta), e poi il client web può inviare dati per impostare una proprietà (ad esempio, il testo dell'etichetta) per quell'oggetto specifico. Il comando GetProjectSettings elenca gli oggetti e gli ID disponibili in un layout.
- Visualizzazione ti aiuta ad impostare se e come l'oggetto può essere visualizzato: puoi, per esempio, applicare modo di miscelazione, regolare l'opacità dell'oggetto o Escludi oggetto dalle esportazioni.

**Posizione e Dimensione**

Estendendo le opzioni della finestra di dialogo New Item Properties con funzionalità definite dai dati, questo gruppo permette di posizionare gli oggetti con precisione.

![Fig. 18.12: Posizione e dimensione](image)

- il numero specifico della pagina su cui posizionare l'oggetto;
- il punto di riferimento dell’oggetto;
- le coordinate \( X \) e \( Y \) del Punto di riferimento dell’oggetto nella pagina scelta. Il rapporto tra questi valori può essere bloccato cliccando sul pulsante \( \text{bloccato} \). Le modifiche apportate a un valore utilizzando il widget o lo strumento \( \text{Seziona/Sposta oggetto} \) si rifletteranno in entrambi;
- il Larghezza e Altezza del perimetro di delimitazione dell'oggetto. Per quanto riguarda le coordinate, il rapporto tra larghezza e altezza può essere bloccato.

596 Capitolo 18. Layout di stampa
Visualizzazione

QGIS permette di effettuare visualizzazioni avanzate per gli oggetti del layout, proprio come per i layer vettoriali e raster.

![Fig. 18.13: Visualizzazione](image)

- **Modalità fusione**: con questo strumento puoi ottenere effetti che altrimenti sarebbero possibili solo usando software specializzati per la manipolazione grafica. I pixel degli elementi di sovrapposizione e di sottofondo possono essere mescolati in base alla modalità impostata (vedi *Metodi di fusione* per la descrizione di ciascun effetto).

- **Trasparenza**: Con questo strumento Puoi rendere visibile l’oggetto sottostante nel layout. Usa il cursore per adattare la visibilità del tuo oggetto alle tue esigenze. Puoi anche definire con precisione la percentuale di visibilità nel menu accanto al cursore.

- **Escludi oggetto dalle esportazioni**: puoi decidere di rendere invisibile un oggetto in tutte le esportazioni. Dopo aver attivato questa casella di controllo, l’oggetto non sarà incluso nell’esportazione in PDF, stampa ecc.

**Variabili**

*Variabili* elenca tutte le variabili disponibili a livello di layout (che include tutte le variabili globali, di progetto e di composizione). Gli oggetti mappa mappa includono anche le variabili delle impostazioni della mappa che forniscono un facile accesso a valori come la scala della mappa, l’estensione e così via.

In *Variabili*, è anche possibile gestire variabili a livello di oggetto. Fai click sul pulsante per aggiungere una nuova variabile personalizzata. Allo stesso modo, seleziona qualsiasi variabile a livello di elemento personalizzato dall’elenco e fai click sul pulsante per rimuoverlo.

Maggiori informazioni sull’utilizzo delle variabili nella sezione *Memorizzazione valori nelle Variabili*.

**18.2.2 L’Oggetto Mappa**

L’oggetto mappa è la cornice principale che visualizza la mappa che hai disegnato nell’area mappa. Utilizza lo strumento **Aggiungi Mappa** seguendo *items creation instructions* per aggiungere un nuovo oggetto mappa che potrai poi manipolare come esposto in *Interagire con gli oggetti del layout*.

Per impostazione predefinita, un nuovo oggetto mappa mostra lo stato attuale della *map canvas* con la sua estensione e layer visibili. Puoi personalizzarlo grazie al pannello *Proprietà dell’oggetto*. Oltre a *items common properties*, questo pannello ha le seguenti opzioni:
La barra degli Strumenti

Il pannello Proprietà dell’oggetto Mappa incorpora una barra degli strumenti con le seguenti funzionalità:

- Aggiorna Anteprima Mappa
- Estensione della Mappa Uguale all’Estensione dell’Area di Mappa
- Visualizza Estensione Corrente della Mappa nell’Area di Mappa
- Imposta la scala della mappa in modo che corrisponda alla scala della Mappa corrente
- Imposta la scala della mappa uguale alla scala corrente della Mappa
- Segnalibri: imposta l’estensione dell’oggetto mappa in modo che corrisponda a un segnalibro spaziale esistente
- Modifica interattivamente l’estensione mappa, eseguire spostamenti e zoom interattivamente all’interno dell’oggetto della mappa
- Impostazioni Etichette: controlla il comportamento delle etichette degli elementi (posizionamento, visibilità…) nel layout dell’oggetto mappa:
  - imposta un *Margin from border map*, una distanza definibile dai dati dai confini dell’oggetto mappa all’interno della quale non dovrebbe essere visualizzata alcuna etichetta
  - *Permetti etichette troncate sui bordi mappa*: controlla se le etichette che cadono parzialmente al di fuori dell’estensione consentita dell’oggetto mappa devono essere visualizzate. Se selezionata, queste etichette
saranno mostrate (quando non c’è modo di posizionarle completamente all’interno dell’area visibile). Se
deselezionato, le etichette parzialmente visibili saranno忽略了。---

– **Oggetti che Bloccano Etichetta**: permette ad altri oggetti del layout (come barra di scala, frecce nord, mappe
intestinali, ecc.) di essere indicati come elementi che bloccano le etichette della mappa nell’oggetto mappa
attivo. Questo impedisce a qualsiasi etichetta della mappa di essere posizionata sotto questi elementi -
inducendo il motore di etichettatura a provare un posizionamento alternativo per queste etichette o a
scartarle del tutto.

Se è impostato un **Margini dai bordi mappa**, le etichette della mappa non sono posizionate più vicino
della distanza specificata dagli oggetti del layout selezionati.

– **Mostra etichette non ubicate**: può essere usato per determinare se le etichette che mancano dal layout della
mappa (ad esempio a causa di conflitti con altre etichette della mappa o a causa di spazio insufficiente per
posizionare l’etichetta), evidenziandole in un **predefined color**.

• **Impostazioni di Ritaglio**: permette di ritagliare l’oggetto mappa alla proprietà dell’atlante e agli oggetti forma e
poligono:

– **Atlante: ritaglia all’elemento**: puoi stabilire che il layout dell’oggetto mappa sarà ritagliato
automaticamente alla corrente *atlas feature*.

Ci sono diverse modalità di ritaglio disponibili:

• **Ritaglia solo durante la visualizzazione**: applica un ritaglio basato sul disegno, così che le porzioni di
elementi vettoriali che si trovano al di fuori della proprietà dell’atlante diventano invisibili

• **Ritaglia Elemento prima della visualizzazione**: applica il ritaglio prima della visualizzazione degli
oggetti, così i bordi degli oggetti che cadono parzialmente al di fuori dell’atlante saranno ancora
visibili sul confine dell’atlante

• **Visualizza Elementi intersecanti invariati**: visualizza tutte gli elementi che intersecano la figura
corrente dell’atlante, ma senza ritagliare la loro geometria.

Puoi **Fossa le etichette all’interno dell’elemento**. Se non vuoi attivare **Ritaglia tutti i layer** alla atlente
puoi usare l'opzione [radiobuttononon] *Ritaglia layer selezionati*.

– **Ritaglia su oggetto**: è possibile cambiare la forma dell’oggetto mappa usando un oggetto *shape* o
*polygon* del layout di stampa. Quando si abilita questa opzione la mappa sarà automaticamente ritagliata
alla forma selezionata nel menù a tendina. Anche in questo caso, sono disponibili le modalità di ritaglio
di cui sopra e le etichette possono essere forzate per essere visualizzate solo all’interno della forma di
ritaglio.

**Proprietà principali**

Nel gruppo Proprietà Principali (vedi Fig. 18.14) del pannello Proprietà dell’oggetto della mappa, le opzioni disponibili
sono:

• Il pulsante **Aggiorna Anteprima** per aggiornare la visualizzazione dell’oggetto mappa se la visualizzazione
nell’area della mappa è stata modificata. Da notare che la maggior parte delle volte, l’aggiornamento dell’oggetto
mappa viene attivato automaticamente dalle modifiche;

• La **Scala** per impostare manualmente la scala dell’oggetto mappa;

• La **Rotazione mappa** ti permette di ruotare in senso orario il contenuto dell’oggetto mappa in gradi. Qui può
essere definita la rotazione dell’area della mappa;

• Il **SR** permette di visualizzare il contenuto dell’oggetto mappa in qualsiasi **CRS**. L’impostazione predefinita è
**Usa il SR del progetto**;

• **Disegna elementi sulla mappa** ti permette di visualizzare nel layout di stampa **annotazioni** che sono
posizionati nell’area di disegno principale della mappa.
Layer

Per impostazione predefinita, l’aspetto dell’oggetto mappa è sincronizzato con la visualizzazione della mappa di origine, il che significa che l’alterazione della visibilità dei layer o la modifica del loro stile nel Pannello Layer viene automaticamente applicata all’oggetto mappa. Poiché, come qualsiasi altro elemento, potresti voler aggiungere più elementi della mappa a un layout di stampa, c’è la necessità di interrompere questa sincronizzazione per permettere di mostrare diverse aree, combinazioni di layer, a diverse scale… Il gruppo di proprietà Layer (vedi Fig. 18.15) ti aiuta a farlo.

Fig. 18.15: Gruppo Layer dell’oggetto Mappa

Se vuoi mantenere l’oggetto mappa coerente con un esistente map theme, spunta Segui il tema mappa e seleziona il tema desiderato nell’elenco a discesa. Tutte le modifiche apportate alla finestra principale di QGIS (utilizzando la preimpostazione di sostituzione) verranno mostrate nell’oggetto mappa. Se viene selezionato un tema mappa, l’opzione Blocca stili per i layer è disabilitata perché Segui il tema mappa aggiorna anche lo stile (simbologia, etichette, diagrammi) dei layer.

Per bloccare i layer mostrati in un oggetto mappa alla visibilità corrente della mappa, seleziona Blocca layer. Quando questa opzione è abilitata, qualsiasi modifica della visibilità dei layer nella finestra principale di QGIS non influisce sull’oggetto mappa del layout. Tuttavia, lo stile e le etichette dei layer bloccati sono ancora aggiornati in accordo alla finestra principale di QGIS. Puoi evitare questo problema utilizzando Blocca stili per i layer.

Invece di usare la mappa corrente, puoi anche bloccare i layer dell’oggetto mappa a quelli di un tema di mappa esistente: seleziona un tema di mappa dal pulsante a discesa Segui vista mappa, e la Blocca layer è attiva. L’insieme dei layer visibili nel tema della mappa è d’ora in poi usato per l’oggetto mappa finché non selezioni un altro tema della mappa o deselezioni l’opzione Blocca layer. Potresti quindi aver bisogno di aggiornare la vista usando il pulsante Aggiorna vista della barra degli strumenti Barra di Navigazione o il pulsante Aggiorna Anteprima Mappa visto sopra.

Nota che, a differenza dell’opzione Segui il tema mappa, se l’opzione Blocco layer è abilitata e impostata su un tema mappa, i layer nell’oggetto mappa non saranno aggiornati anche se il tema mappa è aggiornato (utilizzando la funzione di sostituzione del tema) nella finestra principale di QGIS.

I layer bloccati nell’oggetto mappa possono anche essere data-defined, usando l’icona accanto all’opzione. Quando viene utilizzato, sostituisce la selezione impostata nell’elenco a discesa. Devi costruire una lista di layer separati da un carattere |. Il seguente esempio blocca l’oggetto mappa ad usare solo i livelli layer 1 e layer 2:

```conat ('layer 1', '|', 'layer 2')
```

Estensione mappa

Il gruppo Estensioni del pannello delle proprietà dell’oggetto mappa fornisce le seguenti funzionalità (vedi Fig. 18.16):

---

QGIS Desktop 3.16 User Guide
Capitolo 18. Layout di stampa
L’area **Estensione mappa** visualizza le coordinate $X$ e $Y$ dell’area mostrata nell’oggetto mappa. Ognuno di questi valori può essere sostituito manualmente, modificando l’area di disegno della mappa visualizzata e/o le dimensioni dell’oggetto mappa. Facendo clic sul pulsante **Imposta all’estensione della mappa** imposti l’estensione del layout della mappa all’estensione della mappa principale. Il pulsante **Vedi l’estensione sulla mappa** fa esattamente il contrario; aggiorna l’estensione della mappa principale fino all’estensione dell’oggetto layout mappa.

Puoi anche modificare l’estensione di un oggetto mappa usando lo strumento **Sposta contenuto elemento**: clicca e trascina all’interno dell’oggetto mappa per modificare la sua visualizzazione corrente, mantenendo la stessa scala. Con lo strumento **Sposta contenuto elemento** attivato, usa la rotellina del mouse per ingrandire o rimpicciolire, modificando la scala della mappa visualizzata. Combina il movimento con il tasto Ctrl premuto per avere uno zoom più piccolo.

### Controllato da Atlante

**Controllato da Atlante** è disponibile solo se un **atlas** è attivo nel layout di stampa. Seleziona questa opzione se vuoi che l’oggetto mappa sia governato dall’atlante; durante l’interazione sul layer di copertura, l’estensione dell’oggetto mappa viene spostata/zoomata all’elemento dell’atlante seguente:

- **Margine attorno all’elemento**: ingrandisce l’elemento alla migliore scala, mantenendo intorno a ciascuno un margine che rappresenta una percentuale della larghezza o dell’altezza dell’elemento della mappa. Il margine può essere lo stesso per tutte le caratteristiche o **set variable**, ad esempio, a seconda della scala della mappa;

- **Scala predefinita (miglior adattamento)**: ingrandisce l’elemento al progetto **predefined scale** dove l’elemento dell’atlante si adatta meglio;

- **Scala fissa**: gli elementi dell’atlante vengono spostati uno dopo l’altro, mantenendo la stessa scala dell’oggetto mappa. Ideale quando si lavora con elementi della stessa dimensione (ad esempio, una griglia) o quando si desidera evidenziare le differenze di dimensione tra gli elementi dell’atlante.

### Reticoli

Con le griglie, puoi aggiungere, sulla tua mappa, informazioni relative alla sua estensione o coordinate, sia nella proiezione dell’oggetto mappa o in un altro oggetto. Il gruppo **Reticoli** offre la possibilità di aggiungere più reticoli ad una mappa.

- Con i pulsanti e puoi aggiungere o rimuovere specifici reticoli.

- Con i pulsanti e puoi spostare su e giù un reticolo nell’elemen, quindi spostarla sopra o sotto un’altra, sopra l’oggetto mappa.

Doppio-clic sul reticolo aggiunto per rinominarlo.
Per modificare un reticolo, selezionalo e premi il pulsante *Modifica Reticolo*... per aprire il pannello *Proprietà Reticolo Mappa* e accedere alle sue opzioni di configurazione.

**Aspetto del Reticolo**

Nel pannello *Proprietà Reticolo Mappa*, seleziona *Abilita reticolo* per mostrare il reticolo sull'oggetto mappa.

Come tipologia di reticolo, puoi scegliere di utilizzare:

- *Pieno*: mostra una linea che attraversa la cornice della griglia. Lo *Stile linea* può essere personalizzato usando il widget di selezione *color* e *simbolo*;
- *Croce*: visualizza segmenti all'intersezione delle linee del reticolo, per il quale puoi impostare il valore *Stile linea* e il valore *Spessore della croce*;
- *Simboli*: visualizza solo il simbolo personalizzabile all'intersezione delle linee del reticolo;
- *Solo cornice e annotazioni*

Oltre alla tipologia di reticolo, puoi definire:

- il *SR* del reticolo. Se non viene cambiato, seguirà il SR della mappa. Il pulsante *Seleziona SR* ti permette di impostarlo su un diverso SR. Una volta impostato, può essere riportato a quello di default selezionando una qualsiasi intestazione di gruppo (ad esempio *Sistema di coordinate geografiche*) sotto *Sistemi di riferimento a coordinate predefiniti* nella finestra di selezione del SR.
- il tipo *Intervallo* da usare per i riferimenti del reticolo. Le opzioni disponibili sono *Unità Mappa*, *Adatta Larghezza Segmento*, *Millimetri* o *Centimetri*:
  - Scegliendo *Adatta Larghezza Segmento* selectorà dinamicamente l'intervallo del reticolo in base all'estensione della mappa ad un intervallo «adeguato». Una volta selezionato, gli intervalli *Minimo* e *Massimo* possono essere impostati.
  - le altre opzioni permettono di impostare la distanza tra due riferimenti del reticolo consecutivi nelle direzioni *X* e *Y*.
- *1° Offset* dai bordi dell'oggetto mappa, nella direzione *X* e/o *Y*
- e la *Modalità fusione* del reticolo (vedi *Metodi di fusione*) quando compatibile.
Cornice Reticolo

Ci sono diverse opzioni per lo Stile Cornice che contiene la mappa. Sono disponibili le seguenti opzioni: Nessuna Cornice, Zebra, Zebra (Nautica), Tacche interne, Tacche esterne, Tacche interne ed esterne, Bordo linea e Bordo linea (Nautica).

Quando è compatibile, è possibile impostare la Dimensione cornice, unMargine cornice, la Spessore linea cornice con colore associato e i Colori riempimento cornice.

Usando i valori Mostra Solamente Latitudine/Y e Mostra Solamente Longitudine/X nella sezione divisioni puoi evitare che un mix di coordinate di latitudine/Y e longitudine/X venga mostrato su ogni lato quando lavori con mappe ruotate o griglie riproiettate. Inoltre puoi scegliere se rendere visibile o meno ogni lato della cornice del reticolo.

Fig. 18.18: Finestra di dialogo Aspetto del Reticolo

Fig. 18.19: Finestra di dialogo Cornice Reticolo
Coordinate

Disegna coordinate ti consente di aggiungere le coordinate alla cornice della mappa. Puoi scegliere il formato numerico dell’annotazione, le opzioni variano da decimale a gradi, minuti e secondi, con o senza suffisso, allineati o meno e un formato personalizzato utilizzando la finestra di dialogo delle espressioni.

Puoi scegliere quale annotazione mostrare. Le opzioni sono: mostra tutte, solo latitudine, solo longitudine o disabilita (nessuna). Questo è utile quando la mappa viene ruotata. L’annotazione può essere disegnata all’interno o all’esterno della cornice della mappa. La direzione dell’annotazione può essere definita come orizzontale, verticale ascendente o verticale discendente.

Infine, puoi scegliere il carattere dell’annotazione, il colore del carattere, la distanza dalla cornice della mappa e la precisione delle coordinate rappresentate.

![Fig. 18.20: Finestra di dialogo Scrivi Coordinate](image)

Panoramiche

A volte puoi avere più di una mappa nel layout di stampa e vuoi localizzare l’area di studio di un oggetto mappa su un’altra mappa. Questo potrebbe essere, ad esempio, per aiutare i lettori di mappe a identificare l’area in relazione al contesto geografico più ampio mostrato nella seconda mappa.

Il gruppo Panoramiche del pannello mappe ti aiuta a creare il collegamento tra due diverse estensioni di mappa e fornisce le seguenti funzionalità:
Fig. 18.21: Gruppo Panoramiche della Mappa

Per creare una panoramica, seleziona l’oggetto mappa su cui vuoi mostrare l’estensione dell’altro oggetto mappa ed espandere l’opzione Panoramica nel pannello Proprietà dell’oggetto. Quindi premi il pulsante per aggiungere una panoramica.

Inizialmente questa panoramica si chiama “Panoramica 1” (vedi Fig. 18.21). Puoi:

- Rinominarlo con un doppio clic
- Con i pulsanti e , aggiungere o rimuovere le panoramiche
- Con i pulsanti e , spostare una panoramica su e giù nella lista, mettendola sopra o sotto altre panoramiche nell’oggetto mappa (quando si trovano nella stessa stack position).

Poi seleziona la voce della panoramica nella lista e seleziona la per abilitare il disegno della panoramica sul riquadro di mappa selezionato. Puoi personalizzarla con:

- **Cornice Mappa** seleziona l’oggetto mappa le cui estensioni saranno mostrate sulla mappa presente.
- **Stile Cornice** usa i symbol properties per visualizzare la cornice della panoramica.
- La **Modalità fusione** ti consente di impostare diverse modalità di fusione e trasparenza.
- **Inverti panoramica** quando è attivata crea una maschera intorno alle estensioni: le estensioni della mappa di riferimento sono mostrate chiaramente, mentre il resto dell’oggetto mappa è mescolato con il colore di riempimento della cornice (se è usato un colore di riempimento).
- **Centra sulla panoramica** sposta il contenuto dell’oggetto mappa in modo che la cornice della panoramica sia visualizzato al centro della mappa. Puoi usare solo una panoramica da centrarre, quando hai diverse panoramiche.
- L’opzione **Posizione** controlla esattamente in quale punto della lista layer dell’oggetto mappa sarà posizionata la panoramica, ad esempio permettendo di disegnare una panoramica sotto alcuni layer di elementi, come le strade, mentre la disegna sopra altri layer di sfondo. Le opzioni disponibili sono:
  - **Sotto la Mappa**
  - **Sotto Layer Mappa e Sopra Layer Mappa**: posizionano la cornice di panoramica rispettivamente sotto e sopra le geometrie di un layer. Il layer è selezionato nell’opzione Layer in stack.
– *Sotto le etichette della Mappa*: dato che le etichette sono sempre visualizzate sopra tutte le geometrie degli elementi in un oggetto mappa, pone la cornice della panoramica sopra tutte le geometrie e sotto ogni etichetta.

– *Sopra le etichette della Mappa*: pone la cornice della panoramica sopra tutte le geometrie e le etichette dell’oggetto mappa.

### 18.2.3 L’Oggetto Mappa 3D

Lo strumento Mappa 3D viene usato per visualizzare una *3D map view 3D*. Usa il pulsante ![Aggiungi Mappa 3D](image.png) e segui *items creation instructions* per aggiungere un nuovo oggetto Mappa 3D che puoi successivamente manipolare nello stesso modo dimostrato in *Interagire con gli oggetti del layout*.

Per impostazione predefinita, un nuovo oggetto Mappa 3D è vuoto. Puoi impostare le proprietà della visualizzazione 3D e personalizzarla nel pannello guilabel: *Proprietà oggetto*. Oltre alle *common properties*, questa funzionalità ha le seguenti opzioni (Fig. 18.22):

![Fig. 18.22: Proprietà Oggetto Mappa 3D](image.png)

**Impostazioni della scena**

Premi *Copia Impostazioni da una Vista 3D*… per scegliere la vista della mappa 3D da visualizzare.

La vista della mappa 3D è restituita con la sua configurazione attuale (layer, terreno, luci, posizione e angolo della telecamera…).
Posizione della macchina fotografica

- *X Centro* imposta la coordinata X del punto in cui è posizionata la telecamera
- *Y Centro* imposta la coordinata Y del punto in cui è posizionata la telecamera
- *Z Centro* imposta la coordinata Z del punto in cui è posizionata la telecamera
- *Distanza* imposta la distanza dal centro della telecamera al punto in cui la telecamera è posizionata.
- *Beccheggio* imposta la rotazione della telecamera intorno all'asse X (rotazione verticale). Valori da 0 a 360 (gradi). 0°: terreno visto dritto dall'alto; 90°: orizzontale (di lato); 180°: dritto dal basso; 270°: orizzontale, capovolto; 360°: dritto dall'alto.
- *Inclinazione* imposta la rotazione della telecamera intorno all'asse Y (rotazione orizzontale - da 0 a 360 gradi). 0°/360°: nord; 90°: ovest; 180°: sud; 270°: est.

Il menu a tendina *Imposta da una vista 3D*... permette di popolare gli elementi con i parametri di una vista 3D.

### 18.2.4 L'Oggetto Etichetta

L'oggetto *Etichetta* è uno strumento per decorare la mappa con testi che aiutano a comprenderla; può essere il titolo, l'autore, le fonti dati o qualsiasi altra informazione..... Puoi aggiungere un'etichetta con lo strumento [Aggiungi Etichetta seguendo items creation instructions e manipolarla come esposto in Interagire con gli oggetti del layout.

Per impostazione predefinita, l'oggetto etichetta fornisce un testo predefinito che si può personalizzare usando il suo pannello *Proprietà dell’oggetto*. Oltre alle *items common properties*, questa opzione ha le seguenti funzionalità (vedi Fig. 18.23):

![Fig. 18.23: Pannello Proprietà Oggetto Etichetta](image)

18.2. Oggetti del Layout 607
**Proprietà principali**

Il gruppo *Proprietà Principali* è il luogo dove fornire il testo (può essere in HTML) o l’espressione per costruire l’etichetta. Le espressioni devono essere circondate da [% e %] per essere interpretate come tali.

- Le etichette possono essere interpretate come codice HTML: spunta **Visualizza come HTML**. Ora puoi inserire un URL, un’immagine cliccabile che si collega a una pagina web o qualcosa di più complesso.
- Puoi anche usare _espressioni_: clicca sul pulsante :guilabel: **Inserisci o Modifica un’Espressione**, scrivi la tua formula come al solito e quando la finestra di dialogo viene applicata, QGIS aggiunge automaticamente i caratteri rimanenti.

**Nota:** Facendo clic sul pulsante :guilabel: **Inserisci o Modifica un’Espressione**… quando non è stata fatta alcuna selezione nella casella di testo, la nuova espressione verrà aggiunta al testo esistente. Se vuoi aggiornare un testo esistente, devi prima selezionare la parte di interesse.

Puoi combinare la visualizzazione come HTML con le espressioni, portando a un’etichettatura avanzata. Il seguente codice avrà come risultato Fig. 18.24:

```html
<html>
<head>
 <style>
 /* Define some custom styles, with attribute-based size */
 name {color:red; font-size: [% ID %]px; font-family: Verdana; text-shadow:
 grey 0 10px;}
 use {color:blue;}
 </style>
</head>
<body>
 <!-- Information to display -->
 <u>Feature Information</u>
 <ul style="list-style-type:disc">
 Feature Id: [% ID %]
 Airport: <name>[% NAME %]</name>
 Main use: <use>[% USE %]</use>

 Last check: [% concat(format_date("control_date", 'yyyy-MM-dd'), ' by <i>', @user_full_name, '</i>') %]

 <!-- Insert an image -->
 <p align="center"></p>
</body>
</html>
```

**Fig. 18.24:** Applicare un’etichetta con lo stile HTML
Aspetto

- Definisci il Carattere cliccando sul pulsante Carattere o un Colore carattere spingendo il pulsante color widget
- Puoi specificare diversi margini orizzontali e verticali in mm. Questo è il margine dal bordo dell’oggetto del layout. L’etichetta può essere posizionata al di fuori dei limiti dell’etichetta, ad esempio per allineare gli elementi dell’etichetta con altri elementi. In questo caso è necessario utilizzare valori negativi per il margine.
- Utilizzare l’allineamento del testo è un altro modo per posizionare la tua etichetta. Può essere:
  - Sinistra, Centro, Destra o Giustifica per Allineamento orizzontale.
  - e In alto, Al centro, In basso per Allineamento verticale.

Usare le espressioni in un oggetto etichetta

Di seguito alcuni esempi di espressioni che puoi usare per popolare l’oggetto etichetta con informazioni interessanti - ricordati che il codice, o almeno la parte calcolata, dovrebbe essere circondato da [% e %] nel riquadro Proprietà Principali:

- Visualizza un titolo con il valore corrente dell’elemento dell’atlante in «field1»:
  
  ```
 'This is the map for ' || "field1"

 o, scritto nella sezione Proprietà Principali
  ```

- Aggiunge una paginazione per l’elemento dell’atlante in realizzazione (ad esempio, Page 1/10):
  
  ```
 concat('Page ', @atlas_featurenumber, ' / ', @atlas_totalfeatures)
  ```

- Restituisce il nome degli aeroporti contenuti nella attuale elemento region dell’atlante, in base alla loro attributi comuni:
  
  ```
 aggregate(layer := 'airports',
 aggregate := 'concatenate',
 expression := "NAME",
 filter := fk_regionId = attribute(@atlas_feature, 'ID'),
 concatenator := ',', '
)
  ```

  Oppure, se è impostata una relazione attributes:
  
  ```
 relation_aggregate(relation := 'airports_in_region_relation',
 aggregate := 'concatenate',
 expression := "NAME",
 concatenator := ',', '
)
  ```

- Restituisci il nome degli aeroporti contenuti nella attuale elemento region dell’atlante, in base alla loro relazione spaziale:
  
  ```
 aggregate(layer := 'airports',
 aggregate := 'concatenate',
 expression := "NAME",
 filter := contains(geometry(@parent), $geometry),
 concatenator := ',', '
)
  ```

  OPPURE:
18.2.5 L'Oggetto Legenda

L'oggetto **Legenda** è una casella o una tabella che spiega il significato dei simboli usati sulla mappa. Una legenda è quindi legata ad un elemento della mappa. È possibile aggiungere una legenda con lo strumento ![](image) **Aggiungi una nuova legenda al Layout** seguendo **items creation instructions** e manipolarla come esposto in **Interagire con gli oggetti del layout**.

Per impostazione predefinita, l'oggetto legenda visualizza tutti i layer disponibili e può essere raffinato usando il suo pannello **guilabel: Proprietà dell'oggetto**. Oltre alle **items common properties**, questa opzione ha le seguenti funzionalità (vedi Fig. 18.25):

![Fig. 18.25: Pannello Proprietà Oggetto Legenda](image)
Proprietà principali

Il gruppo Proprietà principali del pannello Proprietà dell’oggetto prevede le seguenti funzionalità (vedi Fig. 18.26):

![Main Properties](image)

Fig. 18.26: Legenda gruppo Proprietà principali

Nelle proprietà principali puoi:

- Cambia il Titolo della legenda. Può essere reso dinamico usando l'impostazione data-defined override, utile per esempio quando si genera un atlante;
- Scegli a quale elemento della Map si riferirà la legenda corrente. Per impostazione predefinita, viene scelta la mappa su cui è disegnato l'elemento della legenda. Se non ce n'è nessuno, allora si ricade nella mappa di riferimento.

Nota: Variabili dell'elemento della mappa collegata (map_id, map_scale, map_extent…) sono anche accessibili dalle proprietà definite dai dati della legenda.

- Impacchetta il testo della legenda su un dato carattere: ogni volta che il carattere appare, viene sostituito da un'interruzione di riga;
- Imposta la disposizione dei simboli e del testo nella legenda: la Disposizione può essere Simboli sulla Sinistra o Simboli sulla Destra. Il valore predefinito dipende dal sistema locale in uso (basato su destra-sinistra o meno);
- Usa Ridimensiona per adattare i contenuti per controllare se una legenda debba essere automaticamente ridimensionata per adattarsi al suo contenuto. Se non è selezionato, la legenda non si ridimensionerà mai e si attlerà a qualsiasi dimensione impostata dall’utente. Qualsiasi contenuto che non si adatta alla dimensione viene tagliato fuori.

18.2. Oggetti del Layout
Oggetti della Legenda

Il gruppo Oggetti Legenda del pannello Proprietà dell’oggetto della legenda fornisce le seguenti funzionalità (vedi Fig. 18.27):

![Legend Items](image)

Fig. 18.27: Gruppo Oggetti della Legenda

- La legenda sarà aggiornata automaticamente se Aggiorna automaticamente è selezionato. Quando Aggiorna automaticamente è deselezionato questo ti darà più controllo sugli elementi della legenda. Tutte le icone sotto la lista degli elementi della legenda saranno attivate.

- La finestra degli oggetti legenda elenca tutte gli oggetti legenda e consente di modificare l’ordine degli oggetti, raggruppare i layer, rimuovere e ripristinare gli oggetti nell’elenco, modificare i nomi dei layer e aggiungere un filtro.

  - L’ordine degli oggetti può essere modificato utilizzando i pulsanti  e , oppure con la funzionalità “drag-and-drop”. L’ordine non può essere modificato per le legende WMS.

  - Utilizza il pulsante  per aggiungere un gruppo legenda.

  - Utilizza il pulsante  per aggiungere layer e il pulsante  per rimuovere gruppi, layer o classi di simboli.

  - Il pulsante  è usato per modificare il nome del layer, del gruppo o del titolo. Prima è necessario selezionare l’elemento della legenda. Facendo doppio clic sull’elemento si apre anche la casella di testo per rinominarlo.

  - Il pulsante  usa le espressioni per personalizzare ogni etichetta di simbolo del layer selezionato (vedi Etichette della legenda definite dai dati)

  - Il pulsante  aggiunge il conteggio delle ricorrenze per ogni tipo di layer vettoriale.

  - Il pulsante  Filtra legenda tramite espressione ti aiuta a filtrare quali delle voci della legenda di un layer saranno visualizzate per un layer che ha oggetti diversificati (ad esempio, da una simbologia basata su regole o categorizzata) si può specificare un’espressione booleana per rimuovere dall’albero della legenda, stili che non hanno alcun elemento soddisfacente una condizione. Tieni presente che gli elementi sono comunque conservati e mostrati nell’oggetto della mappa del layout.
Mentre il comportamento predefinito della voce di legenda è quello di imitare l'albero del pannello Layer, visualizzando gli stessi gruppi, livelli e classi di simbologia, facendo clic con il tasto destro del mouse su qualsiasi voce ti offre opzioni per nascondere il nome del layer o elevarlo come gruppo o sottogruppo. Nel caso tu abbia fatto delle modifiche a un layer, puoi riprenderle scegliendo Aggiorna automaticamente dal menu contestuale della voce della legenda.

Dopo aver modificato la simbologia nella finestra principale di QGIS, puoi fare click su Aggiorna tutto per adottare le modifiche nell'oggetto legenda del layout di stampa.

- Con la guilabel: Mostra solamente oggetti all'interno della mappa collegata, solo gli oggetti della legenda visibili nella mappa collegata saranno elencati nella legenda. Questo strumento rimane disponibile quando Aggiorna automaticamente è attivo.
- Durante la generazione di un atlante con layers poligonali, è possibile filtrare gli oggetti di legenda che si trovano al di fuori della scelta fatta per l'atlante corrente. Per farlo, seleziona l'opzione Mostra solamente elementi all'interno della geometria dell'atlante.

**Etichette della legenda definite dai dati**

É possibile aggiungere expressions ad ogni etichetta di simbolo di un dato layer. Nuove variabili (@symbol_label, @symbol_id, @symbol_count) ti aiutano a interagire con la voce della legenda.

Per esempio, dato un layer regions categorizzato dal suo campo type, puoi aggiungere ad ogni classe nella legenda il loro numero di elementi e l'area totale, per esempio Borough (3) - 850ha:

1. Seleziona la voce del layer nell'albero della legenda
2. Premi il pulsante , aprendo la finestra di dialogo Costruttore stringhe espressione
3. Inserisci la seguente espressione (assumendo che le etichette dei simboli non siano state modificate):

   ```javascript
 concat(@symbol_label,
 ' (' , @symbol_count, ') - ',
 round(aggregate(@layer, 'sum', $area, filter:= "type"=@symbol_label)/
 .10000),
 'ha')
   ```
4. Premi OK
Caratteri

Il gruppo Caratteri e Testo del pannello Proprietà dell’oggetto della legenda fornisce le seguenti funzionalità:

Fig. 18.28: Proprietà Caratteri e Testo della Legenda

- Puoi cambiare il carattere del titolo della legenda, del gruppo, del sottogruppo e dell’etichetta (elemento) nell’oggetto legenda usando il widget font selector.

- Per ognuno di questi livelli puoi impostare l’Allineamento del testo: può essere Sinistra (predefinito per paesi basati su sinistra-destra), Centro o Destra (predefinito per paesi basati su destra-sinistra).

- Si imposta il Colore carattere delle etichette usando il widget color selector. Il colore selezionato verrà applicato a tutti i caratteri degli elementi nella legenda.
Colonne

Sotto il gruppo `Colonne` del pannello `Proprietà dell’oggetto` della legenda, gli elementi della legenda possono essere disposti su più colonne:

- Imposta il numero di colonne nel campo `Numero` Questo valore può essere reso dinamico, ad esempio, seguendo le proprietà dell’atlante, i contenuti della legenda, la dimensione della cornice…

- `Uguale larghezza delle colonne` imposta la stessa larghezza fra le colonne affiancate.

- L’opzione `Dividi i layer` consente di dividere le colonne della legenda per layer categorizzati o graduati.

![Columns](fig.18.29: Impostazioni delle colonne della legenda)

Simbolo

Il gruppo `Simbolo` del pannello `Proprietà dell’oggetto` della legenda configura la dimensione dei simboli visualizzati accanto alle etichette della legenda. Puoi:

- Imposta la `Larghezza simbolo` e `Altezza simbolo`.

- Set the markers’ `Min symbol size` and `Max symbol size`: 0.00mm means there is no value set.

- `Disegna tratto per simbolo raster`: questo aggiunge un contorno al simbolo che rappresenta il colore della banda del layer raster; puoi impostare sia il `Colore tratto` che `Spessore`.
Legenda WMS e Spaziatura

I gruppi Legenda WMS e Spaziatura del pannello Proprietà dell’oggetto forniscono le seguenti funzionalità (vedi Fig. 18.31):
 Quando hai aggiunto un layer WMS e inserisci un oggetto legenda, viene inviata una richiesta al server WMS per fornire una legenda WMS. Questa legenda verrà mostrata solo se il server WMS fornisce la funzionalità GetLegendGraphic. Il contenuto della legenda WMS sarà fornito come immagine raster.

Legenda WMS consente di regolare la Larghezza legenda e la Altezza legenda dell’immagine raster della legenda WMS.

**18.2. Oggetti del Layout**
Spaziatura intorno a titolo, gruppi, sottogruppi, simboli, etichette, caselle, colonne e linee può essere personalizzata attraverso questa finestra di dialogo.

18.2.6 L’oggetto Barra di Scala

Le barre di scala forniscono un’indicazione visiva della dimensione degli elementi e della distanza tra gli elementi sulla mappa. Un oggetto barra di scala richiede un oggetto mappa. Usa lo strumento Aggiungi una nuova Barra di Scala al layout seguendo items creation instructions per aggiungere un nuovo oggetto barra di scala che si può poi manipolare come esposto in Interagire con gli oggetti del layout.

Per impostazione predefinita, un nuovo oggetto barra di scala mostra la scala dell’oggetto mappa sopra il quale è disegnato. Se non c’è nessun oggetto mappa sottostante, viene utilizzata la mappa di riferimento. Puoi personalizzarla nel pannello Proprietà dell’oggetto. Oltre alle proprietà comuni, questa opzione ha le seguenti funzionalità (vedi Fig. 18.32):

Fig. 18.32: Pannello Proprietà Oggetto della Barra di scala

**Proprietà principali**

Il gruppo Proprietà Principali del pannello della barra della scala Proprietà dell’oggetto fornisce le seguenti funzionalità (vedi Fig. 18.33):

Fig. 18.33: Gruppo Proprietà Principali della Barra di Scala

1. Per prima cosa, scegli la mappa a cui la barra della scala sarà collegata
2. Poi, scegli lo stile della barra della scala. Gli stili disponibili sono:
   - **Riquadro singolo** e **Riquadro doppio** che contengono una o due linee con colori alternati;
   - **Linea con tacche al centro**, **Linea con tacche in basso** o **Linea con tacche in alto**;
   - lo stile **Linea a Gradini** che disegna una rappresentazione a tratti di una barra di scala
• stile **Vuota** che disegna una singola scatola con colore alternato per i segmenti, con linee orizzontali attraverso i segmenti alternati

• **Numerico**, dove viene riportato il rapporto di scala (ad esempio, $1:50000$).

3. Imposta le proprietà in modo adeguato

## Unità

Il gruppo **Unità** del pannello Proprietà dell’oggetto fornisce le funzionalità per impostare le unità di visualizzazione e alcune formattazioni del testo (vedi [Fig. 18.34](#)):

![Fig. 18.34: Gruppo Unità della Barra di Scala](#)

- Seleziona le unità che vuoi usare con **Unità barra di scala**. Ci sono molte scelte possibili: **Unità mappa** (quella predefinita), **Metri**, **Piedi**, **Miglia** o **Miglia nautiche**,... e alcuni derivati. La conversione delle unità è gestita automaticamente.

- **Moltiplicare unità etichetta** specifica quante unità di scala a barre per unità etichettata. Ad esempio, se la tua unità di misura è impostata su «metri», un moltiplicatore di 1000 provocherà le etichette in «chilometri».

- **Etichetta per unità** definisce il testo usato per descrivere le unità della barra di scala, ad esempio m o km. Questo dovrebbe essere abbinato in modo da riflettere il moltiplicatore di cui sopra.

- Premi **Personalizza** accanto a **Formato numero** per avere il controllo su tutte le proprietà di formattazione dei numeri nella barra della scala, inclusi i separatori delle migliaia, le posizioni decimali, la notazione scientifica, ecc. (vedi [Formattazione numeri](#) per maggiori dettagli). Molto utile nel caso in cui si facciano mappe per un pubblico al di fuori del paese di appartenenza di QGIS, o quando si vuole variare lo stile dai valori predefiniti del paese (per esempio aggiungendo i separatori delle migliaia quando il valore predefinito del paese è di nasconderli).
Segmenti

Il gruppo guilabel: Segamenti del pannello Proprietà dell’oggetto fornisce le funzionalità per configurare il numero e la dimensione dei segmenti e delle suddivisioni (vedi Fig. 18.35):

- Puoi definire il numero di Segamenti che saranno disegnati a sinistra e a destra dello 0 della barra della scala:
  - numero di suddivisioni di un unico segmento sul lato Sinistro
  - numero di segmenti sul lato Destro

- Puoi impostare quanto sarà lungo un segmento (Larghezza fissata), o limitare la dimensione della barra in mm con l’opzione Adatta la larghezza del segmento. Nel secondo caso, ogni volta che la scala della mappa cambia, la barra della scala viene ridimensionata (e la sua etichetta aggiornata) per adattarsi all’intervallo impostato.

- Altezza serve per regolare lo spessore della barra.

- Sottodivisioni dei segmenti di destra è usato per definire il numero di sezioni che i segmenti del lato destro della barra della scala possono avere (per gli stili di barra della scala Linea con Tacche in Basso, Linea con Tacche al Centro e Linea con Tacche in Alto).

- Altezza suddivisioni è usato per definire l’altezza del segmento di suddivisione.

Visualizza

Il gruppo Visualizza del pannello Proprietà dell’oggetto della barra di scala fornisce le seguenti funzionalità:
Puoi definire come verrà visualizzata la barra di scala nella sua cornice.

- **Margine box**: spazio tra i confini del testo e della cornice
- **Margine etichetta**: spazio tra il testo e il disegno della barra della scala
- **Posizionamento verticale etichetta**: può essere sopra o sotto il segmento della barra della scala
- **Posizionamento orizzontale etichetta**: che potrebbe essere centrata sul margine o sul centro del segmento della barra di scala.
- **Riempimento primario e Riempimento secondario** del disegno della barra di scala usando *fill symbols properties* (colore, opacità, pattern, effetti…) — per gli stili *Riquadro Singolo*, *Riquadro Doppio* e *Vuoto*.
- **Stile linea** del disegno della barra di scala usando *line symbols properties* (colore, tratto, giunzione, stile del terminale, pattern, effetti…) — per tutti tranne lo stile *Numerico*.
- **Stile divisione e Stile di Suddivisione** rispettivamente per i segmenti di divisione e suddivisione in *Linea con Tacche in Basso*, *Linea con Tacche al Centro* e *Linea con Tacche in Alto* stili di barra di scala usando *line symbols properties* (colore, tratto, giunzione, stile del terminale, modelli, effetti…)
- **Allineamento** mette il testo a sinistra, al centro o a destra della cornice (solo per lo stile barra di scala *Numerico*)
- **Carattere** per impostare le *properties* (dimensione, carattere, colore, spaziatura delle lettere, ombra, sfondo…) dell’etichetta della barra della scala.

Poiché la maggior parte delle proprietà di visualizzazione della barra di scala si basano su simboli le cui proprietà possono essere definite dai dati, è possibile riprodurre barre di scala definite dai dati.

**Esempio**: Il seguente codice applicato alla proprietà bold delle etichette della scala mostrerà i numeri in grassetto quando sono un multiplo di 500:

```python
-- returns True (or 1) if the value displayed on the bar
-- is a multiple of 500
@scale_value % 500 = 0
```
18.2.7 Oggetti Tabella

Puoi utilizzare gli oggetti tabella per decorare e spiegare la tua mappa

- **Attribute table**: mostra un sottoinsieme degli attributi di un vettore, in base a regole predefinite
- **Fixed table**: inserisce una tabella di testo manuale dove le informazioni possono essere indipendenti dai vettori.

**L’oggetto tabella degli attributi**

Ogni vettore del progetto può avere i suoi attributi visualizzati nel layout di stampa. Usa lo strumento **Aggiungi Tabella Attribute** seguendo *items creation instructions* per aggiungere una nuova tabella che potrai poi manipolare come indicato in *Interagire con gli oggetti del layout*.

Per impostazione predefinita, un nuovo oggetto tabella degli attributi carica le prime righe del primo layer (in ordine alfabetico), con tutti i campi. Puoi comunque personalizzare la tabella grazie al suo pannello *Proprietà dell’oggetto*. Oltre alle *items common properties*, questa opzione ha le seguenti funzionalità (vedi Fig. 18.37):

![Attribute table](image)

*Fig. 18.37: Pannello Proprietà Oggetto per la Tabella degli attributi*

**Proprietà principali**

Il gruppo *Proprietà Principali* della tabella degli attributi fornisce le seguenti funzionalità (vedi Fig. 18.38):

![Main Properties](image)

*Fig. 18.38: Gruppo Proprietà Principali della Tabella degli Attributi*

- In *Sorgente* per impostazione predefinita puoi solo selezionare **Etichetta le geometrie** che consente di selezionare un *Vettore* dai layer vettoriali caricati nel progetto.
Il pulsante **Sovrascrittura definita dai dati** vicino alla lista **Vettore** ti permette di cambiare dinamicamente il vettore che viene utilizzato per popolare la tabella, ad esempio puoi riempire la tabella degli attributi con diversi attributi del vettore per ogni pagina dell'atlante. Nota che la struttura della tabella utilizzata (Fig. 18.41) è quella del vettore mostrato nell'elenco a discesa **Vettore** ed è lasciata intatta, il che significa che impostando una tabella definita dai dati ad un vettore con campi diverso(i) si otterranno colonna(e) vuote nella tabella.

Nel caso in cui attivi l'opzione **Genera un atlante** nel pannello **Atlante** (vedi **Generazione Atlante**), ci sono due ulteriori possibili **Sorgenti**:

- **Elemento Atlante Attuale** (vedi Fig. 18.39): non vedrai nessuna opzione per scegliere il layer, e la voce della tabella mostrerà solo una riga con gli attributi dell’elemento corrente del layer di copertura dell’atlante.

- **Relazione figli** (vedi Fig. 18.40): apparirà un’opzione con i nomi delle relazioni. Questa proprietà può essere usata solo se hai definito una *relation* usando il tuo layer di copertura dell’atlante come genitore, e la tabella mostrerà le righe figlie dell’elemento corrente del layer di copertura dell’atlante.

  - Il pulsante **Aggiorna i Dati della Tabella** può essere usato per aggiornare la tabella quando il contenuto effettivo della tabella è cambiato.

  ![Fig. 18.39: Proprietà principali Tabella degli Attributi per il layer corrente dell’atlante](image)

  ![Fig. 18.40: Proprietà principali Tabella degli Attributi per “Relazione figlio”](image)

  - Il pulsante **Attributi** avvia la finestra di dialogo **Seleziona Attributi**, (vedi Fig. 18.41) che può essere usata per cambiare i contenuti visibili della tabella. La parte superiore della finestra mostra l’elenco degli attributi da visualizzare e la parte inferiore ti aiuta a ordinare i dati.
Fig. 18.41: Finestra di dialogo Selezione attributi della Tabella degli Attributi

Nella sezione Colonne puoi:

- Spostare gli attributi in alto o in basso nell'elenco selezionando le righe e quindi utilizzando i pulsanti ▲ e ▼ per spostare le righe. È possibile selezionare e spostare più righe contemporaneamente.

- Aggiungere un attributo con il pulsante +. Questo aggiungerà una riga vuota in fondo alla tabella dove è possibile selezionare un campo come valore dell'attributo o creare un attributo tramite un'espressione regolare.

- Rimuovere un attributo con il pulsante -. È possibile selezionare e rimuovere più righe contemporaneamente.

- Ripristinare la tabella degli attributi al suo stato predefinito con il pulsante Ripristina.

- Cancellare la tabella usando il pulsante Cancellla. Questo è utile quando hai una tabella grande, ma vuoi mostrare solo un piccolo numero di attributi. Invece di rimuovere manualmente ogni riga, può essere più veloce per cancellare la tabella e aggiungere le righe necessarie.

- Le intestazioni delle celle possono essere modificate aggiungendo il testo personalizzato nella colonna Intestazione.

- L'allineamento delle celle può essere gestito con Allineamento colonna che determinerà la posizione dei testi all'interno della celle della tabella.

- La larghezza delle celle può essere gestita manualmente aggiungendo valori personalizzati alla colonna Larghezza.

Nella sezione Ordina puoi:

- Aggiungi un attributo con cui ordinare la tabella: premi il pulsante + e viene aggiunta una nuova riga vuota. Inserisci un campo o un'espressione nella colonna Attributo e imposta Tipo Ordinamento in Crescente o Decrescente.
– Seleziona una riga nell’elenco e usa i pulsanti ▲ e ▼ per cambiare la priorità di ordinamento a livello di attributo. Selezionando una cella nella colonna Tipo Ordinamento ti aiuta a cambiare l’ordine di ordinamento per il campo attributo.

– Usa il pulsante ✖ per rimuovere un attributo dalla lista di ordinamento.

**Filtro delle geometrie**

Il gruppo Filtro degli elementi della tabella degli attributi fornisce le seguenti funzionalità (vedi Fig. 18.42):

Puoi:

- Definire il Numero massimo righe da visualizzare.
- Attivare Elimina righe duplicate dalla tabella per mostrare solo records univoci.
- Attivare Mostra solo le geometrie visibili nella mappa e seleziona la corrispondente Mappa collegata i cui attributi delle geometrie visibili saranno mostrati.
- Attivare Mostra solo le geometrie che intersecano le geometrie dell’Atlante è disponibile solo quando è attivato Genere un atlante. Quando attivato, mostrerà una tabella con solo le geometrie che intersecano la geometria corrente dell’atlante.
- Attivare Filtra con e fornire un filtro digitandolo nella riga di input o inserire un’espressione regolare usando il pulsante visualizzato. Alcuni esempi di istruzioni di filtraggio che puoi utilizzare quando hai caricato il layer degli aeroporti dal dataset del campione dati:
  - ELEV > 500
  - NAME = 'ANIAK'
  - NAME NOT LIKE 'AN%'
  - regexp_match( attribute( $currentfeature, 'USE' ) , '[i]' )

L’ultima espressione includerà solo gli aeroporti che hanno la lettera ‘i’ nel campo attributi ‘USE’.

Fig. 18.42: Gruppo Filtro Geometrie della Tabella degli Attributi
Aspetto

Il gruppo Aspetto della tabella degli attributi fornisce le seguenti funzionalità (vedi Fig. 18.43):

![Fig. 18.43: Gruppo Aspetto della tabella degli attributi](image)

- Fai clic su Mostra righe vuote per riempire la tabella degli attributi con celle vuote. Questa opzione può anche essere utilizzata per fornire ulteriori celle vuote quando hai un risultato da mostrare.

- Con Margini cella puoi definire il margine intorno al testo in ciascuna cella della tabella.

- Con Mostra intestazione puoi scegliere una delle opzioni in elenco: “Sulla prima cornice”, “Su tutte le cornici” o “Nessuna intestazione”.

- L'opzione Tabelle vuote controlla ciò che verrà visualizzato quando la selezione risultante è vuota:
  - Disegna solo le intestazioni, disegna solo l'intestazione, tranne se si è scelto “Nessuna intestazione” in Mostra intestazione.
  - Nascondi intera tabella, viene disegnato solo lo sfondo della tabella. Puoi attivare Non disegnare lo sfondo se la cornice è vuota in Cornici per nascondere completamente la tabella.
  - Mostra messaggio impostato, disegna l'intestazione e aggiunge una cella che attraversa tutte le colonne e visualizza un messaggio come “Nessun risultato” tche può essere fornito nell'opzione Messaggio da visualizzare.

- L'opzione Messaggio da mostrare si attiva solo quando hai selezionato Mostra messaggio impostato per Tabelle vuote. Quando il risultato è una tabella vuota il messaggio verrà mostrato nella prima riga della tabella.

- Con Colore di sfondo puoi impostare il colore di sfondo della tabella usando il widget color selector. L'opzione Personalizzazioni Avanzate... ti aiuta a definire diversi colori di sfondo per ogni cella (vedi Fig. 18.44)
Applica i colori dello stile condizionale del livello: la *conditional table formatting* presente nel vettore viene applicata all’interno della tabella degli attributi del layout (*solo i colori di sfondo e primo piano sono attualmente supportati*). Le regole di formattazione condizionale hanno la precedenza sulle altre impostazioni di formattazione della tabella di layout, ad es. sovrascriveranno altre impostazioni del colore di sfondo delle celle, come i colori delle righe alternate, casella di controllo.

Con l’opzione *Testo a capo con* puoi definire un carattere sul quale il contenuto della cella sarà mandato a capo ogni volta che viene incontrato.

Con *Testo fuori misura* definisci il comportamento quando la larghezza impostata per una colonna è inferiore alla lunghezza del suo contenuto. Può essere *Testo a capo* o *Tronca testo*.

Nota: Altre proprietà dell’oggetto tabella degli attributi sono descritte nella sezione *Tables common functionalities*.

### L’oggetto tabella fissa

Ulteriori informazioni sulla mappa possono essere inserite manualmente in una tabella scegliendo *Aggiungi Tabella Fissata* e seguendo items creation instructions 1 per aggiungere un nuovo elemento della tabella che puoi successivamente manipolare nello stesso modo esposto in *Interagire con gli oggetti del layout*.

By default, an empty table with two minimized columns and rows appears in the map layout. You have to customize the table in the *Item Properties* panel. Other than the *items common properties*, this feature has the following functionalities:
**Proprietà principali**

![Fixed Table Item Properties Panel with Table designer](image)

**Fig. 18.45: Fixed table Item Properties Panel with Table designer**

In *Main properties* you can work with the *Table designer* when clicking the *Edit table* …:

- Puoi cliccare nella tabella e inserire il testo manualmente.
- Attraverso i menù in alto è possibile:
  - *Import Content From Clipboard* by going to *File* (it overrides given inputs).
  - work with selection functionalities for rows and columns by going to *Edit*.
  - *Insert rows, Insert columns, Delete Rows, Delete Columns* as well as using the option to ![Include Header Row](image).
- You can work with the *Cell Contents* section on the right and:
  - Define the text format of selected cells in *Formatting*
    - by clicking on the given ![expression button](image) and using a regular expression for the input of the cell
    - by choosing the *Text format*
    - by ![Format as number](image) (several formats are available)
    - by defining the *Horizontal alignment* and the *Vertical alignment*
    - by choosing a *Background color*
– Define the Cell Size with Row height and Column width.

Aspetto

The Appearance group of the fixed table provides the following functionalities:

- Click Show empty rows to fill the attribute table with empty cells.
- Con Margini cella puoi definire il margine intorno al testo in ciascuna cella della tabella.
- Con Mostra intestazione puoi scegliere una delle opzioni in elenco: “Sulla prima cornice”, “Su tutte le cornici” o “Nessuna intestazione”.
- With Background color you can set the background color of the table using the color selector widget. The Advanced customization option helps you define different background colors for each cell.
- Con Testo fuori misura definisci il comportamento quando la larghezza impostata per una colonna è inferiore alla lunghezza del suo contenuto. Può essere Testo a capo o Tronca testo.

Nota: More properties of the fixed table item are described in the Tables common functionalities section.

Tables common functionalities

Visualizza reticolo

The Show grid group of the table items provides the following functionalities (see Fig. 18.46):

Fig. 18.46: Gruppo Visualizza reticolo della tabella degli attributi

- Attiva Visualizza reticolo quando vuoi visualizzare il reticolo, i contorni delle celle della tabella. Puoi anche selezionare Disegna linee orizzontali o Disegna linee verticali o entrambe.
- Con Spessore linea puoi impostare lo spessore delle linee utilizzate nel reticolo.
- Il Colore del reticolo può essere impostato utilizzando il widget di selezione del collore.

Caratteri e stile testo

The Fonts and text styling group of the table items provides the following functionalities (see Fig. 18.47):

18.2. Oggetti del Layout 629
You can define Font properties for Table heading and Table contents, using the advanced text settings widget (with buffer, shadow, paint effects, transparency, background, coloring, ...). Note that these changes do not affect the cells that have custom font assigned, either from the Appearance section or the Table Designer dialog. Only cells with the default rendering are overwritten.

For Table heading you can additionally set the Alignment to Follow column alignment or override this setting by choosing Left, Center or Right. The column alignment is set using the Select Attributes dialog (see Fig. 18.41).

Cornici

The Frames group of the table item properties provides the following functionalities (see Fig. 18.48):

- **Con Modalità ridimensionamento** puoi scegliere come visualizzare il contenuto della tabella degli attributi:
  - Usa cornici esistenti visualizza il risultato nella prima cornice e solo nelle cornici aggiunte.
  - Estendi fino a pagina creerà tutte le cornici (e le pagine corrispondenti) necessarie per visualizzare la selezione completa della tabella degli attributi. Ogni cornice può essere spostata sul layout. Se si ridimensiona una cornice, la tabella risultante sarà divisa tra le altre cornici. L’ultima cornice sarà ritagliata per adattarsi alla tabella.
  - Ripeti fino alla fine creerà anche tante cornici quante sono con l’opzione Estendi fino a pagina successiva, tranne che tutte le cornici avranno la stessa dimensione.

- **Usa il pulsante Aggiungi cornice** per aggiungere un'altra cornice con le stesse dimensioni della cornice selezionata. Il risultato della tabella che non rientra nella prima cornice continuerà nella cornice successiva quando si utilizza la modalità di ridimensionamento Usa cornici esistenti.

- **Attiva Non esportare la pagina se la cornice è vuota** impedisce di esportare la pagina quando il riquadro della tabella non ha contenuto. Questo significa che tutti gli altri elementi del layout, mappe, barra di scala, legende, ecc. non saranno visibili nel risultato.

- **Attiva Non disegnare lo sfondo se la cornice è vuota** per non avere lo sfondo quando la cornice non ha contenuti della tabella.
18.2.8 Gli Oggetti Immagine e Freccia Nord

L’oggetto Immagine è uno strumento che aiuta a decorare la tua mappa con immagini, loghi… Può anche essere usato per aggiungere frecce nord, indipendentemente dallo strumento specifico North arrow.

L’Oggetto Immagine

Puoi aggiungere un’immagine trascinandola dal tuo file manager sulla mappa, o usando il comando seguendo items creation instructions. Poi puoi gestirla, come spiegato in Interagire con gli oggetti del layout.

Quando si usa Aggiungi Immagine, l’oggetto immagine risulterà una cornice vuota che puoi personalizzare usando il suo pannello Proprietà dell’oggetto. Oltre alle proprietà comuni items common properties, questo oggetto ha le seguenti funzionalità (vedi Pannello Immagine delle Proprietà dell’oggetto):

Fig. 18.49: Pannello Immagine delle Proprietà dell’oggetto

Ci sono diversi modi per selezionare l’immagine che si vuole visualizzare:

1. Usa il pulsante … Selezione file per selezionare un file sul tuo computer. Il browser si avvierà nelle librerie SVG fornite con QGIS. Puoi anche selezionare altri formati di immagine (come .png o .jpg).


3. Puoi selezionare un’immagine dalle anteprime caricate per impostare la sorgente dell’immagine. Queste immagini sono fornite di default dalle cartelle impostate in Impostazioni ► Opzioni ► Sistema ► Percorsi SVG.

4. Usa il pulsante sovrascrittura definita dai dati per impostare la sorgente immagine da un attributo di un elemento o usando un’espressione regolare.

Nota: Puoi aggiungere File SVG con l’opzione Seleziona File…..
Con l’opzione Modalità ridimensionamento, puoi impostare come l’immagine viene visualizzata quando la cornice viene ridimensionata:

- **Zoom**: ingrandisce/riduce l’immagine alla cornice mantenendo le proporzioni dell’immagine
- **Stiramento**: espande l’immagine per adattarla all’interno della cornice
- **Ritagli**: usa questa modalità solo per le immagini raster, imposta la dimensione dell’immagine alla dimensione dell’immagine originale senza ridimensionarla, e la cornice è usata per tagliare l’immagine. Così solo la parte dell’immagine che è all’interno della cornice sarà visibile.
- **Zoom e Ridimensionamento Cornice**: ingrandisce l’immagine per adattarla alla cornice, e poi ridimensiona la cornice per adattarla alle dimensioni dell’immagine risultante
- **Ridimensionamento Cornice a Dimensione immagine**: imposta la dimensione della cornice per corrispondere alla dimensione originale dell’immagine (nessun ridimensionamento)

A seconda della Modalità ridimensionamento selezionata, le opzioni Posizionamento e Rotazione immagine possono essere disabilitate. Posizionamento ti permette di selezionare la posizione dell’immagine all’interno della cornice.

I file .SVG forniti da QGIS (di default) sono personalizzabili, il che significa che puoi facilmente applicare altri Colore di riempimento, Colore tratto (inclusa l’opacità) e Spessore tratto rispetto all’originale, usando la loro proprietà corrispondente nel gruppo Parametri SVG. Queste proprietà possono anche essere *data-defined*.

Se aggiungi un file .SVG che non abilita queste proprietà, potrebbe essere necessario aggiungere i seguenti tag al file per aggiungere il supporto ad esempio per la trasparenza:

- `fill-opacity=param(fill-opacity)`
- `stroke-opacity=param(outline-opacity)`

Per vedere un esempio puoi leggere questo [blog post](#).

Le immagini possono essere ruotate con il campo Rotazione Immagine. Attivando la casella di controllo Sincronizza con la mappa si sincronizza la rotazione dell’immagine con la rotazione applicata ad un elemento selezionato della mappa. Questa è una caratteristica conveniente per le frecce nord che puoi allineare con:

- **Nord Reticolo**: la direzione di una linea del reticolo che è parallela al meridiano centrale del reticolo nazionale/locale
- **Nord Vero**: direzione di un meridiano di longitudine.

Puoi inoltre applicare una declinazione Offset alla rotazione dell’immagine.

**L’Oggetto Freccia Nord**

Puoi aggiungere una freccia nord con il pulsante ![Aggiungi freccia nord](#), seguendo le istruzioni di creazione di items `e manipolarla nello stesso modo come descritto in :ref:`interact_layout_item`. Poiché le frecce nord sono immagini, l’oggetto *Freccia Nord* ha le stesse proprietà di *picture item*. Le principali differenze sono:

- Una freccia nord predefinita viene applicata quando si aggiunge l’oggetto, invece di una cornice vuota
- L’oggetto freccia nord è sincronizzato con un oggetto mappa per impostazione predefinita: la proprietà *Sincronizza con la mappa* è la mappa su cui è disegnato l’oggetto freccia nord. Se non ce n’è nessuna, si ricade in *reference map*.

**Nota**: Molte delle frecce nord non hanno una “N” aggiunta nella freccia nord. Questo viene fatto di proposito, poiché ci sono lingue che non usano una “N” per il Nord.
18.2.9 La cornice HTML

È possibile aggiungere una cornice che visualizza il contenuto di un sito web o anche creare e stilizzare la propria pagina HTML e visualizzarla! Puoi aggiungere un’immagine con il comando guilabel: Aggiungi HTML seguendo *items creation instructions* e manipolarlo nello stesso modo esposto in *Interagire con gli oggetti del layout*. Nota che la scala dell’HTML è controllata dalla risoluzione di esportazione del layout al momento della creazione del frame HTML.

L’oggetto HTML può essere personalizzato utilizzando il suo pannello *Proprietà dell’oggetto*. Oltre a *items common properties*, questo oggetto ha le seguenti funzionalità (vedi Fig. 18.51):

![HTML frame panel](image)

Fig. 18.51: Cornice HTML, il Pannello Proprietà dell’oggetto
Sorgente HTML

Il gruppo Sorgente HTML del pannello HTML :guilabel: Proprietà dell’oggetto fornisce le seguenti funzionalità (vedi Fig. 18.52):

![Fig. 18.52: Cornice HTML, le proprietà Sorgente HTML](image)

- Nell’ URL puoi inserire l’URL di una pagina web che hai copiato dal tuo browser Internet o selezionare un file HTML usando il pulsante …. Sfoglia. C’è anche la possibilità di usare il pulsante Sovrascrittura definita dai dati, per fornire un URL dal contenuto di un campo attribuito di una tabella o usando un’espressione regolare.
- In Sorgente puoi inserire il testo nella casella con tag HTML o fornire una pagina HTML completa.
- Il pulsante Inserisco o Modifica una Espressione... può essere usato per aggiungere un’espressione come [%Year($now)%] nella casella di testo Sorgente per visualizzare l’anno corrente. Questo pulsante viene attivato solo quando viene selezionato il pulsante di scelta Sorgente. Dopo aver inserito l’espressione cliccare da qualche parte nella casella di testo prima di aggiornare la cornice HTML, altrimenti si perde l’espressione.
- Attiva Valuta le espressioni QGIS in HTML per vedere il risultato dell’espressione che hai incluso.
- Usa il pulsante Aggiorna HTML per aggiornare la(e) cornice(i) HTML e vedere il risultato delle modifiche.

Cornici

Il gruppo Cornici del pannello HTML Proprietà dell’oggetto fornisce le seguenti funzionalità (vedi Fig. 18.53):

![Fig. 18.53: Cornice HTML, proprietà cornici](image)

- Con Modalità ridimensionamento puoi scegliere come visualizzare il contenuto HTML
  - Usa cornici esistenti visualizza il risultato nella prima cornice e solo nelle cornici aggiunte.
  - Estendi fino a pagina successiva creerà tante cornici (e le pagine corrispondenti) quante necessarie per essere visualizzate nell’altezza della pagina web. Ogni cornice può essere spostata sul layout. Se si ridimensiona una cornice, la pagina web sarà suddivisa tra le altre cornici. L’ultima cornice sarà ridotta per adattarsi al contenuto residuo della pagina web.
  - Ripeti su ogni pagina ripeterà la parte superiore sinistra della pagina web su ogni pagina in cornici della stessa dimensione.
- Ripeti fino alla fine creerà anche tante cornici come per l’opzione Estendi fino a pagina successiva, ma tutte le cornici avranno la stessa dimensione.

- Utilizza il pulsante Aggiungi cornice per aggiungere un’altra cornice con la stessa dimensione della cornice selezionata. Se la pagina HTML non si inserisce nella prima cornice, continuerà nella cornice successiva quando utilizzi la Modalità ridimensionamento o Usa cornici esistenti.

- Attiva Non esportare la pagina se la cornice è vuota impedisce l’esportazione del layout della mappa quando la cornice non contiene contenuti HTML. Questo significa che tutti gli altri elementi del layout, mappe, barre di scala, legende, ecc. non saranno visibili nel risultato.

- Attiva Non disegnare lo sfondo se la cornice è vuoto impedisce che la cornice HTML venga disegnata se il contenuto della cornice è vuoto.

### Usa Interruzioni di Pagina Intelligenti e fogli di stile Utente

La finestra di dialogo Usa Interruzioni di Pagina Intelligenti e Foglio di Stile Utente del pannello HTML Proprietà dell’Oggetto fornisce le seguenti funzionalità (vedi Fig. 18.54):

![Usa Interruzioni di Pagina Intelligenti e Foglio di Stile Utente](image)

**Fig. 18.54: Proprietà Cornice HTML, Usa interruzioni di pagina intelligente e Foglio di stile utente**

- Attiva Usa interruzioni di pagina intelligenti per impedire che i contenuti della cornice HTML vadano a capo a metà strada di una riga di testo in modo che venga proposta in modo adeguato e senza interruzioni nella cornice successiva.

- Imposta Distanza massima per definire dove posizionare le interruzioni di pagina nell’HTML. Questa distanza è la quantità massima di spazio vuoto consentito in fondo a una cornice dopo aver calcolato la posizione di rotture ottimale. L’impostazione di un valore più grande determinerà una migliore scelta della posizione di interruzione della pagina, ma più spazio sprecato nella parte inferiore delle cornici. Questa opzione viene utilizzata solo quando viene attivato l’uso delle interruzioni delle pagine intelligenti.

- Attiva Foglio di stile utente per applicare gli stili HTML spesso forniti nei fogli di stile a cascata. Un esempio di codice di stile è fornito di seguito per impostare il colore del `<h1>` tag di intestazione in verde e impostare il font e la dimensione del font in verde del testo incluso nei tag di paragrafo `<p>`.

```css
h1 {color: #00ff00; }
p {font-family: "Times New Roman", Times, serif; font-size: 20px; }
```

- Usa il pulsante Aggiorna HTML per vedere il risultato del foglio di stile definito.
18.2.10 Oggetti Forma

QGIS fornisce un paio di strumenti per disegnare forme regolari o più complesse sul layout di stampa.

Nota: A differenza di altri oggetti del layout di stampa, non puoi applicare stili alla cornice né definire il colore di sfondo della cornice di delimitazione delle forme (impostata per impostazione predefinita su trasparente).

Oggetto Forma Regolare

L’oggetto *Forma* è uno strumento che permette di decorare la mappa con forme regolari come triangolo, rettangolo, ellisse….. Puoi aggiungere una forma regolare usando lo strumento *Aggiungi Forma* che dà accesso a particolari strumenti come *Aggiungi Rettangolo*, *Aggiungi Ellisse* e *Aggiungi Triangolo*. Una volta selezionato lo strumento appropriato, puoi disegnare l’oggetto seguendo *items creation instructions*. Come altri oggetti del layout, una forma regolare può essere manipolata nello stesso modo in *Interagire con gli oggetti del layout*.

Nota: Tenendopremuto il tasto *Shift* mentre stai disegnando la forma di base con il metodo clic e sposta crei un un quadrato, un ellisse o un triangolo perfetto.

L’oggetto forma predefinito può essere personalizzato utilizzando il suo pannello *Proprietà dell’oggetto*. Oltre alle proprietà comuni *items common properties*, questo oggetto ha le seguenti funzionalità (vedi Fig. 18.55):

![Fig. 18.55: Pannello Proprietà Principali dell'Oggetto Forma](image)

Il gruppo *Proprietà Principali* mostra e permette di cambiare il tipo di oggetto forma (*Ellisse*, *Rettangolo* o *Triangolo*) all’interno della cornice data.

Puoi impostare lo stile della forma utilizzando il widget avanzato di selezione *simbolo e colore*.

Per la forma rettangolo, puoi impostare in unità diverse il valore del *Raggio degli angoli* per arrotondare gli angoli.
Oggetti Forma a Nodi  

Mentre lo strumento Aggiungi Forma fornisce il modo per creare elementi geometrici semplici e predefiniti, lo strumento Aggiungi Nodo aiuta a creare un elemento geometrico personalizzato e più complesso. Per polilinee o poligoni, puoi disegnare tutte le linee o i lati che vuoi e i vertici degli elementi possono essere manipolati indipendentemente e direttamente utilizzando lo strumento Modifica Nodi. L’oggetto stesso può essere manipolato come esposto in Interagire con gli oggetti del layout.

Per aggiungere una forma a base di nodi:

1. Clicca l'icona Aggiungi Nodo.
2. Seleziona gli strumenti Aggiungi Poligono o Aggiungi Polilinea.
3. Esegui clic consecutivi con tasto sinistro per aggiungere nodi del tuo oggetto. Se tieni premuto il tasto Shift mentre disegni un segmento, sarà vincolato a seguire un orientamento multiplo di 45°.
4. Quando hai finito, clicca col destro per terminare la forma.

Puoi personalizzare l’aspetto della forma nel pannello Proprietà Oggetto.

![Pannello Poligono Nodo nelle Proprietà dell’oggetto](image)

**Fig. 18.56: Pannello Poligono Nodo nelle Proprietà dell’oggetto**

Nelle Proprietà Principali, puoi impostare lo stile della forma utilizzando il widget avanzato di selezione simbolo e colore.

Per gli oggetti polilinea a nodi, puoi anche parametrizzare il parametro Simboli Linea ad esempio:

- simboli di inizio e/o fine con opzioni:
  - Nessuno: disegna una polilinea semplice.
  - Freccia: aggiunge in punta una normale freccia triangolare che è possibile personalizzare.
  - simbolo SVG: utilizza come freccia un file SVG all’estremità dell’elemento.
- personalizza la testa della freccia:
  - Colore tratto della freccia: imposta il colore di contorno della testa della freccia.
  - Colore riempimento freccia: imposta il colore di riempimento della testa della freccia.
  - Spessore tratto freccia: imposta lo spessore del contorno della testa della freccia.
  - Larghezza punta freccia: imposta la dimensione della testa della freccia.

Le immagini SVG vengono ruotate automaticamente con la linea. I colori predefiniti di QGIS per le linee e per il riempimento delle immagini SVG possono essere modificati utilizzando le opzioni corrispondenti. Le SVG personalizzate possono chiedere di definire alcuni tag seguendo queste istruzioni.
Aggiungi Freccia è un scorcioatoia per creare una polilinea con freccia, che quindi ha le stesse proprietà e lo stesso comportamento di una polilinea a nodi.

In realtà, l'oggetto freccia può essere utilizzato per aggiungere una semplice freccia, ad esempio, per mostrare la relazione tra due diversi oggetti del layout di stampa. Tuttavia, per creare una freccia nord, la freccia dovrebbe essere considerata la scelta migliore in quanto dà accesso ad una serie di freccie nord nel formato .SVG che è possibile sincronizzare con un oggetto della mappa in modo che ruoti automaticamente con esso.

Fig. 18.57: Pannello Polilinea Nodo nelle Proprietà dell'oggetto
Modificare un oggetto geometria a nodi

Per la modifica di forme basate su nodi viene fornito uno strumento specifico tramite Modificare un oggetto geometria a nodi. All’interno di questa modalità, è possibile selezionare un nodo facendo clic su di esso (un marcatore viene visualizzato sul nodo selezionato). Un nodo selezionato può essere spostato trascinandolo o utilizzando i tasti freccia. Inoltre, in questa modalità, puoi aggiungere nodi a una forma esistente: fai doppio clic su un segmento e un nodo viene aggiunto nel punto in cui hai fatto clic. Infine, puoi rimuovere il nodo attualmente selezionato premendo il tasto Del.

18.3 Creare un Output

Fig. 18.58 mostra un esempio di layout di stampa che include tutti i tipi di elementi di layout descritti nella sezione precedente.

Fig. 18.58: Layout di stampa con visualizzazione della mappa, legenda, immagine, barra di scala, coordinate, testo e cornice HTML aggiunti

Dal menu Layout o dalla barra degli strumenti, puoi stampare il layout di stampa in diversi formati di file, ed è possibile modificare la risoluzione (qualità di stampa) e le dimensioni della carta:

- L’icona sup: Stampa ti permette di stampare il layout su una stampante collegata o su un file PostScript, a seconda dei driver di stampa installati.
- L’icona Esporta come Immagine… esporta i formati immagine del layout di stampa come PNG, BMP, TIF, JPG, e molti altri…
- L’icona Esporta come SVG… salva il layout di stampa come SVG (Scalable Vector Graphic).
- L’icona Esporta come PDF… salva il layout di stampa definito direttamente come file PDF (Portable Document Format).
18.3.1 Impostazioni per l’esportazione

Ogni volta che si esporta un layout di stampa, c’è una selezione di impostazioni di esportazione che QGIS deve controllare per produrre il risultato più appropriato. Queste configurazioni sono:

- Escludi pagina dalle esportazioni nel pannello page item properties
- Escludi oggetto dalle esportazioni nel pannello :ref:`item properties <layout_Rendering_Mode>`

18.3.2 Esportare in formato Immagine

Per esportare un layout come immagine:

1. Clicca sull’icona Esporta come immagine…
2. Seleziona il formato dell’immagine, la cartella e il nome del file da usare (ad esempio myill.png). Se il layout contiene più di una pagina, ogni pagina verrà esportata in un file con il nome del file dato con l’aggiunta del numero di pagina (ad esempio myill_2.png).
3. Nella successiva finestra di dialogo (Opzioni Esportazione Immagine):
   - Puoi sovrascrivere il layout di stampa Risoluzione di esportazione e le dimensioni della pagina esportata (come impostato nel pannello Layout).
   - La rappresentazione delle immagini può anche essere migliorata con l’opzione Attiva l’antialias.
   - Se vuoi esportare il tuo layout come immagine georeferenziata (per esempio, per condividerla con altri progetti), seleziona l’opzione Genera il world file, e un ESRI World File con lo stesso nome dell’immagine esportata, ma un’estensione diversa (.tfw per TIFF, .pnw per PNG, .jgw per JPEG, ...) sarà creato all’esportazione. Questa opzione può anche essere selezionata di default nel layout panel.

Nota: Per il risultato a più pagine, solo la pagina che contiene la reference map otterrà un world file (assumendo che l’opzione Genera il world file sia selezionata).

- Selezionando l’opzione !checkbox! Taglia al Contenuto, l’immagine prodotta dal layout includerà l’area minima che racchiude tutti gli elementi (mappa, legenda, barra di scala, forme, etichetta, immagine…. ) di ogni pagina della composizione:
  - Se la composizione include una singola pagina, allora l’output viene ridimensionato per includere TUTTO nella composizione. La pagina può quindi essere ridotta o estesa a tutti gli oggetti a seconda della loro posizione (sopra, sopra, sotto, a sinistra o a destra della pagina).
  - Nel caso di un layout a più pagine, ogni pagina sarà ridimensionata per includere gli oggetti nella sua area (lati destro e sinistro per tutte le pagine, più in alto per la prima pagina e in basso per l’ultima pagina). Ogni pagina ridimensionata viene esportata in un file separato.

La finestra di dialogo Taglia al contenuto ti permette anche di aggiungere margini intorno ai limiti ritagliati.
Fig. 18.59: Opzioni di esportazione delle immagini, l'output viene ridimensionato alla estensione degli oggetti

**Suggerimento:** Utilizza formati immagine che supportano la trasparenza quando gli oggetti si estendono oltre l'estensione della carta

Gli oggetti del layout possono essere posizionati al di fuori dell'estensione della carta. Quando si esporta con l'opzione *Taglia al contenuto*, l'immagine risultante può quindi estendersi oltre l'estensione della carta. Essendo lo sfondo al di fuori dell'estensione della carta trasparente, per i formati di immagine che non supportano la trasparenza (ad esempio BMP e JPG) lo sfondo trasparente sarà reso come completamente nero, «corrompendo» l'immagine. Usa formati compatibili con la trasparenza (per esempio TIFF e PNG) in questi casi.

**Nota:** Quando è supportato dal formato (ad esempio PNG) e dalla libreria Qt sottostante, l'immagine esportata può includere *project metadata* (autore, titolo, data, descrizione…)

### 18.3.3 Esportare in formato SVG

Per esportare un layout come SVG:

1. Fai clic sull'icona ☐️ Esporta come SVG.

2. Inserisci il percorso e il nome del file (usato come nome di base per tutti i file in caso di composizione di più pagine, come per l'esportazione di immagini)

3. Nella successiva finestra di dialogo *Opzioni Esportazione SVG*, puoi sovrascrivere il layout predefinito *export settings* o configurare nuove impostazioni:
   - ☐️ *Esporta layer come gruppi SVG*: gli elementi esportati sono raggruppati all'interno di layer il cui nome corrisponde ai nomi dei layer da QGIS, rendendo molto più facile capire il contenuto del documento.
   - ☐️ *Esporta sempre come vettori*: alcune opzioni di visualizzazione richiedono che gli oggetti siano rasterizzati per una migliore rappresentazione. Seleziona questa opzione per mantenere gli oggetti come vettori con il rischio che l'aspetto del file di output possa non corrispondere all'anteprima del layout di stampa (per maggiori dettagli, vedi *Impostazioni per l'esportazione*).
   - ☐️ *Esporta RDF metadata* del documento come il titolo, l'autore, la data, la descrizione…
• **Semplifica geometrie per ridurre le dimensioni del file in uscita**: questo evita di esportare TUTTI i vertici della geometria, il che può risultare in un file di esportazione eccessivamente complesso e di grandi dimensioni che potrebbe non caricarsi in altre applicazioni. Le geometrie saranno semplificate durante l'esportazione del layout al fine di rimuovere tutti i vertici ridondanti che non sono discernibilmente diversi alla risoluzione di esportazione (ad esempio, se la risoluzione di esportazione è di 300 dpi, i vertici che sono a meno di 1/600 pollici saranno rimossi).

• Imposta l'opzione *Esporta testo*: controlla se le etichette di testo sono esportate come veri e propri oggetti di testo (*Esporta sempre Testo come Oggetto*) o solo come percorsi (*Esporta sempre Testo come percorso*). Se sono esportati come oggetti di testo, possono essere modificati in applicazioni esterne (per esempio Inkscape) come testo normale. MA l'effetto collaterale è che la qualità della restituzione è ridotta, E ci sono problemi con la restituzione quando certe impostazioni di testo come i buffer sono presenti. Ecco perché si raccomanda di esportare come percorsi.

• **Applica Taglia al Contenuto option**

• **Disabilita le esportazioni dei raster tassellati**: Quando si esportano i file, QGIS usa una rappresentazione strutturata di layer raster a tasselli che risparmia memoria. A volte, questo può causare «giunzioni» visibili nei raster per i file generati. Selezionando questa opzione si risolverebbe il problema, al costo di un maggiore utilizzo di memoria durante le esportazioni.

![Fig. 18.60: Opzioni esportazione SVG](image)

**Nota:** Attualmente l'output SVG è molto scarno. Questo non è un problema QGIS, ma un problema con la libreria Qt sottostante. Questo sarà probabilmente risolto nelle versioni future.

### 18.3.4 Esportare in formato PDF

Per esportare un layout come PDF:

1. Fai clic sull'icona ![Esporta come PDF...](image)

2. Inserisci il percorso e il nome del file: a differenza dell'esportazione di immagini e SVG, tutte le pagine del layout vengono esportate in un unico file PDF.

3. Nella prossima finestra di dialogo *Opzioni Esportazione PDF*, puoi sovrascrivere il layout predefinito *export settings* o configurare nuove impostazioni:
- **Esporta sempre come vettori**: alcune opzioni di visualizzazione richiedono che gli oggetti siano rasterizzati per una migliore rappresentazione. Seleziona questa opzione per mantenere gli oggetti come vettori con il rischio che l'aspetto del file di output possa non corrispondere all'anteprima del layout di stampa (per maggiori dettagli, vedi *Impostazioni per l'esportazione*).

- **Aggiungi informazione georeferenziata**: disponibile solo se la *reference map*, da cui sono prese le informazioni, è nella prima pagina.

- **Esporta RDF metadata del documento come il titolo, l'autore, la data, la descrizione…**

- **Imposta l’*Esportazione testo*: controlla se le etichette di testo vengono esportate come oggetti di testo propriamente detti (*Esporta Sempre Testo come Oggetti*) o solo come percorsi (*Esporta Sempre Testo come Percorso*). Se vengono esportati come oggetti di testo, allora possono essere modificati in applicazioni esterne (p.e. Inkscape) come testo normale. MA l’effetto collaterale è che la qualità della restituzione risulta inferiore. E ci sono problemi con la restituzione quando certe impostazioni di testo come i buffer sono presenti. Questo è il motivo per cui si raccomanda di esportare come percorsi.

- **Controlla il PDF usando Compressione immagine:**
  - *Lossy (JPEG)*, che è la modalità di compressione predefinita
  - *O Lossless*, che crea file più grandi nella maggior parte dei casi, ma è molto più adatto per risultati di stampa o per la post-produzione in applicazioni esterne (richiede Qt 5.13 o successivo).

- **Crea PDF Geospaziale (GeoPDF)**: Genera un file PDF georeferenziato (richiede GDAL versione 3 o successiva).

- **Disabilita le esportazioni dei raster tassellati**: Quando si esportano i file, QGIS usa una rappresentazione strutturata di layer raster a tasselli che risparmia memoria. A volte, questo può causare «giunzioni» visibili nei raster per i file generati. Selezionando questa opzione si risolverebbe il problema, al costo di un maggiore utilizzo di memoria durante le esportazioni.

- **Semplifica geometrie per ridurre le dimensioni del file in uscita**: questo evita di esportare TUTTI i vertici della geometria, il che può risultare in un file di esportazione eccessivamente complesso e di grandi dimensioni che potrebbe non caricarsi in altre applicazioni. Le geometrie saranno semplificate durante l’esportazione del layout al fine di rimuovere tutti i vertici ridondanti che non sono discernibilmente diversi alla risoluzione di esportazione (ad esempio, se la risoluzione di esportazione è di 300 dpi, i vertici che sono a meno di 1/600 pollici saranno rimossi).

![Fig. 18.61: Opzioni esportazione PDF](image-url)
Nota: Da QGIS 3.10, con GDAL 3, l'esportazione GeoPDF è supportata e sono disponibili diverse opzioni specifiche per GeoPDF:

- **Formato** (formato GeoPDF - ci sono alcune versioni di GeoPDF),
- **Includere temi mappa multiple** (specificare i temi mappa da includere),
- **Includere informazioni elementi vettoriali** (segregare i layer e raggrupparli in gruppi logici PDF).

Nota: L'esportazione di un layout di stampa in formati che supportano la georeferenziazione (ad esempio, PDF e TIFF) crea un risultato georeferenziato per impostazione predefinita.

### 18.3.5 Generazione Atlante

Le funzioni di Atlante ti permettono di creare album di mappe in modo automatico. Atlante usa gli elementi di una tabella o di un layer vettoriale (*Layer di Copertura*) per creare un risultato per ogni elemento (*elemento atlante*) nella tabella / layer. L’uso più comune è quello di zoomare un elemento della mappa sulla caratteristica corrente dell’atlante. Altri casi d’uso includono:

- un oggetto mappa che mostra, per un altro layer, solo gli elementi che condividono lo stesso attributo dell’elemento dell’atlante o che si trovano nella sua geometria.
- un’etichetta o un elemento HTML il cui testo viene sostituito quando gli elementi vengono iterati
- un oggetto tabella che mostra gli attributi degli oggetti associati parent or children all’oggetto corrente dell’atlante….

Per ogni elemento, il risultato viene elaborato per tutte le pagine e gli elementi secondo le loro impostazioni di esportazione.

**Suggerimento: Usare le variabili per una maggiore flessibilità**

QGIS fornisce un ampio pannello di funzioni e *variables*, incluse quelle relative all’atlante, che puoi usare per manipolare gli elementi del layout, ma anche la simbologia dei layer, secondo lo stato dell’atlante. La combinazione di queste funzionalità ti dà molta flessibilità e ti aiuta a produrre facilmente mappe avanzate.

Per abilitare la generazione di un atlante e accedere ai parametri dell’atlante, fai riferimento al pannello *Atlante*. Questo pannello contiene quanto segue (vedi Fig. 18.62):

![Fig. 18.62: Pannello Atlante](image)
• **Genera un atlante** abilita o disabilita la generazione dell’atlante.

• **Configurazione**
  
  – Una casella combinata *Layer di copertura* che permette di scegliere la tabella o il layer vettoriale contenente gli elementi su cui iterare.

  – Una opzionale *Layer di copertura nascosto* che, se selezionata, nasconderà il layer di copertura (ma non gli altri layer) durante la generazione.

  – Una casella combinata opzionale *Nome pagina* per specificare il nome della(e) pagina dell’elemento. È possibile selezionare un campo del layer di copertura o impostare una expression. Se questa opzione è vuota, QGIS userà un ID interno, secondo il filtro e/o l’ordine di ordinamento applicato al layer.

  – Una casella di controllo opzionale Filtra con area di testo che permette di specificare un’espressione per filtrare gli elementi del layer di copertura. Se l’espressione non è vuota, solo gli elementi che sono valutati come True saranno processati.

  – Una opzionale :gui:label: *Ordina per* che ti permette di ordinare gli elementi del layer di copertura (e il risultato), usando un campo del layer di copertura o un’espressione. Il tipo di ordinamento (ascendente o discendente) è impostato dal pulsante a due stati *Direzione di ordinamento* che mostra una freccia verso l’alto o verso il basso.

• **Risultato** - qui è dove il risultato dell’atlante può essere configurato:

  – Una casella di testo *Nome di file basato su espressione* che è usata per generare un nome di file per ogni elemento dell’atlante. È basata su espressioni. È importante solo per la restituzione su file multipli.

  – Esporta su file singolo quando possibile che ti permette di forzare la generazione di un singolo file se questo è possibile con il formato scelto in uscita (PDF, per esempio). Se questo campo è selezionato, il valore del campo *Espressione del nome di file in uscita* è privo di significato.

  – Un elenco a discesa *Esporta Atlante* per selezionare il formato di output quando si usa il tasto Esporta atlante come immagini...

### Mappa di controllo per atlante

L’uso più comune di atlante è con l’oggetto mappa, zoomando sull’elemento corrente dell’atlante, mentre l’iterazione passa sopra il layer di copertura. Questo comportamento è impostato nelle proprietà del gruppo *Controllato da Atlante* dell’oggetto mappa. Vedi *Controllato da Atlante* per le diverse impostazioni che puoi applicare all’oggetto mappa.

### Personalizzare le etichette con un’espressione

Per adattare le etichette all’elemento su cui l’atlante itera, puoi includere espressioni. Assicurati di posizionare la parte dell’espressione (incluse funzioni, campi o variabili) tra [% e %] (vedi *layout_label_item* per maggiori dettagli).

Per esempio, per un layer di città con campi CITY_NAME e ZIPCODE, potresti inserire questo:

```plaintext
The area of [% concat(upper(CITY_NAME), ', ', ZIPCODE, ' is ', format_number($area/1000000, 2)) %] km²
```

o, un’altra espressione:

```plaintext
The area of [% upper(CITY_NAME)%],[%ZIPCODE%] is
[%format_number($area/1000000,2) %] km²
```

L’informazione [% concat( upper(CITY_NAME), ', ', ZIPCODE, ' is ', format_number($area/1000000, 2) ) %] è un’espressione usata dentro l’etichetta. Entrambe le espressioni darebbero come risultato il seguente tipo di etichetta nell’atlante generato:

---

**18.3. Creare un Output** 645
The area of PARIS, 75001 is 1.94 km²

Esplorare Sovrascrittura definita dai dati con atlante

Ci sono diversi posti dove puoi usare un pulsante per sovrascrivere l'impostazione selezionata. Questo è particolarmente utile con la generazione di atlanti. Vedi Impostazione Sovrascrittura definita dai dati per maggiori dettagli su questo widget.

Per i seguenti esempi viene usato il layer Regions dell’insieme dei dati campione di QGIS e selezionato come Layer di copertura per la generazione dell’atlante. Assumiamo che si tratti di un layout a pagina singola contenente un elemento mappa e un elemento etichetta.

Quando l’altezza (nord-sud) dell’estensione di una regione è maggiore della sua larghezza (est-ovest), dovresti usare l’orientamento Portrait invece di Landscape per ottimizzare l’uso della carta. Con un pulsante puoi impostare dinamicamente l’orientamento della carta.

Clicchiamo con il tasto destro sulla pagina e selezioniamo Proprietà pagina... per aprire il pannello. Vogliamo impostare l’orientamento dinamicamente, usando un’espressione che dipende dalla geometria della regione, quindi premi il pulsante del campo Orientazione, seleziona guilabel: Modifica... per aprire la finestra di dialogo Espressione costruttore di stringhe e inserisci la seguente espressione:

```sql
CASE WHEN bounds_width(@atlas_geometry) > bounds_height(@atlas_geometry)
THEN 'Landscape' ELSE 'Portrait' END
```

Ora se tu preview the atlas, la carta si orienta automaticamente, ma il posizionamento degli elementi potrebbe non essere ideale. Per ogni Regione devi riposizionare anche la posizione degli oggetti del layout. Per l’oggetto mappa puoi usare il pulsante della sua proprietà Larghezza per impostarla in modo dinamico usando la seguente espressione:

```sql
@layout_pagewidth - 20
```

Allo stesso modo, usa il pulsante della proprietà Altezza per inserire la seguente espressione per vincolare la dimensione dell’oggetto mappa:

```sql
@layout_pageheight - 20
```

Per assicurarti che l’elemento della mappa sia centrato nella pagina, imposta il suo Punto di riferimento al pulsante di opzione in alto a sinistra e inserisci 10 per la sua posizione X e Y.

Aggiungiamo un titolo sopra la mappa al centro della pagina. Seleziona l’elemento etichetta e imposta l’allineamento orizzontale a (Centro). Poi sposta l’etichetta nella posizione giusta, scegli il pulsante centrale per il Punto di riferimento, e fornisci la seguente espressione per il campo X:

```sql
@layout_pagewidth / 2
```

Per tutti gli altri oggetti del layout puoi impostare la posizione in modo simile, in modo che siano posizionati correttamente sia in verticale che in orizzontale. Puoi anche fare altre modifiche come personalizzare il titolo con gli attributi degli elementi (vedi l’esempio Personalizzare le etichette con un’espressione), cambiare le immagini, ridimensionare il numero di colonne della legenda in base all’orientamento della pagina, …

Le informazioni fornite qui sono un aggiornamento dell’eccellente blog (in inglese e portoghese) sulle opzioni di Sovrascrittura definita dai dati Multiple_format_map_series_using_QGIS_2.6.

Un altro esempio per l’uso dei pulsanti di override Sovrascrittura definiti dai dati è l’uso di un’immagine dinamica. Per i seguenti esempi usiamo un livello geopacchetto contenente un campo BLOB chiamato logo con il tipo di campo binario (vedi vector_create_geopackage’). Per ogni elemento è definita un’immagine diversa in modo che l’atlante possa iterare come descritto in Anteprima e generazione dell’atlante. Tutto quello che devi fare è aggiungere un’immagine nel layout di stampa e andare alla sua Proprietà dell’oggetto nel contesto dell’atlante. Li puoi trovare un pulsante di Sovrascrittura definita dai dati nella sezione Sorgente Immagine della Proprietà Pricipali.
Nella finestra seguente scegli "Modifica..." in modo che si apra il "Costruttore stringhe espressione". Dalla sezione "Campi e Valori" puoi trovare il campo BLOB che è stato definito nel livello del geopacchetto. Fai doppio clic sul nome del campo "logo" e clicca su "OK".

L’atlante iterasullevoci nel campo BLOB a condizione che tu scelga il layer del geopacchetto come "Layer di copertura" (ulteriori istruzioni le puoi trovare in "Anteprima e generazione dell’atlante").

Questi sono solo due esempi di come puoi usare alcune impostazioni avanzate con atlante.
Anteprima e generazione dell’atlante

Fig. 18.63: Barra degli strumenti anteprima Atlante

Una volta che le impostazioni dell’atlante sono state configurate, e gli elementi di layout (mappa, tabella, immagine…) collegati ad esso, è possibile creare un’anteprima di tutte le pagine scegliendo Atlante ➤ Anteprima atlante o cliccando l’icona Anteprima atlante. Puoi poi usare le frecce per navigare attraverso tutte le funzioni:

- Prima geometria
- Geometria precedente
- Geometria successiva
- Ultima geometria

Puoi anche usare la casella combinata per selezionare e vedere in anteprima un elemento specifico. La casella combinata mostra i nomi degli elementi dell’atlante secondo l’espressione impostata nell’opzione atlas Nome pagina.

Come per le composizioni semplici, un atlante può essere generato in diversi modi (vedi Creare un Output per maggiori informazioni - basta usare gli strumenti del menu o della barra degli strumenti di Atlantes invece del menu di Layout.

Ciò significa che puoi stampare direttamente le tue composizioni con Atlante ➤ Stampa Atlante. Puoi inoltre creare un PDF utilizzando Atlante ➤ Esporta Atlante come PDF: ti verrà richiesta un directory per salvare tutti i file PDF generati, a meno che non sia stata selezionata la casella di controllo Esportazione file singolo se possibile. In questo caso, ti verrà richiesto di dare un nome al file.

Con lo strumento Atlante ➤ Esporta Atlante come Immagini… o Atlante ➤ Esporta Atlante come SVG…, ti viene anche richiesto di selezionare una cartella. Ogni pagina di ogni composizione dell’atlante viene esportata nel formato di file immagine impostato nel pannello:guilabel: Atlante a in SVG.

Nota: Con il risultato multi-pagina, un atlante si comporta come un layout nel senso che solo la pagina che contiene la Impostazioni generali otterrà un world file (per ogni elemento in uscita).

Suggerimento: Stampare una specifica geometria dell’Atlante

Se vuoi stampare o esportare la disposizione di una sola oggetto dell’atlante, è sufficiente avviare l’anteprima, selezionare l’oggetto desiderato nell’elenco a discesa e fare clic su Layout ➤ Stampa (oppure Esporta… in qualsiasi formato di file supportato).

Usare le relazioni definite nel progetto per la creazione dell’atlante

Per gli utenti con conoscenze di HTML e Javascript è possibile operare su oggetti GeoJSON e usare relazioni definite dal progetto QGIS. La differenza tra questo approccio e l’uso di espressioni direttamente inserite nell’HTML è che vi dà una elemento GeoJSON completo e non strutturato con cui lavorare. Questo significa che puoi usare le librerie e le funzioni Javascript esistenti che operano sulle rappresentazioni dell’elemento GeoJSON.

Il codice seguente include tutte le feature figlie correlate dalla relazione definita. Utilizzando la funzione JavaScript setFeature ti permette di creare un HTML flessibile che rappresenta le relazioni in qualsiasi formato tu vuoi (liste, tabelle, ecc.). Nell’esempio di codice, creiamo un elenco dinamico delle feature figlio correlate.
Durante la creazione dell’atlante ci sarà un’iterazione sul layer di copertura che contiene gli elementi genitori. Su ogni pagina, vedrai un elenco puntato di elementi figli correlati che seguono l’identificatore del genitore.

## 18.4 Creare un Report

Questa sezione ti aiuterà a impostare un report in QGIS.

### 18.4.1 Che cos’è?

Per definizione, un report GIS è un documento contenente informazioni organizzate in modo narrativo, contenente mappe, testo, grafici, tabelle, ecc. Un report può essere preparato ad hoc, periodico, ricorrente, regolare o come desiderato. I report possono riferirsi a periodi specifici, eventi, ricorrenze, soggetti o luoghi.

In QGIS, un Report è un’estensione di un Layouts.

I report permettono agli utenti di produrre i risultati dei loro progetti GIS in modo semplice, veloce e strutturato.

Un report può essere creato con Progetto ► Nuovo Report… o all’interno di Progetto ► Gestore del Layout….

**Nota:** Le mappe nei report QGIS si comportano allo stesso modo delle mappe nei layout di stampa e negli atlanti. Ci concentreremo sulle peculiarità dei report QGIS. Per i dettagli sulla gestione delle mappe, vedi le sezioni su print layouts e atlases.

### 18.4.2 Comincia da qui

Nella finestra di dialogo Gestore dei Layout… un report può essere creato tramite Nuovo da Modello selezionando l’opzione a discesa guilabel: Report vuoto e premendo il pulsante Crea….

Per questo esempio, usiamo alcuni confini amministrativi, luoghi popolati, porti e aeroporti dall’insieme dei dati Natural Earth (1:10M).
Usando il comando :menu:selection: Progetto -> Nuovo rapporto, creiamo un report vuoto. Inizialmente, non c'è molto da guardare - la finestra di dialogo che viene visualizzata assomiglia molto al designer del layout di stampa, eccetto per il pannello Struttura Report sulla sinistra:
18.4.3 Area di lavoro Layout Report

I report di QGIS possono essere composti da più sezioni annidate. Nel nostro nuovo report vuoto abbiamo inizialmente solo la sezione principale del report. Le uniche opzioni per questa sezione sono Inserisci intestazione del Report e Inserisci piè di pagina del Report. Se abilitiamo queste opzioni, un’intestazione sarà inclusa come prima pagina(e) nel report (le singole parti del report possono essere a più pagine se lo si desidera), e un piè di pagina costituirà l’ultima pagina(e). Abilita l’intestazione (Inserisci intestazione del Report) e premi il pulsante Modifica accanto ad essa:

![Image of QGIS report layout](image)

Di conseguenza, accadono alcune cose. In primo luogo, viene mostrata una mattita di modifica accanto a Report nella Struttura Report, indicando che la sezione del report è attualmente in fase di modifica nel designer. Vediamo anche una nuova pagina con un piccolo titolo Intestazione Report. La pagina ha un orientamento orizzontale per impostazione predefinita, ma questo (e altre proprietà della pagina) possono essere cambiate cliccando con il tasto destro sulla pagina e scegliendo menuselection: Proprietà pagina.... Questo farà apparire la scheda per la pagina Proprietà dell’oggetto, e si possono specificare Dimensione, Larghezza, Altezza e altro.

Nei report di QGIS, ogni componente del report è costituito da singoli layout. Essi possono essere creati e modificati usando gli stessi strumenti dei layout di stampa standard - così si può usare qualsiasi combinazione desiderata di etichette, immagini, mappe, tabelle, ecc. Aggiungiamo alcuni elementi all’intestazione del nostro rapporto per dimostrarlo:

![Image of QGIS report layout with elements added](image)
Creeremo anche un semplice piè di pagina per il report selezionando l’opzione Inserisci piè di pagina del Report e premendo Modifica.

Prima di procedere oltre, esportiamo questo report e vediamo cosa otteniamo. L’esportazione viene fatta dal menu Report - in questo caso selezioniamo Esporta Report come PDF… per restituire l’intero report in un file PDF. Ecco il risultato non molto impressionante - un PDF di due pagine composto dalla nostra intestazione e piè di pagina:
Rendiamo le cose più interessanti. Premendo il pulsante Aggiungi Sezione nella Struttura Report, ci viene data una scelta di nuove sezioni da aggiungere al nostro report.
Ci sono due opzioni: **Sezione Layout Statica** e **Sezione Gruppo Campo**.

La **Sezione Layout Statica** è un singolo, corpo statico layout. Può essere usata per incorporare layout statici in un report.

La **Sezione Gruppo Campo** ripete il layout del suo corpo per ogni elemento di un layer. Gli elementi sono ordinati in base all'elemento di raggruppamento selezionato (con un'opzione per l'ordinamento ascendente/descendente). Se una sezione del gruppo di campi ha sezioni figlie (per esempio un'altra sezione del gruppo di campi con un campo diverso), allora solo gli elementi con valori univoci per l'elemento del gruppo vengono iterati. Questo permette report annidati.

Per ora aggiungeremo una **Sezione Gruppo Campo** al nostro report. Al suo livello più elementare, si può pensare a **Sezione Gruppo Campo** come all'equivalente di un *print atlas*: si seleziona un layer su cui iterare, e il report inserirà una sezione per ogni elemento trovato. Selezionando la nuova **Sezione Gruppo Campo** mostra una serie di nuove impostazioni correlate:
In questo caso abbiamo impostato il nostro Gruppo Campo in modo da iterare tutti gli stati del layer Admin Level 1,
usando i valori del campo *adm1name*. Le stesse opzioni per includere header e footer sono presenti, insieme ad una nuova opzione per includere una *corpo* per questa sezione. Lo faremo, e modificheremo il corpo:

![Image](image.png)

Il nostro corpo ora consiste in una mappa e un'etichetta che mostra il nome dello stato. Per includere il nome dello stato, abbiamo selezionato *Aggiungi Oggetto ➤ Aggiungi Etichetta* e abbiamo definito il testo sotto *Proprietà Principali* con l'aiuto di *Inserisci o Modifica un Espressione*....

Il risultato era la seguente espressione (*name* è il nome dell'attributo nel layer *Admin Level 1* che contiene il nome dello stato):

```
[% "name" %]
```

La mappa è impostata per seguire l'elemento corrente del report (abilitato selezionando *Controllato dal Report* - proprio come un elemento della mappa in un atlante seguirà l'elemento corrente dell'atlante quando *Controlled by Atlas* è selezionato):
Se andassimo avanti ed esportassimo il nostro rapporto ora, otterremmo qualcosa come questo:
Quindi più o meno un atlante, ma con una pagina di intestazione e di piè di pagina.
Rendiamo le cose più interessanti aggiungendo una sottosezione al nostro gruppo di stati. Lo facciamo selezionando prima il gruppo di campi Admin Level 1 nell’organizzatore, poi premendo il pulsante :sup: Aggiungi campo e aggiungendo una nuova Sezione Gruppo Campo.

Fig. 18.64: L’intestazione del rapporto, una pagina per ogni stato e il piè di pagina del rapporto.
Quando si iterà sugli elementi di una *Sezione Gruppo Campo*, gli elementi saranno filtrati per corrispondere al campo
che definisce il suo gruppo padre (\texttt{adm1name} in questo caso). Qui, la sottosezione che abbiamo aggiunto itererà su un
layer \textit{Populated Places}, includendo una sezione corpo per ogni luogo incontrato. La magia qui è che il layer \textit{Populated
Places} ha un attributo con lo stesso nome del campo che lo definisce nel layer padre, \texttt{adm1name}, etichettando ogni
luogo con lo stato in cui è contenuto (se sei fortunato i tuoi dati saranno già strutturati in questo modo - se no, esegui
l'algoritmo di elaborazione \textit{Join Attributes by Location} e crea il tuo campo). Quando esportiamo questo report, QGIS
prenderà il primo stato dal layer \textit{Admin Level 1}, e poi itererà su tutti i \textit{Populated Places} con un valore \texttt{adm1name}
corrispondente. Ecco cosa otteniamo:

![Image of report layout]

Qui abbiamo creato un corpo di base per il gruppo Populated Places, includendo una mappa del luogo e una tabella di
alcuni attributi del luogo. Così il nostro report è ora composto da un’intestazione, una pagina per il primo stato, seguita
da una pagina per ogni luogo popolato all’interno di quello stato, poi il resto degli stati con i loro luoghi popolati, e
infine il piede di pagina del report. Se dovessimo aggiungere un’intestazione per il gruppo dei luoghi popolati, verrebbe
inclusa appena prima di elencare i luoghi popolati per ogni stato, come mostrato nell’illustrazione qui sotto.

Allo stesso modo, un piede di pagina per il gruppo Luoghi Popolati verrebbe inserito dopo che è stato incluso il posto
finale per ogni stato.

In aggiunta alle sottosezioni annidate, le sottosezioni in un rapporto possono anche essere incluse consecutivamente.
Se aggiungiamo una seconda sottosezione al gruppo \textit{Admin Level 1 group per Airports}, allora (se il layer \textit{Airports} ha
un attributo \texttt{adm1name} che può collegarlo al gruppo padre) il nostro report elencherà prima TUTTI i luoghi popolati
per ogni stato, seguito da tutti gli aeroporti all’interno di quello stato, prima di procedere allo stato successivo.
Il punto chiave qui è che il nostro gruppo *Airports* è una sottosezione del gruppo *Admin Level 1 group* - non il gruppo *Populated Places*.

In questo caso il nostro report sarebbe strutturato in questo modo (si noti che sono state incluse anche le bandiere di stato - la procedura per aggiungere immagini specifiche degli elementi in questo modo è descritta di seguito):

18.4. Creare un Report
Includere immagini in un report

Le immagini possono essere abbastanza utili nei report, e QGIS ammette immagini sia nella parte statica che in quella dinamica di un report. Le immagini vengono aggiunte nello stesso modo dei layout di stampa standard, e per le parti statiche dei report (e le immagini statiche nelle parti dinamiche) non c’è altro da fare.

Ma se vuoi delle illustrazioni su misura per gli elementi del report, il tuo layer deve avere un attributo che può essere usato per definire l’immagine da includere.

QGIS si basa su nomi di file assoluti per le immagini nei report.

Per le immagini dinamiche, prima aggiungi un’immagine alla parte del corpo del gruppo, come al solito. Nelle Proprietà dell’oggetto dell’immagine, imposti :guilabel: Sorgente dell’immagine usando il pulsante \(\equiv\) e selezioni un attributo che contiene il percorso assoluto delle immagini oppure Modifica… (per inserire un’espressione che generi il percorso assoluto dell’immagine).

Qui sotto c’è un’espressione di esempio che usa la concatenazione di stringhe per specificare il percorso assoluto delle immagini, usando la cartella dove si trova il file del progetto @project_path e un attributo (admin1name) da cui viene generato il nome del file (in questo caso trasformando la stringa nell’attributo admin1name in maiuscolo e aggiungendo ",_flag.png"):

```plaintext
concat(@project_folder, '/naturalearth/pictures/', upper("admin1name")), '_flag.png')
```

Questo significa che le immagini si trovano nella sottocartella naturalearth/pictures della cartella del file del progetto.

Evidenziare l’elemento del rapporto corrente in una mappa

Nel rapporto di cui sopra, gli elementi del rapporto sono enfatizzati nelle mappe usando l’evidenziazione (state) e i cerchi (populated places). Per enfatizzare gli elementi del report nelle mappe (oltre a metterli al centro delle mappe), è necessario definire lo stile usando un collegamento tra il suo @id e l’atlas_featureid, come per gli atlanti.

Per esempio, se vuoi usare una linea / bordo più spessa per il rapporto dell’elemento rispetto agli altri elementi, puoi definire la larghezza della linea con i dati:

```plaintext
if($id=@atlas_featureid, 2.0, 0.1)
```

L’elemento nel report avrà un contorno del poligono largo 2 unità, mentre tutte gli altri elementi avranno una linea larga 0,1 unità. È anche possibile definire il colore (magenta scuro non trasparente per l’elemento nel report e grigio chiaro semi trasparente per gli altri elementi):

```plaintext
if($id=@atlas_featureid, '#FF880088', '#88CCCCCC')
```
Più gruppi di livello 1

La combinazione di sezioni nidificate e consecutive, insieme a testate e piè di pagina, consente una grande flessibilità. Per esempio, nel report sottostante aggiungiamo un altro gruppo di campi come figlio del report principale per il layer *Ports*. Ora, dopo aver elencato gli stati con i loro luoghi popolati e gli aeroporti, otterremo una lista riassuntiva di tutti i porti della regione:

![Report Organizer](image)

Questo viene realizzato nell’ultima parte del nostro report esportato come:
18.4.4 Impostazioni per l’esportazione

Quando esporti un report (Report ➤ Esporta Report come Immagini… / SVG… / PDF…), ti verrà chiesto un nome per il file, e poi avrai la possibilità di regolare le impostazioni di esportazione per ottenere il risultato più appropriato.

Come vedi, i report in QGIS sono estremamente potenti e flessibili!

Nota: Le informazioni attuali sono state adattate da un blog di North Road, Exploring Reports in QGIS 3.0 - the Ultimate Guide!
Capitolo 18. Layout di stampa
L’Open Geospatial Consortium (OGC), è un’organizzazione internazionale che raggruppa più di 300 organizzazioni commerciali, governative, no-profit ed enti di ricerca. I suoi membri sviluppano e implementano standard per contenuti e servizi geospaziali, analisi GIS e scambio dati.

Con la descrizione di un modello di dati per elementi geografici, un numero crescente di specifiche sono sviluppate da OGC per garantire le esigenze specifiche per la l’interoperabilità delle tecnologia di localizzazione e geospaziali, compresi i GIS. Ulteriori informazioni sono disponibili all’indirizzo https://www.opengeospatial.org/.

Importanti specifiche OGC supportate da QGIS sono:

- **WMS** — Web Map Service (*Client WMS/WMTS*)
- **WMTS** — Web Map Tile Service (*Client WMS/WMTS*)
- **WFS** — Web Feature Service (*Client WFS e WFS-T*)
- **WFS-T** — Web Feature Service - Transactional (*Client WFS e WFS-T*)
- **WCS** — Web Coverage Service (*Client WCS*)
- **WPS** — Web Processing Service
- **CSW** — Catalog Service for the Web
- **SFS** — Simple Features for SQL (*Layer PostGIS*)
- **GML** — Geography Markup Language

I servizi OGC sempre più numerosi sono utili per scambiare dati geografici fra differenti implementazioni GIS e archivi di dati. QGIS può gestire le specifiche sopra esposte come client, essendo **SFS** (tramite il supporto a PostgreSQL/PostGIS, vedi sezione *Layer PostGIS*).

Puoi anche condividere le tue mappe e i tuoi dati attraverso i protocolli WMS, WMTS, WFS, WFS-T e WCS usando un webserver con QGIS Server, UMN MapServer o GeoServer installati.
19.1 Client WMS/WMTS

19.1.1 Panoramica sul servizio WMS

QGIS può agire come client WMS, nel rispetto delle specifiche server 1.1, 1.1.1 e 1.3. In particolare è stato testato nei confronti di server accessibili pubblicamente quali DEMIS.

Un server WMS risponde alle richieste da parte del client (ad esempio QGIS) di una mappa raster di una determinata estensione, con un determinato insieme di layer, simboli e trasparenze. Il server WMS quindi consulta le sue risorse locali, genera il raster e lo invia al client in formato raster. Per QGIS tipicamente come immagini JPEG o PNG.

WMS è un servizio REST (Representational State Transfer) piuttosto che un servizio web completo. Quindi puoi prendere l’URL generato da QGIS e usarlo in un browser web per ottenere la stessa immagine che QGIS usa internamente. Questo è utile per identificare le cause di eventuali problemi, dato che esistono vari tipi di server WMS e ciascuno ha la sua propria interpretazione degli standard WMS.

I layer WMS possono essere aggiunti molto semplicemente, una volta disponibile l’indirizzo (URL) per accedere al server WMS, una connessione adatta e posto che il server usi HTTP come meccanismo di trasferimento dati.

Inoltre, QGIS memorizzerà in cache le tue risposte WMS (cioè le immagini) per 24 ore fino a quando la richiesta GetCapabilities non viene attivata. La richiesta GetCapabilities viene attivata ogni volta che il pulsante Connetti nel dialogo Aggiungi layer(s) dal WMS (T)S Server viene utilizzato per recuperare i servizi del server WMS. Questa è una funzione automatica per ottimizzare il tempo di caricamento del progetto. Se un progetto viene salvato con un layer WMS, le mattonelle WMS corrispondenti saranno caricate dalla cache la prossima volta che il progetto viene aperto, purché non siano più vecchie di 24H.

19.1.2 Panoramica sul servizio WMTS

QGIS può agire anche come client WMTS. WMTS è uno standard OGC che distribuisce insiemi di mattonelle di dati geospaziali. È un modo più efficace e veloce rispetto a WMS perché gli insiemi di mattonelle vengono già generati e il client deve solamente richiedere la trasmissione di queste mattonelle e non la loro produzione. Una richiesta WMS tipicamente richiede sia la generazione che la trasmissione dei dati. Un esempio molto conosciuto di standard non-OGC è Google Maps.

Per visualizzare i dati a diverse scale, l’insieme delle mattonelle WMTS vengono prodotte con scale molto differenti fra loro in modo che per il client GIS sia più facile effettuare la richiesta.

Questo diagramma mostra il concetto delle mattonelle:

![Fig. 19.1: Concetto dell’insieme delle mattonelle WMTS](image)

Le due tipologie di interfacce WMTS che supporta QGIS sono via Key-Value-Pairs (KVP) e RESTful. Queste due interfacce sono differenti e devi specificarle in QGIS.
1. Per accedere a un servizio **WMTS KVP**, un utente QGIS deve aprire l'interfaccia WMS/WMTS e aggiungere la seguente stringa all'URL del servizio di mattonelle WMTS:

```
"?SERVICE=WMTS&REQUEST=GetCapabilities"
```

Un esempio di questo tipo di indirizzo è:

```
https://opencache.statkart.no/gatekeeper/gk/gk.open_wmts?service=WMTS&request=GetCapabilities
```

Per vedere se il layer topo2 funziona correttamente in questo WMTS, aggiungi la stringa indicata che il servizio WMTS deve usare al posto del servizio WMS.

2. Il servizio **RESTful WMTS** segue un modulo diverso, ovvero un URL diretto. Il formato raccomandato da OGC è:

```
{WMTSBaseURL}/1.0.0/WMTSCapabilities.xml
```

Questo formato ti aiuta a riconoscere che questo è un indirizzo RESTful. Puoi accedere a un RESTful WMTS in QGIS semplicemente aggiungendo il suo indirizzo nella configurazione del WMS nel campo URL del modulo. Un esempio di questo tipo di indirizzo, per una mappa di base austriaca, è http://maps.wien.gv.at/basemap/1.0.0/WMTSCapabilities.xml.


Quando leggi WMTS, puoi anche pensare a WMS-C.

### 19.1.3 Selezionare server WMS/WMTS

Al primo utilizzo di un servizio WMS in QGIS non sono presenti server predefiniti.

Devi poi creare le connessioni al server che stai scegliendo:

1. Vai alla scheda WMS/WMTS della finestra di dialogo **Apri Gestore delle sorgenti dati**, oppure:
   - cliccando sul pulsante **Apri Gestore delle sorgenti dati** (o premendo Ctrl+L) e abilitando la scheda
   - cliccando sul pulsante **Aggiungi Layer WMS/WMTS** sulla barra degli strumenti **Barra di Gestione dei Layer**
   - o selezionando **Layer** ➤ **Aggiungi Layer** ➤ **Aggiungi Layer WMS/WMTS**… menu

2. Premi **Nuovo** dalla scheda **Layer**. Appare la finestra di dialogo **Crea una nuova WMS/WMTS Connessione**…

Suggerimento: Fai clic con il tasto destro del mouse sulla voce WMS/WMTS all’interno del **Browser panel** e seleziona **Nuovo** si apre anche la finestra di dialogo **Crea una Nuova WMS/WMTS Connessione**.

3. Poi inserisci i parametri per connetterti al tuo server WMS scelto, come elencato di seguito:
Fig. 19.2: Creare una connessione a un server WMS

- **Nome**: Un nome per la connessione. Questo nome sarà usato nella casella a discesa Connessioni server in modo da poterlo distinguere da altri server WMS.

- **URL**: URL del server che fornisce i dati. Questo deve essere un nome di host risolvibile – lo stesso formato che useresti per aprire una connessione telnet o fare il ping di un host, cioè solo l’URL di base. Per esempio, non dovresti avere frammenti come request=GetCapabilities o version=1.0.0 nel tuo URL.

- **Autenticazione** (opzionale): usando una stored configuration o un’autenticazione di Base con Nome Utente e Password.

**Avvertimento**: Inserendo nome utente e password nella scheda Autenticazione, le credenziali non sono protette nella configurazione della connessione. Queste credenziali saranno visibili se, per esempio, hai condiviso il file del progetto con qualcuno. Pertanto, è invece consigliabile salvare le credenziali in una Configurazione di autenticazione (tabella configurazioni). Vedi Sistema di Autenticazione per maggiori dettagli.

- **HTTP** Riferimento

- **DPI-Mode**: Le opzioni disponibili sono tutto, disattivo, QGIS, UMN e GeoServer.
• **Ignora la URI GetMap/GetTile riportata nelle capability**: se selezionato, usa l’URI dato dal campo URL sopra.

• **Ignora la URI GetFeatureInfo riportata nelle capability**: se selezionata, usa la URI data dal campo URL sopra.

• **Ignora orientamento assi (WMS 1.3/WMTS)**

• **Ignora estensioni riportate dei layer**: poiché l’estensione riportata dai layer raster può essere più piccola dell’area effettiva che può essere visualizzata (in particolare per i server WMS con simbologia che occupa più spazio dell’estensione dei dati), seleziona questa opzione per evitare di tagliare i layer raster alle loro estensioni riportate, con il risultato di simboli troncati sui bordi di questi layer.

• **Inverti l’orientamento degli assi**

• **Trasformazione con allisciamento**

4. Premi **OK**

Una volta creata la connessione al server WMS verrà memorizzata e sarà disponibile per le successive sessioni di QGIS.

Se hai bisogno di impostare un server proxy per poter ricevere i servizi WMS da internet, puoi aggiungere il tuo server proxy nelle opzioni. Scegli **Impostazioni ▶ Opzioni** e clicca sulla scheda **Rete**. Li puoi aggiungere le tue impostazioni proxy e abilitarle impostando la casella di controllo **Usa proxy per accesso al web**. Assicurati di selezionare il tipo di proxy corretto dal menu a tendina **Tipo Proxy**.

### 19.1.4 Caricare layer WMS/WMTS

Una volta che hai riempito con successo i tuoi parametri, puoi usare il pulsante **Connetti** per recuperare le capabilities del server selezionato. Questo include la codifica dell’immagine, i layer, gli stili di layer e le proiezioni. Poiché questa è un’operazione di rete, la velocità della risposta dipende dalla qualità della tua connessione di rete al server WMS. Durante il download dei dati dal server WMS, il progresso del download viene visualizzato nell’angolo in basso a sinistra della finestra di dialogo principale di QGIS.

Il tuo schermo dovrebbe ora assomigliare un po’ a Fig. 19.3, che mostra la risposta fornita da un server WMS.

![Fig. 19.3](image)

**Fig. 19.3**: Finestra di dialogo per aggiungere un server WMS, con filtro sui layer disponibili
La parte superiore della scheda Layer della finestra di dialogo mostra una struttura ad albero che può includere gruppi di layer che incorporano i layer con i loro stili di immagine associati forniti dal server. Ogni elemento può essere identificato da:

- un ID
- un Nome
- un Titolo
- ed un Riassunto.

La lista può essere filtrata usando il widget nell’angolo in alto a destra.

**Codifica immagine**

La sezione Codifica immagine elenca i formati supportati sia dal client che dal server. La scelta è in funzione dei requisiti di accuratezza.

**Suggerimento: Codifica immagine**

Un server WMS offre normalmente la scelta fra immagini JPEG o PNG. Il formato JPEG è un formato di compressione lossy, mentre il formato PNG riproduce fedelmente i dati raster.

È meglio usare il formato JPEG per dati di natura fotografica e/o se la perdita parziale di qualità dell’immagine non causa problemi. Questa scelta riduce normalmente di cinque volte il volume di dati trasferiti rispetto al formato PNG.

L’uso del formato PNG permette una visualizzazione più precisa ed è da usare se non ci sono problemi per l’incremento dei dati trasferiti.

**Opzioni**

L’area Opzioni della finestra di dialogo fornisce i mezzi per configurare le richieste WMS. Puoi definire:

- **Tile size** if you want to set tile sizes (e.g., 256x256) to split up the WMS request into multiple requests.

- **Richiedi dimensione passo**

- **Il Limite di elementi per GetFeatureInfo** definisce il numero massimo di risultati di GetFeatureInfo dal server.

- **Se selezioni un WMS dalla lista, appare un campo con la proiezione di default fornita dal server web. Premi il pulsante Cambia… per sostituire la proiezione predefinita del WMS con un altro SR supportato dal server WMS.**

- **Infine puoi attivare **Usa la legenda WMS contestuale** se il server WMS supporta questa funzionalità. Allora sarà mostrata solo la legenda pertinente per la tua attuale estensione della mappa e quindi non includerà elementi della legenda per gli elementi che non puoi vedere nella mappa corrente.**

In fondo alla finestra di dialogo, un campo di testo Nome layer`mostra il `guilabel:`Titolo dell’elemento selezionato. Puoi cambiare il nome a tuo piacimento. Questo nome apparirà nel pannello Layer dopo aver premuto il pulsante Aggiungi e caricato il layer (o i layer) in QGIS.

Puoi selezionare più layer contemporaneamente, ma solo uno stile di rappresentazione per layer. Quando sono selezionati più layer, essi saranno combinati al server WMS e trasmessi a QGIS in una sola volta, come un unico layer. Il nome predefinito è una lista separata da slash (/) del loro titolo originale.

**Ordine dei layer**

La scheda Ordine Layer elenca i layer selezionati disponibili dal server WMS correntemente connesso.

I layer WMS che vengono visualizzati da un server sono sovrapposti nell’ordine elencato nella scheda Layer, dall’alto verso il basso dell’elenco. Se vuoi cambiare l’ordine di sovrapposizione, puoi usare i pulsanti Su e Giù della scheda Ordine Layer.

**Trasparenza**

L’impostazione Opacità globale di Proprietà layer è impostata in modo da essere sempre attiva, se disponibile.
Suggerimento: Trasparenza dei layer WMS

La possibilità di rendere trasparenti i layer WMS dipende dalla codifica tramite la quale sono stati caricati: PNG e GIF gestiscono la trasparenza mentre il JPEG no.

Sistema di Riferimento

Sistema di riferimento delle coordinate (CRS) è il termine OGC per una proiezione in QGIS.

Ogni layer WMS può avere diversi SR, in funzione delle capacità del server.

Per scegliere un SR, seleziona Cambia... e apparirà un finestra di dialogo simile a quella mostrata in Fig. 10.3. La differenza principale nella versione WMS della finestra di dialogo è che saranno mostrati solo i SR supportati dal server WMS.

19.1.5 Impostazioni mattonelle

Quando usi servizi WMTS (Cached WMS) come

https://opencache.statkart.no/gatekeeper/gk/gk.open_wmts?service=WMTS&request=GetCapabilities

puoi visualizzare la scheda Opzioni fornita dal server. Informazioni aggiuntive come la dimensione delle mattonelle, i formati e i SR supportati sono elencati in questa tabella. In combinazione con questa funzionalità, puoi usare il cursore della scala delle mattonelle selezionando Visualizza ► Panelli (o Impostazioni ► Panelli), scegliendo Pannello scala mattonelle. Questo ti dà le scale disponibili dal server delle mattonelle con un comodo cursore inserito.

19.1.6 Uso dello strumento di identificazione

Dopo aver aggiunto un server WMS, se sul server WMS è possibile eseguire query su qualsiasi layer, puoi utilizzare lo strumento Informazione elementi per selezionare un pixel sulla mappa. Viene eseguita una query sul server WMS per ogni selezione effettuata. I risultati della query vengono restituiti in formato testo. La formattazione di questo testo dipende dal particolare WMS server utilizzato.

Selezione formato

Se il server supporta diversi formati in output, un menù a tendina verrà automaticamente aggiunto alla finestra delle informazioni risultati in modo che i diversi formati possano essere memorizzati nel progetto.

Supporto formato GML

Lo strumento Informazione elementi supporta anche le risposte WMS (GetFeatureInfo) in formato GML (in questo contesto è chiamato Geometria nell’interfaccia di QGIS). Se il formato “Geometria” è supportato dal server, i risultati dello strumento “Informazione elementi” sono geometrico proprio come un layer vettore. Quando selezioni una singola geometria nell’albero, questa viene evidenziata sulla mappa e la puoi copiare negli appunti e incollare su un altro layer vettore. Vedi l’esempio UMN Mapserver per il supporto GetFeatureInfo in formato GML.

```bash
in layer METADATA add which fields should be included and define geometry --> (example):
 "gml_include_items" : "all",
 "ows_geometries" : "mygeom",
 "ows_mygeom_type" : "polygon"

Then there are two possibilities/formats available, see a) and b):
a) basic (output is generated by Mapserver and does not contain XSD)
in WEB METADATA define formats (example):
```

(continues on next page)
Proprietà del server

Una volta aggiunto un server WMS, puoi visualizzarne le proprietà cliccando con il tasto destro sul suo nome nella legenda e selezionando Proprietà.

Scheda Metadati

La scheda Metadata mostra molte informazioni sul server WMS, generalmente fornite dalle capabilities restituite da quel server. Molte definizioni possono essere ricavate leggendo gli standard WMS (vedi OPEN-GEOSPATIAL-CONSORTIUM in Letteratura e riferimenti web), ma qui sono riportate alcune utili definizioni:

- **Proprietà del server**
  - Versione WMS — La versione WMS supportata dal server.
  - Formati immagine - L’elenco dei tipi MIME disponibili sul server durante la visualizzazione della mappa. QGIS permette l’uso di qualunque formato supportato dalle librerie Qt, solitamente sono image/png ed image/jpeg.
  - Interroga formati - L’elenco dei tipi MIME con i quali il server può fornire risposta quando usi lo strumento Informazioni e elementi. Attualmente QGIS supporta il tipo text-plain.

- **Proprietà layer**
  - Selezionato — Indica se il layer era selezionato quando il server è stato aggiunto al progetto.
  - Visibilità - Indica se il layer è stato impostato come visibile in legenda. (funzione non ancora utilizzata in questa versione di QGIS).
  - Può interrogare —Indica se il layer fornisce o meno informazioni se si usa lo strumento Informazioni elementi.
  - Può essere trasparente - Indica se il layer può essere o meno reso trasparente. Questa versione di QGIS userà sempre la trasparenza se questa è Sì e se il formato immagine la supporta.
  - Può ingrandire- Indica se il layer può essere ingrandito dal server. Questa versione di QGIS assume in modo predefinito che tutti i layer WMS abbiano questa impostazione su Sì. I layer senza questa impostazione potrebbero essere visualizzati in modo anomalo.
  - Conteggio a cascata — I server WMS possono fungere da proxy per altri server WMS dai quali ottengono i dati raster per un certo layer. La voce mostra quindi quante richieste per questo layer vengono inoltrate ai nodi per ottenere un risultato.
  - Larghezza fissa, Altezza fissa - Indica se questo layer ha una dimensione fissa dei pixel. In questa versione di QGIS tutti i layer WMS hanno questa impostazione impostata su nulla. I layer con impostazioni diverse potrebbero essere visualizzati in modo anomalo.
  - Perimetro WGS 84 - Il riquadro di delimitazione in coordinate WGS84. Alcuni server WMS non impostano questo parametro correttamente (ad es. usano coordinate UTM invece di WGS84). In questo caso sembrerà che la vista iniziale del layer sia ad uno zoom molto ridotto. Bisognerebbe informare
di questi errori il webmaster del server WMS, che potrebbe conoscere come elementi WMS XML LatLonBoundingBox, EX_GeographicBoundingBox o CRS:84 BoundingBox.

– **Disponibilità in SR** — Sistemi di riferimento nel quale il layer può essere rappresentato dal server WMS, elencati nel formato nativo WMS.

– **Disponibile in stile** — Stili visuali applicabili al layer dal server WMS.

### 19.1.7 Mostra la legenda WMS nella lista dei layer e nel layout

La sorgente dati WMS di QGIS può visualizzare la legenda nella lista dei layer e nel layout di stampa. La legenda WMS verrà mostrata solo se il server WMS ha le capability GetLegendGraphic e se il layer ha l'url getCapability specificato. Potrai anche selezionare uno stile per il layer.

Se legendGraphic è disponibile, viene mostrato sotto il layer. È piuttosto piccolo e dovrai cliccarci sopra per aprirlo nelle dimensioni reali (fatto dovuto alle limitazioni QgsLegendInterface). Cliccando sulla legenda del layer si aprirà una finestra con la legenda alla massima risoluzione.

Nel layout di stampa, la legenda verrà integrata nella sua dimensione originale (scaricata). La risoluzione grafica della legenda può essere impostata nelle proprietà dell'elemento in :menuselection: Legenda -> WMS LegendGraphic in base alle tue esigenze di stampa.

La legenda mostrerà informazioni contestuali riferite alla scala attuale. La legenda WMS verrà mostrata solo se il server WMS ha le capability GetLegendGraphic e se il layer ha le capability dell'url getCapability specificate, così puoi anche scegliere uno stile per il layer.

### 19.1.8 Limitazioni del client WMS

Non tutte le funzionalità client WMS sono state incluse in questa versione di QGIS. Le eccezioni più rilevanti sono le seguenti.

**Modificare le impostazioni del layer WMS**

Una volta che hai completato la procedura ![Aggiungi layer WMS](Aggiungi layer WMS), non c’è modo di cambiare le impostazioni. Una soluzione è quella di eliminare completamente il layer e ricominciare da capo.

**Server WMS che richiedono un’autenticazione**

Attualmente sono accessibili server pubblici e server protetti. Puoi accedere ai server protetti con autenticazione pubblica. Puoi aggiungere le credenziali (opzionali) quando carichi un server WMS. Vedi sezione Selezionare server WMS/WMTS per ulteriori dettagli.

**Suggerimento: Accesso ai layer OCG protetti**

Se hai bisogno di accedere a layer protetti con metodi sicuri diversi dall’autenticazione di base, puoi usare InteProxy come proxy trasparente, che supporta diversi metodi di autenticazione. Ulteriori informazioni possono essere trovate nel manuale di InteProxy all’indirizzo [https://inteproxy.wald.intevation.org](https://inteproxy.wald.intevation.org).

**Suggerimento: WMS Mapserver QGIS**

Dalla versione 1.7.0, QGIS ha la propria implementazione di un Mapserver WMS 1.3.0. Leggi di più su questo in QGIS-Server-manual.
19.2 Client WCS

Un servizio WCS fornisce accesso a dati raster che sono utili per la visualizzazione lato client, come input per modelli scientifici e per molti altri usi. Quali sono le caratteristiche che distinguono un servizio WCS dai servizi WFS e WMS? Mentre i servizi WFS e WMS sono istanze server, il servizio WCS permette al client di scegliere le porzioni di server che contengono le informazioni desiderate. Queste informazioni possono essere filtrate attraverso limiti spaziali o altre tipologie di interrogazioni.

QGIS ha un servizio WCS nativo e supporta le versioni 1.0 e 1.1 (che sono molto diverse fra di loro), ma attualmente preferisce la versione 1.0, perché la 1.1 ha ancora troppi problemi (ad esempio ogni server lo implementa in modo diverso con differenti particolarità).


Avvertimento: Inserendo nome utente e password nella scheda Autenticazione, le credenziali non sono protette nella configurazione della connessione. Queste credenziali saranno visibili se, per esempio, hai condiviso il file del progetto con qualcuno. Pertanto, è invece consigliabile salvare le credenziali in una Configurazione di autenticazione (tabella configurazioni). Vedi Sistema di Autenticazione per maggiori dettagli.

19.3 Client WFS e WFS-T

In QGIS, un layer WFS si comporta più o meno come qualsiasi altro layer vettoriale. Puoi identificare e selezionare gli elementi, e visualizzare la tabella degli attributi. QGIS supporta WFS 1.0.0, 1.1.0, 2.0 e WFS3 (OGC API - Features), inclusa la modifica (attraverso WFS-T).

In generale, aggiungere un layer WFS è molto simile alla procedura usata con WMS. Non ci sono server predefiniti, quindi devi aggiungere i tuoi. Puoi trovare i server WFS usando il plugin MetaSearch o il tuo motore di ricerca web preferito. Ci sono un certo numero di liste con URL pubblici, alcune mantenute e altre no.

Caricare un layer WFS

Come esempio, usiamo il server Gateway Geomatics WFS e visualizziamo un layer. Per poter caricare un Layer WFS, crea prima una connessione al server WFS:

1. Apri la finestra di dialogo Gestore della sorgente dati premendo il pulsante Apri Gestore della sorgente dati

2. Attiva la scheda guilabel:`WFS/OGC API-Features`

3. Fai clic su Nuovo per aprire la finestra di dialogo Crea una nuova connessione WFS.

4. Inserisci Gateway Geomatics come nome

5. Immetti l’URL (vedi sopra)
6. Nella finestra di dialogo impostazioni WFS puoi:

- Indicare la versione WFS del server. Se sconosciuto, premi il pulsante Rileva per recuperarlo automaticamente.
- Definire il Numero max. di geometrie recuperate in una singola richiesta GetFetFeature. Se vuoto, non viene impostato alcun limite.
- Inverti orientamento assi.
- E a seconda della versione WFS:
  - Forza a Ignora orientamento assi (WFS 1.1/WFS 2.0)
  - Enable feature paging e specifica il numero massimo di geometrie da recuperare con Dimensione pagina. Se non viene definito alcun limite, viene applicato il valore predefinito del server.

**Avvertimento:** Inserendo Nome utente e Password nella scheda Autenticazione, le credenziali non sono protette nella configurazione della connessione. Queste credenziali saranno visibili se, per esempio, hai condiviso il file del progetto con qualcuno. Pertanto, è consigliabile invece salvare le tue credenziali in una Configurazione di autenticazione (scheda Configurazioni). Vedi Sistema di Autenticazione per maggiori dettagli.
7. Premi OK per creare la connessione.
Ogni impostazione proxy presente nelle preferenze viene automaticamente riconosciuta.
Ora siamo pronti a caricare i layer WFS dalla connessione di cui sopra.

1. Scegli «Gateway Geomatics» dall'elenco a discesa Connessioni server.
2. Clicca Connetti.
3. Seleziona il layer Parks nella lista.
4. Puoi scegliere se fare o meno:
   - Usa il titolo come nome del layer, mostrando il titolo dello strato come definito sul server nel pannello Layer al posto del suo Nome.
   - Solo le geometrie sovrapposte all'estensione della vista.
   - Cambia… il SR del layer.
   - o Crea interrogazione per specificare particolari geometrie da recuperare, utilizzando il pulsante corrispondente o facendo doppio clic sul layer di destinazione.
5. Clicca Aggiungi per aggiungere il layer alla mappa.

Fig. 19.5: Aggiungere un layer WFS

Noterai che l'avanzamento del download viene visualizzato in basso a sinistra della finestra principale di QGIS. Una volta caricato il layer, puoi identificare e selezionare un paio di elementi e visualizzare la tabella degli attributi.
Nota: QGIS supporta diverse versioni del protocollo WFS, con download in background e visualizzazione progressiva, caching su disco delle geometrie scaricate e rilevamento automatico delle versioni.
20.1 Plugin GPS

20.1.1 Cos'è un GPS?
Il sistema di posizionamento globale GPS, il Global Positioning System, è basato sui satelliti, permette, a chiunque sia dotato di un ricevitore GPS, di individuare esattamente la sua posizione in qualunque zona del mondo. Il GPS è utilizzato come strumento di aiuto nella navigazione, per esempio negli aerepiani, nelle navi e anche dagli escursionisti. Il ricevitore GPS sfrutta il segnale dei satelliti per calcolare latitudine, longitudine e (qualche volta) l'altitudine. Molti ricevitori possono memorizzare la posizione (chiamata waypoints), la sequenza delle posizioni che formano una route e il tracciato o track dei movimenti che il ricevitore ha compiuto nel tempo. Waypoints, routes e tracks sono i tre principali elementi dei dati GPS. QGIS mostra i waypoints in un vettore puntuale, mentre route e tracks (percorsi e tracciati) sono visualizzati in vettori lineari.

Nota: QGIS supporta anche ricevitori GNSS. Ma noi continuiamo a usare il termine GPS in questa documentazione.

20.1.2 Caricamento dei dati GPS da file
Ci sono una dozzina di formati di file diversi per memorizzare dati GPS. Il formato utilizzato da QGIS è chiamato GPX (GPX eXchange format), che è un formato standard di interscambio che può contenere svariati numeri di posizioni, percorsi e tracce nello stesso file.

Per caricare un file GPX tu devi per prima cosa installare il plugin aprendo la finestra di dialogo Plugins Gestisci e installa plugin…. Attivare la casella Strumenti GPS. Quando questo plugin viene caricato, un pulsante con un piccolo dispositivo GPS portatile verrà visualizzato nella barra degli strumenti e in Layer ► Crea vettore ►:

- Strumenti GPS
- Nuovo vettore GPX

Per lavorare con i dati GPS viene fornito un file GPX di esempio disponibile nel dataset di QGIS qgis_sample_data/gps/national_monuments.gpx. Vedi la sezione Dati campione per maggiori informazioni sull'insieme di dati a disposizione.
1. Seleziona **Vettore ➤ Strumenti GPS** o clicca sull'icona [Strumenti GPS](#) nella barra degli strumenti e apri la scheda **Carica file GPX** (vedi Fig. 20.1).

2. Sfoglia la cartella `qgis_sample_data/gps/`, seleziona il file GPX `national_monuments.gpx` e clicca su **Apri**.

**Fig. 20.1:** La finestra di dialogo **Strumenti GPS**

Utilizza il pulsante *Sfoglia*... per selezionare il file GPX, quindi utilizza le caselle di controllo per selezionare i tipi di dati che vuoi caricare da quel file GPX. Ogni tipo di dato sarà caricato in un layer separato quando fai clic su **OK**. Il file `national_monuments.gpx` include solo i waypoint.

**Nota:** I dispositivi GPS consentono di memorizzare i dati in diversi sistemi di coordinate. Quando si scarica un file GPX (dal dispositivo GPS o da un sito web) e poi lo si carica in QGIS, assicurarsi che i dati memorizzati nel file GPX utilizzino WGS 84 (latitudine/longitudine). QGIS si aspetta questo, ed è la specifica ufficiale GPX. Vedi [https://www.topografix.com/GPX/1/1/](https://www.topografix.com/GPX/1/1/).

### 20.1.3 GPSBabel

Poiché QGIS utilizza file GPX, devi trovare un modo per convertire altri formati di file GPS in GPX. Questo può essere fatto per molti formati utilizzando il programma gratuito GPSBabel, disponibile all'indirizzo [https://www.gpsbabel.org](https://www.gpsbabel.org). Questo programma può anche trasferire dati GPS tra il computer e un dispositivo GPS. QGIS utilizza GPSBabel per fare queste cose, quindi si raccomanda di installarlo. Tuttavia, se vuoi solo caricare i dati GPS da file GPX non è necessario. La versione 1.2.3 di GPSBabel è nota per funzionare con QGIS, ma dovresti essere in grado di utilizzare le versioni successive senza problemi.

### 20.1.4 Importare dati GPS

Per importare dei dati che non sono dei file GPX, utilizza lo strumento **Importa un altro file** presente nella finestra di dialogo degli Strumenti GPS. Qui, puoi scegliere il file da importare (e il formato del file), il tipo di dato da estrarre da esso, dove vuoi salvare il file una volta convertito in GPX e il nome che vuoi dare al nuovo vettore. Nota che non tutti i formati di dati GPS supportano tutti e tre i tipi di dato, così per alcuni formati potrai scegliere solo uno o due tipi.
20.1.5 Scaricare dati GPS da un dispositivo

QGIS può usare GPSBabel per scaricare dati da un dispositivo GPS direttamente come nuovi layer vettoriali. Per questo usiamo la scheda Scarica dal GPS della finestra di dialogo Strumenti GPS (vedi Fig. 20.2). Qui selezioniamo il tipo di dispositivo GPS, la porta a cui è connesso (o USB se il GPS lo supporta), il tipo di elemento che si vuole scaricare, il file GPX dove i dati devono essere memorizzati e il nome del nuovo layer.

![Fig. 20.2: Lo strumento di scaricamento](image)

GPSBabel comunica con il GPS in base al tipo di dispositivo che viene selezionato nel menu. Se nessuna delle opzioni disponibili è compatibile con il proprio dispositivo GPS è possibile creare un nuovo tipo (vedi sezione Definire un nuovo tipo di dispositivo).

La porta potrebbe essere il nome del file o qualche altro termine che il tuo sistema operativo riconosce come porta fisica alla quale è connesso il dispositivo GPS. Essa potrebbe essere un'uscita USB, nel caso di dispositivi abilitati per l'USB.

- Nei sistemi Linux è qualcosa di simile a `/dev/ttyS0` o `/dev/ttyS1`
- In Windows è `COM1` o `COM2`.

Quando fai clic su OK, i dati vengono scaricati dal dispositivo e appaiono come un layer in QGIS.

20.1.6 Caricare dati GPS sul dispositivo

C’è anche la possibilità di caricare dati vettoriali da QGIS al dispositivo GPS utilizzando lo strumento Carica sul GPS presente sempre nella finestra di dialogo Strumenti GPS. Per effettuare questa operazione devi semplicemente selezionare il layer che vuoi caricare (che deve essere un layer GPX), il dispositivo GPS utilizzato, e la porta (o l’USB) alla quale il dispositivo è collegato. Come per lo scaricamento dei dati, anche per il caricamento puoi specificare un nuovo tipo di dispositivo se tra quelli della lista non è presente quello che si sta utilizzando.

Questo strumento è molto utile in combinazione con le capacità di editing dei dati vettoriali di QGIS. Permette di caricare una mappa, creare delle posizioni o dei percorsi, e successivamente caricare questi dati nel dispositivo per poi utilizzarli in campagna.
20.1.7 Definire un nuovo tipo di dispositivo

Ci sono molteplici tipologie di dispositivi GPS. GPS. Gli sviluppatori QGIS non possono testarli tutti, quindi se ne hai uno che non funziona con nessuno dei tipi di dispositivi elencati in Scarica dal GPS e Carica sul GPS, puoi definire il tuo tipo di dispositivo. Puoi farlo utilizzando l'editor dei dispositivi GPS, che si avvia facendo clic sul pulsante Modifica periferiche... sia nella finestra di download che in quella di upload.

Per definire un nuovo dispositivo, devi solo fare clic sul pulsante Nuovo, inserire un nome, inserire i comandi di download e upload del dispositivo e fare clic sul pulsante Aggiorna. Il nome sarà inserito nei menu del dispositivo nelle finestre di upload e download – può essere qualsiasi stringa. Il comando download è il comando che viene utilizzato per scaricare i dati dal dispositivo in un file GPX. Questo sarà probabilmente un comando GPSBabel, ma è possibile utilizzare qualsiasi altro programma a riga di comando in grado di creare un file GPX. QGIS sostituirà le parole chiave %type, %in, and %out quando esegue il comando. %type sarà sostituito da -w se stai scaricando dei waypoints, -r se stai scaricando delle routes e -t se stai scaricando dei tracks. Queste sono le opzioni che comunicano a GPSBabel quali elementi scaricare.

%in indica il nome della porta selezionata nella finestra di download mentre %out indica il nome del file GPX nel quale verranno salvati i dati. Dunque quando viene creato un nuovo dispositivo il seguente comando di download %type -i garmin -o gpx %in %out (questo è il comando di download per la tipologia di dispositivi predefiniti ‘Garmin serial’) verrà utilizzato per scaricare waypoints dalla porta /dev/ all’interno del file GPX output.gpx. QGIS leggerà la stringa e avvierà il comando gpsbabel -w -i garmin -o gpx /dev/ttyS0 output.gpx.

Il comando di upload è il comando che viene utilizzato per caricare dati sul dispositivo. Vengono utilizzati gli stessi tasti, ma %in è utilizzato per indicare il nome del file GPX che contiene il layer in caricamento, e %out viene sostituito dal nome della porta.

Puoi avere maggiori informazioni su GPSBabel e sulle opzioni utilizzabili tramite linea di comando sul sito http://www.gpsbabel.org.

Una volta che avrai creato una nuova periferica, essa apparirà nella lista dei dispositivi presenti sia nella scheda Scarica dal GPS che nella scheda Carica sul GPS.

20.1.8 Scaricare points/tracks dall’unità GPS

Come descritto nelle sezioni precedenti, QGIS utilizza GPSBabel per scaricare punti/tracce direttamente nel progetto. QGIS si configura con impostazioni predefinite per scaricare da dispositivi Garmin. Purtroppo c’è un bug #6318 che non permette di creare altri profili, quindi il download diretto in QGIS utilizzando gli strumenti GPS è al momento limitato alle unità Garmin USB.

Garmin GPSMAP 60cs

MS Windows

Installare i driver USB Garmin da https://www8.garmin.com/support/download_details.jsp?id=591

Connettere l’unità. Aprire gli Strumenti GPS e impostare type=garmin serial e port=usb: Riempire i campi Nome layer and File di output. A volte si possono avere dei problemi nel salvataggio dei dati in certe cartelle, si consiglia di utilizzare un percorso del tipo c:\temp.

Ubuntu/Mint GNU/Linux

Per prima cosa occorre risolvere un problema inerente i permessi di accesso alla periferica, seguendo quanto scritto qui https://wiki.openstreetmap.org/wiki/USB_Garmin_on_GNU/Linux. Puoi provare a creare un file /etc/udev/rules.d/51-garmin.rules contenente il seguente codice:

```
ATTRS{idVendor}=="091e", ATTRS{idProduct}=="0003", MODE="666"
```

Successivamente occorre essere sicuri che il modulo del kernel garmin_gps non sia caricato
e poi puoi usare gli Strumenti GPS. Purtroppo sembra esserci un bug #7182 e di solito QGIS si blocca più volte prima che l'operazione funzioni bene.

**Data logger BTGP-38KM (solo Bluetooth)**

**MS Windows**

Il baco già discusso non consente di scaricare i dati tramite QGIS, per cui è necessario utilizzare GPSBabel dalla riga di comando o tramite la sua interfaccia. Il comando da eseguire è

```
gpsbabel -t -i skytraq,baud=9600,initbaud=9600 -f COM9 -o gpx -F C:/GPX/aaa.gpx
```

**Ubuntu/Mint GNU/Linux**

Utilizzare lo stesso comando (o gli stessi parametri, se usate la GUI di GPSBabel). Su Linux potrebbe capitare di vedere un messaggio tipo

```
skytraq: Too many read errors on serial port
```

Si tratta solo di spegnere e riaccendere il data logger e ritenere

**BlueMax GPS-4044 datalogger (sia BT che USB)**

**MS Windows**

**Nota:** Ha bisogno di installare i propri driver prima di essere utilizzato su Windows 7. Si veda il sito del costruttore per il file corretto da scaricare.

Scaricando con GSPBabel, sia con USB che BT, si ottiene sempre un errore tipo

```
gpsbabel -t -i mtk -f COM12 -o gpx -F C:/temp/test.gpx
mtk_logger: Can't create temporary file data.bin
Error running gpsbabel: Process exited unsuccessfully with code 1
```

**Ubuntu/Mint GNU/Linux**

**con USB**

Dopo aver collocato il cavo, usare il comando `dmesg` per capire quale porta viene utilizzata, ad esempio `/dev/ttyACM3`. Poi, come al solito, utilizzare GPSBabel dalla riga di comando o dalla GUI

```
gpsbabel -t -i mtk -f /dev/ttyACM3 -o gpx -F /home/user/bluemax.gpx
```

**Con Bluetooth**

Utilizzare il Gestore di dispositivi Blueman per accoppiare il dispositivo e renderlo disponibile tramite una porta di sistema, poi eseguire GPSBabel

```
gpsbabel -t -i mtk -f /dev/rfcomm0 -o gpx -F /home/user/bluemax_bt.gpx
```
20.2 Tracciamento live GPS

Per attivare il tracciamento live del GPS tramite QGIS devi selezionare Visualizza ► Panelli Informazioni sul GPS o premere Ctrl+0. Otterrai una nuova finestra agganciata sul lato sinistro dello schermo.

Ci sono 3 possibili schermate nella finestra di tracciamento GPS:

- posizione coordinate GPS ed inserimento manuale di vertici e caratteristiche
- potenza del segnale di connessione del GPS ai satelliti
- schermata opzioni GPS (vedi Fig. 20.5)

Con un ricevitore GPS collegato (deve essere supportato dal sistema operativo), un semplice clic su Connetti collega il GPS a QGIS. Un secondo clic (ora su Disconnetti) scollega il ricevitore GPS dal computer. Per GNU/Linux, il supporto gpd è integrato per supportare la connessione alla maggior parte dei ricevitori GPS. Pertanto, devi prima configurare gpd correttamente per connetterti a QGIS.

**Avvertimento:** Se vuoi registrare la tua posizione sulla mappa devi prima creare un nuovo layer vettoriale ed entrare nella modalità di editing in modo da registrare il percorso.

20.2.1 Posizione e attributi aggiuntivi

Se il GPS sta ricevendo segnali dai satelliti, puoi visualizzare la tua posizione in termini di latitudine longitudine e quota, insieme ad altri attributi aggiuntivi.
20.2.2 Potenza del segnale GPS

Con questa schermata è possibile vedere la potenza del segnale dei satelliti dai quali si sta ricevendo il segnale.

Fig. 20.4: Potenza del segnale GPS
20.2.3 Opzioni GPS

Nel caso di problemi di connessione, puoi attivare una delle seguenti opzioni:

- **Individuazione automatica**
- **Interno**
- **Device seriale**
- **gpsd** (selezionando Host, Porta e Device il tuo GPS si deve connettere)

Un clic su **Connetti** avvia di nuovo la connessione al ricevitore GPS.

Puoi attivare **Salva automaticamente gli elementi aggiunti** quando sei in modalità di editing. Oppure puoi attivare l'opzione **Aggiungi automaticamente punti** sulla mappa con una scelta di grandezza e colore.

Attivando **Cursore**, puoi usare una barra a scorrimento per ridurre o aumentare la dimensione del cursore sulla mappa.

Puoi inoltre impostare i parametri **Acquisition interval (seconds)** e **Distance threshold (meters)** per mantenere il cursore ancora attivo quando il ricevitore è in condizioni statiche.
Attivando **Centratura mappa** puoi decidere in quale modo la mappa dovrà essere aggiornata. Questa opzione prevede ‘sempre’, ‘quando si chiude’ se le coordinate registrate escono fuori dall’estensione della mappa, o ‘mai’ se rientrano nell’estensione della mappa.

Infine puoi attivare **File di log** e definire un percorso e un file dove registrare i messaggi che vengono generati durante il tracciamento GPS.

Se vuoi impostare manualmente un elemento, devi tornare a **Posizione** e clicca su **Aggiungi punto** o **Aggiungi punto traccia**.

### 20.2.4 Connessione di un GPS Bluetooth GPS per tracciamento live

Con QGIS puoi collegare un GPS Bluetooth per la raccolta di dati. Per eseguire questa operazione è necessario che il GPS sia dotato di Bluetooth e che il tuo computer abbia il Bluetooth.

Per prima cosa devi fare in modo che il tuo dispositivo GPS sia riconosciuto e associato al computer. Accendi il GPS, vai sull'icona Bluetooth nell’area di notifica e cerca per Nuovo Dispositivo.

Sul lato destro della maschera di selezione dei dispositivi assicurati che tutti i dispositivi siano selezionati in modo che probabilmente la tua unità GPS appaia tra quelle disponibili. Nella fase successiva dovrebbe essere disponibile un servizio di connessione seriale, selezionarlo e fa clic sul pulsante **Configura**.

Ricorda il numero della porta COM assegnata alla connessione GPS risultante dalle proprietà Bluetooth.

Dopo che il GPS è stato riconosciuto, esegui l’accoppiamento per la connessione. Di solito il codice di autorizzazione è 0000.

Ora apri il pannello **Informazioni sul GPS** e passa alla schermata **opzioni GPS**. Seleziona la porta COM assegnata alla connessione GPS e fa clic sul pulsante **Connetti**. Dopo un po’ di tempo dovrebbe apparire un cursore che indica la tua posizione.

Se QGIS non è in grado di ricevere dati GPS, devi riavviare il dispositivo GPS, attendere 5-10 secondi e tentare nuovamente di collegarti. Solitamente questa soluzione funziona. Se ricevi ancora un errore di connessione accertati di non avere un altro ricevitore Bluetooth vicino a te, accoppiato con la stessa unità GPS.

### 20.2.5 Usare GPSMAP 60cs

**MS Windows**

Il modo più semplice per farlo funzionare è utilizzare un middleware (freeware, non aperto) chiamato **GPSGate**. Avvia il programma, effettua la scansione per i dispositivi GPS (funziona sia per i dispositivi USB che quelli BT) e quindi in QGIS fai clic su **Connetti** nel pannello Live tracking usando la modalità **Connessione automatica**.

**Ubuntu/Mint GNU/Linux**

Per quanto riguarda Windows, il modo più semplice è utilizzare un server, in questo caso GPSD, quindi

```
sudo apt install gpsd
```

Quindi carica il modulo del kernel **garmin_gps**

```
sudo modprobe garmin_gps
```

E quindi collegare l'unità. Poi controlla con **dmesg** il dispositivo reale utilizzato dall'unità, ad esempio /dev/ttyUSB0. Ora puoi lanciare **gpsd**

```
gpsd /dev/ttyUSB0
```
E infine connettiti con lo strumento di tracciamento live di QGIS.

**20.2.6 Usare BTGP-38KM datalogger (solo Bluetooth)**

Usare GPSD (in ambiente Linux) o GPSGate (in ambiente Windows) è semplice.

**20.2.7 Usare BlueMax GPS-4044 datalogger (sia BT che USB)**

**MS Windows**

Il Live Tracking funziona sia per le modalità USB che BT, utilizzando GPSGate o anche senza tale opzione, basta attivare *Individuazione automatica*, oppure connettere lo strumento sulla porta giusta.

**Ubuntu/Mint GNU/Linux**

**Per USB**

Il live tracking funziona anche con GPSD

```
gpsd /dev/ttyACM3
```

o senza di esso, connettendo lo strumento live tracking di QGIS direttamente al device (vedi esempio al seguente link `/dev/ttyACM3`).

**Per Bluetooth**

Il live tracking funziona anche con GPSD

```
gpsd /dev/rfcomm0
```

o senza di esso, connettendo lo strumento live tracking di QGIS direttamente al device (vedi esempio al seguente link `/dev/rfcomm0`).
21.1 Panoramica del sistema di autenticazione

Il nuovo sistema di autenticazione memorizza le configurazioni di autenticazione in un file database SQLite memorizzato, in modo predefinito, nel `<profile directory>/qgis-auth.db`.

Questo database di autenticazione può essere spostato fra le installazioni di QGIS senza che vengano coinvolte altre preferenze utente di QGIS correnti, dato che è completamente separato dalle normali impostazioni utente di QGIS.
Un ID di configurazione (una stringa casuale alfanumerica di 7 caratteri) viene generata quando viene scritta la configurazione iniziale nel database. Ciò rappresenta la configurazione, permettendo così che l'ID venga memorizzato in componenti dell'applicazione come testo normale, (come progetto, plugin o files di impostazioni) senza divulgazione delle relative credenziali associate.

Nota: La cartella genitore di qgis-auth.db può essere impostata usando la seguente variabile d'ambiente, QGIS_AUTH_DB_DIR_PATH, oppure impostata sulla linea di comando durante il lancio con l'opzione -authdbdirectory.

21.1.2 Password master

Per memorizzare o accedere ad informazioni sensibili all'interno del database, un utente deve definire una master password. Una nuova master password viene richiesta e verificata quando si memorizzano inizialmente tutti i dati crittografati nel database. Quando si accede ad informazioni sensibili, viene richiesta all'utente la master password. La password viene quindi memorizzata nella cache per il resto della sessione (fino a quando l'applicazione viene chiusa), a meno che l'utente non sceglia manualmente un'azione per cancellare il suo valore memorizzato nella cache. Alcune istanze di utilizzo del sistema di autenticazione non richiedono l'immissione della master password, ad esempio quando si seleziona una configurazione di autenticazione esistente o si applica una configurazione ad una configurazione del server (ad esempio quando si aggiunge un livello WMS).

Puoi scegliere di salvare la password nel Wallet/Keyring del tuo computer.

Fig. 21.2: Inserisci la nuova master password

Nota: Un percorso di un file contenente la master password può essere impostato utilizzando la seguente variabile d'ambiente QGIS_AUTH_PASSWORD_FILE.
Gestione della master password

Una volta impostata, la master password può essere reimpostata; la master password attuale sarà necessaria prima di reimpostarla. Durante questo processo, c’è un’opzione per generare un backup completo del database attuale.

Fig. 21.3: Ripristino della master password

Se l’utente dimentica la master password, non c’è modo di recuperarla o sovrascriverla. Non vi è inoltre alcun mezzo per recuperare informazioni criptate senza conoscere la master password.

Se un utente inserisce la password esistente in modo errato tre volte, la finestra di dialogo offrirà la possibilità di cancellare il database.

Fig. 21.4: Richiesta di password dopo tre tentativi non validi

21.1.3 Configurazioni di Autenticazione

Puoi gestire le configurazioni di autenticazione da Configurazioni nella scheda Autenticazione della finestra di dialogo Opzioni QGIS (Impostazioni ➤ Opzioni).
Usa il pulsante per aggiungere una nuova configurazione, il pulsante per rimuovere le configurazioni e il pulsante per modificare quelle esistenti.

![Fig. 21.5: Editor delle configurazioni](image)

![Fig. 21.6: Aggiunta di configurazione dall'interno dell'editor di Configurazione](image)
Lo stesso tipo di operazioni per la gestione della configurazione dell'autenticazione (Aggiungi, Modifica e Rimuovi) può essere fatto durante la configurazione di una connessione di servizio, come ad esempio la configurazione di una connessione di un servizio OWS. Per far ciò, ci sono pulsanti di azione all'interno del selettore di configurazione per la gestione completa delle configurazioni presenti nel database di autenticazione. In questo caso, non c'è bisogno di andare alla scheda Configurazioni in Autenticazione delle opzioni QGIS a meno che non sia necessario eseguire una gestione della configurazione più completa.

Fig. 21.7: Finestra di dialogo di connessione WMS che mostra i pulsanti Aggiungi, Modifica, e Rimuovi di configurazione dell'autenticazione

Quando si crea o si modifica una configurazione di autenticazione, le informazioni richieste sono un nome, un metodo di autenticazione e qualsiasi altra informazione richiesta dal metodo di autenticazione (vedi maggiori informazioni sui tipi di autenticazione disponibili in Metodi di Autenticazione).

### 21.1.4 Metodi di Autenticazione

Le autenticazioni disponibili sono fornite dai plugin C++ nello stesso modo in cui i plugin dei fornitori di dati sono supportati da QGIS. Il metodo di autenticazione che può essere selezionato è relativo all'accesso necessario per la risorsa/provider, ad es. HTTP(S) o database, e qualore ci sia supporto sia nel codice QGIS che in un plugin. Come tale, alcuni plugin dei metodi di autenticazione potrebbero non essere applicabili ovunque venga mostrato un selettore di configurazione dell'autenticazione. Si può accedere a un elenco dei plugin disponibili per il metodo di autenticazione e delle risorse/provider compatibili andando a Impostazioni ➤ Opzioni e, nella scheda Autenticazione, fai clic sul pulsante Installed Plugins installati.
Fig. 21.8: Elenco dei plugin dei metodi disponibili

I plugin possono essere creati per nuovi metodi di autenticazione che non richiedono la ricompilazione di QGIS. Dal momento che il supporto per i plugin è attualmente solo C++, QGIS dovrà essere riavviato per rendere il nuovo plugin disponibile all’utente. Assicurati che il plugin sia compilato con la stessa versione di QGIS se intendi aggiungerlo ad una installazione di destinazione esistente.

Fig. 21.9: Configurazione di autenticazione HTTP di base
Fig. 21.10: Configurazioni di autenticazione token ESRI
Fig. 21.11: Configurazione di autenticazione OAuth2
Fig. 21.12: Percorso delle configurazioni di autenticazione PKI

Fig. 21.13: Configurazioni dei percorsi del file PKI PKCS#12 di autenticazione

Fig. 21.14: Configurazione della autenticazione di identità memorizzata

Nota: La Resource URL è attualmente una funzione non implementata che permetterà ad una particolare configurazione di poter essere scelta automaticamente quando ci si connette alle risorse ad un dato URL.
21.1.5 Master Password ed Utilità di Auth Config

Sotto il menu Opzioni (Impostazioni ▶ Opzioni) nella scheda Autenticazione, ci sono diverse funzionalità utili per gestire il database di autenticazione e le configurazioni:

- **Inserisci la password principale**: apre la finestra di dialogo per l'immissione della password principale, indipendentemente dall'esecuzione di qualsiasi comando di autenticazione del database
- **Cancella la password principale salvata in cache**: rimuove la password principale se è stata impostata
- **Ripristina password principale**: apre una finestra di dialogo per cambiare la password principale (la password attuale deve essere conosciuta) e opzionalmente fare il backup del database corrente
- **Cancella la cache di accesso dell'autenticazione di rete**: cancella la cache di autenticazione di tutte le connessioni
- **Cancellare automaticamente la cache di accesso dell'autenticazione di rete quando si verificano errori SSL**: la cache di connessione memorizza tutti i dati di autenticazione per le connessioni, anche quando la connessione fallisce. Se cambi le configurazioni di autenticazione o le autorità di certificazione, devi cancellare la cache di autenticazione o riavviare QGIS. Quando questa opzione è selezionata, la cache di autenticazione sarà automaticamente cancellata ogni volta che si verifica un errore SSL e tu scegli di interrompere la connessione
- **Integra la password principale con il tuo Password Manager**: aggiunge la password principale al tuo Password Manager personale
- **Memorizza/aggiorna la password principale nel tuo Password Manager**: aggiorna la password principale modificata nel tuo Password Manager
- **Cancella la password principale dal tuo Password Manager**: cancella la password principale dal tuo Password Manager
- **Abilita il log di debug dell'aiuto per la password**: abilita uno strumento di debug che conterrà tutte le informazioni di log dei metodi di autenticazione
- **Cancella le configurazioni di autenticazione salvate in cache**: cancella la cache interna di ricerca delle configurazioni, usata per velocizzare le connessioni di rete. Questo non cancella la cache del gestore di accesso alla rete principale di QGIS, che richiede un riavvio di QGIS.

Fig. 21.15: Menu utilità
• **Rimuovi tutte le configurazioni di autenticazione**: elimina nel database tutti i record di configurazione, senza rimuovere altri record memorizzati.

• **Cancella il database di autenticazione**: pianifica un backup del database corrente e la ricostruzione completa della struttura delle tabelle del database. Le azioni sono programmate per un tempo successivo, per assicurare che altre operazioni, come il caricamento del progetto, non interrompano l’operazione o causino errori a causa di un database temporaneamente mancante.

Fig. 21.16: Menu di cancellazione del DB di autenticazione

### 21.1.6 Usare le configurazioni di autenticazione

Tipicamente, una configurazione di autenticazione è selezionata in una finestra di dialogo di configurazione per un servizio di rete (come WMS). Tuttavia, il widget di selezione può essere incorporato ovunque sia necessaria l'autenticazione o in funzionalità non-core, come in PyQGIS o plugin C++ di terze parti.

Quando si usa il selettore, **Nessuna autenticazione** viene visualizzato nel controllo del menu a comparsa quando non viene selezionato nulla, quando non ci sono configurazioni tra cui scegliere o quando una configurazione precedentemente assegnata non può più essere trovata nel database. I campi *Tipo* e *Id* sono di sola lettura e forniscono rispettivamente una descrizione del metodo di autenticazione e l'ID della configurazione.

Fig. 21.17: Selettore di configurazione dell’autenticazione senza autenticazione

Fig. 21.18: Selettore della configurazione di autenticazione con la configurazione scelta
21.1.7 Collegamenti Python

Tutte le classi e le funzioni pubbliche hanno collegamenti SIP, eccetto QgsAuthCrypto, poiché la gestione dell'hashing della master password e della crittografia del database auth dovrebbe essere gestita dall'applicazione principale, e non tramite Python. Vedi Considerazioni sulla sicurezza riguardo all'accesso di Python.

21.2 Flussi di lavoro per l'autenticazione degli utenti

![Diagram](image)

Fig. 21.19: Flusso di lavoro per l'utente generico

21.2.1 Autenticazione HTTP(S)

Una delle connessioni alle risorse più comuni è via HTTP(S), ad esempio i server di web mapping, e i plugin di metodo di autenticazione spesso funzionano per questi tipi di connessioni. I plugin di sistema hanno accesso all'oggetto della richiesta HTTP e possono manipolare sia la richiesta che le sue intestazioni. Questo permette molte forme di autenticazione basate su internet. Quando ci si connette via HTTP(S) usando il metodo di autenticazione standard nome utente/password si tenterà l'autenticazione HTTP BASIC al momento della connessione.
21.2.2 Autenticazione al Database

Le connessioni alle risorse del database sono generalmente memorizzate come coppie chiave=valore, che esorranno nomi utente e (opzionalmente) password, se non si usa una configurazione di autenticazione. Quando si configura con il sistema di autenticazione, la chiave=valore sarà una rappresentazione astratta delle credenziali, ad esempio authfg=81t21b9.
21.2.3 Autenticazione PKI

Quando si configurano i contenuti PKI all'interno del sistema di autenticazione, si ha la possibilità di importare i contenuti nel database o di fare riferimento a file di contenuti memorizzati sul proprio filesystem. Quest'ultima opzione può essere utile se tali contenuti cambiano frequentemente, o se i contenuti vengono sostituiti da un amministratore di sistema. In entrambi i casi sarà necessario memorizzare qualsiasi passphrase necessaria per accedere alle chiavi private all'interno del database.
Tutti i componenti PKI possono essere gestiti in editor separati all'interno del **Gestore Certificato**, a cui si può accedere nella scheda **Autenticazione** nella finestra di dialogo QGIS **Opzioni (Impostazioni ➤ Opzioni)** facendo clic sul pulsante **Gestione Certificati**.

**Fig. 21.22: Workflow configurazione PKI**
Fig. 21.23: Aprire il Gestore Certificato


Nota: Poiché tutte le modifiche al sistema di autenticazione scrivono immediatamente nel database di autenticazione, per salvare le modifiche non c’è bisogno di cliccare sul pulsante OK della finestra di dialogo Opzioni. Questo è diverso dalle altre impostazioni della finestra di dialogo delle opzioni.

**Autorità**

Puoi gestire le Autorità di Certificazione (CA) disponibili dalla scheda Autorità nel Gestore Certificato dalla scheda Autenticazione della finestra di dialogo Opzioni di QGIS.

Come indicato nel grafico del flusso di lavoro sopra, il primo passo è importare o fare riferimento a un file di CA. Questo passo è opzionale e potrebbe non essere necessario se la vostra rete di sicurezza PKI proviene da CA radice già installate nel vostro sistema operativo (OS), come un certificato da un fornitore di certificati commerciali. Se la tua CA radice autenticante non è tra le CA concatenate fidate del sistema operativo, dovrà essere importata o avere il suo percorso nel file system come riferimento. (Contatta il tuo amministratore di sistema se non sei sicuro).
Per impostazione predefinita, le CA root del tuo sistema operativo sono disponibili; tuttavia, le loro impostazioni di fiducia non vengono ereditate. Devi rivedere le impostazioni dei criteri di fiducia dei certificati, specialmente se le CA root del tuo sistema operativo hanno modificato i loro criteri. Qualsiasi certificato scaduto sarà impostato su non fidato e non sarà usato nelle connessioni sicure al server, a meno che non si sovrascriva specificamente la sua politica di fiducia. Per vedere la politica di fiducia di QGIS per qualsiasi certificato, selezionatelo e cliccate su Informazioni Certificato.

Fig. 21.24: Editor Autotità
Puoi modificare la politica di fiducia per qualsiasi certificato selezionato all'interno della catena. Qualsiasi cambiamento nella politica di fiducia di un certificato selezionato non sarà salvato nel database a meno che il pulsante "Salva modifica politica di fiducia del certificato nel database" sia cliccato per la certificazione selezionata. La chiusura della finestra di dialogo non applicherà le modifiche ai criteri.

Puoi rivedere le CA filtrate, sia i certificati intermedi che quelli root, che saranno fidati per le connessioni sicure o cambiare la politica di fiducia predefinita facendo clic sul pulsante "Opzioni".

**Avvertimento:** Cambiare la politica di fiducia preimpostata può causare problemi con le connessioni sicure.
Puoi importare CA o salvare un percorso di file system da un file che contiene più CA, o importare singole CA. Il formato PEM standard per i file che contengono certificazioni multiple della catena CA ha il certificato radice in fondo al file e tutti i certificati figli firmati successivamente sopra, all’inizio del file.

La finestra di dialogo di importazione dei certificati CA troverà tutti i certificati CA all’interno del file, indipendentemente dall’ordine, e offre anche l’opzione di importare i certificati che sono considerati non validi (nel caso si voglia sovrascrivere la loro politica di fiducia). Puoi sovrascrivere la politica di fiducia al momento dell’importazione o farlo in seguito nell’editor Autorità.

Nota: Se stai inserendo informazioni sul certificato nel campo Testo PEM, nota che i certificati criptati non sono supportati.

Identità

Puoi gestire i bundle di identità client disponibili dalla scheda Identità nella scheda Gestore dei certificati della scheda Autenticazione della finestra di dialogo Opzioni di QGIS. Un’identità è ciò che ti autenticà con un servizio abilitato alla PKI e di solito consiste in un certificato client e una chiave privata, sia come file separati che combinati in un singolo file «bundle». Il bundle o la chiave privata sono spesso protetti da passphrase.

Una volta che hai importato tutte le Autorità di certificazione (CA), puoi opzionalmente importare qualsiasi bundle di identità nel database di autenticazione. Se non si desidera memorizzare le identità, si può fare riferimento ai percorsi dei loro file system componenti all’interno di una configurazione di autenticazione singola.
Quando si importa un bundle di identità, esso può essere protetto o meno da passphrase e può contenere certificati CA che formano una catena di fiducia. Le certificazioni della catena di fiducia non saranno importate qui; possono essere aggiunte separatamente nella scheda Autorità.

Al momento dell’importazione, il certificato e la chiave privata del bundle saranno memorizzati nel database, con la memorizzazione della chiave criptata usando la password principale di QGIS. L’uso successivo del bundle memorizzato dal database richiederà solo l’inserimento della password principale.

Sono supportati i bundle di identità individuali composti da componenti PEM/DER (.pem/.der) e PKCS#12 (.p12/.pfx). Se una chiave o un bundle è protetto da passphrase, la password sarà richiesta per convalidare il componente prima dell’importazione. Allo stesso modo, se il certificato client nel bundle non è valido (per esempio, la sua data di efficacia non è ancora iniziata o è scaduta) il bundle non può essere importato.
21.2.4 Gestire i layer scorretti

Occasionalmente, l'ID della configurazione di autenticazione che viene salvato con un file di progetto non è più valido, forse perché il database di autenticazione corrente è diverso da quando il progetto è stato salvato l'ultima volta, o a causa di una mancata corrispondenza delle credenziali. In questi casi la finestra di dialogo Gestire i layer scorretti verrà presentata all'avvio di QGIS.

Se una sorgente di dati ha un ID di configurazione di autenticazione associato ad essa, sarà possibile modificarla. Facendo ciò, si modificherà automaticamente la stringa della sorgente di dati, in modo molto simile all'apertura del file di progetto in un editor di testo e alla modifica della stringa.
21.2.5 Cambiare l'ID di configurazione di autenticazione

Talvolta, è necessario cambiare l'ID di configurazione di autenticazione che è associato all’accesso a una risorsa. Ci sono casi in cui questo è utile:

- **L'ID della configurazione di autenticazione della risorsa non è più valido**: Questo può accadere quando hai cambiato database di autenticazione e hai bisogno di allineare una nuova configurazione all'ID già associato a una risorsa.

- **File di progetto condivisi**: Se si intende condividere progetti tra utenti, ad esempio tramite un file server condiviso, è possibile predefinire un 7-caratteri (contenente a-z e/o 0-9) che è associato alla risorsa. Poi, i singoli utenti cambiano l'ID di una configurazione di autenticazione che è specifica per le loro credenziali della risorsa. Quando il progetto viene aperto, l'ID si trova nel database di autenticazione, ma le credenziali sono diverse per ogni utente.
21.2.6 Supporto QGIS Server

Quando si usa un file di progetto, con layer che hanno configurazioni di autenticazione, come base per una mappa in QGIS Server, ci sono un paio di passi di configurazione aggiuntivi necessari a QGIS per caricare le risorse:

- Il database di autenticazione deve essere disponibile
- La password principale di autenticazione del database deve essere disponibile

Quando si istanzia il sistema di autenticazione, il Server creerà o userà il file qgis-auth.db nel user profile attivo, o la cartella definita dalla variabile d’ambiente QGIS_AUTH_DB_DIR_PATH. Può essere che l’utente del server non abbia una directory HOME, nel qual caso, usa la variabile d’ambiente per definire una cartella che l’utente del server abbia i permessi di lettura/scrittura e che non sia situata all’interno delle cartelle accessibili al web.

Per passare la master password al Server, scrivila nella prima riga del file in un percorso sul file system leggibile dall’utente dei processi del Server e definito usando la variabile d’ambiente QGIS_AUTH_PASSWORD_FILE. Assicurati di limitare il file come leggibile solo dall’utente di processo del Server e di non memorizzare il file all’interno di cartelle accessibili al web.

Nota: La variabile QGIS_AUTH_PASSWORD_FILE sarà rimossa dall’ambiente Server immediatamente dopo l’accesso.

21.2.7 Eccezioni SSL server

Puoi gestire le configurazioni e le eccezioni del server SSL dalla scheda Server nella sezione Autenticazione della finestra di dialogo Opzioni di QGIS.

A volte, quando ci si connette a un server SSL, ci sono errori con l’«handshake» SSL o con il certificato del server. Puoi ignorare questi errori o creare una configurazione del server SSL come eccezione. Questo è simile a come i browser web ti permettono di ignorare gli errori SSL, ma con un controllo più granulare.

Avvertimento: Non dovresti creare una configurazione del server SSL a meno che tu non abbia una conoscenza completa dell’intera configurazione SSL tra il server e il client. Invece, segnala il problema all’amministratore del server.
Nota: Alcune configurazioni PKI usano una catena di fiducia CA completamente diversa per convalidare le identità dei client rispetto alla catena usata per convalidare il certificato del server SSL. In tali circostanze, qualsiasi configurazione creata per il server di connessione non risolverà necessariamente un problema con la convalida della tua identità client, e solo l'emittente della tua identità client o l'amministratore del server può risolvere il problema.

Puoi pre-configurare una configurazione del server SSL cliccando il pulsante [ ]. In alternativa, puoi aggiungere una configurazione quando si verifica un errore SSL durante una connessione e ti viene presentata una finestra di dialogo **SSL Error** (dove l'errore può essere ignorato temporaneamente o salvato nel database e ignorato):

Fig. 21.36: Aggiungere manualmente una configurazione
Fig. 21.37: Aggiungere una configurazione in presenza di un errore SSL.

Una volta che una configurazione SSL è salvata nel database, può essere modificata o cancellata.

Fig. 21.38: Configurazione SSL esistente
Se vuoi preconfigurare una configurazione SSL e la finestra di dialogo di importazione non funziona per la connessione del tuo server, puoi attivare manualmente una connessione tramite la Console Python eseguendo il seguente codice (sostituisci https://bugreports.qt-project.org con l’URL del tuo server):

```python
from qgis.QtNetwork import QNetworkRequest
from qgis.QtCore import QUrl
from qgis.core import QgsNetworkAccessManager

req = QNetworkRequest(QUrl('https://bugreports.qt-project.org'))
reply = QgsNetworkAccessManager.instance().get(req)
```

Questo se si verificano errori aprirà una finestra di dialogo di errore SSL, che consente di scegliere di salvare la configurazione nel database.

### 21.3 Considerazioni sulla sicurezza

Una volta inserita la master password, l’API è aperta per accedere alle configurazioni di autenticazione nel database di autenticazione, in modo simile a come funziona Firefox. Tuttavia, nell’implementazione iniziale, non è stato definito un firewall contro l’accesso di PyQGIS. Questo può portare a problemi in cui un utente scarica/installa un plugin PyQGIS dannoso o un’applicazione standalone che ottiene l’accesso alle credenziali di autenticazione.

La soluzione rapida per il rilascio iniziale della funzionalità è semplicemente di non includere la maggior parte dei collegamenti di PyQGIS per il sistema di autenticazione.

Un’altra soluzione semplice, anche se non robusta, è aggiungere un menù a tendina in Impostazioni ➤ Opzioni ➤ Autenticazione (predefinita su «mai»):

```
"Allow Python access to authentication system"
Choices: [confirm once per session | always confirm | always allow | never]
```

L’impostazione di una tale opzione dovrebbe essere salvata in una posizione non accessibile a Python, ad esempio il database di autenticazione, e criptata con la password principale.

- Un’altra opzione può essere quella di controllare quali plugin l’utente ha in particolare
• permesso di accedere al sistema di autenticazione, anche se può essere difficile dedurre quale plugin sta effettivamente facendo la chiamata.

• Sandboxing dei plugin, possibilmente nei loro propri ambienti virtuali, ridurrebbe la violazione «cross-plugin» delle configurazioni di autenticazione da un altro plugin che è autorizzato. Questo potrebbe significare limitare anche la comunicazione cross-plugin, ma forse solo tra plugin di terze parti.

• Un’altra buona soluzione è quella di rilasciare certificati di firma del codice ad autori di plugin controllati. Poi convalidare il certificato del plugin al momento del caricamento. Se necessario, l’utente può anche impostare direttamente una politica di non fiducia per il certificato associato al plugin utilizzando le finestre di dialogo esistenti per la gestione dei certificati.

• In alternativa, l’accesso ai dati sensibili del sistema di autenticazione da Python

• potrebbe non essere mai permesso, e solo l’uso dei widget del nucleo di QGIS, o la duplicazione delle integrazioni del sistema di autenticazione, permetterebbe al plugin di lavorare con risorse che hanno una configurazione di autenticazione, mantenendo la password principale e il caricamento della configurazione di autenticazione nel dominio dell’applicazione principale.

Gli stessi problemi di sicurezza si applicano ai plugin C++, anche se sarà più difficile limitare l’accesso, poiché non c’è una connessione di funzionalità da rimuovere semplicemente come con Python.

21.3.1 Restrizioni

Si verificano complicati problemi di licenza ed esportazione associati a OpenSSL. Per poter lavorare con i certificati SSL, Qt ha bisogno di accedere alle librerie OpenSSL. A seconda di come Qt è stato compilato, il default è di collegare dinamicamente le librerie OpenSSL in fase di esecuzione (per evitare le limitazioni di esportazione).

QCA segue una tattica simile, per cui il collegamento a QCA non comporta restrizioni, perché il plugin qca-openssl (OpenSSL) è caricato in esecuzione. Il plugin qca-openssl è direttamente collegato alle librerie OpenSSL. I pacchettizzatori sarebbero quelli che hanno bisogno di assicurarsi che qualsiasi restrizione di collegamento a OpenSSL sia soddisfatta, se spediscono il plugin. Forse. Non lo so davvero. Non sono un avvocato.

Il sistema di autenticazione si disattiva in modo sicuro quando qca-openssl non viene trovato in fase di esecuzione.
Integrazione con GRASS GIS

L’integrazione di GRASS fornisce l’accesso ai database e alle funzionalità di GRASS GIS (vedi GRASS-PROJECT in Letteratura e riferimenti web). L’integrazione consiste di due parti: sorgente e plugin. Il sorgente consente di sfogliare, gestire e visualizzare i layer raster e vettoriali GRASS. Il plugin può essere utilizzato per creare nuove posizioni e gruppi di GRASS, modificare la regione di GRASS, creare e modificare i livelli vettoriali e analizzare i dati GRASS 2D e 3D con più di 400 moduli GRASS. In questa sezione, introdurremo le funzionalità del sorgente e del plug-in e forniremo alcuni esempi di gestione e utilizzo dei dati GRASS.

Il sorgente supporta GRASS versione 6 e 7, il plugin supporta GRASS 6 e 7 (a partire da QGIS 2.12). La distribuzione QGIS può contenere sorgente/plugin per GRASS 6, GRASS 7 o per entrambe le versioni contemporaneamente (i file binari hanno nomi dei file diversi). Tuttavia, solo una versione del sorgente/plugin può essere caricata durante l’esecuzione.

22.1 Demo insieme di dati


Altri esempi di GRASS LOCATIONs sono disponibili sul sito web di GRASS all’indirizzo https://grass.osgeo.org/download/sample-data/.

22.2 Caricare layer raster e vettoriali GRASS

Se il provider è caricato in QGIS, l’elemento location con l’icona GRASS viene aggiunto nell’albero del browser sotto ogni elemento della cartella che contiene la localizzazione GRASS. Vai alla cartella grassdata ed espandi la location alaska e il mapset demo.

Puoi caricare raster e vettori GRASS come qualsiasi altro layer dal browser facendo doppio clic sul layer o trascinando e rilasciando sulla mappa o sulla legenda.

Suggerimento: Caricare dati GRASS
SenonvedilalocationGRASS, verifica in Guida ➤ Informazioni ➤ Sorgente dati se il sorgente dei vettori GRASS è caricato.

22.3 Importare dati in una LOCATION GRASS tramite trascina e rilascia.

Questa sezione dà un esempio di come importare dati raster e vettoriali in un mapset di GRASS.

1. Nel browser QGIS accedi al mapset in cui desideri importare i dati.

2. Nel browser QGIS trova un layer che vuoi importare in GRASS, nota che puoi aprire un’altra finestra del browser (Browser Panel (2)) se i dati sorgente sono troppo lontani dal mapset nell’albero.

3. Trascina un layer e rilascialo sul mapset di destinazione. L’importazione potrebbe richiedere del tempo per i layer più grandi, vedrai un'icona animata di fronte al nuovo oggetto del layer fino al termine dell’importazione.

Quando i raster sono in SR diversi, possono essere riproiettati utilizzando un *Approximate* (veloce) o *Exact* (esatta). Se viene creato un collegamento al raster sorgente (utilizzando “r.external”), i dati di origine sono nello stesso CRS e il formato è noto a GDAL, verranno utilizzati i dati di origine CRS. Puoi impostare queste opzioni nella scheda Browser in: ref:`grass_options`.

Se un raster ha più bande, per ogni layer viene creata una nuova mappa GRASS per ogni raster con suffisso `<band number>` e viene creato un gruppo per tutte le mappecon icona . I raster esterni hanno un’icona diversa .

22.4 Gestione dei dati GRASS in QGIS Browser

- Copia delle mappe: le mappe GRASS possono essere copiate tra i mapset all’interno della stessa location mediante trascinamento della selezione.

- Eliminazione delle mappe: fai clic con il tasto destro su una mappa GRASS e seleziona *Elimina* dal menu contestuale.

- Rinominare le mappe: fare clic con il tasto destro su una mappa GRASS e seleziona ‘guilabel: ‘Rinomina” dal menu contestuale.

22.5 Opzioni di GRASS

Le opzioni GRASS possono essere impostate nella finestra di dialogo *Opzioni di GRASS*, che può essere aperta facendo clic con il pulsante destro del mouse sulla posizione o sull’elemento mapset nel browser e quindi scegliendo *Opzioni di GRASS*.

22.6 Avviare il plugin GRASS

Per usare le funzionalità di GRASS in QGIS, devi selezionare e caricare il plugin GRASS usando il Plugin Manager. Per farlo, vai al menu Plugins ➤ .menuselection: Gestisci e Installa Plugin…. seleziona GRASS e clicca OK.

Le seguenti funzioni principali sono fornite con il menu GRASS (Plugins -> GRASS) quando si avvia il plugin GRASS:

- Apri mapset
- Nuovo mapset
22.7 Aprire un mapset GRASS

Per accedere a strumenti GRASS devi aprire un mapset di GRASS nel plugin (gli strumenti sono disabilitati se nessun mapset è aperto). Puoi aprire un mapset dal browser: fai clic con il pulsante destro del mouse sull’elemento mapset e quindi scegli *Apri mapset* dal menu contestuale.

22.8 LOCATION e MAPSET in GRASS

I dati GRASS sono memorizzati in una cartella indicata come GISDBASE. Questa cartella, spesso chiamata *grassdata*, deve essere creata prima di iniziare a lavorare con il plugin GRASS in QGIS. All’interno di questa cartella, i dati GIS GRASS sono organizzati per progetti memorizzati in sottocartelle chiamate *LOCATION*. Ogni *LOCATION* è definito dal suo sistema di coordinate, dalla proiezione e dai confini geografici. Ciascun *LOCATION* può avere diversi *MAPSET* (sottocartella di *LOCATION*) che vengono utilizzati per suddividere il progetto in diversi argomenti o sottoregioni o come aree di lavoro per i singoli membri del team (vedere Neteler & Mitasova 2008 in: ref: literature_and_web). Per analizzare i vettori e i raster con i moduli GRASS, devi generalmente importarli in una *LOCATION* GRASS. (Questo non è sempre vero - con i moduli GRASS *r.external* e *file: v.external* è possibile creare collegamenti di sola lettura a insieme di dati esterni supportati da GDAL/OGR senza importarli. Questo non è un modo per inizi a lavorare con GRASS, quindi questa funzionalità non sarà descritta qui.)

![Diagramma di apertura di un mapset GRASS](image)

Fig. 22.1: Dati di GRASS all’interno della LOCATION Alaska
22.9 Importare dati nelle LOCATION GRASS

Vedi la sezione Importare dati in una LOCATION GRASS tramite trascina e rilascia, per scoprire come i dati possono essere facilmente importati trascinandoli nel browser.


1. Avvia QGIS e assicurati che il plugin GRASS sia caricato
2. Nella barra degli strumenti di GRASS, fai clic sull’icona per aprire la procedura guidata MAPSET.
3. Seleziona come database GRASS la cartella grassdata nell’insieme dei dati QGIS Alaska, come LOCATION “alaska”, come MAPSET “demo” e clicca OK.
5. Per importare la mappa raster landcover.img, fai clic sul modulo r.in.gdal nella scheda Modules Tree. Questo modulo di GRASS permette di importare file raster supportati da GDAL in un LOCATION di GRASS. Appare la finestra di dialogo del modulo per r.in.gdal.
7. Come nome raster in uscita, definisci landcover_grass e clicca su Run. Nella scheda Output, vedrai il comando GRASS attualmente in esecuzione r.in.gdal -o input=/path/to/landcover.img output=landcover_grass.
8. Quando dice Terminato con successo, clicca su :guilabel: Visualizza risultato. Il layer raster landcover_grass è ora importato in GRASS e sarà visualizzato nell’area mappa di QGIS.
9. Per importare il file vettoriale GML lakes.gml, fai clic sul modulo v.in.ogr nella scheda Modules Tree. Questo modulo di GRASS permette di importare file vettoriali supportati dall’OGR in un LOCATION di GRASS. Appare la finestra di dialogo del modulo per v.in.ogr.
10. Scorri la cartella gml nell’insieme di dati “Alaska” di QGIS e seleziona il file lakes.gml come file OGR.
12. Quando dice Terminato con successo, clicca su :guilabel: Visualizza risultato. Il layer vettoriale landcover_grass è ora importato in GRASS e sarà visualizzato nell’area mappa di QGIS.

22.9.1 Creare una nuova LOCATION GRASS

Come esempio, ecco l’esempio di GRASS LOCATION alaska, che è proiettato nella proiezione Albers Equal Area usando i piedi come unità. Questo esempio di GRASS LOCATION alaska sarà usato per tutti gli esempi ed esercizi nelle seguenti sezioni relative a GRASS. È utile scaricare e installare l’insieme dei dati sul tuo computer (vedi Installare dati campione).

1. Avvia QGIS e assicurati che il plugin GRASS sia caricato
2. Visualizza lo shapefile alaska.shp (vedi sezione Caricare un layer da un file) dall’insieme dei dati QGIS Alaska (vedi Installare dati campione).
3. Nella barra degli strumenti di GRASS, clicca sull’icona :sup: Nuovo mapset per aprire la procedura guidata MAPSET.
4. Seleziona una cartella esistente del database di GRASS (GISDBASE) grassdata, o creane una per il nuovo LOCATION usando un file manager sul tuo computer. Poi clicca su Avanti.
5. Possiamo usare questa procedura guidata per creare un nuovo MAPSET all’interno di una LOCATION esistente (vedi la sezione Aggiungere un nuovo MAPSET) o per creare una nuova LOCATION. Seleziona **Crea nuova location** (vedi Fig. 22.2).

6. Inserisci un nome per LOCATION – noi abbiamo usato “alaska” – e clicca su **Avanti**.

7. Definisca la proiezione cliccando sul pulsante radio guilabel: **Proiezione** per attivare la lista delle proiezioni.

8. Stiamo usando la proiezione Albers Equal Area Alaska (piedi). Poiché sappiamo che è rappresentata dall’ID EPSG 2964, lo inseriamo nella casella di ricerca. (Nota: Se vuoi ripetere questo processo per un’altra LOCATION e proiezione e non hai memorizzato l’ID EPSG, clicca sull’icona **CRS Status** nell’angolo in basso a destra della barra di stato (vedi sezione **Lavorare con le proiezioni**)).

9. In Filtro, inserisci 2964 per selezionare la proiezione.

10. Fai clic su **Avanti**.

11. Per definire la region di default, dobbiamo inserire i limiti LOCATION nelle direzioni nord, sud, est e ovest. Qui, clicchiamo semplicemente sul pulsante **Set Current QGIS Extent**, per applicare l’estensione del layer caricato alaska.shp come estensione della region predefinita di GRASS.

12. Fai clic su **Avanti**.

13. Dobbiamo anche definire un MAPSET all’interno della nostra nuova LOCATION (questo è necessario quando si crea una nuova LOCATION). Puoi chiamarlo come vuoi - noi abbiamo usato “demo”. GRASS crea automaticamente uno speciale MAPSET chiamato **PERMANENT**, progettato per memorizzare i dati principali del progetto, la sua estensione spaziale predefinita e le definizioni del sistema di coordinate (vedi Neteler & Mitasova 2008 in **Letteratura e riferimenti web**).

14. Verifica il sommario per assicurarti che sia corretto e clicca su **Finish**.


---

**Fig. 22.2: Creare una nuova GRASS LOCATION o un nuovo MAPSET in QGIS**

Se questo sembra un sacco di passaggi, in realtà non è poi così male ed è un modo molto veloce per creare un LOCATION. Il LOCATION “alaska” è ora pronto per l’importazione dei dati (vedi la sezione Importare dati nelle LOCATION GRASS). Puoi anche usare i dati vettoriali e raster già esistenti nell’esempio GRASS LOCATION “alaska”, incluso nel dataset QGIS “Alaska” Installare dati campione, e passare alla sezione Il modello dati vettoriale di GRASS.
22.9.2 Aggiungere un nuovo MAPSET

Un utente ha accesso in scrittura solo a un MAPSET di GRASS che ha creato. Questo significa che oltre all’accesso al proprio MAPSET, può leggere le mappe nei MAPSET di altri utenti (e loro possono leggere i tuoi), ma può modificare o rimuovere solo le mappe nel tuo MAPSET.

Tutti i MAPSET includono un file WIND che memorizza i valori correnti delle coordinate dei confini e la risoluzione raster attualmente selezionata (vedi Neteler & Mitasova 2008 in Letteratura e riferimenti web, e la sezione Lo strumento Regione di GRASS).

1. Avvia QGIS e assicurati che il plugin GRASS sia caricato

2. Nella barra degli strumenti di GRASS, clicca sull'icona di Nuovo mapset per aprire la procedura guidata MAPSET.

3. Seleziona la cartella del database di GRASS (GISDBASE) grassdata con la LOCATION “alaska”, dove vogliamo aggiungere un ulteriore MAPSET chiamato “test”.

4. Fai clic su Avanti.

5. Possiamo usare questa procedura guidata per creare un nuovo MAPSET all’interno di un LOCATION esistente o per creare un nuovo LOCATION. Clicca sul pulsante radio Select location (vedi Fig. 22.2) e clicca su Next.

6. Inserisci il nome test per il nuovo MAPSET. Di seguito, nella procedura guidata, vedrai un elenco di MAPSET esistenti e i relativi proprietari.

7. Fai clic su Next, controlla il sommario per assicurarti che sia tutto corretto e fai clic su Finish.

22.10 Il modello dati vettoriale di GRASS

È importante capire il GRASS vector data model prima di digitalizzare. In generale, GRASS usa un modello vettoriale topologico. Ciò significa che le aree non sono rappresentate come poligoni chiusi, ma da uno o più confini. Un confine tra due aree adiacenti viene digitalizzato solo una volta, ed è condiviso da entrambe le aree. I confini devono essere collegati e chiusi senza spazi vuoti. Un’area è identificata (ed etichettata) dal centroide dell’area.

Oltre ai confini e ai centroidi, una mappa vettoriale può contenere anche punti e linee. Tutti questi elementi geometrici possono essere mescolati in un vettore e saranno rappresentati in diversi cosiddetti strati all’interno di una mappa vettoriale di GRASS. Quindi in GRASS, un layer non è una mappa vettoriale o raster ma un strato all’interno di un layer vettoriale. Questo è importante da distinguerne attentamente. (Anche se è possibile mescolare elementi geometrici, è insolito e, anche in GRASS, è usato solo in casi speciali come l’analisi di una rete vettoriale. Normalmente, dovresti preferire l’archiviazione di elementi di geometria diversi in livelli diversi).

È possibile memorizzare diversi «strati» in un set di dati vettoriali. Per esempio, campi, foreste e laghi possono essere memorizzati in un vettore. Una foresta e un lago adiacenti possono condividere lo stesso confine, ma hanno tabelle di attributi separate. È anche possibile allegare attributi ai confini. Un esempio potrebbe essere il caso in cui il confine tra un lago e una foresta è una strada, quindi può avere una tabella di attributi diversa.

Il “layer” dell’elemento è definito dal “layer” all’interno di GRASS. “Layer” è il numero che definisce se c’è più di un layer all’interno del dataset (per esempio, se la geometria è foresta o lago). Per ora, può essere solo un numero. In futuro, GRASS supporterà anche i nomi come campi nell’interfaccia utente.

Gli attributi possono essere memorizzati all’interno di GRASS LOCATION come dBase, SQLite3 o in tabelle di database esterni, per esempio PostgreSQL, MySQL, Oracle, ecc.

Gli attributi contenuti nelle tabelle del database sono collegati alla geometria per il tramite di un valore ‘category’.

‘Category’ (key, ID) è un valore intero collegato alle primitive geometriche ed è usato come collegamento ad una colonna chiave nella tabella del database.

Suggerimento: Conoscere il modello dati vettoriale di GRASS
Il modo migliore per imparare il modello vettoriale di GRASS e le sue funzionalità è quello di scaricare uno dei molti tutorial di GRASS dove il modello vettoriale è descritto più a fondo. Vedere [https://grass.osgeo.org/documentation/manuals/](https://grass.osgeo.org/documentation/manuals/) per ulteriori informazioni, libri e tutorial in diverse lingue.

22.11 Creare un nuovo layer vettoriale GRASS

Per creare un nuovo layer vettoriale GRASS, seleziona una delle seguenti voci dal menu contestuale di mapset nel browser:

- Nuovo Layer Puntuale
- Nuovo Layer Lineare
- Nuovo Layer Poligonale

e inserisci un nome nella finestra di dialogo. Verrà creata una nuova mappa vettoriale e il layer verrà aggiunto all’area di disegno e inizierà l’editing. La selezione del tipo di layer non limita i tipi di geometria che possono essere digitalizzati nella mappa vettoriale. In GRASS, è possibile organizzare tutti i tipi di geometria (punto, linea e poligono) in una mappa vettoriale. Il tipo è usato solo per aggiungere il layer all’area di visualizzazione mappa, perché QGIS richiede che un layer abbia un tipo specifico.

È anche possibile aggiungere layer alle mappe vettoriali esistenti selezionando uno degli elementi descritti sopra dal menu contestuale della mappa vettoriale esistente.

In GRASS, è possibile organizzare tutti i tipi di geometria (punto, linea e area) in un singolo layer, perché GRASS usa un modello vettoriale topologico, quindi non è necessario selezionare il tipo di geometria quando si cerca un nuovo vettore GRASS. Questo è diverso dalla creazione di shapefile con QGIS, perché gli shapefile usano il modello vettoriale Simple Feature (vedi la sezione Creare nuovi layer Vettore).

22.12 Digitalizzare e modificare layer vettoriali GRASS

I layer vettoriali di GRASS possono essere digitalizzati usando gli strumenti di digitalizzazione standard di QGIS. Ci sono tuttavia alcune particolarità, che dovresti sapere, dovute a

- Modello topologico di GRASS in confronto a simple feature di QGIS
- complessità del modello GRASS
  - layer multipli in mappe separate
  - tipologie di geometria multipla in una singola mappa
  - condivisione della geometria multipla da layer differenti

Le particolarità sono discusse nelle sezioni seguenti.

Salvare, scartare le modifiche, annullare, rifare

| Avvertimento: Tutte le modifiche fatte durante l’editing sono immediatamente scritte nella mappa vettoriale e nelle relative tabelle degli attributi. |

Le modifiche vengono scritte dopo ogni operazione, è comunque possibile fare undo/redo o scartare tutte le modifiche quando si chiude la modifica. Se viene utilizzato l’annullamento o l’eliminazione delle modifiche, lo stato originale viene riscritto nella mappa vettoriale e nelle tabelle degli attributi.

Ci sono due ragioni principali per questo comportamento:

- È la natura dei vettori di GRASS che vengono dalla convinzione che l’utente vuole continuare a fare quello che sta facendo ed è meglio avere i dati salvati quando il lavoro è improvvisamente interrotto (per esempio, un blackout)
• Una necessità per l’editing efficace dei dati topologici è l’informazione visualizzata sulla correttezza topologica, tale informazione può essere acquisita dalla mappa vettoriale di GRASS solo se le modifiche sono scritte sulla mappa.

**Barra degli strumenti di digitalizzazione**

La “Digitizing Toolbar” ha alcuni strumenti specifici quando un layer di GRASS viene modificato:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Tool</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New Point</td>
<td>Digitalizzare un nuovo punto</td>
</tr>
<tr>
<td></td>
<td>Nuova Linea</td>
<td>Digitalizzare una nuova linea</td>
</tr>
<tr>
<td></td>
<td>Nuovo contorno</td>
<td>Digitalizzare un nuovo confine</td>
</tr>
<tr>
<td></td>
<td>Nuovo centroide</td>
<td>Digitalizza un nuovo centroide (imposta l’etichetta per un’area esistente)</td>
</tr>
<tr>
<td></td>
<td>Nuovo confine chiuso</td>
<td>Digitalizzare un nuovo confine chiuso</td>
</tr>
</tbody>
</table>

Tabella GRASS Digitizing: Strumenti di digitalizzazione GRASS

**Suggerimento: Digitalizzare poligoni in GRASS**

Se vuoi creare un poligono in GRASS, devi prima digitalizzare il confine del poligono. Poi aggiungi un centroide (punto di etichetta) nel confine chiuso. La ragione di ciò è che un modello vettoriale topologico collega le informazioni degli attributi di un poligono sempre al centroide e non al confine.

**Categoria**

La categoria, spesso chiamata cat, è una specie di ID. Il nome deriva dai tempi in cui i vettori di GRASS avevano solo un singolo attributo «categoria». La categoria è usata come collegamento tra la geometria e gli attributi. Una singola geometria può avere più categorie e quindi rappresentare più elementi in diversi strati. Attualmente è possibile assegnare solo una categoria per strato usando gli strumenti di editing di QGIS. Ai nuovi elementi viene automaticamente assegnata una nuova categoria univoca, eccetto i confini. I confini di solito formano solo aree e non rappresentano elementi lineari, è comunque possibile definire gli attributi per un confine in seguito, per esempio in un diverso strato.

Le nuove categorie sono sempre create solo nel layer in corso di modifica.

Non è possibile assegnare più categorie alla geometria usando l'editing di QGIS, tali dati sono correttamente rappresentati come elementi multipli, e i singoli elementi, anche da strati diversi, possono essere cancellati.

**Attributi**

Gli attributi del layer attualmente modificato possono essere modificati. Se la mappa vettoriale contiene più layer, gli elementi degli altri layer avranno tutti gli attributi impostati a “<not editable (layer #)>” per avvertire che tale attributo non è modificabile. La ragione è che gli altri layer possono avere e di solito hanno diversi set di campi mentre QGIS supporta solo un set fisso di campi per layer.

Se una primitiva geometrica non ha una categoria assegnata, una nuova categoria univoca viene assegnata automaticamente e viene creato un nuovo record nella tabella degli attributi quando un attributo di quella geometria viene modificato.

**Suggerimento:** Se vuoi fare un aggiornamento in blocco degli attributi nella tabella, per esempio usando “Field Calculator” (Usare il Calcolatore di campo), e ci sono elementi senza categoria che non vuoi aggiornare (tipicamente i confini), puoi filtrarli impostando “Advanced Filter” su cat is not null.

**Stile di editing**

La simbologia topologica è essenziale per una modifica efficace dei dati topologici. Quando inizia la modifica, un visualizzatore specializzato “GRASS Edit” viene impostato automaticamente sul layer e il visualizzatore originale viene ripristinato quando la modifica viene chiusa. Lo stile può essere personalizzato nella scheda “Style” delle
proprietà del layer. Lo stile può anche essere memorizzato nel file di progetto o in un file separato come qualsiasi altro stile. Se personalizzi lo stile, non cambiare il suo nome, perché è usato per ripristinare lo stile quando la modifica è ricominciata.

**Suggerimento:** Non salvare il file di progetto quando il layer viene modificato, il layer verrebbe memorizzato con “Edit Style” che non ha significato se il layer non viene modificato.

Lo stile è basato su informazioni topologiche che sono temporaneamente aggiunte alla tabella degli attributi come campo “topo_symbol”. Il campo viene automaticamente rimosso quando la modifica viene chiusa.

**Suggerimento:** Non rimuovere il campo “topo_symbol” dalla tabella degli attributi, questo renderebbe gli elementi invisibili perché il visualizzatore è basato su quella colonna.

**Aggancio**

Per formare un’area, i vertici dei confini collegati devono avere esattamente le stesse coordinate. Questo può essere ottenuto usando lo strumento snapping solo se l’area visualizzazione mappa e la mappa vettoriale hanno lo stesso SR. Altrimenti, a causa della trasformazione dalle coordinate della mappa all’area visualizzazione mappa e viceversa, le coordinate possono diventare leggermente diverse a causa dell’errore di rappresentazione e delle trasformazioni del SR.

**Suggerimento:** Usa il SR del layer anche per l’area di visualizzazione mappa durante l’editing.

**Limitazioni**

La modifica simultanea di più layer all’interno dello stesso vettore allo stesso tempo non è supportata. Ciò è dovuto principalmente all’impossibilità di gestire più annullamenti per una singola fonte di dati.

⚠️ Su Linux e macOS è possibile modificare solo un layer di GRASS alla volta. Questo è dovuto a un bug in GRASS che non permette di chiudere i driver del database in ordine casuale. Questo problema è stato risolto con gli sviluppatori di GRASS.

**Suggerimento:** Permessi di modifica in GRASS

Devi essere il proprietario del MAPSET di GRASS che vuoi modificare. È impossibile modificare i livelli di dati in un MAPSET che non è tuo, anche se hai il permesso di scrittura.

**22.13 Lo strumento Regione di GRASS**

La definizione della regione (impostazione di una finestra di lavoro spaziale) in GRASS è importante per lavorare con i layer raster. L’analisi vettoriale non è di default limitata a nessuna definizione di regione definita. Ma tutti i nuovi raster creati avranno l’estensione spaziale e la risoluzione della regione GRASS attualmente definita, indipendentemente dalla loro estensione e risoluzione originale. La regione GRASS corrente è memorizzata nel file $LOCATION/$MAPSET/WIND, e definisce i limiti nord, sud, est e ovest, il numero di colonne e righe, la risoluzione spaziale orizzontale e verticale.

È possibile attivare e disattivare la visualizzazione della regione di GRASS nell’area di visualizzazione di QGIS usando il pulsante Display current GRASS region.

La regione può essere modificata nella scheda “Region” nel widget dock di “GRASS Tools”. Digita i nuovi limiti e la risoluzione della regione e clicca su Apply. Se clicchi su Select the extent by dragging on canvas puoi selezionare una nuova regione in modo interattivo con il mouse sull’area di visualizzazione di QGIS trascinando un rettangolo.
Il modulo GRASS g.region fornisce molti altri parametri per definire un’estensione e una risoluzione della regione appropriate per la tua analisi raster. Puoi usare questi parametri con il GRASS Toolbox, descritto nella sezione Il Toolbox GRASS.

22.14 Il Toolbox GRASS

Il riquadro Open GRASS Tools fornisce le funzionalità del modulo GRASS per lavorare con i dati all’interno di un LOCATION e MAPSET di GRASS selezionato. Per usare il GRASS Toolbox è necessario aprire un LOCATION e MAPSET per cui si hanno i permessi di scrittura (solitamente concessi, se si è creato il MAPSET). Questo è necessario perché i nuovi layer raster o vettoriali creati durante l’analisi devono essere scritti nel LOCATION e MAPSET attualmente selezionati.

![Fig. 22.3: Toolbox e elenco dei moduli di GRASS](image)

22.14.1 Lavorare con i moduli GRASS

La shell di GRASS all’interno del GRASS Toolbox fornisce l’accesso a quasi tutti (più di 300) i moduli di GRASS in un’interfaccia a riga di comando. Per offrire un ambiente di lavoro più user-friendly, circa 200 dei moduli e delle funzionalità di GRASS disponibili sono anche forniti da finestre di dialogo grafiche all’interno del GRASS plugin Toolbox.


È anche possibile personalizzare il contenuto di GRASS Toolbox. Questa procedura è descritta nella sezione Personalizzare gli strumenti GRASS.

Come mostrato in Fig. 22.3, puoi cercare il modulo GRASS appropriato usando il raggruppamento tematico Modules Tree o la scheda ricercabile Modules List.

Cliccando sull’icona di un modulo grafico, una nuova scheda verrà aggiunta alla finestra di dialogo Toolbox, fornendo tre nuove sotto schede: Options, Output e Manual.

Opzioni
La scheda Options fornisce una finestra di dialogo semplificata del modulo dove di solito puoi selezionare un layer raster o vettoriale visualizzato nel l’area di visualizzazione di QGIS e inserire ulteriori parametri specifici del modulo per eseguirlo.

Fig. 22.4: Opzioni del modulo GRASS Toolbox

I parametri del modulo forniti spesso non sono completi per mantenere il dialogo semplice. Se vuoi usare ulteriori parametri e flag del modulo, devi avviare la shell di GRASS ed eseguire il modulo nella riga di comando.

Una nuova caratteristica da QGIS 1.8 è il supporto per un pulsante Show Advanced Options sotto la finestra di dialogo semplificata del modulo nella scheda Options. Al momento è aggiunto solo al modulo v.in.ascii come esempio d’uso, ma probabilmente farà parte di più o di tutti i moduli del GRASS Toolbox nelle versioni future di QGIS. Questo permette di usare le opzioni complete del modulo GRASS senza dover passare alla shell di GRASS.

Output
La scheda Output fornisce informazioni sullo stato dell'output del modulo. Quando fai clic sul pulsante Run, il modulo passa alla scheda Output e vedi le informazioni sul processo di analisi. Se tutto funziona bene, alla fine vedrai un messaggio Successfully finished.

Manuale
La scheda **Manuale** mostra la pagina di aiuto HTML del modulo GRASS. Potete usarla per controllare ulteriori parametri e flag del modulo o per avere una conoscenza più approfondita dello scopo del modulo. Alla fine di ogni pagina di manuale del modulo, si vedono ulteriori link al Main Help index, al Thematic index e al Full index. Questi collegamenti forniscono le stesse informazioni del modulo g.manual.

**Suggerimento: Mostrare i risultati immediatamente**

Se si desidera visualizzare il risultato di un’analisi immediatamente nella vista mappa, è possibile cliccare sul pulsante Visualizza Output nella porzione inferiore della scheda.
22.14.2 Esempi di utilizzo di moduli GRASS

Gli esempi che seguono mostrano le potenzialità di alcuni moduli GRASS.

Creare curve di livello

Il primo esempio crea una mappa di curve di livello vettoriali da un raster di elevazione (DEM). Qui si presume che tu abbia impostato l’Alaska LOCATION come spiegato nella sezione Importare dati nelle LOCATION GRASS.

- Per prima cosa, apri la location cliccando il pulsante Apri mapset e scegliendo la località Alaska.
- Ora apri il Toolbox con il pulsante Open GRASS tools.
- Nella lista delle categorie degli strumenti, fai doppio clic su Raster ➤ Surface Management ➤ Generate vector contour lines.
- Ora un singolo clic sullo strumento r.contour aprirà il dialogo dello strumento come spiegato sopra (vedi Lavorare con i moduli GRASS).
- Nella Nome della mappa raster in ingresso inserisci gtopo30.
- Digita nella casella Incremento tra linee di livello il valore 100. (Questo creerà linee di livello a intervalli di 100 metri).
- Inserire in Nome del vettoriale in output il nome ctour_100.
- Fai clic su Run per avviare il processo. Attendì qualche istante fino a quando il messaggio Successfully finished appare nella finestra di output. Poi clicca su View Output e Close.

Dal momento che la regione è piuttosto estesa, il comando richiede del tempo. Una volta terminata l’operazione è possibile modificare le proprietà del nuovo layer vettoriale come descritto in La finestra di dialogo Proprietà dei vettori.

Poi, zooma su una precisa area montuosa nel centro dell’Alaska. Zoomando da vicino, si noterà che i contorni hanno spigoli vivi. GRASS offre lo strumento v.generalize per alterare leggermente le mappe vettoriali mantenendo la loro forma generale. Lo strumento utilizza diversi algoritmi con diversi scopi. Alcuni algoritmi (per esempio, Douglas Peuker e Vertex Reduction) semplificano la linea rimuovendo alcuni dei vertici. Il vettore risultante verrà caricato più velocemente. Questo processo è utile quando si ha un vettore altamente dettagliato, ma si sta creando una mappa su scala molto piccola, quindi il dettaglio non è necessario.

Suggerimento: Semplifica geometrie

Nota che QGIS ha uno strumento Vector ➤ Geometry Tools ➤ Simplify geometries che funziona proprio come l’algoritmo di GRASS v.generalize Douglas-Peuker.

Tuttavia, lo scopo di questo esempio è diverso. Le linee di livello create da r.contour hanno angoli acuti che dovrebbero essere smussati. Tra gli algoritmi v.generalize, c’è quello di Chaiken, che fa proprio questo (anche le spline di Hermite). Sii consapevole che questi algoritmi possono aggiungere ulteriori vertici al vettore, facendolo caricare ancora più lentamente.

- Apri il Toolbox di GRASS e fai doppio clic sulle categorie Vector ➤ Develop map ➤ Generalization, poi clicca sul modulo v.generalize per aprire la sua finestra delle opzioni.
- Controllare che “ctour_100” appaia come Nome della mappa vettoriale in input.
- Dall’elenco degli algoritmi, scegli quello di Chaiken. Lascia tutte le altre opzioni al loro valore predefinito e scorri fino all’ultima riga per inserire nel campo Nome della mappa vettoriale in uscita “ctour_100_smooth”, e clicca su Run.
- Il processo richiede alcuni istanti. Una volta che Successfully finished appare nelle finestre di output, clicca su View Output e poi su Close.
Puoi modificare il colore del layer vettoriale in modo da renderlo ben visibile sul raster di sfondo. Potrai notare come le curve di livello ora appaiano meno spigolose.

![Layers Panel](image)

**Fig. 22.7:** GRASS modulo v.generalize per smussare una mappa vettoriale

---

**Suggerimento: Altri usi di r.contour**

La procedura descritta sopra può essere usata in altre situazioni equivalenti. Se hai una mappa raster di dati sulle precipitazioni, per esempio, allora lo stesso metodo sarà usato per creare una mappa vettoriale di linee isoetiche (precipitazioni costanti).

---

**Creare un effetto ombreggiatura 3-D**

Diversi metodi sono usati per visualizzare layer altimetrici e dare un effetto 3-D alle mappe. L’uso delle curve di livello, come mostrato sopra, è un metodo popolare spesso scelto per produrre mappe topografiche. Un altro modo per visualizzare un effetto 3-D è l’ombreggiatura. L’effetto di ombreggiatura è creato da un raster DEM (elevazione) calcolando prima la pendenza e l’aspetto di ogni cella, poi simulando la posizione del sole nel cielo e dando un valore di riflessione ad ogni cella. Così, si ottengono pendii rivolti al sole illuminati; i pendii rivolti lontano dal sole (in ombra) sono scuri.

- Iniziare questo esempio caricando il raster di elevazione gtopo30. Avvia il Toolbox di GRASS e, sotto la categoria Raster, fai doppio clic per aprire Analisi spaziale ➤ Analisi del terreno.
- Clicca su r.shaded.relief per aprire il modulo.
- Cambia l’angolo azimutale da 270 a 315.
- Inserisci gtopo30_shade per la nuova ombreggiatura raster e clicca su Run’.
- Quando il processo sarà completato, aggiungere il raster ombreggiatura alla vista mappa.
- Per vedere insieme l’ombreggiatura e i colori di gtopo30, sposta la mappa dell’ombreggiatura sotto la mappa di gtopo30, poi apri la finestra Proprietà’ di gtopo30, passa alla scheda Trasparenza’ e imposta il suo livello di trasparenza al 25% circa.

Si dovrebbe vedere gtopo30 sopra la mappa di ombreggiatura in scala di grigi. Per riuscire a visualizzare appieno gli effetti dell’ombreggiatura, deselectionare gtopo30_shade.

**Usare la shell di GRASS**

Il plugin GRASS in QGIS è progettato per gli utenti che sono nuovi a GRASS e non hanno familiarità con tutti i moduli e le opzioni. Come tale, alcuni moduli nel Toolbox non mostrano tutte le opzioni disponibili, e alcuni moduli non appaiono affatto. La shell (o console) di GRASS dà all’utente l’accesso a quei moduli aggiuntivi di GRASS che non appaiono nell’albero del Toolbox, e anche ad alcune opzioni aggiuntive ai moduli che sono nel Toolbox con i
parametri di default più semplici. Questo esempio dimostra l’uso di un’opzione aggiuntiva nel modulo `r.shaded.relief` che è stato mostrato sopra.

Fig. 22.8: La shell di GRASS, modulo `r.shaded.relief`

Il modulo `r.shaded.relief` può accettare un parametro `zmult`, che moltiplica i valori di elevazione relativi alle unità di coordinate X-Y in modo che l’effetto ombreggiatura sia ancora più pronunciato.

- Carica il raster di elevazione `gtopo30` come sopra, poi avvia la GRASS Toolbox e clicca sulla shell di GRASS. Nella finestra della shell, digita il comando `r.shaded.relief map=gtopo30 shade=gtopo30_shade2 azimuth=315 zmult=3` e premi `Enter`.
- Dopo che il processo è finito, passa alla scheda `Browse` e fai doppio clic sul nuovo raster `gtopo30_shade2` per visualizzarlo in QGIS.
- Come spiegato sopra, sposta il raster del rilievo ombreggiato sotto il raster `gtopo30`, poi controlla la trasparenza del layer `gtopo30` colorato. Dovresti vedere che l’effetto 3-D spicca più fortemente rispetto alla prima mappa del rilievo ombreggiato.
Statistiche raster in una mappa vettoriale

Il prossimo esempio tratta di un modulo GRASS che può aggregare dati raster ed aggiungere colonne di statistiche per ogni poligono di una mappa vettoriale.

- Sempre utilizzando i dati Alaska, fai riferimento a Importare dati nelle LOCATION GRASS per importare il file shapefiles/trees.shp in GRASS.
- Ora è necessario un passo intermedio: i centroidi devono essere aggiunti alla lista layer per renderla un vettore d’area completo di GRASS (incluse le aree e i confini dei centroidi).
- Dal Toolbox, scegli Vector ► Manage features, e apri il modulo v.centroids.
- Inserire come Nome del vettoriale in output “forest_areas” e lanciare il modulo.
- Ora carica il vettore forest_areas e visualizza i tipi di foreste - decidue, sempreverdi, miste - in diversi colori: Nella finestra del layer Proprietà, scheda Simbologia, scegli da Tipo di legenda “Valore univoco” e imposte il Classificazione campo a “VEGDESC”. (Fai riferimento alla spiegazione della scheda simbologia in Proprietà Simbologia della sezione vettoriale).
- Poi, riapri il GRASS Toolbox e apri Vector ► Vector update da altre mappe.
- Clicca sul modulo v.rast.stats. Inserisci gtopo30 e forest_areas.
- È necessario solo un parametro aggiuntivo: Inserisci prefix di colonna elev, e clicca su Run’. Questa è un’operazione computationalmente pesante, che durerà a lungo (probabilmente fino a due ore).
- Infine, apri la tabella degli attributi forest_areas e verifica che siano state aggiunte diverse nuove colonne, tra cui elev_min, elev_max, elev_mean, ecc.

22.14.3 Personalizzare gli strumenti GRASS

Quasi tutti i moduli di GRASS possono essere aggiunti al GRASS Toolbox. Viene fornita un’interfaccia XML per analizzare i file XML piuttosto semplici che configurano l’aspetto e i parametri dei moduli all’interno del Toolbox.

Un esempio di file XML che genera il modulo v.buffer (v.buffer.qgm) ha il seguente aspetto:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE qgisgrassmodule SYSTEM "http://mrcc.com/qgisgrassmodule.dtd">

<qgisgrassmodule label="Vector buffer" module="v.buffer">
 <option key="input" typeoption="type" layeroption="layer" />
</qgisgrassmodule>
```

(continues on next page)
Il parser legge questa definizione e crea una nuova scheda nel Toolbox quando si seleziona il modulo. Una descrizione più dettagliata per aggiungere nuovi moduli, cambiare il gruppo di un modulo, ecc. può essere trovata su https://qgis.org/en/site/getinvolved/development/addinggrasstools.html.
23.1 Introduzione

Questo capitolo introduce l’ambiente di processing QGIS, un ambiente di elaborazione di dati geografici grazie al quale potrai usare algoritmi nativi di QGIS e algoritmi di terze parti. In questo modo le attività di analisi spaziale saranno molto più produttive e facile da realizzare.

In quanto un Core plugin, Processing è installato di default ma devi attivarlo:

1. Vai a Plugins ► Gestisci ed Installa plugins…
2. Fai clic sulla scheda Installati sulla sinistra
3. Seleziona la casella accanto alla voce Processing

Un menu Processing è ora disponibile nella barra dei menu in alto. Da lì puoi raggiungere i componenti principali di questo framework.

Nella sezione seguente esamineremo come usare gli elementi grafici di questo ambiente e come ottenere il massimo da ciascuno di essi.

Ci sono quattro elementi di base nella GUI del framework, che vengono utilizzati per eseguire algoritmi per scopi diversi. La scelta di uno strumento o di un altro dipende dal tipo di analisi che deve essere eseguita e dalle caratteristiche particolari di ogni utente e progetto. Tutti (eccetto l’interfaccia di elaborazione batch, che viene richiamata dalla casella degli strumenti o dalla finestra di dialogo per l’esecuzione degli algoritmi, come vedremo) sono accessibili dalla voce di menu Processing (si vedranno altre voci; le rimanenti non sono usate per eseguire algoritmi e saranno spiegate più avanti in questo capitolo).

- Il Toolbox: L’elemento principale della GUI, è usato per eseguire un singolo algoritmo o per eseguire un processo batch basato su quell’algoritmo.
Fig. 23.1: Strumenti di Processing

- **Modelli**: Diversi algoritmi possono essere combinati graficamente usando il modellatore per definire un flusso di lavoro, creando un singolo processo che coinvolge diversi sottoprocessi.

Fig. 23.2: Modellatore Grafico
• Il gestore dello Storico: Tutte le azioni eseguite utilizzando uno qualsiasi degli elementi summenzionati sono memorizzate in un file di cronologia e possono essere in seguito facilmente riprodotti utilizzando il gestore della cronologia.

Fig. 23.3: Cronologia Processing

• L’interfaccia Esecuzione batch: Questa interfaccia permette di eseguire processi batch e automatizzare l’esecuzione di un singolo algoritmo su più insiemi di dati.

Fig. 23.4: Interfaccia del processo in serie

Nelle sezioni seguenti rivedremo in dettaglio ciascuno di questi elementi.
23.2 Configurare l’ambiente Processing

Il menu Opzioni - Processing (Impostazioni ➤ Opzioni ➤ Processing) ti permette di configurare il funzionamento degli algoritmi. I parametri di configurazione sono strutturati in blocchi separati che puoi selezionare sul lato sinistro della finestra di dialogo.

Il blocco Generale contiene una serie di parametri interessanti.

- Estensione predefinita del raster in uscita per impostazione predefinita è tif.
- Estensione predefinita del vettore in uscita per impostazione predefinita è gpkg
- Filtra elementi non validi
- Mantieni la finestra aperta dopo l’esecuzione dell’algoritmo. Una volta che un algoritmo ha terminato l’esecuzione e i suoi layer di output sono carati nel progetto QGIS, la finestra di dialogo dell’algoritmo viene chiusa. Se vuoi tenerla aperta (per eseguire nuovamente l’algoritmo con parametri diversi, o per controllare meglio l’output che viene scritto nella scheda log), seleziona questa opzione.
- Thread Massimi
- Cartella dei risultati
- Script pre-esecuzione e Script post-esecuzione. Questi parametri puntano a file che contengono script scritti utilizzando la funzionalità di scripting di processing, spiegata nella sezione che copre lo scripting e la console.
- Nome file in uscita preferito per i nomi dei layer. Il nome di ogni layer risultante creato da un algoritmo è definito dall’algoritmo stesso. In alcuni casi, potrebbe essere usato un nome fisso, il che significa che verrà usato lo stesso nome in uscita, indipendentemente dal layer di ingresso utilizzato. In altri casi, il nome potrebbe dipendere dal nome del layer di input o da alcuni dei parametri usati per eseguire l’algoritmo. Se questa casella è selezionata, il nome verrà preso dal nome del file di output. Si noti che, se l’output viene salvato in un file temporaneo, il nome di questo file temporaneo è di solito un nome lungo e senza senso inteso ad evitare collisioni con altri nomi di file già esistenti.
- Nome del gruppo risultati. Se vuoi ottenere tutti i layer dei risultati di processing in un gruppo nel pannello Layer, imposta un nome di gruppo per questo parametro. Il gruppo può esistere già oppure no. QGIS aggiungerà tutti i layer di output a tale gruppo. Per impostazione predefinita, questo parametro è vuoto, quindi tutti i layer di output vengono aggiunti in posti diversi nel pannello Layer, a seconda della voce che è attiva quando si esegue un algoritmo. Nota che i layer di output saranno caricati nel pannello Layer solo se Mantieni la finestra aperta dopo l’esecuzione dell’algoritmo è selezionato nella finestra di dialogo dell’algoritmo.
- Mostra algoritmi con problemi noti
- Mostra SR del layer nelle caselle di selezione
- Mostra suggerimento quando ci sono sorgenti disabilitati
- Stile per i layer lineari, Stile per i layer puntuali, Stile per i layer poligonali e Stile per i layer raster sono usati per impostare lo stile di visualizzazione di default per i layer in uscita (cioè i layer generati dagli algoritmi di elaborazione). Crea lo stile che vuoi usando QGIS, salvalo in un file e poi inserisci il percorso di quel file nelle impostazioni in modo che gli algoritmi possano usarlo. Ogni volta che un layer viene caricato da Processing e aggiunto alla mappa di QGIS, sarà reso con quello stile.

Lo stile di rappresentazione può essere configurato individualmente per ogni algoritmo e per ognuno dei suoi livelli in uscita. Cliccando col tasto destro sul nome di un algoritmo nella toolbox e selezionando Modifica gli Stili di Visualizzazione per i Risultati…, vedrai una finestra di dialogo come quella mostrata di seguito.
Seleziona il file di stile (.qml) che vuoi per ogni livello in uscita e clicca OK.

- Percorso della cartella di uscita temporanea
- Avvisa prima dell'esecuzione se i parametri SR non corrispondono.

Troverai anche un blocco per gli algoritmi Sorgenti dati. Ogni voce in questo blocco contiene un elemento Attiva che puoi usare per far apparire o meno gli algoritmi nella casella degli strumenti. Alcuni fornitori di algoritmi hanno i loro propri elementi di configurazione, che saranno spiegati quando si tratterà di particolari fornitori di algoritmi.

### 23.3 Gli Strumenti di Processing

*Processing* è il componente principale della GUI di Processing, e quello che probabilmente tu usi nel tuo lavoro quotidiano. Mostra l'elenco di tutti gli *algoritmi* disponibili raggruppati in diversi blocchi chiamati *Sorgenti dati*, *Modelli* e *Script* personalizzati che puoi aggiungere per estendere l'insieme degli strumenti. Quindi Processing è il punto di accesso per eseguirli, sia come singolo processo che come un processo batch che coinvolge diverse esecuzioni dello stesso algoritmo su diversi insiemi in ingresso.
Le Sorgenti dati possono essere (de)attivate in Processing settings dialog. Per impostazione predefinita, solo le sorgenti dati che non si basano su applicazioni di terze parti (cioè quelli che richiedono solo strumenti QGIS per essere eseguiti) sono attivi. Gli algoritmi che richiedono applicazioni esterne potrebbero richiedere una configurazione aggiuntiva. La configurazione dei sorgenti esterni provider è spiegata in un later chapter di questo manuale.

Nella parte superiore della finestra di dialogo degli strumenti di processing, troverai una serie di strumenti per:

- lavorare con Modelli: Crea Nuovo Modello..., Apri Modello Esistente... e Aggiungi Modello agli Strumenti...;

- lavorare con Scripts: Crea Nuovo Script..., Crea Nuovo Script da Modello..., Apri Script Esistente... e Aggiungi Script agli Strumenti...;

- aprire il pannello Storico;

- aprire il pannello Visualizzatore Risultati;

- attivare la casella degli strumenti alla :ref`in-place modification mode <processing_inplace_edit>` usando il pulsante Modifica funzioni in loco: vengono visualizzati solo gli algoritmi che sono adatti ad essere eseguiti sul layer attivo senza generare un nuovo layer;

- apri la finestra di dialogo Opzioni.

Sotto questa barra degli strumenti c'è una casella Cerca... per aiutarti a trovare facilmente gli strumenti che ti servono. Puoi inserire qualsiasi parola o frase nella casella di testo. Nota che, mentre digiti, il numero di algoritmi, modelli o script nella casella degli strumenti si riduce solo a quelli che contengono il testo che hai inserito nei loro nomi o parole chiave.
Nota: In cima alla lista degli algoritmi sono visualizzati gli strumenti più utilizzati ultimamente; comodo se vuoi rieseguirne uno.

Fig. 23.7: Processing Toolbox visualizzazione dei risultati della ricerca

Per eseguire uno strumento, basta fare doppio clic sul suo nome nella casella degli strumenti.

23.3.1 La finestra di dialogo configurazione di un algoritmo

Una volta che fai doppio clic sul nome dell'algoritmo che vuoi eseguire, viene mostrata una finestra di dialogo simile a quella della Fig. 23.8 sotto (in questo caso, la finestra di dialogo corrisponde all'algoritmo Centroids).
La finestra di dialogo mostra due schede (Parametri e Log) sulla parte sinistra, la descrizione dell’algoritmo sulla destra e una serie di pulsanti in basso.

La scheda Parametri è usata per impostare i valori in ingresso di cui l’algoritmo ha bisogno per essere eseguito. Mostra un elenco di valori in ingresso e parametri di configurazione da impostare. Naturalmente ha un contenuto diverso, a seconda dei requisiti dell’algoritmo da eseguire, e viene creato automaticamente in base a tali requisiti.

Anche se il numero e tipo dei parametri dipende dal tipo di algoritmo, la struttura di base è simile per tutti. I parametri che si trovano nella tabella possono essere di uno dei seguenti tipi.

- **Un layer raster**, da selezionare da una lista di tutti i layer di questo tipo disponibili (attualmente aperti) in QGIS. Il selettore contiene anche un pulsante sul lato destro, che permette di selezionare nomi di file che rappresentano layer attualmente non caricati in QGIS.

- **Un layer vettoriale**, da selezionare da un elenco di tutti i layer vettoriali disponibili in QGIS. Anche i layer non caricati in QGIS possono essere selezionati, come nel caso dei layer raster, ma solo se l'algoritmo non richiede un campo di tabella selezionato dalla tabella degli attributi del layer. In questo caso, solo i layer aperti possono essere selezionati, dato che devono essere aperti per recuperare l'elenco dei nomi dei campi disponibili.

Vedrai un pulsante iteratore per ogni selettore di layer vettoriale, come mostrato nella figura qui sotto.
Se l'algoritmo ne contiene molti, potrai selezionarne anche solamente uno. Se il pulsante corrispondente a un vettore in input è attivo, allora l'algoritmo verrà eseguito iterativamente su tutte le sue geometrie, invece di una sola volta per tutto il vettore. Il numero di output dipende da quante volte eseguirai l'algoritmo. Questo ti permette di automatizzare il processo quando tutte le geometrie in un vettore devono essere elaborate separatamente.

Nota: Per impostazione predefinita, la finestra di dialogo dei parametri mostrerà una descrizione del SR di ogni layer insieme al suo nome. Se non vuoi vedere queste informazioni aggiuntive, puoi disabilitare questa funzionalità nella finestra di dialogo delle impostazioni di processing, deselezionando l’opzione Generale ➤ Mostra SR del layer nelle caselle di selezione.

- Una **tabella**, da selezionare da una lista di tutte quelle disponibili in QGIS. Le tabelle non spaziali sono caricate in QGIS come i layer vettoriali, e infatti sono trattate come tali dal programma. Attualmente, la lista delle tabelle disponibili che vedrai quando eseguirai un algoritmo che ha bisogno di una di esse è limitata alle tabelle provenienti da file in formato dBase (.dbf) o Comma-Separated Values (.csv).
- Una **opzione**, per scegliere da una lista di selezione di opzioni possibili.
- Un **valore numerico**, da introdurre in una casella di rotazione. In alcuni contesti (quando il parametro si applica al layer dell’elemento e non a quello del layer), troverai al suo fianco un pulsante che ti permette di aprire l’expression builder e inserire un’espressione matematica per generare valori variabili per il parametro. Alcune variabili utili relative ai dati caricati in QGIS possono essere aggiunte alla tua espressione, così puoi selezionare un valore derivato da una qualsiasi di queste variabili, come la dimensione della cella di un livello o la coordinata più a nord di un altro.

Fig. 23.10: Espressione sulla base dell’input

- Un **intervallo**, con valori minimi e massimi da introdurre in due caselle di testo.
- Una **stringa di testo**, da introdurre in una casella di testo.
- Un **campo**, da scegliere tra la tabella degli attributi di un layer vettoriale o una singola tabella selezionata in un altro parametro.
- Un **sistema di riferimento delle coordinate**. Puoi selezionarlo tra quelli usati di recente dall’elenco a discesa o dalla finestra di dialogo CRS selection che appare quando clicchi sul pulsante a destra.
- Un **estensione**, una casella di testo che definisce un rettangolo attraverso le coordinate dei suoi angoli nel formato xmin, xmax, ymin, ymax. Facendo clic sul pulsante sul lato destro del selettore di valori, apparirà un menù pop-up che ti darà le opzioni per:
– *Calcola da layer*: riempie la casella di testo con le coordinate del perimetro di delimitazione di un layer da selezionare tra quelli caricati

– *Usa l’estensione della mappa*

– *Disegna nell’Area di mappa*: la finestra dei parametri si nasconderà, così potrete cliccare e trascinare sulla mappa. Una volta definito il rettangolo di estensione, riapparirà la finestra di dialogo, contenente i valori dell’estensione nella casella di testo.

![Fig. 23.11: Selettore estensione](image)

• Una **lista di elementi** (sia layer raster che vettoriali, tabelle, campi) da selezionare. Clicca sul pulsante … a sinistra dell’opzione per vedere una finestra di dialogo come la seguente. La selezione multipla è consentita e quando la finestra di dialogo viene chiusa, il numero di elementi selezionati viene visualizzato nel widget della casella di testo dei parametri.

![Fig. 23.12: Selezion multipla](image)

• Una **piccola tabella** che può essere modificata dall’utente. Queste sono usate per definire parametri come le tabelle di lookup o i kernel di convoluzione, tra tanti altri.

  Cliccate sul bottone sul lato destro per vedere la tabella e aggiornare i suoi valori.
A seconda dell'algoritmo, potrai modificare il numero delle righe, usando i pulsanti sul lato destro della finestra.

Nota: Alcuni algoritmi richiedono molti parametri per funzionare, per esempio nel *Calcolatore raster* devi specificare manualmente la dimensione della cella, l'estensione e il SR. Puoi evitare di scegliere tutti i parametri manualmente quando l'algoritmo ha il parametro *Reference layers*. Con questo parametro puoi scegliere il layer di riferimento e tutte le sue proprietà (dimensione delle celle, estensione, SR) saranno utilizzate.

Insieme alla scheda *Parametri*, c’è un’altra scheda chiamata *Log* (vedi Fig. 23.14 sotto). Le informazioni fornite dall'algoritmo durante la sua esecuzione sono scritte in questa scheda, e ti permettono di seguire l'esecuzione ed essere consapevole e avere maggiori dettagli sull'algoritmo mentre viene eseguito. Le informazioni sull'esecuzione dell'algoritmo sono anche riportate in *menu selection: Visualizza → Pannelli → Messaggi di log*.

Si noti che non tutti gli algoritmi scrivono informazioni nella scheda Log, e molti di essi potrebbero essere eseguiti in modo silente senza produrre alcun risultato oltre ai file finali. Controlla il pannello *Messaggi di Log* in questo caso.
In fondo alla scheda Log troverai i pulsanti per Salva Log su File, Copia Log negli Appunti e Ripulisci Log. Queste sono particolarmente utili quando hai spuntato l'opzione Mantieni la finestra aperta dopo l'esecuzione dell'algoritmo nelle opzioni Generale di Processing.

Sul lato destro della finestra di dialogo troverai una breve descrizione dell'algoritmo, che ti aiuterà a capire il suo scopo e le sue regole di base. Se tale descrizione non è disponibile, il pannello di descrizione non verrà mostrato.

Per un file di aiuto più dettagliato, che potrebbe includere la descrizione di ogni parametro usato, o esempi, troverai un pulsante Aiuto in fondo alla finestra di dialogo che ti porterà al Processing algorithms documentation o alla documentazione del provider (per alcuni provider di terze parti).

Il pulsante Esegui come processo in serie... attiva il batch processing mode permettendo di configurare ed eseguire più istanze dell'algoritmo con una varietà di parametri.
Nota sulle proiezioni

L’esecuzione dell’algoritmo di processing viene sempre eseguita nel sistema di riferimento delle coordinate del layer in ingresso (SR). A causa delle funzionalità di riproiezione on-the-fly di QGIS, anche se due layer potrebbero sembrare sovrapporsi e combaciare, questo potrebbe non essere vero se le loro coordinate originali sono usate senza riproiettarle su un sistema di coordinate comune. Ogni volta che si usa più di un layer come input per un QGIS native algorithm, sia vettoriale che raster, i layer saranno tutti riproiettati per corrispondere al sistema di riferimento delle coordinate del primo layer in ingresso.

Questo è comunque meno vero per la maggior parte delle applicazioni esterne i cui algoritmi sono mostrati attraverso il framework di processing, poiché presuppongono che tutti i layer siano già in un sistema di coordinate comune e pronti per essere analizzati.

Per impostazione predefinita, la finestra di dialogo dei parametri mostrerà una descrizione del SR di ogni layer insieme al suo nome, rendendo facile selezionare i layer che condividono lo stesso SR da usare come layer in ingresso. Se non vuoi vedere queste informazioni aggiuntive, puoi disabilitare questa funzionalità nella finestra di dialogo delle impostazioni di Processing, deselezionando l’opzione Mostra SR del layer nelle caselle di selezione.

Se cerchi di eseguire un algoritmo usando come input due o più layer con SR non corrispondenti, verrà mostrato un messaggio di avvertimento. Questo avviene grazie all’opzione Avvisa prima di eseguire se i SR dei layer non corrispondono

Potrai comunque eseguire l’algoritmo, ma sappi che nella maggior parte dei casi ciò produrrà cattivi risultati, come ad esempio layer di uscita inconsistenti, proprio perché questi non sono sovrapposti.

Suggerimento: Utilizzare algoritmi di Processing per fare la riproiezione al volo

Quando un algoritmo non può essere eseguito con successo su più layer in ingresso a causa di SR non corrispondenti, utilizza l’algoritmo interno di QGIS Layer riproiettato per eseguire la riproiezione dei layer allo stesso SR prima di eseguire l’algoritmo utilizzando questi output.

23.3.2 Dati generati dagli algoritmi

I dati generati da un algoritmo possono appartenere a una delle seguenti tipologie:

- Un layer Raster
- Un vettore
- Una tabella
- Un file HTML (usato per risultati testuali e grafici)

Questi sono tutti salvati su disco, e la tabella dei parametri conterrà una casella di testo corrispondente a ciascuna di tali output, dove è possibile digitare il canale di output da utilizzare per salvarlo. Un canale di uscita contiene le informazioni necessarie per salvare l’oggetto risultante da qualche parte. Nel caso più usuale, lo si salverà in un file, ma nel caso di layer vettoriali, e quando sono generati da algoritmi nativi (algoritmi che non utilizzano applicazioni esterne) si può anche salvare in un database PostGIS, GeoPackage o SpatiaLite, o in un layer temporaneo.

Per selezionare una opzione per il risultato, basta cliccare sul pulsante a destra della casella di testo, e vedrai un piccolo menu contestuale con le opzioni disponibili.

Nel caso più usuale, selezionerai il salvataggio in un file. Se selezioni questa opzione, ti verrà mostrata una finestra di dialogo per il salvataggio del file, dove potrai selezionare il percorso desiderato per il file. Le estensioni di file supportate sono mostrate nel seletore del formato di file della finestra di dialogo, a seconda del tipo di output e dell’algoritmo.

Il formato dell’output è definito dall’estensione del nome del file. I formati supportati dipendono da ciò che è supportato dall’algoritmo stesso. Per selezionare un formato, basta selezionare l’estensione del file corrispondente (o aggiungerla, se invece stai digitando direttamente il percorso del file). Se l’estensione del percorso del file inserito non corrisponde a nessuno dei formati supportati, un’estensione predefinita verrà aggiunta al percorso del file e il formato di file corrispondente a tale estensione verrà utilizzato per salvare il layer o la tabella. Le estensioni predefinite sono .dbf
per le tabelle .tif per i layer raster e .gpkg per i layer vettoriali. Queste possono essere modificate nella finestra di dialogo delle impostazioni, selezionando qualsiasi altro formato supportato da QGIS.

Se non inserisci alcun nome di file nella casella di testo di output (o si seleziona l'opzione corrispondente nel menu contestuale), il risultato sarà salvato come temporary file nel corrispondente formato di file predefinito, e sarà cancellato una volta che esci da QGIS (hai attenzione a questo, nel caso in cui salvi il tuo progetto e questo contiene layer temporanei).

Puoi impostare una cartella predefinita per i dati in uscita. Vai nella finestra di dialogo delle impostazioni (puoi aprirla dal menu Impostazioni ➤ Opzioni ➤ Processing), e nel gruppo Generale, troverai un parametro chiamato Cartella dei risultati. Questa cartella dei risultati è usata come percorso predefinito nel caso in cui tu digitai solo un nome di file senza percorso (cioè, myfile.shp) quando esegui un algoritmo.

Durante l'esecuzione di un algoritmo che usa un vettore in modo iterativo, il percorso del file inserito è usato come percorso di base per tutti i file generati, i quali sono nominati usando il nome del vettore e aggiungendo poi un numero che rappresenta l'indice di iterazione. L'estensione del file (e il formato) viene usata per tutti i file generati.

Oltre a layer raster e a tabelle, gli algoritmi generano anche grafici e testo come file HTML. Questi risultati sono mostrati alla fine dell'esecuzione dell'algoritmo in una nuova finestra di dialogo. Questa finestra di dialogo manterrà i risultati prodotti da qualsiasi algoritmo durante la sessione corrente, e può essere mostrata in qualsiasi momento selezionando Processing ➤ Visualizzatore risultati dal menù principale di QGIS.

Alcune applicazioni esterne potrebbero avere file (senza particolari restrizioni di estensione) come risultato, ma non appartengono a nessuna delle categorie di cui sopra. Questi file di output non saranno processati da QGIS (aperti o inclusi nel progetto QGIS corrente), poiché la maggior parte delle volte corrispondono a formati di file o elementi non supportati da QGIS. Questo è, per esempio, il caso dei file LAS usati per i dati LiDAR. I file vengono creati, ma non si vedrà nulla di nuovo nella sessione di lavoro di QGIS.

Per tutti gli altri tipi di output, troverai una casella di controllo che potrai usare per indicare se caricare o meno il file una volta che è stato generato dall'algoritmo. Come impostazione predefinita, tutti i file vengono aperti.

Risultati opzionali non sono supportati. Cioè, vengono creati tutti i risultati. Tuttavia, puoi deselezionare la casella di controllo corrispondente se non sei interessato a un determinato output, il che essenzialmente lo fa comportare come un risultato opzionale (in altre parole, il layer viene creato comunque, ma se si lascia la casella di testo vuota, verrà salvato in un file temporaneo e cancellato una volta usciti da QGIS).

### 23.4 Il gestore della cronologia di Processing

#### 23.4.1 La cronologia di Processing

Ogni volta che si esegue un algoritmo, le informazioni sul processo vengono memorizzate nel gestore della cronologia. La data e l'ora dell'esecuzione vengono salvate, insieme ai parametri utilizzati, rendendo facile tracciare e controllare tutto il lavoro che è stato sviluppato utilizzando il framework Processing, e riprodurlo.
Le informazioni sul processo vengono mantenute come espressione di riga di comando, anche se l'algoritmo è stato lanciato dal toolbox. Questo lo rende utile per coloro che stanno imparando ad usare l'interfaccia a riga di comando, poiché possono chiamare un algoritmo usando il toolbox e poi controllare l’history manager per vedere come potrebbe essere chiamato dalla riga di comando.

Oltre a sfogliare le voci del registro, puoi anche rieseguire i processi semplicemente facendo doppio clic sulla voce. La finestra di dialogo dell'algoritmo si apre con i parametri già impostati, e puoi cambiare qualsiasi di essi per adattarli alle tue esigenze e rieseguire l'algoritmo.

La finestra di dialogo Storico fornisce anche un modo semplice per contribuire al consolidamento dell’infrastruttura di test degli algoritmi e degli script di QGIS Processing. Quando clicchi con il tasto destro del mouse su una voce, puoi Crea Test… usando l'algoritmo e i parametri interessati, seguendo le istruzioni in https://github.com/qgis/QGIS/blob/release-3_16/python/plugins/processing/tests/README.md.

**23.4.2 Il log di Processing**

La finestra di dialogo della cronologia contiene solo le chiamate di esecuzione, ma non le informazioni prodotte dall’algoritmo quando viene eseguito. Queste informazioni sono scritte nel log di QGIS (Visualizza ➤ Pannelli ➤ Messaggi di Log).

Gli algoritmi di terze parti vengono solitamente eseguiti utilizzando le loro interfacce a riga di comando, che comunicano con l’utente tramite la console. Anche se questa console non viene mostrata, di solito un dump completo di essa viene scritto nel log ogni volta che si esegue uno di questi algoritmi. Per evitare di ingombrare il log con queste informazioni, è possibile disabilitarle per ogni fornitore nella finestra delle impostazioni.

Alcuni algoritmi, anche se possono produrre un risultato con i dati di input immessi, emettono commenti o informazioni aggiuntive nel log quando rilevano potenziali problemi con i dati, al fine di avvisarti. Assicurati di controllare questi messaggi nel log se ottieni risultati inaspettati.

**23.5 Il modellatore grafico**

Il modellatore grafico ti consente di creare modelli complessi utilizzando un’interfaccia semplice e facile da usare. Quando lavori con un GIS, la maggior parte delle operazioni di analisi non sono isolate, ma piuttosto fanno parte di una catena di operazioni. Usando il modellatore grafico, la successione dei processi può essere confezionata in un unico processo, quindi è più conveniente eseguire come un processo singolo anche su diversi input. Non importa quanti passi e diversi algoritmi coinvolge, un modello è eseguito come un unico algoritmo, risparmiando così tempo e fatica.

Il modellatore grafico può essere aperto dal menu Processing (Processing ➤ Modellatore Grafico…).
Il modellatore ha un’area grafica di lavoro dove viene mostrata la struttura del modello e il flusso di lavoro che rappresenta. La parte sinistra della finestra è una sezione con cinque pannelli che possono essere utilizzati per aggiungere nuovi elementi al modello:

1. **Proprietà Modello**: puoi specificare il nome del modello e il gruppo che lo conterrà
2. **Input**: tutti gli input che daranno forma al tuo modello
3. **Algoritmi**: gli algoritmi di Processing disponibili
4. **Variabili**: puoi anche definire variabili che saranno disponibili solo nel Processing del Modellatore.
5. **Storico dei comandi**: questo pannello registrerà tutto ciò che accade nel modellatore, rendendo facile eliminare le cose che hai fatto in modo errato.

La creazione di un modello comporta due passi fondamentali:

1. **Definizione degli input necessari.**Questi input saranno aggiunti alla finestra dei parametri, in modo che l’utente possa impostare i loro valori quando esegue il modello. Il modello stesso è un algoritmo, quindi la finestra dei parametri viene generata automaticamente come per tutti gli algoritmi disponibili nel framework Processing.

2. **Definizione del flusso di lavoro.** Utilizzando i dati in ingresso del modello, il flusso di lavoro viene definito aggiungendo algoritmi e selezionando come utilizzano gli input definiti o gli output generati da altri algoritmi nel modello.

**Fig. 23.16: Modellatore**
23.5.1 Definizione dei dati in ingresso

Il primo passo è quello di definire gli input per il modello. I seguenti elementi si trovano nel pannello Input sul lato sinistro della finestra del modellatore:

- Configurazione Autenticazione
- Booleano
- Colore
- Nome Connessione
- Gestione Coordinate
- SR
- Schema del Database
- Tabella Database
- Datetime
- Distanza
- Enum
- Espressione
- Estensione
- Aggregati campo
- Mappatura campi
- File/Cartella
- Geometria
- Layer Mappa
- Tema Mappa
- Matrice
- Layer Mesh
- Ingressi multipli
- Numero
- Punto
- Layout di stampa
- Oggetto del Layout di stampa
- Intervallo
- Banda Raster
- Layer Raster
- Scala
- Stringhe di testo
- Layer creazione TIN
- Elementi vettoriali
- Campo del Vettore
- Vettore
- Layer vettoriali di generatori di tasselli

23.5. Il modellatore grafico
Nota: Passando con il mouse sopra gli input verrà mostrato un tooltip con informazioni aggiuntive.

Quando si fa doppio clic su un elemento, viene mostrata una finestra di dialogo che permette di definire le sue caratteristiche. A seconda del parametro, la finestra di dialogo conterrà almeno un elemento (la descrizione, che è ciò che l'utente vedrà quando esegue il modello). Per esempio, quando si aggiunge un valore numerico, come si può vedere nella prossima figura, oltre alla descrizione del parametro, si deve impostare un valore predefinito e la gamma dei valori validi.

![Number Parameter Definition](image)

Fig. 23.17: Definizione Parametri del modello

Puoi definire l'input come obbligatorio per il tuo modello selezionando l'opzione Obbligatorio e selezionando la checkbox Avanzato puoi impostare l'input all'interno della sezione Avanzato'. Questo è particolarmente utile quando il modello ha molti parametri e alcuni di essi non sono semplici, ma vuoi in ogni caso sceglierli.
La scheda Commenti ti permette di etichettare l'input con più informazioni, per descrivere meglio il parametro. I commenti sono visibili solo nell'area grafica del modellatore e non nella finestra di dialogo finale dell'algoritmo.

Per ogni input aggiunto, un nuovo elemento viene aggiunto all'area grafica del modellatore.

Puoi anche aggiungere degli input trascinando il tipo di input dalla lista e facendolo cadere nella posizione in cui vuoi che sia nell'area grafica del modellatore. Se vuoi cambiare un parametro di un input esistente, basta fare doppio clic su di esso, e la sua stessa finestra di dialogo apparirà.

### 23.5.2 Definizione del flusso operativo

Nel seguente esempio aggiungeremo due input e due algoritmi. Lo scopo del modello è quello di copiare i valori di elevazione da un layer raster DEM a un vettore lineare usando l'algoritmo Drape, e poi calcolare l'ascesa totale del layer di linee usando l'algoritmo Climb Along Line.

Nella scheda Input, scegli i due input come Vector Layer per la linea e Raster Layer per il DEM. Ora siamo pronti ad aggiungere gli algoritmi al flusso di lavoro.

Gli algoritmi possono essere trovati nel pannello Algoritmi, raggruppati nello stesso modo in cui sono nella casella degli strumenti di Processing.

![Fig. 23.18: Parametri modello](image)

Nella scheda Commenti, scegli due input come Vector Layer per la linea e Raster Layer per il DEM. Ora siamo pronti ad aggiungere gli algoritmi al flusso di lavoro.

Gli algoritmi possono essere trovati nel pannello Algoritmi, raggruppati nello stesso modo in cui sono nella casella degli strumenti di Processing.

![Fig. 23.19: Input al modello](image)
Per aggiungere un algoritmo a un modello, fai doppio clic sul suo nome o trascinalo, proprio come per gli input. Come per gli input è possibile cambiare la descrizione dell'algoritmo e aggiungere un commento. Quando si aggiunge un algoritmo, apparirà una finestra di esecuzione, con un contenuto simile a quello che si trova nel pannello di esecuzione che viene mostrato quando si esegue l'algoritmo dalla barra degli strumenti. L'immagine seguente mostra entrambe le finestre di dialogo dell'algoritmo *Drape (set Z value from raster)* e *Climb along line*.

![Drape (set Z value from raster) and Climb along line dialog boxes](image)

Fig. 23.20: Parametri dell’algoritmo del modello

Come puoi vedere ci sono alcune differenze.

Hai quattro scelte per definire gli **input** dell’algoritmo:

- **Valore**: permette di impostare il parametro da un layer caricato nel progetto QGIS o di sfogliare un layer da una cartella
- **Espressione** Valore precalcolato: con questa opzione puoi aprire il Costruttore di Espressioni e definire la tua espressione per inserire il parametro. Gli input del modello insieme ad alcune altre statistiche del layer sono disponibili come **variabili** e sono elencate nella parte superiore della finestra di dialogo Cerca del Costruttore di Espressioni
- **Model Input**: scegli questa opzione se il parametro proviene da un input del modello che hai definito. Una volta cliccata, questa opzione elencherà tutti gli input adatti al parametro
- **Risultato algoritmo**: è utile quando il parametro di input di un algoritmo è un output di un altro algoritmo

Gli **output** dell’algoritmo hanno l'opzione aggiuntiva **Model Output** che rende l'output dell'algoritmo disponibile nel modello.

Se un layer generato dall'algoritmo deve essere usato solo come input per un altro algoritmo, non modificare quella casella di testo.

Nell'immagine seguente puoi vedere i due parametri di input definiti come **Model Input** e il layer di output temporaneo:
In tutti i casi, troverai un parametro aggiuntivo chiamato *Dependencies* che non è disponibile quando chiami l'algoritmo dal toolbox. Questo parametro permette di definire l'ordine di esecuzione degli algoritmi, definendo esplicitamente un algoritmo come *parent* di quello corrente. Questo farà eseguire l'algoritmo *parent* prima dell'altro.

Quando utilizzi l'output di un algoritmo precedente come input del tuo algoritmo, questo imposta implicitamente l'algoritmo precedente come genitore di quello attuale (e pone la freccia corrispondente nell'area grafica del modellatore). Tuttavia, in alcuni casi un algoritmo potrebbe dipendere da un altro anche se non utilizza alcun oggetto in uscita da esso (per esempio, un algoritmo che esegue una frase SQL su un database PostGIS e un altro che importa un layer nel medesimo database). In questo caso, basta selezionare l'algoritmo precedente nel parametro *Dipendenze* e saranno eseguiti nell'ordine corretto.

Una volta che tutti i parametri sono stati assegnati valori validi, clicca su *OK* e l'algoritmo sarà aggiunto all'area grafica. Sarà collegato agli elementi dell'area grafica (algoritmi o input) che forniscono oggetti utilizzati come input.
per l’algoritmo.

Gli elementi possono essere trascinati in una posizione diversa sull’area grafica. Questo è utile per rendere la struttura del modello più chiara e intuitiva. Puoi anche ridimensionare gli elementi. Questo è particolarmente utile se la descrizione dell’input o dell’algoritmo è lunga.

I collegamenti tra gli elementi sono aggiornati automaticamente e si può vedere un pulsante più in alto e in basso di ogni algoritmo. Facendo clic sul pulsante verranno elencati tutti gli ingressi e le uscite dell’algoritmo in modo da poter avere una rapida panoramica.

Puoi ingrandire e rimpicciolire usando la rotella del mouse.

Puoi eseguire il tuo algoritmo in qualsiasi momento cliccando sul pulsante ➤. Per utilizzare l’algoritmo dalla casella degli strumenti, deve essere salvato e la finestra di dialogo del modellatore chiusa, per permettere alla casella degli strumenti di aggiornare il suo contenuto.

### 23.5.3 Interagire con l’area grafica e gli elementi

Puoi usare i pulsanti ➕, ➖, ➩ e ➲ per zoomare l’area grafica del modellatore. Il comportamento dei pulsanti è fondamentalmente lo stesso della barra degli strumenti principale di QGIS.

Il pannello Storico dei comandi insieme ai pulsanti ➗ e ➘ sono estremamente utili per tornare rapidamente a una situazione precedente. Il pannello Storico dei comandi elenca tutto ciò che hai fatto quando hai creato il flusso di lavoro.

Puoi spostare o ridimensionare molti elementi allo stesso tempo, selezionandoli prima e trascinandolo mouse.
Se vuoi agganciare gli elementi mentre li sposti nell’area grafica puoi scegliere Visualizza ➤ Abilita aggancio.

Il menu Modifica contiene alcune opzioni molto utili per interagire con gli elementi del modello:

- **Seleziona tutto**: seleziona tutti gli elementi del modello
- **Aggancia Elementi selezionati al Reticolo**: aggancia e allinea gli elementi in una griglia
- **Undo**: annulla l’ultima azione
- **Redo**: ripristina l’ultima azione
- **Cut**: taglia gli elementi selezionati
- **Copy**: copia gli elementi selezionati
- **Paste**: incolla gli elementi
- **Elimina componenti selezionati**: elimina tutti gli elementi selezionati dal modello
- **Aggiungi una cornice per il gruppo**: aggiunge una cornice trascinabile all’area grafica. Questa funzione è molto utile in grandi modelli per raggruppare elementi nell’area grafica del modellatore e per mantenere pulito il flusso di lavoro. Per esempio potremmo raggruppare tutti gli input dell’esempio:

![Fig. 23.23: Cornice raggruppamento del modello](image)

Puoi cambiare il nome e il colore delle cornici. Le cornici di gruppo sono molto utili se utilizzate insieme a Visualizza ➤ Zoom su. Questo permette di zoomare su una parte specifica del modello.

23.5. **Il modellatore grafico**
Potresti voler cambiare l’ordine degli input e come sono elencati nella finestra di dialogo principale del modello. In fondo al pannello Input troverai il pulsante **Riordina Modelli in Ingresso...** e cliccando su di esso si apre una nuova finestra di dialogo che ti permette di cambiare l’ordine degli input:

![Riordinare Modelli in ingresso](image)

**Fig. 23.24: Riordinare Modelli in ingresso**

### 23.5.4 Salvataggio e caricamento di modelli

Usa il pulsante **Salva modello** per salvare il modello corrente e il pulsante **Apri modello** per aprire un modello precedentemente salvato. I modelli sono salvati con l’estensione `.model3`. Se il modello è già stato salvato dalla finestra del modellatore, non verrà richiesto il nome del file. Poiché c’è già un file associato al modello, quel file sarà usato per i salvataggi successivi.

Prima di salvare un modello, devi inserire un nome e un gruppo per esso nelle caselle di testo nella parte superiore della finestra.

I modelli salvati nella cartella **models** (la cartella predefinita quando viene richiesto un nome di file per salvare il modello) appariranno nella casella degli strumenti nel ramo corrispondente. Quando la barra degli strumenti viene attivata, cerca nella cartella **models** i file con estensione `.model3` e carica i modelli contenuti. Poiché un modello è esso stesso un algoritmo, può essere aggiunto alla barra degli strumenti proprio come qualsiasi altro algoritmo.

I modelli possono anche essere salvati all'interno del file di progetto usando il pulsante **Salva modello nel progetto**. I modelli salvati con questo metodo non saranno scritti come file `.model3` su disco ma saranno incorporati nel file di progetto.

I modelli di progetto sono disponibili nel menu **Modelli di progetto** della barra degli strumenti.

Puoi specificare la cartella dei modelli nella finestra di configurazione di Processing, presente nel gruppo **Modellatore**.
I modelli caricati dalla cartella **models** appaiono non solo nella casella degli strumenti, ma anche nell’albero degli algoritmi nella scheda **Algoritmi** della finestra del modellatore. Ciò significa che si può incorporare un modello come parte di un modello più grande, proprio come altri algoritmi.

I modelli appariranno nel pannello **Browser** e possono essere eseguiti da lì.

**Esportare un modello come immagine, PDF o SVG**

Un modello può anche essere esportato come immagine, SVG o PDF (per scopi illustrativi) cliccando su **Esporta come immagine**, **Esporta come PDF** o **Esporta come SVG**.

**23.5.5 Aggiornare il modello**

Puoi modificare il modello che stai creando, ridefinendo il flusso di lavoro e le relazioni tra gli algoritmi e gli input che definiscono il modello.

Se clicchi con il tasto destro del mouse su un algoritmo nell’area grafica, vedrai un menu contestuale come quello mostrato qui accanto:

![Fig. 23.25: Click destro sul modellatore](image)

Selezionando l’opzione **Remove** rimuoverai l’algoritmo selezionato. Non potrai rimuovere un algoritmo se altri algoritmi dipendono da lui, ovvero quando un algoritmo vuole come input il risultato di un altro algoritmo. Se provi a rimuovere comunque uno di questi algoritmi, apparirà una finestra di avviso.

![Fig. 23.26: L’algoritmo non può essere eliminato](image)

Selezionando l’opzione **Modifica**… verrà mostrata la finestra di dialogo dei parametri dell’algoritmo, in modo da poter cambiare gli input e i valori dei parametri. Non tutti gli elementi di input disponibili nel modello appariranno come input disponibili. Layer o valori generati in un passo più avanzato del flusso di lavoro definito dal modello non saranno disponibili se causano dipendenze circolari.

Seleziona i nuovi valori e clicca sul pulsante **OK** come al solito. Le connessioni tra gli elementi del modello cambieranno di conseguenza nell’area grafica del modellatore.
The *Add comment*… allows you to add a comment to the algorithm to better describe the behavior.

Un modello può essere eseguito parzialmente disattivando alcuni dei suoi algoritmi. Per farlo, selezionare l'opzione *Disattiva* nel menu contestuale che appare quando si clicca con il tasto destro del mouse su un elemento dell'algoritmo. L'algoritmo selezionato e tutti quelli del modello che dipendono da esso saranno visualizzati in grigio e non saranno eseguiti come parte del modello.

![Image](image.png)

Fig. 23.27: Modello con algoritmo disattivato

Quando clicchi con il tasto destro del mouse su un algoritmo che non è attivo, vedrai un'opzione di menu *Attiva* che puoi usare per riattivarlo.

### 23.5.6 Modifica dei file di aiuto del modello e delle meta-informazioni

Puoi documentare i tuoi modelli dal modellatore stesso. Clicca sul pulsante ![Modifica guida del modello](image.png), e apparirà una finestra di dialogo come quella mostrata di seguito.
Sulla parte destra vedrai una semplice pagina HTML, creata usando la descrizione dei parametri di input e di output dell'algoritmo insieme ad alcuni parametri aggiuntivi come la sua descrizione e l'autore. La prima volta che apri l'editor di aiuto, vedrai tutti i campi vuoti. Li puoi riempire usando le voci corrispondenti presenti nella parte sinistra della finestra di dialogo. Seleziona un elemento nella parte superiore e poi inserisci la descrizione nella casella di testo.

La guida del modello è salvata come parte del modello stesso
23.5.7 Esportare un modello come script Python

Come vedremo in un capitolo successivo, gli algoritmi di Processing possono essere chiamati dalla console Python di QGIS, e nuovi algoritmi di Processing possono essere creati usando Python. Un modo veloce per creare un tale script Python è quello di creare un modello e poi esportarlo come file Python.

Per farlo, clicca su Esporta come Algoritmo Script… nell'area grafica del modellatore o clicca col tasto destro sul nome del modello nella barra degli strumenti di Processing e scegli Esporta Modello come Algoritmo Python….

23.5.8 A proposito degli algoritmi disponibili

Si potrebbe notare che alcuni algoritmi che possono essere eseguiti dalla barra degli strumenti non appaiono nella lista degli algoritmi disponibili quando si sta progettando un modello. Per essere incluso in un modello, un algoritmo deve avere la semantica corretta. Se un algoritmo non ha una semantica ben definita (per esempio, se il numero di layer in uscita non può essere conosciuto in anticipo), allora non è possibile utilizzarlo all'interno di un modello, e non apparirà nell'elenco degli algoritmi che si possono trovare nella finestra di dialogo del modellatore.

23.6 L'interfaccia per i processi in serie

23.6.1 Introduzione

Puoi eseguire come processi in serie tutti gli algoritmi (compresi i modelli). Questo significa che puoi eseguire ogni algoritmo usando non solo un singolo input, ma anche più di uno. Questa funzionalità è particolarmente utile quando hai bisogno di processare grandi quantità di dati; non dovrai più eseguire l'algoritmo singolarmente ogni volta.

Per eseguire un algoritmo come un processo in serie, selezionarlo e col pulsante di destra del mouse scegliere la voce Execute as batch process dal menu che apparirà.

Se hai la finestra di dialogo di esecuzione dell'algoritmo aperta, puoi anche avviare l'interfaccia di processamento in serie da lì, facendo click sul pulsante Esegui come processo batch ….
23.6.2 La tabella dei parametri

Eseguire un processo in serie è un'operazione simile ad un'esecuzione singola di un algoritmo. Devi definire i valori dei parametri, ma in questo caso, devi definire non solo un singolo valore per ciascuno di essi, ma un insieme di valori, uno per ogni volta che l'algoritmo verrà eseguito. I valori sono introdotti per mezzo di una tabella del tipo di quella mostrata oltre.

Ogni riga della tabella rappresenta una singola esecuzione dell'algoritmo mentre ogni cella contiene il valore di uno dei parametri caratteristici dell'algoritmo. In un certo senso, è simile alla finestra di dialogo dei parametri utilizzata quando si lancia un algoritmo da Strumenti, ma organizzata in maniera differente.

Come impostazione predefinita, la tabella contiene solo due righe. Puoi aggiungere o cancellare righe utilizzando i pulsanti della parte inferiore della finestra.

Una volta definita la dimensione della tabella, la devi riempire con i valori desiderati.
23.6.3 Compilazione della tabella dei parametri

Per la maggior parte dei parametri, la selezione del valore corretto è banale. Basta semplicemente scrivere il valore o selezionarlo dalla lista delle opzioni disponibili, a seconda del tipo di parametro.

I nomi dei file per i dati di input vengono immessi direttamente digitando o, più convenientemente, facendo click sul pulsante [browseButton] sulla parte destra della cella, che mostrerà un menu di scelta rapida con due opzioni: una per selezionare tra i layer correntemente aperti e un'altra per selezionare dal filesystem. Questa seconda opzione, quando selezionata, mostra una tipica finestra di dialogo di selezione dei file. È possibile selezionare più file contemporaneamente. Se il parametro di input rappresenta un singolo oggetto dati e vengono selezionati più file, ognuno di essi verrà inserito in una riga separata, aggiungendone di nuovi se necessario. Se il parametro rappresenta un input multiplo, tutti i file selezionati verranno aggiunti a una singola cella, separati da punto e virgola (,).

Gli identificativi del layer possono essere immessi direttamente nella casella di testo del parametro. Puoi inserire il percorso completo di un file o il nome di un layer attualmente caricato nel progetto QGIS corrente. Il nome del layer verrà automaticamente definito nel suo percorso di origine. Si noti che, se più layer hanno lo stesso nome, questo potrebbe causare risultati imprevisti a causa di ambiguità.

I dati di output vengono sempre salvati su un file e, diversamente dall'esecuzione di un algoritmo dalla toolbox, non è consentito il salvataggio in un file o database temporaneo. Puoi digitare direttamente il nome o utilizzare la finestra di dialogo di selezione file visualizzata quando fai click sul pulsante di contesto.

Una volta selezionato il file di output, appare una nuova finestra di dialogo che permette l'autocompletamento delle altre celle nella stessa colonna (stesso parametro).

Fig. 23.32: Salvataggio di Processo in Serie

Se mantieni il valore predefinito (“Do not autocomplete”), Processing metterà il nome del file selezionato nella cella selezionata dalla tabella dei parametri. Se selezioni una qualunque delle altre opzioni, tutte le celle sottostanti a quella selezionata saranno riempite automaticamente basandosi sul criterio definito. In questo modo, è molto più agevole riempire la tabella e puoi definire il processo in serie con meno fatica.

Puoi eseguire il riempimento automatico semplicemente aggiungendo numeri correlati al percorso del file selezionato oppure aggiungendo il valore di un altro campo alla stessa riga. Questo è particolarmente utile per dare un nome agli output che ricordi quello degli input.

Fig. 23.33: Percorso file dei Processo in Serie
23.6.4 Esecuzione di un processo in serie

Per eseguire un processo in serie, una volta introdotti tutti i valori necessari, clicca semplicemente su OK. Processing mostrerà l’avanzamento globale del processo in serie nella barra di avanzamento nella parte inferiore della finestra di dialogo.

23.7 Usare gli algoritmi di Processing dalla console dei comandi

La console permette ad utenti esperti di aumentare la propria produttività e di eseguire operazioni complesse che non possono essere eseguite utilizzando uno qualsiasi degli altri elementi dell’interfaccia grafica di Processing. I modelli che richiamano diversi algoritmi possono essere definiti utilizzando l’interfaccia della riga di comando, e le operazioni aggiuntive, come i loop e le frasi condizionali possono essere aggiunte per creare flussi di lavoro più flessibili e potenti.

Non c’è una console di processing in QGIS, ma tutti i comandi di processing sono invece resi disponibili dalla predefinita QGIS Python console. Ciò significa che puoi incorporare tali comandi nella tua console operativa e collegare gli algoritmi di elaborazione a tutte le altre funzionalità (inclusi i metodi delle API di QGIS) lì disponibili.

Il codice che puoi eseguire dalla console di python, anche se non richiama un metodo specifico di Processing, può essere convertito in un nuovo algoritmo che potrai richiamare in seguito dagli Strumenti, dal Modellatore grafico o da qualunque altra parte, proprio come ogni altro algoritmo. Alcuni algoritmi che trovi in Strumenti sono in effetti degli script semplici.

In questa sezione verrà spiegato come usare gli algoritmi di Processing dalla console di Python e anche come scrivere un algoritmo usando Python.

23.7.1 Richiamare algoritmi dalla console di python

La prima cosa da fare è importare le funzioni di Processing con la seguente istruzione:

```python
>>> from qgis import processing
```

Ora, c’è fondamentalmente solo una cosa (interessante) che puoi fare dalla console: eseguire un algoritmo. Questo viene fatto usando il metodo `run()`, che prende il nome dell’algoritmo da eseguire come primo parametro, e poi un numero variabile di parametri aggiuntivi a seconda dei requisiti dell’algoritmo. Quindi la prima cosa che devi conoscere è il nome dell’algoritmo da eseguire. Questo non è il nome che vedi nella casella degli strumenti, ma piuttosto un nome unico a riga di comando. Per trovare il nome giusto per il tuo algoritmo, puoi usare la processingRegistry. Digita la seguente linea nella tua console:

```python
>>> for alg in QgsApplication.processingRegistry().algorithms():
 print(alg.id(), "->", alg.displayName())
```

Vedrai qualcosa del genere (con qualche trattino in più aggiunto per migliorare la leggibilità):

```python
3d:tessellate ------------> Tesselate
gdal:aspect ----------> Aspect
gdal:assignprojection -----> Assign projection
gdal:buffervectors -------> Buffer vectors
gdal:buildvirtualraster ---- Build Virtual Raster
gdal:cliprasterbyextent ---- Clip raster by extent
gdal:cliprasterbymasklayer -> Clip raster by mask layer
gdal:clipvectorbyextent ---- Clip vector by extent
gdal:clipvectorbypolygon --- Clip vector by mask layer
gdal:colorrelief ----------> Color relief
gdal:contour --------------> Contour
gdal:convertformat ------> Convert format
gdal:discard ------------> Discard
...```
Questa è una lista di tutti gli ID degli algoritmi disponibili, ordinati per nome della fonte e nome dell'algoritmo, insieme ai loro nomi corrispondenti.

Una volta che sai il nome a riga di comando dell'algoritmo, la prossima cosa da fare è determinare la giusta sintassi per eseguirlo. Questo significa sapere quali parametri sono necessari quando si chiama il metodo \texttt{run()}.

C'è un metodo per descrivere un algoritmo in dettaglio, che può essere usato per ottenere una lista dei parametri che un algoritmo richiede e gli output che genererà. Per ottenere queste informazioni, puoi usare il metodo \texttt{algoritmoHelp(id dell'algoritmo)}. Usa l'ID dell'algoritmo, non il nome descrittivo completo.

Richiamando il metodo con \texttt{native:buffer} come parametro (\texttt{qgis:buffer} è un alias di \texttt{native:buffer} e funzionerà ugualmente), ottieni la seguente descrizione:

```python
>>> processing.algorithmHelp("native:buffer")
Buffer (native:buffer)

This algorithm computes a buffer area for all the features in an input layer, using a fixed or dynamic distance.

The segments parameter controls the number of line segments to use to approximate a quarter circle when creating rounded offsets.

The end cap style parameter controls how line endings are handled in the buffer.

The join style parameter specifies whether round, miter or beveled joins should be used when offsetting corners in a line.

The miter limit parameter is only applicable for miter join styles, and controls the maximum distance from the offset curve to use when creating a mitered join.

----------------
Input parameters
----------------

INPUT: Input layer

Parameter type: QgsProcessingParameterFeatureSource

Accepted data types:
- str: layer ID
- str: layer name
- str: layer source
- QgsProcessingFeatureSourceDefinition
- QgsProperty
- QgsVectorLayer

DISTANCE: Distance

Parameter type: QgsProcessingParameterDistance

Accepted data types:
- int
- float
- QgsProperty

SEGMENTS: Segments

Parameter type: QgsProcessingParameterNumber
```

(continues on next page)
<table>
<thead>
<tr>
<th>Accepted data types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- int</td>
</tr>
<tr>
<td>- float</td>
</tr>
<tr>
<td>- QgsProperty</td>
</tr>
</tbody>
</table>

END_CAP_STYLE: End cap style

Parameter type: QgsProcessingParameterEnum

Available values:
- 0: Round
- 1: Flat
- 2: Square

Accepted data types:
- int
- str: as string representation of int, e.g. '1'
- QgsProperty

JOIN_STYLE: Join style

Parameter type: QgsProcessingParameterEnum

Available values:
- 0: Round
- 1: Miter
- 2: Bevel

Accepted data types:
- int
- str: as string representation of int, e.g. '1'
- QgsProperty

MITER_LIMIT: Miter limit

Parameter type: QgsProcessingParameterNumber

Accepted data types:
- int
- float
- QgsProperty

DISSOLVE: Dissolve result

Parameter type: QgsProcessingParameterBoolean

Accepted data types:
- bool
- int
- str
- QgsProperty

OUTPUT: Buffered

Parameter type: QgsProcessingParameterFeatureSink

Accepted data types:
- str: destination vector file, e.g. 'd:/test.shp'
- str: 'memory:' to store result in temporary memory layer
- str: using vector provider ID prefix and destination URI, e.g. 'postgres:...' to store result in PostGIS table
Ora hai tutto il necessario per eseguire qualsiasi algoritmo. Come abbiamo già detto, gli algoritmi possono essere eseguiti usando: run(). La sua sintassi è la seguente:

```python
>>> processing.run(name_of_the_algorithm, parameters)
```

Dove parameters è un dizionario di parametri che dipendono dall’algoritmo che vuoi eseguire, ed è esattamente la lista che il metodo algorithmHelp() ti dà.

Se un parametro è opzionale e non vuoi usarlo, allora non includerlo nel dizionario.

Se un parametro non è specificato, verrà utilizzato il valore predefinito.

A seconda del tipo di parametro, i valori sono inseriti in maniera diversa. Il seguente elenco dà una rapida panoramica di come inserire valori per ogni tipo di parametro in input:

- **Layer Raster, Layer Vettoriale o Tabella.** Basta usare una stringa con il nome che identifica il data object da usare (il nome che ha nella Table of Contents di QGIS o un nome di file se il layer corrispondente non è aperto, verrà aperto ma non aggiunto alla mappa). Se hai un’istanza di un oggetto QGIS che rappresenta il layer, puoi anche passarlo come parametro.

- **Conteggio.** Se un algoritmo ha un parametro di conteggio, il valore di quel parametro dovrebbe essere inserito usando un valore intero. Per conoscere le opzioni disponibili, puoi usare il comando algorithmHelp(), come sopra. Per esempio, l’algoritmo `native:buffer` ha una numerazione chiamata JOIN_STYLE:

  ```
  JOIN_STYLE: Join style
  Parameter type: QgsProcessingParameterEnum
  Available values:
  - 0: Round
  - 1: Miter
  - 2: Bevel
  Accepted data types:
  - int
  - str: as string representation of int, e.g. '1'
  - QgsProperty
  ```

In questo caso, il parametro ha tre opzioni. Da notare che l’ordine è su base zero.

- **Booleano.** Usare True o False.

- **Input multipli.** Il valore è una stringa con descrittori in input separati da un punto e virgola (;). Come nel caso di layer singoli o tabelle, ogni descrittore in input può essere il nome dell’oggetto o il suo percorso.
• Campo di una Tabella da XXX. Inserisci una stringa con il nome del campo da usare. Il parametro è sensibile alle lettere maiuscole.

• Tabella fissa. Inserisci l’elenco di tutti i valori delle tabelle separati da una virgola (,) e racchiusi fra virgole (*). I valori partono dalla riga in alto e proseguono da sinistra verso destra. Puoi usare un array 2-D per i valori che rappresentano la tabella.

• SR. Inserisci il codice EPSG del SR desiderato.

• Estensione. Usa una stringa con valori xmin, xmax, ymin e ymax separati da virgole (,).

Parametri booleani, di file, di stringa e numerici non hanno bisogno di ulteriori spiegazioni.

I parametri di input come stringhe, booleani o valori numerici hanno valori predefiniti. Il valore predefinito viene utilizzato se la voce corrispondente del parametro è mancante.

Per i dati di output, digitare il percorso del file da utilizzare per salvarlo, proprio come si fa dal pannello degli strumenti. Se non viene specificato l’oggetto di output, il risultato viene salvato in un file temporaneo (o omesso se si tratta di un output opzionale). L’estensione del file determina il formato del file. Se si inserisce un’estensione di file non supportata dall’algoritmo, verrà utilizzato il formato di file predefinito per quel tipo di output, e la sua estensione corrispondente verrà aggiunta al percorso indicato.

A differenza di quando un algoritmo viene eseguito dagli strumenti di Processing, gli output non vengono aggiunti alla mappa se si esegue lo stesso algoritmo dalla console Python usando run(), ma runAndLoadResults() lo farà.

Il metodo run() restituisce un dizionario con uno o più nomi in uscita (quelli mostrati nella descrizione dell’algoritmo) come chiavi e i percorsi dei file di tali nomi come valori:

```python
>>> myresult = processing.run("native:buffer", {'INPUT': '/data/lines.shp',
'DISTANCE': 100.0,
'SEGMENTS': 10,
'DISSOLVE': True,
'END_CAP_STYLE': 0,
'JOIN_STYLE': 0,
'MITER_LIMIT': 10,
'OUTPUT': '/data/buffers.shp'}
```

Puoi caricare l’output delle funzioni passando i percorsi dei file corrispondenti al metodo load(). Oppure puoi usare runAndLoadResults() invece di run() per caricarli immediatamente.

Se vuoi aprire un dialogo su un algoritmo dalla console puoi usare il metodo createAlgorithmDialog. L’unico parametro obbligatorio è il nome dell’algoritmo, ma puoi anche definire il dizionario dei parametri in modo che il dialogo venga riempito automaticamente:

```python
>>> my_dialog = processing.createAlgorithmDialog("native:buffer", {
'INPUT': '/data/lines.shp',
'DISTANCE': 100.0,
'SEGMENTS': 10,
'DISSOLVE': True,
'END_CAP_STYLE': 0,
'JOIN_STYLE': 0,
'MITER_LIMIT': 10,
'OUTPUT': '/data/buffers.shp'})
```

Il metodo execAlgorithmDialog apre immediatamente la finestra di dialogo:

```python
>>> my_dialog.show()
```

Il metodo execAlgorithmDialog apre immediatamente la finestra di dialogo:
23.7.2 Creare script ed eseguirli da Strumenti

Puoi creare i tuoi algoritmi scrivendo codice Python. Gli script di processing hanno una QgsProcessingAlgorithm, quindi devi aggiungere alcune linee di codice extra per implementare le funzioni obbligatorie. Puoi trovare Create new script (scheda pulita) e Create New Script from Template (template che include il codice per le funzioni obbligatorie di QgsProcessingAlgorithm) sotto il menù a discesa Scripts in cima alla finestra degli strumenti di Processing. Si aprirà l'Editor di script di Processing, ed è lì che dovresti digitare il tuo codice. Salvando lo script da lì nella cartella scripts (la cartella predefinita quando apri la finestra di dialogo di salvataggio del file) con un'estensione .py dovrebbe creare l'algoritmo corrispondente.

Il nome dell'algoritmo (quello che vedrai nella casella degli strumenti) è definito all'interno del codice.

Diamo un'occhiata al seguente codice, che definisce un algoritmo di Processing che esegue un'operazione di buffer con una distanza di buffer definita dall'utente su un layer vettoriale che è specificato dall'utente, dopo aver prima smussato il layer.

```python
from qgis.core import (QgsProcessingAlgorithm,
                       QgsProcessingParameterNumber,
                       QgsProcessingParameterFeatureSource,
                       QgsProcessingParameterFeatureSink)

from qgis import processing

class algTest(QgsProcessingAlgorithm):
    INPUT_BUFFERDIST = 'BUFFERDIST'
    OUTPUT_BUFFER = 'OUTPUT_BUFFER'
    INPUT_VECTOR = 'INPUT_VECTOR'

    def __init__(self):
        super().__init__()

    def name(self):
        return "algTest"

    def displayName(self):
        return "algTest script"

    def createInstance(self):
        return type(self)()

    def initAlgorithm(self, config=None):
        self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT VECTOR, "Input vector"))
        self.addParameter(QgsProcessingParameterNumber(self.INPUT_BUFFERDIST, "Buffer distance",
                                                        QgsProcessingParameterNumber.Double,
                                                        100.0))
        self.addParameter(QgsProcessingParameterFeatureSink(self.OUTPUT_BUFFER, "Output buffer"))

    def processAlgorithm(self, parameters, context, feedback):
        #DO SOMETHING
        algresult = processing.run("native:smoothgeometry",
                                   {'DISSOLVE': True,
                                    'END_CAP_STYLE': 0,
                                    'JOIN_STYLE': 0,
                                    'MITER_LIMIT': 10,
                                    'OUTPUT': '/data/buffers.shp'})
```

(continua alla pagina successiva)
Dopo aver fatto le importazioni necessarie, vengono specificate le seguenti funzioni `QgsProcessingAlgorithm`:

- **name()**: L’id dell’algoritmo (minuscolo).
- **displayName()**: Un nome interpretabile per l’algoritmo.
- **createInstance()**: Crea una nuova istanza nella classe algoritmo.
- **initAlgorithm()**: Configura la parameterDefinitions e outputDefinitions.

Qui descrivi i parametri e l’output dell’algoritmo. In questo caso, una geometria per l’input, una geometria per il risultato e un numero per la distanza del buffer.

- **processAlgorithm()**: Esegue.

Qui eseguiamo prima l’algoritmo `smoothgeometry` per smussare la geometria, e poi eseguiamo l’algoritmo `buffer` sull’output smussato. Per poter eseguire algoritmi dall’interno di un altro algoritmo dobbiamo impostare il parametro `is_child_algorithm=True`. Puoi vedere come i parametri di input e output sono usati come parametri per gli algoritmi `smoothgeometry` e `buffer`.

Ci sono diversi tipi di parametri disponibili per l’input e l’output. Di seguito c’è una lista in ordine alfabetico:

- `QgsProcessingParameterAggregate`
- `QgsProcessingParameterAuthConfig`
- `QgsProcessingParameterBand`
- `QgsProcessingParameterBoolean`
- `QgsProcessingParameterColor`
- `QgsProcessingParameterCoordinateOperation`
- `QgsProcessingParameterCrs`
- `QgsProcessingParameterDatabaseSchema`
- `QgsProcessingParameterDatabaseTable`
- `QgsProcessingParameterDateTime`
- `QgsProcessingParameterDistance`
- `QgsProcessingParameterEnum`
- `QgsProcessingParameterExpression`
Il primo parametro è il nome del parametro e il secondo è la descrizione del parametro (per l’interfaccia utente). Il resto dei parametri sono specifici del tipo di parametro.

L’input può essere trasformato in classi QGIS usando le funzioni `parameterAs` di `QgsProcessingAlgorithm`. Per esempio per ottenere il numero fornito per la distanza del buffer come una doppia:

```python
self.parameterAsDouble(parameters, self.INPUT_BUFFERDIST, context))
```

La funzione `processAlgorithm` dovrebbe restituire un dizionario contenente valori per ogni output definito dall’algoritmo. Questo permette di accedere a questi output da altri algoritmi, compresi altri algoritmi contenuti nello stesso modello.

Gli algoritmi che si comportano bene dovrebbero definire e restituire tanti output quanti hanno importanza. Gli output non relativi alle funzionalità, come numeri e stringhe, sono molto utili quando si esegue l’algoritmo come parte di un modello più grande, poiché questi valori possono essere utilizzati come parametri di input per gli algoritmi successivi all’interno del modello. Si consideri l’aggiunta di output numerici per cose come il numero di elementi processati, il numero di elementi non validi incontrati, il numero di elementi in uscita, ecc. Più output restituite, più utile diventa il vostro algoritmo!
Feedback

L’oggetto `feedback` passato a `processAlgorithm()` dovrebbe essere usato per il feedback/interazione dell’utente. Puoi usare la funzione `setProgress()` dell’oggetto `feedback` per aggiornare la barra di avanzamento (da 0 a 100) per informare l’utente sul avanzamento dell’algoritmo. Questo è molto utile se il tuo algoritmo richiede molto tempo per essere completato.

L’oggetto `feedback` fornisce un metodo `isCanceled()` che dovrebbe essere monitorato per consentire la cancellazione dell’algoritmo da parte dell’utente. Il metodo `pushInfo()` di `feedback` può essere usato per inviare informazioni all’utente, e `reportError()` è utile per inviare errori non fatali agli utenti.

Gli algoritmi dovrebbero evitare di usare altre forme per fornire feedback agli utenti, come istruzioni di stampa o di notifica a `QgsMessageLog`, e dovrebbero invece usare sempre l’oggetto `feedback`. Questo permette un log dettagliato per l’algoritmo, ed è anche thread-safe (il che è importante, dato che gli algoritmi sono tipicamente eseguiti in un thread in background).

Gestire gli errori

Se il tuo algoritmo incontra un errore che ne impedisce l’esecuzione, come valori di input non validi o qualche altra condizione da cui non può o non dovrebbe recuperare, allora dovresti generare una `QgsProcessingException`. Ad esempio:

```python
if feature['value'] < 20:
    raise QgsProcessingException('Invalid input value \{\}, must be >= 20'.
    .format(feature['value']))
```

Cerca di evitare di generare `QgsProcessingException` per errori non fatali (ad esempio quando una feature ha una geometria nulla), e invece segnala semplicemente questi errori tramite `feedback.reportError()` e salta lo stesso. Questo aiuta a rendere il tuo algoritmo «model-friendly», poiché evita di interrompere l’esecuzione di un intero algoritmo quando si incontra un errore non fatale.

Documentare gli script

Come nel caso dei modelli, puoi creare una documentazione aggiuntiva per i tuoi script, per spiegare cosa fanno e come usarli.

`QgsProcessingAlgorithm` fornisce le funzioni per questo scopo `helpString()`, `shortHelpString()` e `helpUrl()`. Specifica / sovrascrive queste funzioni per fornire più aiuto all’utente.

`shortDescription()` è usato quando il puntatore del mouse passa sopra l’algoritmo nella casella degli strumenti.

23.7.3 Script agganciati pre e post esecuzione

Gli script possono anche essere usati come controlli pre- e post-esecuzione che vengono eseguiti rispettivamente prima e dopo l’esecuzione di un algoritmo. Questo può essere usato per automatizzare i processi che dovrebbero essere eseguiti ogni volta che un algoritmo viene eseguito.

La sintassi è identica alla sintassi spiegata sopra, ma hai a disposizione anche una variabile globale chiamata `alg` che rappresenta l’algoritmo che è apena stato (o che sta per essere) eseguito.

Nel gruppo `General` della finestra di dialogo delle opzioni di processing, troverai due voci chiamate `Pre-execution script` e `Post-execution script` dove possono essere inseriti i nomi dei file degli script da eseguire caso per caso.
23.8 Processing dalla riga di comando

QGIS è dotato di uno strumento chiamato **QGIS Processing Executor** che permette di eseguire algoritmi e modelli di Processing (integrati o forniti da plugin) direttamente dalla linea di comando senza avviare QGIS Desktop stesso.

Dallo strumento a riga di comando, esegui `qgis_process` e dovresti ottenere:

<table>
<thead>
<tr>
<th>Usage: C:\OSSGeo4W\apps\qgis-ltr\bin\qgis_process.exe [--json] [command] [algorithm..--id or path to model file] [parameters]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options:</td>
</tr>
<tr>
<td><code>--json</code></td>
</tr>
<tr>
<td>Available commands:</td>
</tr>
<tr>
<td><code>plugins</code></td>
</tr>
<tr>
<td><code>plugins enable</code></td>
</tr>
<tr>
<td><code>plugins disable</code></td>
</tr>
<tr>
<td><code>list</code></td>
</tr>
<tr>
<td><code>help</code></td>
</tr>
<tr>
<td><code>run</code></td>
</tr>
<tr>
<td><code>--syntax</code></td>
</tr>
</tbody>
</table>

Nota: Solo i plugin installati che indicano `hasProcessingProvider=yes` nel loro file `metadata.txt` sono riconosciuti e possono essere attivati o caricati dallo strumento `qgis_process`.

Il comando `list` può essere usato per ottenere una lista di tutti i fornitori e algoritmi disponibili.

```bash
qgis_process list
```

Il comando `help` può essere usato per ottenere ulteriori informazioni sui comandi o sugli algoritmi.

```bash
qgis_process help qgis:regularpoints
```

Il comando `run` può essere usato per eseguire un algoritmo o un modello. Specifica il nome dell'algoritmo o il percorso di un modello come primo parametro.

```bash
qgis_process run qgis:buffer -- INPUT=source.shp DISTANCE=2 OUTPUT=buffered.shp
```

Quando un parametro accetta una lista di valori, imposta la stessa variabile più volte.

```bash
qgis_process run native:mergevectorlayers -- LAYERS=input1.shp LAYERS=input2.shp OUTPUT=merged.shp
```

Durante l'esecuzione di un algoritmo viene mostrata una barra di riscontro testuale, e l'operazione può essere annullata tramite CTRL+C. Il comando `run` supporta anche altri parametri.
• --json formatterà l’output stdout in modo strutturato JSON.
• --ellipsoid imposterà l’ellissoide a quello specificato.
• --distance_units userà le unità di distanza specificate.
• --area_units utilizzerà le unità di superficie specificate.
• --project_path caricherà il progetto specificato per eseguire l’algoritmo.

23.9 Scrivere nuovi algoritmi di Processing tramite script Python

Ci sono due opzioni per scrivere algoritmi di Processing usando Python.

• Extending QgsProcessingAlgorithm
• Using the @alg decorator

All’interno di QGIS, puoi usare Create new script nel menu Script in cima a Strumenti di Processing per aprire il Processing Script Editor dove puoi scrivere il tuo codice. Per semplificare il compito, puoi iniziare con un modello di script usando Crea Nuovo Script da Modello... dallo stesso menu. Questo apre un modello che estrae QgsProcessingAlgorithm.

Se salvi lo script nella cartella scripts (la posizione predefinita) con un’estensione .py, l’algoritmo diventerà disponibile in Strumenti di Processing.

23.9.1 Per estensione di QgsProcessingAlgorithm

Il seguente codice

1. prende un layer vettoriale come input
2. conta il numero di elementi
3. esegue un’operazione di buffer
4. genera un layer raster dal risultato dell’operazione di buffer
5. restituisce il buffer layer, il layer raster e il numero di elementi

```python
from qgis.PyQt.QtCore import QCoreApplication
from qgis.core import (QgsProcessing,
QgsProcessingAlgorithm,
QgsProcessingException,
QgsProcessingOutputNumber,
QgsProcessingParameterDistance,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterVectorDestination,
QgsProcessingParameterRasterDestination)

from qgis import processing

class ExampleProcessingAlgorithm(QgsProcessingAlgorithm):
    """
    This is an example algorithm that takes a vector layer,
    creates some new layers and returns some results.
    """

def tr(self, string):
    """
    Returns a translatable string with the self.tr() function.
    """
    return QCoreApplication.translate('Processing', string)
```

(continues on next page)
def createInstance(self):
 # Must return a new copy of your algorithm.
 return ExampleProcessingAlgorithm()

def name(self):
 """
 Returns the unique algorithm name.
 """
 return 'bufferrasterextend'

def displayName(self):
 """
 Returns the translated algorithm name.
 """
 return self.tr('Buffer and export to raster (extend)')

def group(self):
 """
 Returns the name of the group this algorithm belongs to.
 """
 return self.tr('Example scripts')

def groupId(self):
 """
 Returns the unique ID of the group this algorithm belongs to.
 """
 return 'examplescripts'

def shortHelpString(self):
 """
 Returns a localised short help string for the algorithm.
 """
 return self.tr('Example algorithm short description')

def initAlgorithm(self, config=None):
 """
 Here we define the inputs and outputs of the algorithm.
 """
 # 'INPUT' is the recommended name for the main input
 # parameter.
 self.addParameter(
 QgsProcessingParameterFeatureSource(
 'INPUT',
 self.tr('Input vector layer'),
 types=[QgsProcessing.TypeVectorAnyGeometry]
)
)

 self.addParameter(
 QgsProcessingParameterVectorDestination(
 'BUFFER_OUTPUT',
 self.tr('Buffer output'),
)
)

 # 'OUTPUT' is the recommended name for the main output
 # parameter.
 self.addParameter(
 QgsProcessingParameterRasterDestination(
 'OUTPUT',
 self.tr('Raster output')
)
)
def processAlgorithm(self, parameters, context, feedback):
 """
 Here is where the processing itself takes place.
 """
 # First, we get the count of features from the INPUT layer.
 # This layer is defined as a QgsProcessingParameterFeatureSource
 # parameter, so it is retrieved by calling
 # self.parameterAsSource.
 input_featuresource = self.parameterAsSource(parameters,
 'INPUT',
 context)
 numfeatures = input_featuresource.featureCount()

 # Retrieve the buffer distance and raster cell size numeric
 # values. Since these are numeric values, they are retrieved
 # using self.parameterAsDouble.
 bufferdist = self.parameterAsDouble(parameters, 'BUFFERDIST',
 context)
 rastercellsize = self.parameterAsDouble(parameters, 'CELLSIZE',
 context)

 if feedback.isCanceled():
 return {}
 buffer_result = processing.run(
 'native:buffer',
 {
 # Here we pass on the original parameter values of INPUT
 # and BUFFER_OUTPUT to the buffer algorithm.
 'INPUT': parameters['INPUT'],
 'OUTPUT': parameters['BUFFER_OUTPUT'],
 'DISTANCE': bufferdist,
 'SEGMENTS': 10,
 'DISSOLVE': True,
 'END_CAP_STYLE': 0,
 'JOIN_STYLE': 0,
 'MITER_LIMIT': 10
 })
Because the buffer algorithm is being run as a step in
another larger algorithm, the is_child_algorithm option
should be set to True
is_child_algorithm=True,
#
It's important to pass on the context and feedback objects to
child algorithms, so that they can properly give feedback to
users and handle cancelation requests.
context=context,
feedback=feedback)

Check for cancelation
if feedback.isCanceled():
 return {}

Run the separate rasterization algorithm using the buffer result
as an input.
rasterized_result = processing.run(
 'qgis:rasterize',
 {
 # Here we pass the 'OUTPUT' value from the buffer's result
data dictionary off to the rasterize child algorithm.
 'LAYER': buffer_result['OUTPUT'],
 'EXTENT': buffer_result['OUTPUT'],
 'MAP_UNITS_PER_PIXEL': rastercellsize,
 # Use the original parameter value.
 'OUTPUT': parameters['OUTPUT']
 },
 is_child_algorithm=True,
 context=context,
 feedback=feedback)

if feedback.isCanceled():
 return {}

Return the results
return {
 'OUTPUT': rasterized_result['OUTPUT'],
 'BUFFER_OUTPUT': buffer_result['OUTPUT'],
 'NUMBEROFFEATURES': numfeatures}

Funzioni standard algoritmo di Processing:

- **createInstance (obbligatorio)** Deve restituire una nuova copia del tuo algoritmo. Se cambi il nome della classe, assicurati di aggiornare qui anche il valore restituito per farlo corrispondere!

- **name (obbligatorio)** Restituisce il nome univoco dell’algoritmo, usato per identificare l’algoritmo.

- **displayName (obbligatorio)** Restituisce il nome tradotto dell’algoritmo.

- **group** Restituisce il nome del gruppo a cui appartiene questo algoritmo.

- **groupId** Restituisce l’ID univoco del gruppo a cui questo algoritmo appartiene.

- **shortHelpString** Restituisce una breve stringa di aiuto per l’algoritmo localizzata.

- **initAlgorithm (obbligatorio)**Qui definiamo gli ingressi e le uscite dell’algoritmo.

 INPUT e OUTPUT sono nomi raccomandati per i parametri in ingresso e in uscita principali, rispettivamente.

 Se un parametro dipende da un altro parametro, parentParameterName è usato per specificare questa relazione (potrebbe essere il campo/banda di un layer o le unità di distanza di un layer).

- **processAlgorithm (obbligatorio)** Qui è dove avviene l’elaborazione.
I parametri sono richiamati usando funzioni speciali, per esempio `parameterAsSource` e `parameterAsDouble`.

`processing.run` può essere usato per eseguire altri algoritmi di elaborazione da un algoritmo di processing. Il primo parametro è il nome dell'algoritmo, il secondo è un dizionario dei parametri dell'algoritmo. `is_child_algorithm` è normalmente impostato a `True` quando si esegue un algoritmo da un altro algoritmo. `context` e `feedback` informano l'algoritmo circa l'ambiente in cui eseguire e il canale per comunicare con l'utente (intercettare la richiesta di cancellazione, riportare i progressi, fornire un feedback testuale). Quando si usano i parametri dell'algoritmo (padre) come parametri di algoritmi «figli», si dovrebbero usare i valori originali dei parametri (ad esempio, `parameters['OUTPUT']`).

È una buona pratica verificare l'oggetto `feedback` per cancellare il più possibile! Questo permette una cancellazione rapida, invece di costringere gli utenti ad aspettare che avvenga un processing indesiderato.

L'algoritmo dovrebbe restituire valori per tutti i parametri in uscita che ha definito come dizionario. In questo caso, sono il buffer e il layer risultato rasterizzati, e il conteggio degli elementi processati. Le chiavi del dizionario devono corrispondere ai nomi originali dei parametri/output.

23.9.2 Il decoratore `@alg`

Usando il decoratore `@alg`, puoi creare i tuoi algoritmi scrivendo il codice Python e aggiungendo qualche riga in più per fornire informazioni aggiuntive necessarie a renderlo un algoritmo di Processing corretto. Questo semplifica la creazione di algoritmi e la specificazione di input e output.

Una limitazione importante con l’approccio del decoratore è che gli algoritmi creati in questo modo saranno sempre aggiunti al provider Processing Scripts di un utente – non è possibile aggiungere questi algoritmi ad un provider personalizzato, ad esempio per l’uso nei plugin.

Il seguente codice usa il decorativo `@alg` per

1. usare un layer vettoriale come input
2. contare il numero di elementi
3. fare un’operazione di buffer
4. creare un layer raster dal risultato dell’operazione di buffer
5. restituisce il buffer layer, il layer raster e il numero di elementi

```python
from qgis import processing
from qgis.core import QgsProject
from qgis.processing import alg

@alg(name='bufferrasteralg', label='Buffer and export to raster (alg)',
     group='examplescripts', group_label='Example scripts')
# 'INPUT' is the recommended name for the main input parameter
@alg.input(type=alg.SOURCE, name='INPUT', label='Input vector layer')
# 'OUTPUT' is the recommended name for the main output parameter
@alg.input(type=alg.RASTER_LAYER_DEST, name='OUTPUT',
           label='Raster output')
@alg.input(type=alg.VECTOR_LAYER_DEST, name='BUFFER_OUTPUT',
           label='Buffer output')
@alg.input(type=alg.DISTANCE, name='BUFFERDIST', label='BUFFER DISTANCE',
           default=1.0)
@alg.input(type=alg.DISTANCE, name='CELLSIZE', label='RASTER CELL SIZE',
           default=10.0)
@alg.output(type=alg.NUMBER, name='NUMBEROFFEATURES',
            label='Number of features processed')
def bufferrasteralg(instance, parameters, context, feedback, inputs):
    ""
```

(continues on next page)
Description of the algorithm.

"(If there is no comment here, you will get an error)"

input_featuresource = instance.parameterAsSource(parameters, 'INPUT', context)
numfeatures = input_featuresource.featureCount()
rastercellsize = instance.parameterAsDouble(parameters, 'CELLSIZE', context)

if feedback.isCanceled():
 return {}

buffer_result = processing.run('native:buffer',
 {'INPUT': parameters['INPUT'],
 'OUTPUT': parameters['BUFFER_OUTPUT'],
 'DISTANCE': bufferdist,
 'SEGMENTS': 10,
 'DISSOLVE': True,
 'END_CAP_STYLE': 0,
 'JOIN_STYLE': 0,
 'MITER_LIMIT': 10,
 },
 is_child_algorithm=True, context=context, feedback=feedback)

if feedback.isCanceled():
 return {}

rasterized_result = processing.run('qgis:rasterize',
 {'LAYER': buffer_result['OUTPUT'],
 'EXTENT': buffer_result['OUTPUT'],
 'MAP_UNITS_PER_PIXEL': rastercellsize,
 'OUTPUT': parameters['OUTPUT']
 },
 is_child_algorithm=True, context=context, feedback=feedback)

if feedback.isCanceled():
 return {}

return {'OUTPUT': rasterized_result['OUTPUT'],
 'BUFFER_OUTPUT': buffer_result['OUTPUT'],
 'NUMBEROFFEATURES': numfeatures}
23.9.3 Tipi di input e output per algoritmi di processing

Ecco la lista dei tipi degli input e output supportati in Processing con le loro corrispondenti costanti del decoratore `alg` (`algfactory.py` contiene la lista completa delle costanti `alg`). Ordinati in base al nome della classe.

Tipi in ingresso

<table>
<thead>
<tr>
<th>Classe</th>
<th>Alg costanti</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>QgsProcessingParameterAuthConfig</td>
<td><code>alg.AUTH_CFG</code></td>
<td>Permette agli utenti di scegliere tra le configurazioni di autenticazione disponibili o di creare nuove configurazioni di autenticazione.</td>
</tr>
<tr>
<td>QgsProcessingParameterBand</td>
<td><code>alg.BAND</code></td>
<td>Una banda di un layer raster</td>
</tr>
<tr>
<td>QgsProcessingParameterBoolean</td>
<td><code>alg.BOOL</code></td>
<td>Un valore booleano</td>
</tr>
<tr>
<td>QgsProcessingParameterColor</td>
<td><code>alg.COLOR</code></td>
<td>Un colore</td>
</tr>
<tr>
<td>QgsProcessingParameterCoordinateOperation</td>
<td><code>alg.COORDINATE_OPERATION</code></td>
<td>Un'operazione sulle coordinate (per le trasformazioni SR)</td>
</tr>
<tr>
<td>QgsProcessingParameterCrs</td>
<td><code>alg.CRS</code></td>
<td>Un sistema di riferimento delle coordinate</td>
</tr>
<tr>
<td>QgsProcessingParameterDatabaseSchema</td>
<td><code>alg.DATABASE_SCHEMA</code></td>
<td>Uno schema database</td>
</tr>
<tr>
<td>QgsProcessingParameterDatabaseTable</td>
<td><code>alg.DATABASE_TABLE</code></td>
<td>Una tabella database</td>
</tr>
<tr>
<td>QgsProcessingParameterDateTime</td>
<td><code>alg.DATETIME</code></td>
<td>Un datetime (o una data o un'ora)</td>
</tr>
<tr>
<td>QgsProcessingParameterDistance</td>
<td><code>alg.DISTANCE</code></td>
<td>Un doppio parametro numerico per i valori di distanza</td>
</tr>
<tr>
<td>QgsProcessingParameterEnum</td>
<td><code>alg.ENUM</code></td>
<td>Una numerazione, che permette la selezione da un insieme di valori predefiniti</td>
</tr>
<tr>
<td>QgsProcessingParameterExpression</td>
<td><code>alg.EXPRESSION</code></td>
<td>Una espressione</td>
</tr>
<tr>
<td>QgsProcessingParameterExtent</td>
<td><code>alg.EXTENT</code></td>
<td>Un'estensione spaziale definita da xmin, xmax, ymin, ymax</td>
</tr>
<tr>
<td>QgsProcessingParameterField</td>
<td><code>alg.FIELD</code></td>
<td>Un campo nella tabella degli attributi di un layer vettoriale</td>
</tr>
<tr>
<td>QgsProcessingParameterFile</td>
<td><code>alg.FILE</code></td>
<td>Un nome di un file esistente</td>
</tr>
<tr>
<td>QgsProcessingParameterFileDestination</td>
<td><code>alg.FILE_DEST</code></td>
<td>Un nome per un file in uscita appena creato</td>
</tr>
<tr>
<td>QgsProcessingParameterFolderDestination</td>
<td><code>alg.FOLDER_DEST</code></td>
<td>Una cartella (cartella di destinazione)</td>
</tr>
<tr>
<td>QgsProcessingParameterNumber</td>
<td><code>alg.INT</code></td>
<td>Un intero</td>
</tr>
<tr>
<td>QgsProcessingParameterLayout</td>
<td><code>alg.LAYOUT</code></td>
<td>Un layout</td>
</tr>
<tr>
<td>QgsProcessingParameterLayoutItem</td>
<td><code>alg.LAYOUT_ITEM</code></td>
<td>Un oggetto di layout</td>
</tr>
<tr>
<td>QgsProcessingParameterMapLayer</td>
<td><code>alg.MAPLAYER</code></td>
<td>Un layer mappa</td>
</tr>
<tr>
<td>QgsProcessingParameterMapTheme</td>
<td><code>alg.MAP_THEME</code></td>
<td>Un tema di mappa del progetto</td>
</tr>
</tbody>
</table>

Continued on next page
Tabella 23.1 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Classe</th>
<th>Alg costanti</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>QgsProcessingParameterMatrix</td>
<td>alg.MATRIX</td>
<td>Una matrice</td>
</tr>
<tr>
<td>QgsProcessingParameterMeshLayer</td>
<td>alg.MESH_LAYER</td>
<td>Un layer mesh</td>
</tr>
<tr>
<td>QgsProcessingParameterMultipleLayers</td>
<td>alg.MULTILAYER</td>
<td>Un insieme di layer</td>
</tr>
<tr>
<td>QgsProcessingParameterNumber</td>
<td>alg.NUMBER</td>
<td>Un valore numerico</td>
</tr>
<tr>
<td>QgsProcessingParameterPoint</td>
<td>alg.POINT</td>
<td>Un punto</td>
</tr>
<tr>
<td>QgsProcessingParameterProviderConnection</td>
<td>alg.PROVIDER_CONNECTION</td>
<td>Una connessione disponibile per un fornitore di database</td>
</tr>
<tr>
<td>QgsProcessingParameterRange</td>
<td>alg.RANGE</td>
<td>Un intervallo di numeri</td>
</tr>
<tr>
<td>QgsProcessingParameterRasterLayer</td>
<td>alg.RASTER_LAYER</td>
<td>Un layer Raster</td>
</tr>
<tr>
<td>QgsProcessingParameterRasterDestination</td>
<td>alg.RASTER_LAYER_DEST</td>
<td>Un layer Raster</td>
</tr>
<tr>
<td>QgsProcessingParameterScale</td>
<td>alg.SCALE</td>
<td>Una scala per le mappe</td>
</tr>
<tr>
<td>QgsProcessingParameterFeatureSink</td>
<td>alg.SINK</td>
<td>Un elemento bacino</td>
</tr>
<tr>
<td>QgsProcessingParameterFeatureSource</td>
<td>alg.SOURCE</td>
<td>Un’origine delle funzionalità</td>
</tr>
<tr>
<td>QgsProcessingParameterString</td>
<td>alg.STRING</td>
<td>Una stringa di testo</td>
</tr>
<tr>
<td>QgsProcessingParameterVectorLayer</td>
<td>alg.VECTOR_LAYER</td>
<td>Un vettore</td>
</tr>
<tr>
<td>QgsProcessingParameterVectorDestination</td>
<td>alg.VECTOR_LAYER_DEST</td>
<td>Un vettore</td>
</tr>
</tbody>
</table>

Tipologie di output

<table>
<thead>
<tr>
<th>Classe</th>
<th>Alg costanti</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>QgsProcessingOutputBoolean</td>
<td>alg.BOOL</td>
<td>Un valore booleano</td>
</tr>
<tr>
<td>QgsProcessingOutputNumber</td>
<td>alg.DISTANCE</td>
<td>Un doppio parametro numerico per i valori di distanza</td>
</tr>
<tr>
<td>QgsProcessingOutputFile</td>
<td>alg.FILE</td>
<td>Un nome di un file esistente</td>
</tr>
<tr>
<td>QgsProcessingOutputFolder</td>
<td>alg.FOLDER</td>
<td>Una cartella</td>
</tr>
<tr>
<td>QgsProcessingOutputHtml</td>
<td>alg.HTML</td>
<td>HTML</td>
</tr>
<tr>
<td>QgsProcessingOutputNumber</td>
<td>alg.INT</td>
<td>Un intero</td>
</tr>
<tr>
<td>QgsProcessingOutputLayerDefinition</td>
<td>alg.LAYERDEF</td>
<td>Una definizione layer</td>
</tr>
<tr>
<td>QgsProcessingOutputMapLayer</td>
<td>alg.MAPLAYER</td>
<td>Un layer mappa</td>
</tr>
<tr>
<td>QgsProcessingOutputMultipleLayers</td>
<td>alg.MULTILAYER</td>
<td>Un insieme di layer</td>
</tr>
<tr>
<td>QgsProcessingOutputNumber</td>
<td>alg.NUMBER</td>
<td>Un valore numerico</td>
</tr>
<tr>
<td>QgsProcessingOutputRasterLayer</td>
<td>alg.RASTER_LAYER</td>
<td>Un layer Raster</td>
</tr>
<tr>
<td>QgsProcessingOutputString</td>
<td>alg.STRING</td>
<td>Una stringa di testo</td>
</tr>
<tr>
<td>QgsProcessingOutputVectorLayer</td>
<td>alg.VECTOR_LAYER</td>
<td>Un vettore</td>
</tr>
</tbody>
</table>

23.9.4 Manipolazione del risultato dell’algoritmo

Quando si indica un risultato che rappresenta un layer (raster o vettoriale), l’algoritmo cercherà di aggiungerlo a QGIS una volta finito.

- Output layer Raster: QgsProcessingParameterRasterDestination / alg.RASTER_LAYER_DEST.
- Output layer Vettoriale: QgsProcessingParameterVectorDestination / alg.VECTOR_LAYER_DEST.

Così, anche se il metodo processing.run() non aggiunge i layer che crea al progetto corrente dell’utente, i due layer in uscita (buffer e raster buffer) saranno caricati, poiché sono salvati nelle destinazioni inserite dall’utente (o in destinazioni temporanee se l’utente non specifica destinazioni).

Se un layer viene creato come risultato di un algoritmo, dovrebbe essere dichiarato come tale. Altrimenti, non sarà possibile utilizzare correttamente l’algoritmo nel modellatore, poiché ciò che è dichiarato non corrisponderà a ciò che l’algoritmo crea realmente.
Puoi restituire stringhe, numeri e altro specificandoli nel dizionario dei risultati (come dimostrato per «NUMBEROFFEATURES»), ma dovrebbero sempre essere definiti esplicitamente come risultati del tuo algoritmo. È consigliabile che gli algoritmi restituiscano quanti più valori utili possibile, poiché questi possono essere preziosi per l'uso in algoritmi successivi, quando l'algoritmo viene usato come parte di un modello.

23.9.5 Comunicare con l’utente

Se il tuo algoritmo richiede molto tempo per essere processato, è una buona idea informare l’utente sul progresso. Puoi usare `feedback(QgsProcessingFeedback)` per questo.

Il testo di avanzamento e la barra di avanzamento possono essere aggiornati usando due metodi: `setProgressText(text)` e `setProgress(percent)`.

Puoi ottenere più informazioni usando `pushCommandInfo(text)`, `pushDebugInfo(text)`, `pushInfo(text)` e `reportError(text)`.

Se il tuo script ha un problema, il modo corretto di gestirlo è generare una `QgsProcessingException`. Puoi passare un messaggio come argomento al costruttore dell’eccezione. L’elaborazione si occuperà di gestirla e di comunicare con l’utente, a seconda di dove viene eseguito l’algoritmo (toolbox, modeler, console Python, …)

23.9.6 Documentare gli script

Puoi documentare i tuoi script sovrapponendo i metodi `helpString()` e `helpUrl()` di `QgsProcessingAlgorithm`.

23.9.7 Flag

Puoi sovrascrivere il metodo `flags()` di `QgsProcessingAlgorithm` per dire a QGIS di più sul tuo algoritmo. Puoi per esempio dire a QGIS che lo script deve essere nascosto al modellatore, che può essere annullato, che non è thread sicuro, e altro.

Suggerimento: Per impostazione predefinita, Processing esegue gli algoritmi in un thread separato in modo da mantenere QGIS reattivo mentre l’attività di elaborazione viene eseguita. Se il tuo algoritmo si blocca spesso, probabilmente stai usando chiamate API che non sono sicure da eseguire in un thread in background. Prova a ripristinare il flag `QgsProcessingAlgorithm.FlagNoThreading` dal metodo `flags()` del tuo algoritmo per forzare Processing ad eseguire il tuo algoritmo nel thread principale.

23.9.8 Le migliori tecniche per scrivere algoritmi script

Ecco un rapido riassunto delle cose da tenere in considerazione quando crei i tuoi algoritmi di script e, soprattutto, se vuoi condividerli con altri utenti di QGIS. Seguire queste semplici regole assicurerà la coerenza tra i diversi elementi di Processing come la casella degli strumenti, il modellatore o l’interfaccia di elaborazione batch.

- Non caricare i layer risultanti. Lascia che Processing gestisca i tuoi risultati e carica i tuoi layer se necessario.
- Dichiara sempre gli output che il tuo algoritmo crea.
- Non mostrare finestre di messaggio o usare alcun elemento dell’interfaccia grafica dallo script. Se vuoi comunicare con l’utente, usa i metodi dell’oggetto `feedback(QgsProcessingFeedback)` o lancia una `QgsProcessingException`.

Ci sono già molti algoritmi di processing disponibili in QGIS. Puoi trovare il codice su https://github.com/qgis/QGIS/blob/release-3_16/python/plugins/processing/algs/qgis.
23.10 Configurazione di applicazioni esterne

Il framework di processing può essere esteso quando si utilizzano applicazioni aggiuntive. Gli algoritmi che si basano su applicazioni esterne sono gestiti dalle rispettive sorgenti dati di algoritmi. Sorgenti dati aggiuntive possono essere trovate come plugin separati e installati usando il QGIS Plugin Manager.

Questa sezione ti mostrerà come configurare il framework Processing per includere queste applicazioni aggiuntive, e spiegherà alcune caratteristiche particolari degli algoritmi basati su di esse. Una volta configurato correttamente il sistema, sarai in grado di eseguire algoritmi esterni da qualsiasi componente come il toolbox o il modellatore grafico, proprio come fai con qualsiasi altro algoritmo.

Per default, gli algoritmi che si basano su un’applicazione esterna non inclusa in QGIS non sono abilitati. Puoi abilitarli nella finestra di dialogo delle impostazioni di Processing se sono installati sul tuo sistema.

23.10.1 Nota per gli utenti Windows

Se non sei un utente avanzato e stai usando QGIS su Windows, potresti non essere interessato a leggere il resto di questo capitolo. Assicurati di installare QGIS nel tuo sistema usando il programma di installazione stand-alone. Questo installerà automaticamente SAGA e GRASS nel tuo sistema e li configurerà in modo che possano essere eseguiti da QGIS. Tutti gli algoritmi di questi software saranno pronti per essere eseguiti senza bisogno di ulteriori configurazioni. Se si installa con l’applicazione OSGeo4W, assicurati di selezionare anche SAGA e GRASS per l’installazione.

23.10.2 Nota sui formati dei file

Quando si usa un software esterno, aprire un file in QGIS non significa che esso possa essere aperto ed elaborato in quell’altro software. Nella maggior parte dei casi, gli altri software possono leggere ciò che si è aperto in QGIS, ma in alcuni casi potrebbe non essere vero. Quando si usano database o formati di file non comuni, sia per layer raster che vettoriali, potrebbero sorgere problemi. Se ciò accade, prova ad usare formati di file ben noti che sei sicuro siano compresi da entrambi i programmi, e controlla l’output della console (nel pannello di log) per scoprire cosa sta andando storto.

Potresti per esempio avere problemi e non essere in grado di completare il tuo lavoro se chiami un algoritmo esterno con un layer raster di GRASS in ingresso. Per questo motivo, tali layer non appariranno come disponibili per gli algoritmi.

Tuttavia, non dovresti avere problemi con i layer vettoriali, poiché QGIS converte automaticamente dal formato del file originale ad uno accettato dall’applicazione esterna prima di passare il layer ad essa. Questo aggiunge un tempo di elaborazione extra, che potrebbe essere significativo per i layer di grandi dimensioni, quindi non sorprenderti se ci vuole più tempo per elaborare un layer da una connessione DB che un layer da un dataset in formato Shapefile di dimensioni simili.

Le sorgenti dati che non usano applicazioni esterne possono elaborare qualsiasi layer che tu sia in grado di aprire in QGIS, dal momento che lo aprono per l’analisi attraverso QGIS.

Tutti i formati di output raster e vettoriali prodotti da QGIS possono essere usati come layer di input. Alcuni provider non supportano certi formati, ma tutti possono esportare in formati comuni che possono poi essere trasformati automaticamente da QGIS. Come per i layer di input, se è necessaria una conversione, ciò potrebbe aumentare il tempo di elaborazione.
23.10.3 Nota sulla selezione di layer vettore

Le applicazioni esterne possono anche essere aggiornate sulle impostazioni che esistono nei layer vettoriali all’interno di QGIS. Tuttavia, questo richiede la riscrittura di tutti i layer vettoriali di input, proprio come se fossero originariamente in un formato non supportato dall’applicazione esterna. Solo quando non esiste alcuna scelta, o l’opzione *Usa solo gli elementi selezionati* non è abilitata nella configurazione generale di processing, un layer può essere passato direttamente ad un’applicazione esterna.

In altri casi, è necessario esportare solo gli elementi selezionati, il che causa tempi di esecuzione più lunghi.

23.10.4 SAGA

Gli algoritmi SAGA possono essere eseguiti da QGIS se SAGA è incluso nell’installazione di QGIS.

Se stai usando Windows, sia il programma di installazione stand-alone che quello di OSGeo4W includono SAGA.

Informazioni sulle limitazioni del sistema a reticolo SAGA

La maggior parte degli algoritmi SAGA che utilizzano diversi layer raster in ingresso richiedono che essi abbiano lo stesso sistema di reticolo. Cioè, devono coprire la stessa area geografica e avere la stessa dimensione delle celle, in modo che le loro griglie corrispondano. Quando si lanciano algoritmi SAGA da QGIS, è possibile utilizzare qualsiasi layer, indipendentemente dalla sua dimensione e dall’estensione delle celle. Quando più layer raster sono usati in ingresso per un algoritmo SAGA, QGIS li ricampiona ad un sistema di reticolo comune e poi li passa a SAGA (a meno che l'algoritmo SAGA possa operare con layer di sistemi di reticolo diversi).

La definizione di tale sistema di reticolo comune è controllata dall'utente, e troverai diversi parametri nel gruppo SAGA della finestra delle impostazioni per farlo. Ci sono due modi per impostare il sistema di reticolo di destinazione:

- **Impostazione manuale.** Definisci l’estensione impostando i valori dei seguenti parametri:
 - *Resampling min X*
 - *Resampling max X*
 - *Resampling min Y*
 - *::guilabel: Ricampionamento regione max Y*
 - *::guilabel: Ricampionamento dimensione della cella*

 Nota che QGIS ricampionerà i layer in ingresso in tale misura, anche se non si sovrappongono ad essa.

- **Impostandolo automaticamente dai layer in ingresso.** Per selezionare questa opzione, basta selezionare l’opzione *Utilizza il sistema a reticolo minimo di copertura per il ricampionamento*. Tutte le altre impostazioni verranno ignorate e verrà utilizzata l’estensione minima che copre tutti i layer in ingresso. La dimensione delle celle del layer di destinazione è il massimo di tutte le dimensioni delle celle dei layer in ingresso.

Per gli algoritmi che non usano layer raster multipli, o per quelli che non hanno bisogno di un unico sistema di reticolo in ingresso, non viene eseguito alcun ricampionamento prima di lanciare SAGA, e questi parametri non vengono utilizzati.
Limitazioni per i raster multi-banda

A differenza di QGIS, SAGA non ha supporto per i layer multibanda. Se vuoi usare un layer multibanda (come un’immagine RGB o multispettrale), devi prima dividerlo in immagini a banda singola. Per farlo, si può usare l’algoritmo “SAGA/Grid - Tools/Split RGB image” (che crea tre immagini da un’immagine RGB) o l’algoritmo “SAGA/Grid - Tools/Extract band” (per estrarre una singola banda).

Limitazioni nella dimensione delle celle

SAGA presume che i layer raster abbiano la stessa dimensione delle celle sugli assi X e Y. Se si lavora con un layer con valori diversi per la dimensione orizzontale e verticale delle celle, si potrebbero ottenere risultati inaspettati. In questo caso, un avvertimento verrà aggiunto al processing log, indicando che un layer in ingresso potrebbe non essere adatto ad essere elaborato da SAGA.

Registrazioni di controllo

Quando QGIS chiama SAGA, lo fa utilizzando la sua interfaccia a riga di comando, passando così un insieme di comandi per eseguire tutte le operazioni richieste. SAGA mostra il suo progresso scrivendo informazioni sulla console, che includono la percentuale di processing già fatta, insieme a contenuti aggiuntivi. Questo risultato viene filtrato e utilizzato per aggiornare la barra di avanzamento mentre l’algoritmo è in esecuzione.

Sia i comandi inviati da QGIS che le informazioni aggiuntive stampate da SAGA possono essere registrate insieme ad altri messaggi di log dell’elaborazione, e potresti trovarli utili per tracciare cosa sta succedendo quando QGIS esegue un algoritmo SAGA. Troverai due impostazioni, cioè Log console output e Log execution commands, per attivare questo meccanismo di log.

La maggior parte degli altri provider che usano applicazioni esterne e le chiamano attraverso la riga di comando hanno opzioni simili, quindi le troverai anche in altri posti nella lista delle impostazioni di processing.

23.10.5 Script R

Per abilitare R in Processing è necessario installare il plugin Processing R Provider e configurare R per QGIS.

La configurazione è fatta in Programmi ► R nella scheda Processing di Impostazioni ► Opzioni.

A seconda del tuo sistema operativo, potresti dover usare R folder per specificare dove si trovano i tuoi binari di R.

Nota: In Windows il file eseguibile di R è normalmente in una cartella (R-<version>) sotto C:Program FilesR`. Specifica la cartella e NON il binario!

In Linux devi solo assicurarti che la cartella R sia nella variabile d’ambiente PATH. Se R in una finestra di terminale avvia R, allora sei pronto a lavorare.

Dopo aver installato il plugin Processing R Provider, troverai alcuni script d’esempio nella Processing Toolbox:

- Scatterplot esegue una funzione R che produce un grafico di dispersione plot da due campi numerici del layer vettoriale fornito.

- test_sf esegue alcune operazioni che dipendono dal package sf e può essere usato per controllare se il package R sf è installato. Se il package non è installato, R cercherà di installarlo (e tutti i package da cui dipende) per te, usando il Package repository specificato in Programmi ► R nelle opzioni di Processing. Il default è https://cran.at.r-project.org/. L’installazione potrebbe richiedere del tempo…

- test_sp può essere usato per controllare se il package R sp è installato. Se il package non è installato, R cercherà di installarlo per te.
Se hai configurato correttamente R per QGIS, dovresti essere in grado di eseguire questi script.
Aggiungere script R dalla collezione QGIS

L’integrazione di R in QGIS è diversa da quella di SAGA in quanto non c’è un set predefinito di algoritmi che puoi eseguire (eccetto per alcuni script di esempio che vengono forniti con il plugin Processing R Provider).

Una serie di script R di esempio è disponibile nel QGIS Repository. Esegui i seguenti passi per caricarli e abilitarli usando il plugin QGIS Resource Sharing.

1. Aggiungi il plugin QGIS Resource Sharing (potresti dover abilitare Mostra anche plugin sperimentali nelle Impostazioni del Gestore Plugin)
3. Scegli la scheda Impostazioni
4. Fai clic su Ricarica tutti i Repository.
5. Scegli la scheda Tutti.
7. La collezione dovrebbe ora essere elencata nella scheda Installati
8. Chiudi il plugin
9. Apri la Processing Toolbox, e se tutto è ok, gli script di esempio saranno presenti sotto R, in vari gruppi (solo alcuni dei gruppi sono espansi nello screenshot qui sotto).
Fig. 23.34: La Processing Toolbox con alcuni script R mostrati

23.10. Configurazione di applicazioni esterne
Gli script in alto sono gli script di esempio del plugin Processing R Provider.

10. Se, per qualche motivo, gli script non sono disponibili nella Processing Toolbox, puoi provare a:

2. Vai a Providers ► R ► R scripts folder.

 • In Ubuntu, imposta il percorso a (o, meglio, includi nel percorso):
 /home/<user>/local/share/QGIS/QGIS3/profiles/default/resource_sharing/repositories/github.com/qgis/QGIS-Resources/collections/rscripts

 • In Windows, imposta il percorso a (o, meglio, includi nel percorso):
 C:\Users\<user>\AppData\Roaming\QGIS\QGIS3\profiles\default\resource_sharing\repositories\github.com\qgis\QGIS-Resources\collections\rscripts

Per modificare, fai doppio clic. Puoi quindi scegliere di incollare / digitare semplicemente il percorso, oppure puoi navigare verso la cartella usando il pulsante … e premere il pulsante Aggiungi nella finestra di dialogo che si apre. È possibile fornire qui diverse cartelle. Saranno separate da un punto e virgola («;»).

Se vuoi ottenere tutti gli script R dalla collezione online di QGIS 2, puoi selezionare QGIS R script collection (from QGIS 2) invece di QGIS R script collection. Probabilmente troverai che gli script che dipendono dall’input o dall’output di dati vettoriali non funzioneranno.

Creare script R

Puoi scrivere script e chiamare comandi R, come faresti da R. Questa sezione ti mostra la sintassi per usare i comandi R in QGIS, e come usare gli oggetti QGIS (layer, tabelle) in essi.

Per aggiungere un algoritmo che chiama una funzione R (o uno script R più complesso che hai sviluppato e che vorresti avere a disposizione da QGIS), devi creare un file script che esegua i comandi R.

I file di script R hanno l’estensione .rsx, e crearli è abbastanza facile se si ha solo una conoscenza di base della sintassi R e dello scripting R. Dovrebbero essere memorizzati nella cartella R scripts. Puoi specificare la cartella (R scripts folder) nel gruppo di impostazioni R nella finestra di dialogo delle impostazioni di Processing).
Diamo un’occhiata a un file di script molto semplice, che chiama il metodo R `spsample` per creare una griglia casuale entro i confini dei poligoni in un dato layer poligonale. Questo metodo appartiene al pacchetto `maptools`. Dato che quasi tutti gli algoritmi che potresti voler incorporare in QGIS useranno o genereranno dati spaziali, la conoscenza dei pacchetti spaziali come `maptools` e `sp/sf`, è molto utile.

```r
library(sp)
spatpoly = as(Vector_layer, "Spatial")
pts = spsample(spatpoly, Number_of_points, type="random")
spdf = SpatialPointsDataFrame(pts, as.data.frame(pts))
Output = st_as_sf(spdf)
```

Le prime righe, che iniziano con un doppio segno di commento Python (###), definiscono il nome di visualizzazione e il gruppo dello script, e dicono a QGIS i suoi input e output.

Nota: Per saperne di più su come scrivere i tuoi script R, dai un’occhiata alla sezione R Intro nel manuale di formazione e consulta la sezione [QGIS R Syntax](#).

Quando dichiari un parametro in ingresso, QGIS usa questa informazione per due cose: creare l’interfaccia utente per chiedere all’utente il valore di quel parametro, e creare una variabile R corrispondente che può essere usata come ingresso della funzione R.

Nell’esempio precedente, abbiamo dichiarato un ingresso di tipo vettore, chiamato `Vector_layer`. Durante l’esecuzione dell’algoritmo, QGIS aprirà il layer selezionato dall’utente e lo memorizzerà in una variabile chiamata `Vector_layer`. Quindi, il nome di un parametro è il nome della variabile che si usa in R per accedere al valore di quel parametro (si dovrebbe quindi evitare di usare parole R riservate come nomi di parametri).

I parametri spaziali come i layer vettoriali e raster sono letti usando i comandi `st_read()` (o `readOGR`) e `brick()` (o `readGDAL`) (non devi preoccuparti di aggiungere questi comandi al tuo file di descrizione – QGIS lo farà), e sono memorizzati come oggetti sf (o `Spatial*DataFrame`).

I campi della tabella sono memorizzati come stringhe contenenti il nome del campo selezionato.

I file vettoriali possono essere letti usando il comando `readOGR()` invece di `st_read()` specificando `#load_vector_using_rgdal`. Questo produrrà un oggetto `Spatial*DataFrame` invece di un oggetto sf.

I file raster possono essere letti usando il comando `readGDAL()` invece di `brick()` specificando `#load_raster_using_rgdal`.

Se sei un utente avanzato e non vuoi che QGIS crei l’oggetto per il layer, puoi usare `##pass_filenames` per indicare che preferisci una stringa con il nome del file. In questo caso, sta a te aprire il file prima di eseguire qualsiasi operazione sui dati che contiene.

Con le informazioni di cui sopra, è possibile capire le prime linee dello script R (la prima linea che non inizia con un carattere di commento Python).

```r
library(sp)
spatpoly = as(Vector_layer, "Spatial")
pts = spsample(polyg, numpoints, type="random")
```

La funzione `spsample` è fornita dalla libreria `sp`, quindi la prima cosa che facciamo è caricare la libreria. La variabile `Vector_layer` contiene un oggetto sf. Dato che useremo una funzione (`spsample`) della libreria `sp`, dobbiamo convertire l’oggetto sf in un oggetto `SpatialPolygonsDataFrame` usando la funzione `as`.

Poi chiamiamo la funzione `spsample` con questo oggetto e il parametro di input `numpoints` (che specifica il numero di punti da generare).
Dato che abbiamo dichiarato un output vettoriale chiamato Output, dobbiamo creare una variabile chiamata Output contenente un oggetto sf.

Lo facciamo in due passi. Prima creiamo un oggetto SpatialPolygonsDataFrame dal risultato della funzione, usando la funzione SpatialPointsDataFrame, e poi convertiamo questo oggetto in un oggetto sf usando la funzione st_as_sf` (della libreria sf).

Puoi usare qualsiasi nome tu voglia per le tue variabili intermedie. Assicurati solo che la variabile che memorizza il tuo risultato finale abbia il nome definito (in questo caso Output), e che contenga un valore adatto (un oggetto sf per l'output del layer vettoriale).

In questo caso, il risultato ottenuto dal metodo spsample ha dovuto essere convertito esplicitamente in un oggetto sf tramite un oggetto SpatialPointsDataFrame, poiché è esso stesso un oggetto di classe ppp, che non può essere restituito a QGIS.

Se il tuo algoritmo genera layer raster, il modo in cui vengono salvati dipende dal fatto che tu abbia usato o meno l'opzione ##dontuserasterpackage. Se l'hai usata, i layer vengono salvati usando il metodo writeGDAL(). Altrimenti, verrà usato il metodo writeRaster() del package raster.

Se hai usato l'opzione ##pass_filenames, gli output sono generati usando il pacchetto raster (con writeRaster()).

Se il tuo algoritmo non genera un layer, ma un risultato testuale nella console, devi indicare che vuoi che la console sia mostrata una volta che l'esecuzione è finita. Per farlo, basta iniziare le linee di comando che producono i risultati che vuoi stampare con il segno > ("maggiore di"). Solo l'output delle linee con il prefisso >> viene mostrato. Per esempio, ecco il file di descrizione di un algoritmo che esegue un test di normalità su un dato campo (colonna) degli attributi di un layer vettoriale:

```r
##layer=vector
##field=field layer
##nortest=group
library(nortest)
>lillie.test(layer[[field]])
```

L'output dell'ultima linea viene visualizzato, ma l'output della prima no (e nemmeno gli output delle altre linee di comando aggiunte automaticamente da QGIS).

Se il tuo algoritmo crea qualsiasi tipo di grafico (usando il metodo plot()), aggiungi la seguente linea (output_plots_to_html era showplots):

```r
##output_plots_to_html
```

Questo farà sì che QGIS reindirizzi tutti gli output grafici di R in un file temporaneo, che sarà aperto una volta che l'esecuzione di R è terminata.

Sia i risultati grafici che quelli della console saranno disponibili attraverso il gestore dei risultati di processing.

Per maggiori informazioni, consulta gli script R nella collezione ufficiale di QGIS (li scarichi e li installi usando il plugin QGIS Resource Sharing, come spiegato altrove). La maggior parte di essi sono piuttosto semplici e ti aiuteranno molto a capire come creare i tuoi script.

Nota: Per impostazione predefinita vengono caricate le librerie sf, rgdal e raster, quindi non è necessario aggiungere i corrispondenti comandi `library()`. Tuttavia, altre librerie di cui potresti aver bisogno devono essere caricate esplicitamente digiuntando `library(ggplot2)` (per caricare la libreria ggplot2). Se il package non è già installato sulla tua macchina, Processing cercherà di scaricarlo e installarlo. In questo modo il package diventerà disponibile anche in R Standalone. Sii consapevole che se il pacchetto deve essere scaricato, lo script potrebbe richiedere molto tempo per essere eseguito la prima volta.
23.10.6 Librerie R

Lo script R `sp_test` cerca di caricare i pacchetti R `sp` e `raster`.

Librerie R installate quando si esegue sf_test

Lo script R `sf_test` cerca di caricare sf e raster. Se questi due pacchetti non sono installati, R potrebbe provare a caricarli e installarli (e tutte le librerie da cui dipendono).

Le seguenti librerie R finiscono in `~/.local/share/QGIS/QGIS3/profiles/default/processing/rscripts` dopo che `sf_test` è stato eseguito dal Processing Toolbox su Ubuntu con la versione 2.0 del plugin Processing R Provider e una nuova installazione di R 3.4.4 (`apt` solo pacchetto `r-base-core`):

`abind`, `askpass`, `assertthat`, `backports`, `base64enc`, `BH`, `bit`, `bit64`, `blob`, `brew`, `callr`, `classInt`, `cli`, `colorspace`, `covr`, `crayon`, `crosstalk`, `curl`, `DBI`, `deldir`, `desc`, `dichromat`, `digest`, `dplyr`, `e1071`, `ellipsis`, `evaluate`, `fansi`, `farver`, `fastmap`, `gdtools`, `ggplot2`, `glue`, `goftest`, `gridExtra`, `gtable`, `highr`, `hms`, `htmltools`, `htmlwidgets`, `httpuv`, `httr`, `jsonlite`, `knitr`, `labeling`, `later`, `lazyeval`, `leafem`, `leaflet`, `leaflet.providers`, `leafpop`, `leafsync`, `lifecycle`, `lwgeom`, `magrittr`, `maps`, `mapview`, `markdown`, `memoise`, `microbenchmark`, `mime`, `munsell`, `odbc`, `openssl`, `pillar`, `pkgbuild`, `pkgconfig`, `pkgload`, `plogr`, `plyr`, `png`, `polyclip`, `praise`, `prettyunits`, `processx`, `promises`, `ps`, `purrr`, `R6`, `raster`, `RColorBrewer`, `Rcpp`, `reshape2`, `rex`, `rgeos`, `rlang`, `rmarkdown`, `RPostgres`, `RPostgreSQL`, `rprojroot`, `RSQLite`, `rstudioapi`, `satellite`, `scales`, `sf`, `shiny`, `sourcetools`, `sp`, `spatial`, `spatial.data`, `spatstat.utils`, `stars`, `stringi`, `stringr`, `svglite`, `sys`, `systemfonts`, `tensor`, `testthat`, `tibble`, `tidyselect`, `tinytex`, `units`, `utf8`, `uuid`, `vctrs`, `viris`, `virisLite`, `webshot`, `withr`, `xfun`, `XML`, `xtable`

23.10.7 GRASS

La configurazione di GRASS non è molto diversa da quella di SAGA. Per prima cosa, il percorso della cartella di GRASS deve essere definito, ma solo se stai usando Windows.

Per impostazione predefinita, il framework Processing cerca di configurare il suo connettore GRASS per usare la distribuzione GRASS fornita insieme a QGIS. Questo dovrebbe funzionare senza problemi per la maggior parte dei sistemi, ma se hai problemi, potresti dover configurare il connettore GRASS manualmente. Inoltre, se vuoi usare una diversa installazione di GRASS, puoi cambiare l'impostazione per puntare alla cartella dove è installata l'altra versione. GRASS 7 è necessario per far funzionare correttamente gli algoritmi.

Se stai usando Linux, devi solo assicurarti che GRASS sia installato correttamente, e che possa essere eseguito senza problemi da una finestra di terminale.

Gli algoritmi di GRASS utilizzano una regione per i calcoli. Questa regione può essere definita manualmente usando valori simili a quelli che si trovano nella configurazione di SAGA, oppure automaticamente, prendendo ogni volta l'estensione minima che copre tutti i layer in ingresso usati per eseguire l'algoritmo. Se quest'ultimo approccio è il comportamento che preferisci, basta selezionare l'opzione `Use min covering region` nei parametri di configurazione di GRASS.
23.10.8 LAStools

Per usare LAStools in QGIS, devi scaricare e installare LAStools sul tuo computer e installare il plugin LAStools (disponibile nel repository ufficiale) in QGIS.

Sulle piattaforme Linux, avrai bisogno di Wine per essere in grado di eseguire alcuni degli strumenti.

LAStools è attivato e configurato nelle opzioni di Processing (Impostazioni ► Opzioni, scheda Processing, Providers ► LAStools), dove è possibile specificare la posizione di LAStools (Cartella LAStools) e Wine (Cartella Wine). Su Ubuntu, la cartella predefinita di Wine è /usr/bin.

23.10.9 Applicazioni OTB

Le applicazioni OTB sono pienamente supportate all’interno del framework QGIS Processing.

OTB (Orfeo ToolBox) è una libreria di processing delle immagini per i dati di telerilevamento. Fornisce anche applicazioni che forniscono funzionalità di processing delle immagini. L’elenco delle applicazioni e la loro documentazione sono disponibili in OTB CookBook

Nota: Nota che OTB non è distribuito con QGIS e deve essere installato separatamente. I pacchetti binari per OTB possono essere trovati sulla pagina di download <https://www.orfeo-toolbox.org/download>.

Per configurare processing di QGIS per trovare la libreria OTB:

1. Aprire le impostazioni di processing: Impostazioni ► Opzioni ► Programmi (pannello sinistro)*
2. Puoi vedere OTB sotto «Programmi»:
 1. Espandi la scheda `guilabel:` OTB
 2. Spunta l’opzione Activate
 3. Imposta OTB folder. Questa è la posizione della tua installazione di OTB.
 4. Imposta OTB application folder. Questa è la posizione delle tue applicazioni OTB (<PATH_TO_OTB_INSTALLATION>/lib/otb/applications)
 5. Clicca su «ok» per salvare le impostazioni e chiudere la finestra di dialogo.

Se le impostazioni sono corrette, gli algoritmi OTB saranno disponibili nella Processing Toolbox.

Documentazione delle impostazioni OTB disponibili in QGIS Processing

- **Activate**: Questa è una casella di controllo per attivare o disattivare il provider OTB. Un’impostazione OTB non valida deselezionerà questa casella quando viene salvata.
- **OTB folder**: Questa è la cartella dove è disponibile OTB.
- **OTB application folder**: Questa è la posizione(i) delle applicazioni OTB.

 Sono ammessi più percorsi.
- **Logger level** (opzionale): Livello di log da utilizzare dalle applicazioni OTB.

 Il livello di logging controlla la quantità di dettagli visualizzati durante l’esecuzione dell’algoritmo. I valori possibili per il livello di log sono INFO, WARNING, CRITICAL, DEBUG. Questo valore è INFO per default. Questa è una configurazione utente avanzata.
- **Maximum RAM to use** (opzionale): per impostazione predefinita, le applicazioni OTB utilizzano tutta la RAM di sistema disponibile.

 Puoi tuttavia specificare a OTB di usare una quantità specifica di RAM (in MB) usando questa opzione. Un valore di 256 viene ignorato dal processing provider OTB. Questa è una configurazione utente avanzata.
• **Geoid file** (opzionale): Percorso al file geoid.

Questa opzione imposta il valore dei parametri `elev.dem.geoid` e `elev.geoid` nelle applicazioni OTB. Impostare questo valore globalmente permette agli utenti di condividerlo tra più algoritmi di elaborazione. Vuoto per impostazione predefinita.

• **SRTM tiles folder** (opzionale): Cartella dove sono disponibili i tasselli SRTM.

I dati SRTM possono essere memorizzati localmente per evitare di scaricare i file durante l'elaborazione. Questa opzione imposta il valore dei parametri `elev.dem.path` e `elev.dem` nelle applicazioni OTB. Impostare questo valore globalmente permette agli utenti di condividerlo tra più algoritmi di elaborazione. Vuoto per impostazione predefinita.

Compatibilità tra le versioni di QGIS e OTB

Tutte le versioni di OTB (da OTB 6.6.1) sono compatibili con l'ultima versione di QGIS.

Risoluzione dei problemi

Se hai problemi con le applicazioni OTB in QGIS Processing, apri un problema su OTB bug tracker, usando l'etichetta `qgis`.

Ulteriori informazioni su OTB e QGIS possono essere trovate [here](#).
24.1 Fornitore di algoritmo QGIS

Il fornitore di algoritmo QGIS implementa varie funzioni di analisi e geoprocessamento usando per lo più solo le API di QGIS. Quindi quasi tutti gli algoritmi di questo fornitore funzioneranno «out of the box» senza alcuna configurazione aggiuntiva.

Questo provider incorpora alcuni algoritmi dai plugin e aggiunge anche i propri algoritmi.

24.1.1 Cartografia

Allinea punti agli elementi

Calcola la rotazione richiesta per allineare gli elementi puntuali con l'elemento più vicino di un altro layer di riferimento. Un nuovo campo viene aggiunto al layer in uscita che viene riempito con l'angolo (in gradi, in senso orario) rispetto all'elemento di riferimento più vicino.

Opzionalmente, la simbologia del layer in uscita può essere impostata per utilizzare automaticamente il campo di rotazione calcolato per ruotare i simboli. Se si desidera, si può impostare una distanza massima da utilizzare quando si allineano i punti, per evitare di allineare punti isolati a elementi distanti.

Suggerimento: Questo algoritmo è progettato per casi d’uso come l’allineamento dei simboli dei punti di edifici per seguire la direzione della strada più vicina.
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vettore: puntuale]</td>
<td>Elementi puntuali per i quali calcolare la rotazione</td>
</tr>
<tr>
<td>Layer di riferimento</td>
<td>REFERENCE_LAYER</td>
<td>[vettore: qualsiasi]</td>
<td>Layer per il quale trovare l’elemento più vicino per il calcolo della rotazione</td>
</tr>
<tr>
<td>Distanza massima da considerare</td>
<td>MAX_DISTANCE</td>
<td>[numero] Default: Non impostato</td>
<td>Se non viene trovato alcun elemento di riferimento entro questa distanza, non viene assegnata alcuna rotazione all’elemento puntuale.</td>
</tr>
<tr>
<td>Applica automaticamente la simbologia</td>
<td>APPLY_SYMBOLOGY</td>
<td>[booleano] Default: True</td>
<td>Ruota il simbolo degli elementi utilizzando il valore del campo dell’angolo.</td>
</tr>
<tr>
<td>Layer allineato</td>
<td>OUTPUT</td>
<td>[vettore: puntuale] Default: [Salva in un file temporaneo]</td>
<td>Specifica il layer del vettore in uscita ruotato. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in un Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in un GeoPackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in una Tabella Database…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer allineato</td>
<td>OUTPUT</td>
<td>[vettore: puntuale]</td>
<td>Il vettore puntuale con un campo di rotazione aggiunto. Se caricato in QGIS, viene applicata di default la simbologia del layer in ingresso, con una rotazione definita dai dati del suo simbolo.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:angletonearest

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Combinare i database di stile

Combina più database di stile QGIS in un unico database di stile. Se elementi dello stesso tipo con lo stesso nome esistono in diversi database di origine, questi saranno rinominati per avere nomi univoci nel database combinato in uscita.

Vedi anche:
Crea database dello stile dal progetto

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database in ingresso</td>
<td>INPUT</td>
<td>[file] [lista]</td>
<td>File contenenti oggetti di stile QGIS</td>
</tr>
<tr>
<td>Oggetti da combinare</td>
<td>OBJECTS</td>
<td>[numerazione] [lista]</td>
<td>Tipi di oggetti di stile nei database in ingresso che vorresti mettere nel nuovo database. Questi possono essere:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Symbols</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Color ramps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Text formats</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Label settings</td>
</tr>
<tr>
<td>Stile database in uscita</td>
<td>OUTPUT</td>
<td>[file]</td>
<td>In uscita .XML file che combina gli oggetti di stile selezionati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in un Layer Temporaneano (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conteggio scala di colori</td>
<td>COLORRAMPs</td>
<td>[numero]</td>
<td></td>
</tr>
<tr>
<td>Conteggio impostazioni etichetta</td>
<td>LABELSETTINGS</td>
<td>[numero]</td>
<td></td>
</tr>
<tr>
<td>Stile database in uscita</td>
<td>OUTPUT</td>
<td>[file]</td>
<td>In uscita .XML file che combina gli oggetti di stile selezionati</td>
</tr>
<tr>
<td>Conteggio simboli</td>
<td>SYMBOLS</td>
<td>[numero]</td>
<td></td>
</tr>
<tr>
<td>Conteggio formato testo</td>
<td>TEXTFORMATS</td>
<td>[numero]</td>
<td></td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: qgis:combinestyles

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Creare visualizzazioni categorizzate dagli stili

Imposta la visualizzazione di un layer vettoriale ad una visualizzazione categorizzata usando simboli corrispondenti da un database di stile. Se non viene specificato alcun file di stile, vengono invece utilizzati i simboli dalla libreria di simboli dell’utente symbol.library.<vector_symbol_library>.

Un’espressione o un campo specifico viene utilizzato per creare categorie per la visualizzazione. Ogni categoria è abbinata individualmente ai simboli che esistono all’interno del database di stile XML QGIS specificato. Ogni volta che viene trovato il nome di un simbolo corrispondente, il simbolo della categoria sarà impostato su questo simbolo identificato.

Se vuoi, gli output possono anche essere tabelle contenenti le liste delle categorie che non hanno potuto essere abbinate ai simboli, e i simboli che non sono stati abbinati alle categorie.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vettore: qualsiasi]</td>
<td>Layer vettoriale a cui applicare uno stile categorizzato</td>
</tr>
<tr>
<td>Categorizzare usando una espressione</td>
<td>FIELD</td>
<td>[espressione]</td>
<td>Campo o espressione per categorizzare gli elementi</td>
</tr>
<tr>
<td>Database di stile (lasciare vuoto per usare i simboli salvati)</td>
<td>STYLE</td>
<td>[file]</td>
<td>File (.XML) contenente i simboli da applicare alle categorie del layer in ingresso. Il file può essere ottenuto dallo strumento Gestore Stile Share symbols. Se non viene specificato alcun file, viene utilizzata la libreria di simboli locale di QGIS.</td>
</tr>
<tr>
<td>Usare la distinzione tra maiuscole e minuscole per i nomi dei simboli</td>
<td>CASE_SENSITIVE</td>
<td>[booleano] Predefinito: False</td>
<td>Se True (selezionato), applica un confronto case sensitive tra le categorie e i nomi dei simboli</td>
</tr>
<tr>
<td>Ignorare i caratteri non alfanumerici quando si confrontano.</td>
<td>TOLERANT</td>
<td>[booleano] Predefinito: False</td>
<td>Se True (selezionato), i caratteri non alfanumerici nei nomi delle categorie e dei simboli saranno ignorati, permettendo una maggiore tolleranza durante la selezione.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.1 continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorie che non trovano corrispondenza</td>
<td>NON_MATCHING_CATS</td>
<td>[tabella] ES</td>
<td>Tabella risultato per le categorie che non corrispondono a nessun simbolo nel database. Uno di:</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Default: [Skip output]</td>
<td>• Ignora risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Nomi di simboli che non trovano corrispondenza</td>
<td>NON_MATCHING_SYMBOLS</td>
<td>[tabella]</td>
<td>Tabella risultato per i simboli del database di stile fornito che non corrispondono a nessuna categoria. Uno di:</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Default: [Skip output]</td>
<td>• Ignora risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorie che non trovano corrispondenza</td>
<td>NON_MATCHING_CATS</td>
<td>[tabella] ES</td>
<td>Elenca le categorie che non possono essere associate a nessun simbolo nel database di stile fornito</td>
</tr>
<tr>
<td>Nomi di simboli che non trovano corrispondenza</td>
<td>NON_MATCHING_SYMBOLS</td>
<td>[tabella]</td>
<td>Elenca i simboli dal database di stile fornito che non possono essere abbinati a nessuna categoria</td>
</tr>
<tr>
<td>Layer categorizzati</td>
<td>OUTPUT</td>
<td>[uguale all’input]</td>
<td>Il layer vettoriale in ingresso con lo stile categorizzato applicato. Nessun nuovo layer è in uscita.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:categorizeusingstyle

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i NOMI e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Crea database dello stile dal progetto

Estrae tutti gli oggetti di stile (simboli, scala di colori, formati di testo e impostazioni delle etichette) da un progetto QGIS.

I simboli estratti sono salvati in un database di stile QGIS (formato: file:XML), che può essere gestito e importato tramite la finestra di dialogo Style Manager.

Vedi anche:
Combinare i database di stile

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progetto in ingresso (lasciare vuoto per usare quello attivo)</td>
<td>INPUT</td>
<td>file</td>
<td>Un file di progetto QGIS da cui estrarre gli oggetti di stile</td>
</tr>
<tr>
<td>Oggetti da estrarre</td>
<td>OBJECTS</td>
<td>numerazione lista</td>
<td>Tipi di oggetti di stile nel progetto in input che vorresti mettere nel nuovo database. Questi possono essere:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 — Symbols</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 — Color ramps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 — Text formats</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 — Label settings</td>
</tr>
<tr>
<td>Stile database in uscita</td>
<td>OUTPUT</td>
<td>file</td>
<td>Specifica il file .XML di output per gli articoli di stile selezionati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salva in un Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conteggio scala di colori</td>
<td>COLORRAMES</td>
<td>numero</td>
<td>Numero delle scale di colori</td>
</tr>
<tr>
<td>Conteggio impostazioni etichetta</td>
<td>LABELSETTINGS</td>
<td>numero</td>
<td>Numero delle impostazioni delle etichette</td>
</tr>
<tr>
<td>Stile database in uscita</td>
<td>OUTPUT</td>
<td>file</td>
<td>Risultato .XML per gli elementi di stile selezionati</td>
</tr>
<tr>
<td>Conteggio dei simboli</td>
<td>SYMBOLS</td>
<td>numero</td>
<td>Numero di simboli</td>
</tr>
<tr>
<td>Conteggio formato testo</td>
<td>TEXTFORMATS</td>
<td>numero</td>
<td>Numero di formati di testo</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: qgis:stylefromproject

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il * dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Stampa il layout della mappa con l’estensione del layer

Crea un layer poligonale contenente l’estensione di un elemento (o più elementi) della mappa del layout di stampa, con attributi che specificano la dimensione della mappa (in unità di layout, cioè le unità *reference map*), la scala e la rotazione.

Se il parametro dell’oggetto mappa è specificato, allora solo l’estensione della mappa corrispondente sarà esportata. Se non è specificato, saranno esportate tutte le estensioni della mappa dal layout.

Opcionalmente, può essere specificato uno specifico SR in uscita. Se non è specificato, verrà usato il SR originale dell’oggetto mappa.

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stampa layout</td>
<td>LAYOUT</td>
<td>[numero]</td>
<td>Un layout di stampa nel progetto corrente</td>
</tr>
<tr>
<td>Oggetto Mappa Opzionale</td>
<td>MAP</td>
<td>[numero] Predefinito: Tutti gli oggetti delle mappa</td>
<td>L’oggetto(i) della mappa di cui vuoi estrarre le informazioni. Se non ne viene fornito nessuno, allora vengono elaborati tutti gli oggetti della mappa.</td>
</tr>
<tr>
<td>Sovrascrivere SR Opzionale</td>
<td>SR</td>
<td>[sr] Predefinito: SR del layout</td>
<td>Selezionare il SR per il layer in cui l’informazione sarà restituita.</td>
</tr>
<tr>
<td>Estensione</td>
<td>OUTPUT</td>
<td>[vettore: poligono] Predefinito: [Crea livello temporaneo]</td>
<td>Specifica il layer vettoriale in uscita per l’estensione(i). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata.</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altezza Mappa</td>
<td>HEIGHT</td>
<td>[numero]</td>
<td>Layer vettoriale poligonale in uscita contenente le estensioni di tutti gli oggetti della mappa del layout in ingresso</td>
</tr>
<tr>
<td>Estensione</td>
<td>OUTPUT</td>
<td>[vettore: poligono]</td>
<td>Layer vettoriale poligonale in uscita contenente le estensioni di tutti gli oggetti della mappa del layout in ingresso</td>
</tr>
<tr>
<td>Rotazione Mappa</td>
<td>ROTATION</td>
<td>[numero]</td>
<td></td>
</tr>
<tr>
<td>Scala della Mappa</td>
<td>SCALE</td>
<td>[numero]</td>
<td></td>
</tr>
<tr>
<td>Larghezza Mappa</td>
<td>WIDTH</td>
<td>[numero]</td>
<td></td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: `qgis:printlayoutmapextenttolayer`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Impostare lo stile layer

Applica uno stile specifico ad un layer. Lo stile deve essere definito in un file QML.

Non viene creato nessun nuovo output: lo stile viene immediatamente assegnato al layer.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[layer]</td>
<td>Layer in ingresso a cui si vuole applicare lo stile</td>
</tr>
<tr>
<td>File di stile</td>
<td>STYLE</td>
<td>[file]</td>
<td>Percorso per il file .qml dello stile</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT</td>
<td></td>
<td>[uguale all'input]</td>
<td>Il layer in ingresso con il nuovo stile assegnato. Non viene creato nessun nuovo layer.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: `qgis:setlayerstyle`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Colorazione topologica

Assegna un indice di colore al poligono in modo tale che nessun poligono adiacente condivida lo stesso indice di colore, minimizzando il numero di colori richiesti.

L’algoritmo permette di scegliere il metodo da utilizzare per l’assegnazione dei colori.

Un numero minimo di colori può essere specificato, se lo si desidera. L’indice del colore viene salvato in un nuovo attributo chiamato **color_id**.

L’esempio seguente mostra l’algoritmo con la scelta di quattro colori diversi; come puoi vedere ogni classe di colore ha la stessa quantità di elementi.

![Fig. 24.1: Esempio di colori topologici](image)

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vettore: poligono]</td>
<td>Il layer poligonale in ingresso</td>
</tr>
<tr>
<td>Distanza minima tra gli elementi</td>
<td>MIN_DISTANCE</td>
<td>[numero] Default: 0.0</td>
<td>Impedisce che agli elementi vicini (ma che non si toccano) vengano assegnati colori uguali. Minimo 0.0.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.2 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assegnazione colore bilanciato</td>
<td>BALANCE</td>
<td>[numero]</td>
<td>Le opzioni sono:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default: 0</td>
<td>• 0 — Per numero di elementi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tenta di assegnare i colori in modo che il conteggio degli elementi assegnati a ogni singolo indice di colore sia bilanciato.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Per area assegnata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assegna i colori in modo che l’area totale degli elementi assegnati a ciascun colore sia bilanciata. Questa modalità può essere utile per evitare che elementi grandi risultino in uno dei colori che appare più dominante su una mappa colorata.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Per distanza tra i colori</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assegna i colori in modo da massimizzare la distanza tra gli elementi dello stesso colore. Questa modalità aiuta a creare una distribuzione più uniforme dei colori su una mappa.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorato</td>
<td>OUTPUT</td>
<td>[vettore: poligono]</td>
<td>Predefinito: [Crea livello temporaneo]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specifica il layer in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorato</td>
<td>OUTPUT</td>
<td>[vettore: poligono]</td>
<td>Layer vettoriale poligonale con una colonna color_id aggiunta</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:topologicalcoloring

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
24.1.2 Database

Esportare in PostgreSQL

Esportare un layer vettoriale in un database PostgreSQL, creando una nuova relazione. Se esiste una relazione con lo stesso nome, può essere rimossa prima della creazione della nuova relazione. Prima di questo deve essere creata una connessione tra QGIS e il database PostgreSQL (vedi ad esempio Creazione della connessione).

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer da importare</td>
<td>IN_INGRESS</td>
<td>[vector: any]</td>
<td>Layer vettoriale da aggiungere al database</td>
</tr>
<tr>
<td>Database (nome della connessione)</td>
<td>DATABASE</td>
<td>[string]</td>
<td>Nome della connessione al database (non il nome del database). Le connessioni esistenti saranno mostrate nel menu a tendina.</td>
</tr>
<tr>
<td>Schema (nome schema)</td>
<td>SCHEMA</td>
<td>[string]</td>
<td>Nome dello schema per memorizzare i dati. Può essere nuovo o già esistente.</td>
</tr>
<tr>
<td>Tabella da importare (lasciare vuoto per usare il nome del layer)</td>
<td>TABLENAME</td>
<td>[string]</td>
<td>Definisce un nome di tabella per il file vettoriale importato. Se non viene aggiunto nulla, verrà utilizzato il nome del layer.</td>
</tr>
<tr>
<td>Campo chiave primaria</td>
<td>PRIMARY_KEY</td>
<td>[tablefield: any]</td>
<td>Imposta il campo chiave primaria da un campo esistente nel layer vettoriale. Una colonna con valori univoci può essere usata come chiave primaria per il database.</td>
</tr>
<tr>
<td>Colonna Geometria</td>
<td>GEOMETRY_COLUMN</td>
<td>[string]</td>
<td>Definisce il nome della colonna geometria nella nuova tabella PostGIS. Le informazioni della geometria degli elementi sono memorizzate in questa colonna.</td>
</tr>
<tr>
<td>Codifica</td>
<td>ENCODING</td>
<td>[string]</td>
<td>Definisce la codifica del layer in uscita</td>
</tr>
<tr>
<td>Sovrascrittura</td>
<td>OVERWRITE</td>
<td>[boolean]</td>
<td>Se la tabella specificata esiste, impostando questa opzione a True ci si assicura che venga cancellata e che venga creata una nuova tabella prima di aggiungere gli elementi. Se questa opzione è False e la tabella esiste, l'algoritmo lancerà un'eccezione («la relazione esiste già»).</td>
</tr>
<tr>
<td>Creazione di un indice spaziale</td>
<td>CREATEINDEX</td>
<td>[boolean]</td>
<td>Specifica se creare o meno un indice spaziale</td>
</tr>
<tr>
<td>Convertire i nomi campo in minuscolo</td>
<td>LOWERCASE_NAMES</td>
<td>[boolean]</td>
<td>Converte i nomi campo del layer vettoriale in ingresso in minuscolo</td>
</tr>
<tr>
<td>Rimuovere il vincolo di lunghezza su campi carattere</td>
<td>DROP_STRING_LENGTH</td>
<td>[boolean]</td>
<td>I vincoli di lunghezza sui campi carattere dovrebbero essere eliminati o no</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.3 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creare geometrie a una parte invece che a parti multiple</td>
<td>FORCE_SINGLEPART</td>
<td>[boolean]</td>
<td>Predefinito: False. Se gli elementi del layer in uscita devono essere a parte singola invece che a parti multiple. Per impostazione predefinita le informazioni sulle geometrie esistenti sono conservate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In uscita:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L’algoritmo non ha risultati in uscita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Codice Python</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ID Algoritmo: qgis:importintopostgis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>```</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>import processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>processing.run("algorithm_id", (parameter_dictionary))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di Processing dalla console Python.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Esportare in SpatiaLite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Esporta un layer vettoriale in un database SpatiaLite. Prima di questo deve essere creata una connessione tra QGIS e il database SpatiaLite (vedi ad esempio Layer SpatiaLite).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parametri</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>```</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Layer da importare</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IN_INGRESSO [vector:any] Layer vettoriale da aggiungere al database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>File del database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DATABASE [vector:any] Il file del database SQLite/SpatiaLite a cui connettersi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tabella da importare (lasciare vuoto per usare il nome del layer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TABLENAME [string] Predefinito: “” Definisci il nome della tabella per il</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>file vettoriale importato. Se non viene specificato nulla, verrà utilizzato il nome del layer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Campo chiave primaria Opzionale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRIMARY_KEY [tablefield:any] Usa un campo nel layer del vettore in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ingresso come chiave primaria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Colonna Geometria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GEOMETRY_COLUMN [string] Predefinito: “geom” Definisce il nome della</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>colonna geometria nella nuova tabella SpatiaLite. Le informazioni sulla</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>geometria per gli elementi sono memorizzate in questa colonna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Codifica Opzionale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENCODING [string] Predefinito: “UTF-8” Definisce la codifica del layer in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>uscita</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.4 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sovrascrittura</td>
<td>OVERWRITE</td>
<td>[boolean]</td>
<td>Se la tabella specificata esiste, impostando questa opzione a True ci si assicura che venga cancellata e che venga creata una nuova tabella prima che vengano aggiunti gli elementi del layer. Se questa opzione è False e la tabella esiste, l'algoritmo lancerà un’eccezione («la tabella esiste già»).</td>
</tr>
<tr>
<td>Creazione di un indice spaziale</td>
<td>CREATEINDEX</td>
<td>[boolean]</td>
<td>Predefinito: True</td>
</tr>
<tr>
<td>Convertire i nomi campo in minuscolo</td>
<td>LOWERCASE_NAMES</td>
<td>[boolean]</td>
<td>Predefinito: True</td>
</tr>
<tr>
<td>Rimuovere il vincolo di lunghezza su campi carattere</td>
<td>DROP_STRING_LENGTH</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Creare geometrie a una parte invece che a parti multiple</td>
<td>FORCE_SINGLEPART</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
</tbody>
</table>

In uscita:

L’algoritmo non ha risultati in uscita.

Codice Python

ID Algoritmo: qgis:importintospatialite

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di Processing dalla console Python.

Package layer

Aggiungere layer a un GeoPackage.

Se il GeoPackage esiste e Sovrascrivi il GeoPackage esistente è spuntato, sarà sovrascritto (rimosso e ricreato). Se il GeoPackage esiste e Sovrascrivi GeoPacchetto esistente non è selezionato, il layer verrà aggiunto.
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>LAYERS</td>
<td>[vector: any] [list]</td>
<td>I layer (vettoriali) da importare nel GeoPackage. I layer raster non sono supportati. Se viene aggiunto un layer raster, verrà lanciata una QgsProcessingException.</td>
</tr>
<tr>
<td>Sovrascrivere GeoPackage esistenti</td>
<td>OVERWRITE</td>
<td>[boolean]</td>
<td>Se il GeoPackage specificato esiste, impostando questa opzione a True farà in modo che venga cancellato e che ne venga creato uno nuovo prima che vengano aggiunti i layer. Se impostata a False, i layer saranno aggiunti.</td>
</tr>
<tr>
<td>Salvare stile layer in un GeoPackage</td>
<td>SAVE_STYLES</td>
<td>[boolean]</td>
<td>Salva gli stili del layer</td>
</tr>
<tr>
<td>GeoPackage di destinazione</td>
<td>OUTPUT</td>
<td>[file]</td>
<td>Se non viene specificato, il GeoPackage verrà salvato nella cartella temporanea.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer all'interno del nuovo package</td>
<td>OUTPUT_LAYERS</td>
<td>[string] [list]</td>
<td>L’elenco dei layer aggiunti al GeoPackage.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:package

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di Processing dalla console Python.

PostgreSQL esegue e carica SQL

Permette di eseguire una query di database SQL su un database PostgreSQL collegato a QGIS e carica il risultato.

L’algoritmo non creerà un nuovo layer: è progettato per eseguire query sul layer stesso.

Esempio

1. Imposta tutti i valori di un campo esistente ad un valore fisso. La stringa della query SQL sarà:

   ```sql
   UPDATE your_table SET field_to_update=20;
   ```

 Nell’esempio precedente, i valori del campo *field_to_update* della tabella *your_table* saranno tutti impostati a 20.

2. Crea una nuova colonna *area* e calcola l’area di ogni elemento con la funzione *ST_AREA* PostGIS.
Vedi anche:

PostgreSQL esegue SQL, *Esegui SQL*, *SpatiaLite esegue SQL*

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database (nome della connessione)</td>
<td>DATABASE</td>
<td>[string]</td>
<td>La connessione al database (non il nome del database). Le connessioni esistenti saranno mostrate nel menu a tendina.</td>
</tr>
<tr>
<td>Interrogazione SQL</td>
<td>SQL</td>
<td>[string]</td>
<td>Definisci la query SQL, per esempio <code>UPDATE my_table SET field=10</code>.</td>
</tr>
<tr>
<td>Nome del campo con ID univoco</td>
<td>ID_FIELD</td>
<td>[string]</td>
<td>Predefinito: id. Imposta il campo chiave primaria (una colonna nella tabella risultato)</td>
</tr>
<tr>
<td>Nome campo geometria Opzionale</td>
<td>GEOMETRY_FIELD</td>
<td>[string]</td>
<td>Predefinito: “geom”. Nome della colonna geometria (una colonna nella tabella risultato)</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL layer</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Il layer vettoriale risultante da caricare in QGIS.</td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:postgisexecuteandloadsq

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di Processing dalla console Python.

PostgreSQL esegue SQL

Permette di eseguire una query di database SQL su un database PostgreSQL collegato a QGIS. L’algoritmo non creerà un nuovo layer: è progettato per eseguire query sul layer stesso.

Esempio

1. Imposta tutti i valori di un campo esistente ad un valore fisso. La stringa della query SQL sarà:

   ```sql
   UPDATE your_table SET field_to_update=20;
   ```

 Nell’esempio precedente, i valori del campo field_to_update della tabella your_table saranno tutti impostati a 20.
2. **Crea una nuova colonna area e calcola l’area di ogni elemento con la funzione `ST_AREA` PostGIS.**

```
-- Create the new column "area" on the table your_table
ALTER TABLE your_table ADD COLUMN area double precision;
-- Update the "area" column and calculate the area of each feature:
UPDATE your_table SET area=ST_AREA(geom);
```

Vedi anche:

PostgreSQL esegui e carica SQL, Esegui SQL, SpatiaLite esegue SQL

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database (nome della connessione)</td>
<td>DATABASE</td>
<td>[string]</td>
<td>La connessione al database (non il nome del database). Le connessioni esistenti saranno mostrate nel menu a tendina.</td>
</tr>
<tr>
<td>Interrogazione SQL</td>
<td>SQL</td>
<td>[string]</td>
<td>Definisci la query SQL, per esempio <code>"UPDATE my_table SET field=10"</code>.</td>
</tr>
</tbody>
</table>

In uscita:

Non viene creato alcun risultato. La query SQL viene eseguita sul posto.

Codice Python

ID Algoritmo: `qgis:postgisexecutesql`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomie i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di Processing dalla console Python.

SpatiaLite esegue SQL

Permette di eseguire una query di database SQL su un database SpatiaLite collegato a QGIS. L’algoritmo *non* creerà un nuovo layer: è progettato per eseguire query sul layer stesso.

Vedi anche:

PostgreSQL esegue SQL, Esegui SQL

Per alcuni esempi di query SQL vedi *PostGIS SQL Query Examples*.
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Database</td>
<td>DATABASE</td>
<td>[vector]</td>
<td>Il file del database SQLite/SpatiaLite a cui connettersi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: non impostato</td>
<td></td>
</tr>
<tr>
<td>Interrogazione SQL</td>
<td>SQL</td>
<td>[string]</td>
<td>Definisca la query SQL, per esempio <code>UPDATE my_table SET field=10</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: <code>"</code></td>
<td></td>
</tr>
</tbody>
</table>

In uscita:

Non viene creato alcun risultato. La query SQL viene eseguita sul posto.

Codice Python

ID Algoritmo: qgis:spatialiteexecutesql

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di Processing dalla console Python.

24.1.3 Strumenti file

Scaricare file

Scarica un file specificato usando un URL (usando per esempio http: o file:). In altre parole puoi copiare/incollare un URL e scaricare il file.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>URL</td>
<td>[stringa]</td>
<td>L’URL del file da scaricare.</td>
</tr>
<tr>
<td>Destinazione file</td>
<td>IN USCITA</td>
<td>[stringa]</td>
<td>Indicazione della destinazione del file. Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Salva in file temporaneo]</td>
<td></td>
</tr>
</tbody>
</table>

La codifica del file può anche essere cambiata qui.
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destinazione file</td>
<td>IN USCITA</td>
<td>[stringa]</td>
<td>La posizione del file scaricato</td>
</tr>
</tbody>
</table>

Codice Python

ID algoritmo: qgis:filedownloader

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L' *id dell'algoritmo* viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

24.1.4 Interpolazione

Mappa di concentrazione (stima kernel di densità)

Crea un raster di densità (mappa di concentrazione) da vettore in ingresso usando la stima kernel di densità.

La densità è calcolata basandosi sul numero di punti in una posizione, con un numero di punti raggruppati maggiore risulta un valore maggiore. Le mappe di concentrazione permettono di identificare facilmente gli *hotspots* e i raggruppamenti di punti.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore di punti</td>
<td>INPUT</td>
<td>[vettore: punto]</td>
<td>Vettore di punti da usare per la mappa di concentrazione</td>
</tr>
<tr>
<td>Raggio</td>
<td>RADIUS</td>
<td>[number]</td>
<td>Predefinito: 100.0</td>
</tr>
</tbody>
</table>

La mappa di concentrazione usa il raggio (o la larghezza di banda del kernel) in unità di mappa. Il raggio specifica la distanza attorno a un punto in cui verrà percepita l'influenza del punto. Valori maggiori determinano una maggiore uniformità, ma valori più piccoli possono mostrare dettagli più fini e variazioni della densità dei punti.

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensione del raster in uscita</td>
<td>PIXEL_SIZE</td>
<td>[number]</td>
<td>La dimensione del pixel del raster in uscita nell’unità del layer. Nelle GUI, la grandezza può essere specificata dal numero di righe (Numero di righe / Numero di colonne) o la dimensione dei pixel (Dimensione pixel X / Dimensione pixel Y). Aumentando il numero di righe o colonne diminuirà la dimensione della cella e aumenterà la dimensione del file di output. I valori in Righe, Colonne, Dimensione pixel X e Dimensione pixel Y sono aggiornati simultaneamente, quindi raddoppiando il numero di righe raddoppierà automaticamente il numero di colonne e anche le dimensioni delle celle saranno dimezzate. L’area geografica del raster in uscita rimarrà la stessa (approssimativamente).</td>
</tr>
<tr>
<td>Raggio dal campo</td>
<td>RADIUS_FIELD</td>
<td>[tablefield: numeric]</td>
<td>Imposta il raggio di ricerca per ogni elemento da un campo della tabella degli attributi nel layer in ingresso.</td>
</tr>
<tr>
<td>Forma del kernel</td>
<td>KERNEL</td>
<td>[enumeration] Predefinito: 0</td>
<td>Controlla la modalità con cui l’influenza di un punto diminuisce all’aumentare della distanza dal punto stesso. I diversi kernel decadono a tassi diversi, quindi un kernel triweight dà agli elementi un peso maggiore per le distanze più vicine al punto rispetto al kernel Epanechnikov. Di conseguenza, il triweight dà come risultato hotspot più “nitidi”, mentre Epanechnikov dà come risultato hotspot più “lisci”. Ci sono molte forme disponibili (vedi la pagina di Wikipedia per ulteriori informazioni): 0 — Quartico 1 — Triangolare 2 — Uniforme 3 — Peso triplo 4 — Epanechnikov</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.5 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapporto di decadimento
(solo per kernel triangolari)
Opzionale</td>
<td>DECAY</td>
<td>[number]</td>
<td>Può essere usato con i kernel triangolari per controllare ulteriormente come il valore della densità di concentrazione di un elemento diminuisce con la distanza dall’elemento.
- Un valore di 0 (=minimo) indica che la densità di concentrazione sarà al centro del raggio dato e che si estinguerà completamente al margine.
- Un valore di 0,5 indica che i pixel sul bordo del raggio riceveranno metà della densità di concentrazione dei pixel al centro del raggio di ricerca.
- Un valore di 1 significa che la densità di concentrazione è distribuita uniformemente su tutto il cerchio del raggio di ricerca. (Questo è equivalente al kernel “Uniforme”).
- Un valore maggiore di 1 indica che la densità di concentrazione è maggiore verso il bordo del raggio di ricerca che al centro.</td>
</tr>
<tr>
<td>Valore in uscita in scala</td>
<td>OUTPUT_VALUE</td>
<td>[enumeration]</td>
<td>Predefinito: Grezzo
Permette di cambiare i valori della mappa di concentrazione raster in uscita. Uno dei seguenti:
- 0 — Grezzo
- 1 — Scalato</td>
</tr>
<tr>
<td>Mappa di concentrazione</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica il layer raster in uscita con i valori di densità del kernel. Uno di:
- Salva come File Temporaneo
- Salva come File…
La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mappa di concentrazione</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster con valori di densità del kernel</td>
</tr>
</tbody>
</table>
Esempio: Creare una mappa di concentrazione

Nella Fig. 24.2, vengono mostrati gli aeroporti dell’Alaska.

1. Open the Heatmap (Kernel Density Estimation) algorithm from the QGIS Interpolation group
2. Nel campo Vettore puntuale, seleziona airports dalla lista dei vettori puntuali caricati nel progetto corrente.
3. Cambia il Raggio a 1000000 metri.
5. Clicca su Esegui per creare e caricare la mappa di concentrazione degli aeroporti (vedi Fig. 24.4).
Fig. 24.3: La finestra di dialogo Mappa di concentrazione

QGIS genererà la mappa di concentrazione e la aggiungerà alla finestra della mappa. Per impostazione predefinita, la mappa di concentrazione è ombreggiata in scala di grigi, con aree più chiare che mostrano maggiori concentrazioni di aeroporti. La mappa di concentrazione può ora essere stilizzata in QGIS per migliorarne l’aspetto.
Fig. 24.4: La mappa di concentrazione dopo il caricamento appare come una superficie grigia

1. Apri la finestra di dialogo delle proprietà del layer heatmap_airports (seleziona il layer heatmap_airports, apri il menu contestuale con il tasto destro del mouse e seleziona Proprietà").
2. Seleziona la scheda Simbologia.
3. Cambia la: Tipo di Renderizzazione a “Pseudocolore a banda singola”.
4. Seleziona una Scala di colori adatta, per esempio YlOrRd.
5. Fai clic sul pulsante Classifica
6. Premi OK per aggiornare il layer.

Il risultato finale viene mostrato in Fig. 24.5.
Fig. 24.5: Mappa di cancenrazione stilizzata degli aeroporti dell’Alaska

Codice Python

ID Algoritmo: qgis:heatmapkerneldensityestimation

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Interpolazione IDW

Genera un’interpolazione IDW (Distanza Inversa Ponderata) di un layer vettoriale di punti.

I punti campione sono ponderati durante l’interpolazione in modo che l’influenza di un punto rispetto ad un altro diminuisca con la distanza dal punto sconosciuto che vuoi creare.

Il metodo di interpolazione IDW ha anche alcuni svantaggi: la qualità del risultato dell’interpolazione può diminuire se la distribuzione dei punti dei dati campione non è uniforme.

Inoltre, i valori massimi e minimi nella superficie interpolata possono verificarsi solo in punti di dati campione.
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Layer in ingresso | INTERPOLATION_DATA | [string] | Layer vettoriale(i) e campo(i) da usare per l’interpolazione, codificati in una stringa (vedi la classe ParameterInterpolationData in InterpolationWidgets per maggiori dettagli). I seguenti elementi della GUI vengono forniti per comporre la stringa di dati di interpolazione:
• Layer vettoriale [vector: any]
• Attributo per l’interpolazione [tablefield: numeric]: Attributo da usare nell’interpolazione
• Usa le coordinate Z per l’interpolazione [boolean]: Utilizza i valori Z memorizzati del layer (predefinito: False)
Per ciascuna delle combinazioni layer-campo aggiunte, si può scegliere un tipo:
• Punti
• Linee strutturate
• Linee di interruzione
Nella stringa, gli elementi del campo del layer sono separati da '::|:'. I sotto-elementi degli elementi del campo del layer sono separati da '::-:'.

Coefficiente di distance P	DISTANCE_COEFFICIENT	[number]	Predefinito: 2.0

continues on next page
Tabella 24.7 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster di valori interpolati. Uno di: • Salva come File Temporaneo • Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster di valori interpolati</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: `qgis:idwinterpolation`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Linea Densità

Calcola per ogni cella raster, la misura della densità degli elementi lineari all’interno di un intorno circolare. Questa misura si ottiene sommando tutti i segmenti di linea che intersecano l’intorno circolare e dividendo questa somma per l’area di tale intorno. Un fattore di ponderazione può essere applicato ai segmenti linea.

Fig. 24.6: Esempio di densità linea. Fonte del layer in ingresso: Strade Overijssel - Paesi Bassi (OSM).

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer linea in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso contenente gli elementi linea</td>
</tr>
<tr>
<td>Campo peso</td>
<td>WEIGHT</td>
<td>[number]</td>
<td>Campo del layer che contiene il fattore di peso da usare durante il calcolo</td>
</tr>
<tr>
<td>Raggio di ricerca</td>
<td>RADIUS</td>
<td>[number]</td>
<td>Predefinito: 10 Raggio dell’intorno circolare. Le unità possono essere specificate qui.</td>
</tr>
</tbody>
</table>
| Linea densità raster | OUTPUT | [raster] | Predefinito: [Save to temporary file] Il raster in uscita come layer vettoriale. Uno di:
| | | | • Salva come File Temporaneo
| | | | • Salva come File…
| | | | La codifica del file può anche essere cambiata qui. |

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linea densità raster</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>La linea di densità in uscita del layer raster.</td>
</tr>
</tbody>
</table>
Codice Python

Algorithm ID: native:linedensity

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Interpolazione TIN

Genera un’Interpolazione triangolare (TIN) di un layer vettoriale di punti.

Con il metodo TIN è possibile creare una superficie formata da triangoli costruiti sui punti tra loro più vicini. Per fare questo, si creano circonferenze intorno ai punti campione selezionati e le loro intersezioni sono collegate a una rete di triangoli non sovrapposti e il più possibile compatti. Le superfici risultanti non sono regolari.

L’algoritmo crea sia il layer raster dei valori interpolati che il layer vettoriale lineare con i confini della triangolazione.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| **Layer in ingresso** | INTERPOLATION_INPUT | [string] | Layer vettoriale(i) e campo(i) da usare per l'interpolazione, codificati in una stringa (vedi la classe ParameterInterpolationData in InterpolationWidgets per maggiori dettagli). I seguenti elementi della GUI vengono forniti per comporre la stringa di dati di interpolazione:
• **Layer vettoriale** [vector: any]
• **Attributo per l'interpolazione** [tablefield: numeric]: Attributo da usare nell'interpolazione
• **Usa le coordinate Z per l'interpolazione** [boolean]: Utilizza i valori Z memorizzati del layer (predefinito: False)
Per ciascuna delle combinazioni layer-campo aggiunte, si può scegliere un tipo:
• **Punti**
• **Linee strutturate**
• **Linee di interruzione**
Nella stringa, gli elementi del campo del layer sono separati da '::|::'. I sotto-elementi degli elementi del campo del layer sono separati da '::::::'. |
| **Metodo di Interpolazione** | METHOD | [enumeration] [string] | Predefinito: 0
Imposta il metodo di interpolazione da utilizzare. Uno di:
• **Lineare**
• **Clough-Toucher (cubica)** |
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensione del raster in uscita</td>
<td>PIXEL_SIZE</td>
<td>[number]</td>
<td>La dimensione del pixel del raster in uscita nell’unità del layer. Nelle GUI, la grandezza può essere specificata dal numero di righe (Numero di righe / Numero di colonne) o la dimensione dei pixel (Dimensione pixel X / Dimensione pixel Y). Aumentando il numero di righe o colonne diminuirà la dimensione della cella e aumenterà la dimensione del file di output. I valori in Righe, Colonne, Dimensione pixel X e Dimensione pixel Y sono aggiornati simultaneamente, quindi raddoppiando il numero di righe raddoppierà automaticamente il numero di colonne e anche le dimensioni delle celle saranno dimezzate. L’area geografica del raster in uscita rimarrà la stessa (approssimativamente).</td>
</tr>
<tr>
<td>Interpolato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>L’interpolazione TIN in uscita come layer raster. Uno di: Salva come File Temporaneo Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Triangolazione</td>
<td>TRIANGULATION</td>
<td>[vector: line]</td>
<td>Il TIN in uscita come layer vettoriale. Uno di: Ignora il risultato Crea livello temporaneo (TEMPORARY_OUTPUT) Salva come File… Salva come Geopackage… Salva su Tabella PostGIS…</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Il TIN in uscita come layer raster.</td>
</tr>
<tr>
<td>Triangolazione</td>
<td>TRIANGULATION</td>
<td>[vector: line]</td>
<td>Il TIN in uscita come layer vettoriale.</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: qgis:tininterpolation

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L' *id algoritmo* viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

24.1.5 Strumenti Layer

Estrazione estensione layer

Genera un layer vettoriale come minimo riquadro di delimitazione (rettangolo con orientamento N-S) che copre tutti gli elementi in ingresso.

Il layer di uscita contiene un unico riquadro di delimitazione per l'intero layer di ingresso.

![Fig. 24.7: In rosso il riquadro di delimitazione del layer di provenienza](image)

Menu predefinito: Vettore ▶ Strumenti di Ricerca
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>IN INGRESSO</td>
<td>[layer]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Estensione</td>
<td>LIVELLO IN USCITA</td>
<td>[vector: polygon]</td>
<td>Specificare il layer vettoriale poligonale per l'estensione dell'output. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione</td>
<td>LIVELLO IN USCITA</td>
<td>[vector: polygon]</td>
<td>Layer vettoriale in uscita (poligono) con l'estensione (riquadro di delimitazione minimo)</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:Polygonfromlayerextent

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'id dell’*algoritmo* viene visualizzato quando passi il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nom i e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

24.1.6 Strumenti del modellatore

Questi strumenti sono disponibili solo nel Graphical Modeler. Non sono disponibili nel Toolbox di Processing.

Caricare layer nel progetto

Carica un layer nel progetto corrente.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>IN INGRESSO</td>
<td>[layer]</td>
<td>Layer da caricare nella leggenda</td>
</tr>
<tr>
<td>Nome layer caricato</td>
<td>NAME</td>
<td>[stringa]</td>
<td>Nome del layer caricato</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer caricato (rinominato)</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:loadlayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’"id algoritmo" viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

Rinominare layer

Rinomina un layer.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>IN INGRESSO</td>
<td>[layer]</td>
<td>Layer da rinominare</td>
</tr>
<tr>
<td>Nuovo nome</td>
<td>NAME</td>
<td>[stringa]</td>
<td>Il nuovo nome del layer</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer in uscita (rinominato)</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:renamellayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’"id algoritmo" viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Concatenazione di stringhe

Concatena due stringhe in una sola nel Processing Modeler.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1</td>
<td>INPUT_1</td>
<td>[stringa]</td>
<td>Prima stringa</td>
</tr>
<tr>
<td>Input 2</td>
<td>INPUT_2</td>
<td>[stringa]</td>
<td>Seconda stringa</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concatenazione</td>
<td>CONCATENATION</td>
<td>[stringa]</td>
<td>La stringa concatenata</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:stringconcatenation

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’"id algoritmo" viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

24.1.7 Analisi di rete

Area da servire (dal layer)

Restituisce tutti i percorsi o parti di percorso di una rete che possono essere raggiunti entro una distanza o un tempo, partendo da un layer di punti. Questo permette di valutare l’accessibilità all’interno di una rete, ad esempio quali sono i luoghi che posso raggiungere su una rete stradale senza spendere un costo maggiore di un dato valore (il costo può essere la distanza o il tempo).

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer vettoriale che rappresenta la rete</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare che rappresenta la rete da trattare</td>
</tr>
<tr>
<td>Layer vettoriale con i punti di partenza</td>
<td>START_POINTS</td>
<td>[vector: point]</td>
<td>Layer vettoriale puntuale i cui elementi sono usati come punti di partenza per generare le aree da servire</td>
</tr>
<tr>
<td>Tipo di percorso da calcolare</td>
<td>STRATEGY</td>
<td>[enumeration]</td>
<td>Il tipo di percorso da calcolare. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — il più corto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — il più veloce</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.13 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo del percorso (per distanza «Il più breve», per tempo «Il più veloce»)</td>
<td>TRAVEL_COST</td>
<td>[number] Predefinito: 0</td>
<td>Il valore è espresso come distanza (in unità del layer di rete) quando si cerca il percorso più breve e come tempo (in secondi) per il percorso più veloce.</td>
</tr>
</tbody>
</table>

Campo direzione

| Opzionale | DIRECTION_FIELD | [tablefield: string] Predefinito: 0.0 | Il campo usato per specificare le direzioni dei contorni della rete. I valori usati in questo campo sono specificati con i tre parametri Valore per la direzione avanti, Valore per la direzione indietro e Valore per entrambe le direzioni. Le direzioni avanti e indietro corrispondono a un tratto a senso unico, «entrambe le direzioni» indica un tratto a doppio senso. Se un elemento non ha un valore in questo campo, o nessun campo è impostato, allora viene usata l'impostazione di direzione predefinita (fornita con il parametro Default direction). |

<table>
<thead>
<tr>
<th>Opzionale</th>
<th>VALUE_FORWARD</th>
<th>[string] Predefinito: *** (empty string)</th>
<th>Valore impostato nel campo direzione per identificare i tratti con una direzione in avanti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opzionale</td>
<td>VALUE_BACKWARD</td>
<td>[string] Predefinito: *** (empty string)</td>
<td>Valore impostato nel campo direzione per identificare i tratti con una direzione indietro</td>
</tr>
<tr>
<td>Opzionale</td>
<td>VALUE_BOTH</td>
<td>[string] Predefinito: *** (empty string)</td>
<td>Valore impostato nel campo direzione per identificare i tratti bidirezionali</td>
</tr>
</tbody>
</table>

Direzione predefinita

<table>
<thead>
<tr>
<th>Opzionale</th>
<th>DEFAULT_DIRECTION</th>
<th>[enumeration] Predefinito: 2</th>
<th>Se un elemento non ha un valore impostato nel campo direzione o se nessun campo direzione è impostato, allora viene usato uno dei valori di direzione. Uno di:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Direzione in avanti</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Direzione indietro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — In entrambe le direzioni</td>
</tr>
</tbody>
</table>

Campo velocità

| Opzionale | SPEED_FIELD | [tablefield: string] | Campo che fornisce il valore di velocità (in km/h) per i contorni della rete quando si cerca il percorso più veloce. Se un elemento non ha un valore in questo campo, o nessun campo è impostato, allora viene usato il valore di velocità predefinito (fornito con il parametro Default speed). |

| Opzionale | DEFAULT_SPEED | [number] Predefinito: 50.0 | Valore da usare per calcolare il tempo di percorrenza se nessun campo di velocità è fornito per un tratto, continues on next page |

832 Capitolo 24. Fornitori di processing e algoritmi
<table>
<thead>
<tr>
<th>Tolleranza topologica Opzionale</th>
<th>TOLERANCE</th>
<th>[number] Predefinito: 0.0</th>
<th>Due linee con nodi più vicini della tolleranza specificata sono considerate collegate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includere punti di confine superiore/inferiore</td>
<td>INCLUDE_BOUNDS</td>
<td>[boolean] Predefinito: False</td>
<td>Crea un layer puntuale in uscita con due punti per ogni tratto ai confini dell’area da servire. Un punto è l’inizio di quel tratto, l’altro è la fine.</td>
</tr>
<tr>
<td>Area da servire (linee)</td>
<td>OUTPUT_LINES</td>
<td>[vector: line] Predefinito: [Create temporary layer]</td>
<td>Specifica il vettore lineare in uscita per l’area da servire. Uno di: • Non dare risultato • Crea layer temporaneo (TEMPORARY_OUTPUT) • Salva come File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Area da servire (nodi di confine) **</td>
<td>OUTPUT</td>
<td>[vector: point] Predefinito: [Skip output]</td>
<td>Specificare il layer puntuale in uscita per i nodi di confine dell’area da servire. Uno di: • Non dare risultato • Crea layer temporaneo (TEMPORARY_OUTPUT) • Salva come File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area da servire (nodi di confine) **</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer puntuale in uscita con i nodi di confine dell’area da servire.</td>
</tr>
<tr>
<td>Area da servire (linee)</td>
<td>OUTPUT_LINES</td>
<td>[vector: line]</td>
<td>Vettore lineare che rappresenta le parti della rete che possono essere servite dai punti di partenza, con il costo dato.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: `qgis:serviceareafromlayer`

```python
ingest = processing.GeoAlgorithmFactory().getAlgorithm("qgis:serviceareafromlayer")
result = ingest.run(**parameters, **kwargs)
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Area da servire (dal punto)

Restituisce tutti i percorsi o parti di percorso di una rete che possono essere raggiunti entro una data distanza o tempo, partendo da un punto particolare. Questo permette di valutare l’accessibilità all’interno di una rete, ad esempio quali sono i luoghi che posso raggiungere su una rete stradale senza spendere un costo maggiore di un dato valore (il costo può essere la distanza o il tempo).

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer vettoriale che rappresenta la rete</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare che rappresenta la rete da trattare</td>
</tr>
<tr>
<td>Punto iniziale (x, y)</td>
<td>START_POINT</td>
<td>[coordinates]</td>
<td>Coordinata del punto rispetto al quale calcolare l’area da servire.</td>
</tr>
</tbody>
</table>
| Tipo di percorso da calcolare | STRATEGY | [enumeration] Predefinito: 0 | Il tipo di percorso da calcolare. Uno di:
• 0 — il più corto
• 1 — il più veloce |
| Costo percorso | TRAVEL_COST | [number] Predefinito: 0 | Il valore è espresso come distanza (in unità del layer di rete) quando si cerca il percorso *più breve* e come tempo (in secondi) per il percorso *più veloce*. |
| Parametri avanzati | Solo GUI | | Gruppo di parametri avanzati di analisi di rete - vedi sotto. |
| Area da servire (linee) | OUTPUT_LINES | [vector: line] Predefinito: [Create temporary layer] | Specifica il vettore lineare in uscita per l’area da servire. Uno di:
• Non dare risultato
• Crea layer temporaneo (TEMPORARY_OUTPUT)
• Salva come File…
• Salva come Geopackage…
• Salva su Tabella PostGIS…
La codifica del file può anche essere cambiata qui. |
| **Area da servire (nodi di confine)** ** | OUTPUT | [vector: point] Predefinito: [Skip output] | Specificare il layer puntuale in uscita per i nodi di confine dell’area da servire. Uno di:
• Non dare risultato
• Crea layer temporaneo (TEMPORARY_OUTPUT)
• Salva come File…
• Salva come Geopackage…
• Salva su Tabella PostGIS…
La codifica del file può anche essere cambiata qui. |
Parametri avanzati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo direzione</td>
<td>DIRECTION_FIELD</td>
<td>[tablefield: string]</td>
<td>Il campo usato per specificare le direzioni dei contorni della rete. I valori usati in questo campo sono specificati con i tre parametri Valore per la direzione avanti, Valore per la direzione indietro e Valore per entrambe le direzioni. Le direzioni avanti e indietro corrispondono a un tratto a senso unico, «entrambe le direzioni» indica un tratto a doppio senso. Se una elemento non ha un valore in questo campo, o nessun campo è impostato, allora viene usata l'impostazione di direzione predefinita (fornita con il parametro Default direction).</td>
</tr>
<tr>
<td>Valore per direzione in avanti</td>
<td>VALUE_FORWARD</td>
<td>[string]</td>
<td>Valore impostato nel campo direzione per identificare i tratti con una direzione in avanti</td>
</tr>
<tr>
<td>Valore per direzione indietro</td>
<td>VALUE_BACKWARD</td>
<td>[string]</td>
<td>Valore impostato nel campo direzione per identificare i tratti con una direzione indietro</td>
</tr>
<tr>
<td>Valore per entrambe le direzioni</td>
<td>VALUE_BOTH</td>
<td>[string]</td>
<td>Valore impostato nel campo direzione per identificare i tratti bidirezionali</td>
</tr>
<tr>
<td>Direzione predefinita</td>
<td>DEFAULT_DIRECTION</td>
<td>[enumeration]</td>
<td>Se un elemento non ha un valore impostato nel campo direzione o se nessun campo direzione è impostato, allora viene usato uno dei valori di direzione. Uno di: • 0 — Direzione in avanti • 1 — Direzione indietro • 2 — In entrambe le direzioni</td>
</tr>
<tr>
<td>Campo velocità</td>
<td>SPEED_FIELD</td>
<td>[tablefield: string]</td>
<td>Campo che fornisce il valore di velocità (in km/h) per i contorni della rete quando si cerca il percorso più veloce. Se un elemento non ha un valore in questo campo, o nessun campo è impostato, allora viene usato il valore di velocità predefinito (fornito con il parametro Default speed).</td>
</tr>
<tr>
<td>Velocità predefinita (km/h)</td>
<td>DEFAULT_SPEED</td>
<td>[number]</td>
<td>Valore da usare per calcolare il tempo di percorrenza se nessun campo di velocità è fornito per un tratto.</td>
</tr>
<tr>
<td>Tolleranza topologica</td>
<td>TOLERANCE</td>
<td>[number]</td>
<td>Due linee con nodi più vicini della tolleranza specificata sono considerate collegate</td>
</tr>
<tr>
<td>Includere punti di confine superiore/inferiore</td>
<td>INCLUDE_BOUNDS</td>
<td>[boolean]</td>
<td>Crea un layer puntuale in uscita con due punti per ogni tratto ai confini dell'area da servire. Un punto è l’inizio di quel tratto, l’altro è la fine.</td>
</tr>
</tbody>
</table>
Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area da servire (nodi di confine)</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer puntuale in uscita con i nodi di confine dell’area da servire.</td>
</tr>
<tr>
<td>Area da servire (linee)</td>
<td>OUTPUT_LINES</td>
<td>[vector: line]</td>
<td>Vettore lineare che rappresenta le parti della rete che possono essere servite dal punto di partenza, al costo dato.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:serviceareafrompoint

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

Percorso più breve (da layer a punto)

Calcola i percorsi ottimali (più brevi o più veloci) da più punti di partenza definiti da un layer vettoriale e un dato punto finale.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer vettoriale che rappresenta la rete</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare che rappresenta la rete da trattare</td>
</tr>
<tr>
<td>Tipo di percorso da calcolare</td>
<td>STRATEGY</td>
<td>[enumeration] Predefinito: 0</td>
<td>Il tipo di percorso da calcolare. Uno di: • 0 — il più corto • 1 — il più veloce</td>
</tr>
<tr>
<td>Layer vettoriale con i punti di partenza</td>
<td>START_POINTS</td>
<td>[vector: point]</td>
<td>Layer vettoriale puntuale i cui elementi sono utilizzati come punti di partenza dei percorsi</td>
</tr>
<tr>
<td>Punto finale (x, y)</td>
<td>END_POINT</td>
<td>[coordinates]</td>
<td>Elemento puntuale che rappresenta il punto finale dei percorsi</td>
</tr>
<tr>
<td>Parametri avanzati</td>
<td>Solo GUI</td>
<td></td>
<td>Il gruppo Parametri avanzati:</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.18 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo direzione
Opcionale</td>
<td>DIRECTION_FIELD
[tablefield: string]
Predefinito: 0.0</td>
<td>Il campo usato per specificare le direzioni dei contorni della rete. I valori usati in questo campo sono specificati con i tre parametri Valore per la direzione avanti, Valore per la direzione indietro e Valore per entrambe le direzioni. Le direzioni avanti e indietro corrispondono a un tratto a senso unico, «entrambe le direzioni» indica un tratto a doppio senso. Se una elemento non ha un valore in questo campo, o nessun campo è impostato, allora viene usata l'impostazione di direzione predefinita (fornita con il parametro Default direction).</td>
<td></td>
</tr>
<tr>
<td>Valore per direzione in avanti
Opcionale</td>
<td>VALUE_FORWARD
[string]
Predefinito: ""
(empty string)</td>
<td>Valore impostato nel campo direzione per identificare i tratti con una direzione in avanti</td>
<td></td>
</tr>
<tr>
<td>Valore per direzione indietro
Opcionale</td>
<td>VALUE_BACKWARD
[string]
Predefinito: ""
(empty string)</td>
<td>Valore impostato nel campo direzione per identificare i tratti con una direzione indietro</td>
<td></td>
</tr>
<tr>
<td>Valore per entrambe le direzioni
Opcionale</td>
<td>VALUE_BOTH
[string]
Predefinito: ""
(empty string)</td>
<td>Valore impostato nel campo direzione per identificare i tratti bidirezionali</td>
<td></td>
</tr>
</tbody>
</table>
| **Direzione predefinita**
Opcionale | DEFAULT_DIRECTION
[enumeration]
Predefinito: 2 | Se un elemento non ha un valore impostato nel campo direzione o se nessun campo direzione è impostato, allora viene usato uno dei valori di direzione. Uno di:
 - 0 — Direzione in avanti
 - 1 — Direzione indietro
 - 2 — In entrambe le direzioni |
| **Campo velocità**
Opcionale | SPEED_FIELD
[tablefield: string] | Campo che fornisce il valore di velocità (in km/h) per i contorni della rete quando si cerca il percorso più veloce. Se un element non ha un valore in questo campo, o nessun campo è impostato, allora viene usato il valore di velocità predefinito (fornito con il parametro Default speed). |
| **Velocità predefinita (km/h)**
Opcionale | DEFAULT_SPEED
[number]
Predefinita: 50.0 | Valore da usare per calcolare il tempo di percorrenza se nessun campo di velocità è fornito per un tratto. |
| **Tolleranza topologica**
Opcionale | TOLERANCE
[number]
Predefinito: 0.0 | Due linee con nodi più vicini della tolleranza specificata sono considerate collegate |

Fine del gruppo **Parametri avanzati**

continues on next page
Tabella 24.18 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percorso più breve</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Indica il vettore lineare in uscita per i percorsi più brevi. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percorso più breve</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Vettore lineare del percorso più breve o più veloce da ciascuno dei punti di partenza al punto finale</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:shortestpathlayertopoint

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

Percorso più breve (da punto a layer)

Calcola i percorsi ottimali (più brevi o più veloci) tra un dato punto iniziale e più punti finali definiti da un layer vettoriale di punti.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer vettoriale che rappresenta la rete</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare che rappresenta la rete da trattare</td>
</tr>
<tr>
<td>Tipo di percorso da calcolare</td>
<td>STRATEGY</td>
<td>[enumeration]</td>
<td>Il tipo di percorso da calcolare. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — il più corto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — il più veloce</td>
</tr>
<tr>
<td>Punto iniziale (x, y)</td>
<td>START_POINT</td>
<td>[coordinates]</td>
<td>Punto che rappresenta il punto di partenza dei percorsi</td>
</tr>
<tr>
<td>Layer vettoriale con i punti finali</td>
<td>END_POINTS</td>
<td>[vector: point]</td>
<td>Layer vettoriale puntuale i cui elementi sono usati come punti finali dei percorsi</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.19 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo direzione</td>
<td>DIRECTION_FIELD</td>
<td>[tablefield: string]</td>
<td>Il campo usato per specificare le direzioni dei contorni della rete. I valori usati in questo campo sono specificati con i tre parametri Valore per la direzione avanti, Valore per la direzione indietro e Valore per entrambe le direzioni. Le direzioni avanti e indietro corrispondono a un tratto a senso unico, «entrambe le direzioni» indica un tratto a doppio senso. Se un elemento non ha un valore in questo campo, o nessun campo è impostato, allora viene usata l'impostazione di direzione predefinita (fornita con il parametro Default direction).</td>
</tr>
<tr>
<td>Valore per direzione in avanti</td>
<td>VALUE_FORWARD</td>
<td>[string]</td>
<td>Predefinito: "" (empty string)</td>
</tr>
<tr>
<td>Valore per direzione indietro</td>
<td>VALUE_BACKWARD</td>
<td>[string]</td>
<td>Predefinito: "" (empty string)</td>
</tr>
<tr>
<td>Valore per entrambe le direzioni</td>
<td>VALUE_BOTH</td>
<td>[string]</td>
<td>Predefinito: "" (empty string)</td>
</tr>
<tr>
<td>Direzione predefinita</td>
<td>DEFAULT_DIRECTION</td>
<td>[enumeration]</td>
<td>Predefinito: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Se un elemento non ha un valore impostato nel campo direzione o se nessun campo direzione è impostato, allora viene usato uno dei valori di direzione. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Direzione in avanti</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Direzione indietro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — In entrambe le direzioni</td>
</tr>
<tr>
<td>Campo velocità</td>
<td>SPEED_FIELD</td>
<td>[tablefield: string]</td>
<td>Campo che fornisce il valore di velocità (in km/h) per i contorni della rete quando si cerca il percorso più veloce. Se un elemento non ha un valore in questo campo, o nessun campo è impostato, allora viene usato il valore di velocità predefinito (fornito con il parametro Default speed).</td>
</tr>
<tr>
<td>Velocità predefinita (km/h)</td>
<td>DEFAULT_SPEED</td>
<td>[number]</td>
<td>Predefinita: 50.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valore da usare per calcolare il tempo di percorrenza se nessun campo di velocità è fornito per un tratto.</td>
</tr>
<tr>
<td>Tolleranza topologica</td>
<td>TOLERANCE</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Due linee con nodi più vicini della tolleranza specificata sono considerate collegate</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.19 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Percorso più breve | OUTPUT | [vector: line] | Indica il vettore lineare in uscita per i percorsi più brevi. Uno di:
• Crea layer temporaneo (TEMPORARY_OUTPUT)
• Salva come File…
• Salva come Geopackage…
• Salva su Tabella PostGIS…
La codifica del file può anche essere cambiata qui. |

Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percorso più breve</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Vettore lineare del percorso più breve o più veloce da ciascuno dei punti di partenza al punto finale</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:shortestpathpointtolayer

```python
from qgis.core import *

algid = qgis.core.QgsAlgorithmId("shortestpathpointtolayer")

processing.run(algid, [parameter_dictionary])
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing.
Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

Percorso più breve (da punto a punto)

Calcola il percorso ottimale (più breve o più veloce) tra un dato punto iniziale e un dato punto finale.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Avanzato</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer vettoriale che rappresenta la rete</td>
<td>INPUT</td>
<td>Avanzato</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare che rappresenta la rete da trattare</td>
</tr>
</tbody>
</table>
| Tipo di percorso da calcolare | STRATEGY | Avanzato | [enumeration] | Predefinito: 0
• 0 — il più corto
• 1 — il più veloce |
| Punto iniziale (x, y) | START_POINT | Avanzato | [coordinates] | Punto che rappresenta il punto di partenza dei percorsi |
| Punto finale (x, y) | END_POINT | Avanzato | [coordinates] | Elemento puntuale che rappresenta il punto finale dei percorsi |
Tabella 24.20 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Avanzato</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo direzione
Opzionale</td>
<td>DIRECTION_FIELD</td>
<td></td>
<td>[tablefield: string]</td>
<td>Il campo usato per specificare le direzioni dei contorni della rete. I valori usati in questo campo sono specificati con i tre parametri Valore per la direzione avanti, Valore per la direzione indietro e Valore per entrambe le direzioni. Le direzioni avanti e indietro corrispondono a un tratto a senso unico, «entrambe le direzioni» indica un tratto a doppio senso. Se un elemento non ha un valore in questo campo, o nessun campo è impostato, allora viene usata l'impostazione di direzione predefinita (fornita con il parametro Default direction).</td>
</tr>
<tr>
<td>Valore per direzione in avanti
Opzionale</td>
<td>VALUE_FORWARD</td>
<td></td>
<td>[string]</td>
<td>Valore impostato nel campo direzione per identificare i tratti con una direzione in avanti</td>
</tr>
<tr>
<td>Valore per direzione indietro
Opzionale</td>
<td>VALUE_BACKWARD</td>
<td></td>
<td>[string]</td>
<td>Valore impostato nel campo direzione per identificare i tratti con una direzione indietro</td>
</tr>
<tr>
<td>Valore per entrambe le direzioni
Opzionale</td>
<td>VALUE_BOTH</td>
<td>X</td>
<td>[string]</td>
<td>Valore impostato nel campo direzione per identificare i tratti bidirezionali</td>
</tr>
</tbody>
</table>
| Direzione predefinita
Opzionale | DEFAULT_DIRECTION | | [enumeration] | Se un elemento non ha un valore impostato nel campo direzione o se nessun campo direzione è impostato, allora viene usato uno dei valori di direzione. Uno di:
 • 0 — Direzione in avanti
 • 1 — Direzione indietro
 • 2 — In entrambe le direzioni |
| **Campo velocità**
Opzionale | SPEED_FIELD | X | [tablefield: string] | Campo che fornisce il valore di velocità (in km/h) per i contorni della rete quando si cerca il percorso più veloce. Se un elemento non ha un valore in questo campo, o nessun campo è impostato, allora viene usato il valore di velocità predefinito (fornito con il parametro Default speed). |

continues on next page
Tabella 24.20 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Avanzato</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocità predefinita (km/h)</td>
<td>DEFAULT_SPEED</td>
<td>Opzionale</td>
<td>[number]</td>
<td>Predefinita: 50.0 Valore da usare per calcolare il tempo di percorrenza se nessun campo di velocità è fornito per un tratto.</td>
</tr>
<tr>
<td>Tolleranza topologica</td>
<td>TOLERANCE</td>
<td>Opzionale</td>
<td>[number]</td>
<td>Predefinito: 0.0 Due linee con nodi più vicini della tolleranza specificata sono considerate collegate</td>
</tr>
<tr>
<td>Percorso piu breve</td>
<td>OUTPUT</td>
<td></td>
<td>[vector: line]</td>
<td>Indica il vettore lineare in uscita per i percorsi più brevi. Uno di: • Crea layer temporaneo (TEMPORARY_OUTPUT) • Salva come File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percorso piu breve</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Vettore lineare del percorso più breve o più veloce da ogni punto di partenza al punto di arrivo</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:shortestpathpointtopoint

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L' *id algoritmo* viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

24.1.8 Grafici

Grafico a barre

Crea un grafico a barre da una categoria e un campo layer.
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Nome campo categoria</td>
<td>NAME_FIELD</td>
<td>[tablefield: any]</td>
<td>Campo categoria da usare per raggruppare le barre (asse X)</td>
</tr>
<tr>
<td>Valore campo</td>
<td>VALUE_FIELD</td>
<td>[tablefield: any]</td>
<td>Valore da usare per il grafico (asse Y).</td>
</tr>
<tr>
<td>Grafico a barre</td>
<td>IN USCITA</td>
<td>[html]</td>
<td>Specifica il file HTML per il grafico. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

Codice Python

ID Algoritmo: qgis:barplot

```python
code
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomini i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

Box plot (grafico a scatole)

Crea un box plot da un campo categoria e un campo numerico del layer.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Nome campo categoria</td>
<td>NAME_FIELD</td>
<td>[tablefield: any]</td>
<td>Campo categoria da usare per raggruppare le scatole (asse X)</td>
</tr>
<tr>
<td>Valore campo</td>
<td>VALUE_FIELD</td>
<td>[tablefield: any]</td>
<td>Valore da usare per il grafico (asse Y).</td>
</tr>
<tr>
<td>Linee statistiche aggiuntive</td>
<td>MSD</td>
<td>[enumeration] Predefinito: 0</td>
<td>Ulteriori informazioni statistiche da aggiungere al grafico. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Mostra Media</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Mostra Deviazione Standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Non mostrare la media e la deviazione standard</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Box plot | IN USCITA | [html] | Specifica il file HTML per il grafico. Uno di:
- Salva come File Temporaneo
- Salva su File…
La codifica del file può anche essere cambiata qui. |

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box plot</td>
<td>IN USCITA</td>
<td>[html]</td>
<td>File HTML con il grafico. Disponibile nella Processing ➤ Visualizzatore Risultato.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:boxplot

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

Grafico della media e della deviazione standard

Crea un grafico a scatola con valori di media e deviazione standard.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabella in ingresso</td>
<td>IN INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Nome campo categoria</td>
<td>NAME_FIELD</td>
<td>[tablefield: any]</td>
<td>Campo categoria da usare per raggruppare le scatole (asse X)</td>
</tr>
<tr>
<td>Valore campo</td>
<td>VALUE_FIELD</td>
<td>[tablefield: any]</td>
<td>Valore da usare per il grafico (asse Y).</td>
</tr>
</tbody>
</table>
| Grafico | IN USCITA | [html] | Specifica il file HTML per il grafico. Uno di:
- Salva come File Temporaneo
- Salva su File…
La codifica del file può anche essere cambiata qui. |
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

Codice Python

ID Algoritmo: qgis:meanandstandarddeviationplot

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

Grafico polare

Genera un grafico polare basato sul valore di un layer vettoriale in ingresso.

Due campi devono essere inseriti come parametri: uno che definisce la categoria di ogni elemento (per raggruppare gli elementi) e un altro con la variabile da tracciare (questa deve essere numerica).

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Nome campo categoria</td>
<td>NAME_FIELD</td>
<td>[tablefield: any]</td>
<td>Campo categoria da usare per raggruppare gli elementi (asse X)</td>
</tr>
<tr>
<td>Valore campo</td>
<td>VALUE_FIELD</td>
<td>[tablefield: any]</td>
<td>Valore da usare per il grafico (asse Y).</td>
</tr>
<tr>
<td>Grafico polare</td>
<td>IN USCITA</td>
<td>[html]</td>
<td>Specifica il file HTML per il grafico. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
Codice Python

ID Algoritmo: qgis:polarplot

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ID algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

Istogramma layer raster

Genera un istogramma con i valori di un layer raster.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN INGRESSO</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Banda raster da usare per l’istogramma</td>
</tr>
<tr>
<td>Istogramma</td>
<td>IN USCITA</td>
<td>[html]</td>
<td>Specifica il file HTML per il grafico. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

Codice Python

ID Algoritmo: qgis:rasterlayerhistogram

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ID algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.
Istogramma layer vettoriale

Genera un istogramma con i valori dell'attributo di un layer vettoriale.
L'attributo da utilizzare per il calcolo dell'istogramma deve essere numerico.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Attributo</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Valore da usare per il grafico (asse Y).</td>
</tr>
<tr>
<td>Istogramma</td>
<td>IN USCITA</td>
<td>[html]</td>
<td>Specifica il file HTML per il grafico. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

Codice Python

ID Algoritmo: qgis:vectorlayerhistogram

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi **Usare gli algoritmi di Processing dalla console dei comandi** per dettagli su come eseguire algoritmi di processing dalla console Python.

Grafico di dispersione layer vettoriale

Crea un semplice grafico di dispersione X - Y per un layer vettoriale.
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Attributo X</td>
<td>XFIELD</td>
<td>[tablefield: any]</td>
<td>Campo da usare per l'asse X</td>
</tr>
<tr>
<td>Attributo Y</td>
<td>YFIELD</td>
<td>[tablefield: any]</td>
<td>Campo da usare per l'asse Y</td>
</tr>
<tr>
<td>Grafico di dispersione</td>
<td>IN USCITA</td>
<td>[html]</td>
<td>Specifica il file HTML per il grafico. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

Codice Python

ID Algoritmo: qgis:vectorlayersscatterplot

```python
import processing
goingalgy.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing.
Il dicionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Grafico di dispersione layer vettoriale 3D

Crea un grafico di dispersione in 3D per iun layer vettoriale.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Attributo X</td>
<td>XFIELD</td>
<td>[tablefield: any]</td>
<td>Campo da usare per l'asse X</td>
</tr>
<tr>
<td>Attributo Y</td>
<td>YFIELD</td>
<td>[tablefield: any]</td>
<td>Campo da usare per l'asse Y</td>
</tr>
<tr>
<td>Attributo Z</td>
<td>ZFIELD</td>
<td>[tablefield: any]</td>
<td>Campo da usare per l'asse Z</td>
</tr>
<tr>
<td>Istogramma</td>
<td>IN USCITA</td>
<td>[html]</td>
<td>Specifica il file HTML per il grafico. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

Codice Python

ID Algoritmo: qgis:scatter3dplot

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing.
Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

24.1.9 Analisi raster

Statistiche cella

Calcola statistiche per ogni cella basate su layer raster in ingresso e per ogni cella scrive le statistiche risultanti su un raster in uscita. In ogni posizione di cella, il valore in uscita è definito come una funzione di tutti i valori di cella sovrapposti dei raster di input.

Per impostazione predefinita, una cella NoData in QUALSIASI dei layer in ingresso risulterà in una cella NoData nel raster in uscita. Se l’opzione *Ignora valori NoData* è selezionata, allora i NoData in ingresso saranno ignorati nel calcolo delle statistiche. Questo può risultare in un risultato NoData per località dove tutte le celle sono NoData.

Il parametro *guilabel: Layer di riferimento* specifica un layer raster esistente da usare come riferimento quando si crea il raster in uscita. Il raster in uscita avrà la stessa estensione, SR e dimensioni in pixel di questo layer.

Dettagli di calcolo: I layer raster in ingresso che non corrispondono alla dimensione delle celle del layer raster di riferimento saranno ricampionati usando il ricampionamento del vicino più prossimo. Il tipo di dati raster in uscita sarà impostato sul tipo di dati più complesso presente nell’insieme di dati in ingresso, tranne quando si usano le funzioni Media, Deviazione Standard e Varianza (il tipo di dati è sempre Float32 o Float64 a seconda del tipo di numero reale in ingresso) o Conteggio e Varianza (il tipo di dati è sempre Int32).

- **Conteggio:** La statistica di conteggio darà sempre come risultato il numero di celle senza valori NoData nella posizione corrente della cella.
- **Mediana:** Se il numero di layer in ingresso è pari, la mediana sarà calcolata come media aritmetica dei due valori centrali delle celle ordinate in ingresso.
- **Minoranza/Maggioranza:** Se non è stato possibile trovare una minoranza o una maggioranza univoca, il risultato è NoData, tranne che tutti i valori delle celle in ingresso siano uguali.
Fig. 24.8: Esempio con tutte le funzioni statistiche. Le celle NoData sono prese in considerazione (in grigio).
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster] [list]</td>
<td>Raster in ingresso</td>
</tr>
<tr>
<td>Statistiche</td>
<td>STATISTIC</td>
<td>[enumeration]</td>
<td>Statistiche disponibili. Opzioni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — Somma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Conteggio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Media</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Mediana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Deviazione standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Varianza</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Minimo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — Massimo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — Minoranza (valore meno frequente)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — Maggioranza (valore più frequente)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — Intervalllo (max - min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — Variety (conteggio valore univoco)</td>
</tr>
<tr>
<td>Ignorare valori NoData</td>
<td>IGNORE_NODATA</td>
<td>[boolean]</td>
<td>Calcolare le statistiche anche per tutte le celle, ignorando le occorrenze di NoData.</td>
</tr>
<tr>
<td>Layer di riferimento</td>
<td>REF_LAYER</td>
<td>[raster]</td>
<td>Il layer di riferimento da cui creare il layer in uscita (estensione, SR, dimensioni dei pixel)</td>
</tr>
<tr>
<td>In uscita nessun valore di dati</td>
<td>OUTPUT_NO_DATA</td>
<td>[number]</td>
<td>Valore da usare per i nodata nel layer in uscita</td>
</tr>
<tr>
<td>Layer in uscita</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificatore SR authority</td>
<td>CRS_AUTHID</td>
<td>[sr]</td>
<td>Il sistema di riferimento delle coordinate dello layer raster in uscita</td>
</tr>
<tr>
<td>Estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>L'estensione spaziale del layer raster in uscita</td>
</tr>
<tr>
<td>Altezza in pixels</td>
<td>HEIGHT_IN_PIXELS</td>
<td>[integer]</td>
<td>L'altezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita contenente il risultato</td>
</tr>
<tr>
<td>Conteggio pixel totali</td>
<td>TOTAL_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel nel layer raster in uscita</td>
</tr>
<tr>
<td>Larghezza in pixels</td>
<td>WIDTH_IN_PIXELS</td>
<td>[integer]</td>
<td>La larghezza in pixel del layer raster in uscita</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: qgis:cellstatistics

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Fuzzify raster (appartenenza gaussiana)

Trasforma un raster in ingresso in un raster fuzzificato assegnando un valore di appartenenza ad ogni pixel, usando una funzione di appartenenza gaussiana. I valori di appartenenza vanno da 0 a 1. Nel raster fuzzificato, un valore di 0 implica nessuna appartenenza all’insieme fuzzy definito, mentre un valore di 1 significa piena appartenenza. La funzione di appartenenza gaussiana è definita come $\mu(x) = e^{-f1(x-f2)^2}$, dove $f1$ è la diffusione e $f2$ il punto medio.

![Input raster](image1.png) ![Fuzzified raster](image2.png)

Fig. 24.9: Esempio di Fuzzify raster. Fonte raster in ingresso: Land Tirol - data.tirol.gv.at.

Vedi anche:

- *Raster fuzzificato (grande adesione)*
- *Raster fuzzificato (appartenenza lineare)*
- *Fuzzificare raster (vicino all’appartenenza)*
- *Fuzzificare raster (appartenenza power)*
- *Fuzzificare raster (appartenenza small)*

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in ingresso</td>
<td>INPUT [raster]</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND [raster band]</td>
<td>Predefinito: La prima banda del layer raster</td>
<td>Se il raster è multibanda, scegli la banda che vuoi rendere fuzzy.</td>
</tr>
<tr>
<td>Funzione punto centrale</td>
<td>FUZZYMIDPOINT [number]</td>
<td>Predefinito: 10</td>
<td>Punto medio della funzione gaussiana</td>
</tr>
<tr>
<td>Funzione di diffusione</td>
<td>FUZZYSPREAD [number]</td>
<td>Predefinito: 0.01</td>
<td>Diffusione della funzione gaussiana</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.22 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer raster in uscita contenente il risultato</td>
</tr>
<tr>
<td>Identificatore SR authority</td>
<td>CRS_AUTHID</td>
<td>[sr]</td>
<td>Il sistema di riferimento delle coordinate dello layer raster in uscita</td>
</tr>
<tr>
<td>Estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>L'estensione spaziale del layer raster in uscita</td>
</tr>
<tr>
<td>Larghezza in pixels</td>
<td>WIDTH_IN_PIXELS</td>
<td>[integer]</td>
<td>La larghezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Altezza in pixels</td>
<td>HEIGHT_IN_PIXELS</td>
<td>[integer]</td>
<td>L'altezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Cotteggio pixel totali</td>
<td>TOTAL_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel nel layer raster in uscita</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:fuzzifyrastergaussianmembership

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'"id algoritmo" viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Raster fuzzificato (grande adesione)

Trasforma un raster in ingresso in un raster fuzzificato assegnando un valore di appartenenza ad ogni pixel, usando una funzione di appartenenza grande. I valori di appartenenza vanno da 0 a 1. Nel raster fuzzificato, un valore di 0 implica nessuna appartenenza all’insieme fuzzy definito, mentre un valore di 1 significa piena appartenenza. La funzione di appartenenza grande è definita come

\[\mu(x) = \frac{1}{1 + \left(\frac{x}{f_2}\right)^{f_1}} \]

dove \(f_1 \) è la diffusione e \(f_2 \) il punto medio.

Vedi anche:

- Fuzzify raster (appartenenza gaussiana), Raster fuzzificato (appartenenza lineare), Fuzzificare raster (vicino all’appartenenza), Fuzzificare raster (appartenenza power), Fuzzificare raster (appartenenza small)
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Predefinito: La prima banda del layer raster</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Se il raster è multibanda, scegli la banda che vuoi rendere fuzzy.</td>
</tr>
<tr>
<td>Funzione punto centrale</td>
<td>FUZZYMIDPOINT</td>
<td>[number]</td>
<td>Predefinito: 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Punto centrale della funzione grande</td>
</tr>
<tr>
<td>Funzione di diffusione</td>
<td>FUZZYSPREAD</td>
<td>[number]</td>
<td>Predefinito: 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diffusione della grande funzione</td>
</tr>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer raster in uscita contenente il risultato</td>
</tr>
<tr>
<td>Identificatore SR</td>
<td>CRS_AUTHID</td>
<td>[sr]</td>
<td>Il sistema di riferimento delle coordinate dello layer raster in uscita</td>
</tr>
<tr>
<td>authority</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>L'estensione spaziale del layer raster in uscita</td>
</tr>
<tr>
<td>Larghezza in pixels</td>
<td>WIDTH_IN_PIXELS</td>
<td>[integer]</td>
<td>La larghezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altezza in pixels</td>
<td>HEIGHT_IN_PIXELS</td>
<td>[integer]</td>
<td>L'altezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coteggio pixel totali</td>
<td>TOTAL_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel nel layer raster in uscita</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:fuzzifyrasterlargemembership

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'`id algoritmo` viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di elaborazione.
Il `dizionario dei parametri` fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Raster fuzzificato (appartenenza lineare)

Trasforma un raster in ingresso in un raster fuzzificato assegnando un valore di appartenenza ad ogni pixel, usando una funzione di appartenenza lineare. I valori di appartenenza vanno da 0 a 1. Nel raster fuzzificato, un valore di 0 implica nessuna appartenenza all’insieme fuzzy definito, mentre un valore di 1 significa piena appartenenza. La funzione lineare è definita come

\[\mu(x) = \begin{cases} 0 & x \leq a \\ \frac{x - a}{b - a} & a < x < b \\ 1 & x \geq b \end{cases} \]

dove \(a \) è il limite basso e \(b \) il limite alto. Questa equazione assegna i valori di appartenenza usando una trasformazione lineare per i valori dei pixel tra il limite basso e quello alto. I valori dei pixel più piccoli del limite inferiore sono dati 0, mentre i valori dei pixel più grandi del limite superiore sono dati 1.

Vedi anche:
- Fuzzify raster (appartenenza gaussiana), Raster fuzzificato (grande adesione), Fuzzificare raster (vicino all’appartenenza), Fuzzificare raster (appartenenza power), Fuzzificare raster (appartenenza small)

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Predefinito: La prima banda del layer raster</td>
</tr>
<tr>
<td>Bassa appartenenza fuzzy</td>
<td>FUZZYLOWBOUND</td>
<td>[number]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td>Alta appartenenza fuzzy</td>
<td>FUZZYHIGHBOUND</td>
<td>[number]</td>
<td>Predefinito: 1</td>
</tr>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>In uscita</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer raster in uscita contenente il risultato</td>
</tr>
<tr>
<td>Identificatore SR authority</td>
<td>CRS_AUTHID</td>
<td>[sr]</td>
<td>Il sistema di riferimento delle coordinate dello layer raster in uscita</td>
</tr>
<tr>
<td>Estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>L’estensione spatiale del layer raster in uscita</td>
</tr>
<tr>
<td>Larghezza in pixels</td>
<td>WIDTH_IN_PIXELS</td>
<td>[integer]</td>
<td>La larghezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Altezza in pixels</td>
<td>HEIGHT_IN_PIXELS</td>
<td>[integer]</td>
<td>L’altezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Conteggio pixel totali</td>
<td>TOTAL_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel nel layer raster in uscita</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: qgisfuzzifyrasterlinearmembership

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi [*Usare gli algoritmi di Processing dalla console dei comandi*](#) per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Fuzzificare raster (vicino all’appartenenza)

Trasforma un raster in ingresso in un raster fuzzificato assegnando un valore di appartenenza ad ogni pixel, usando una funzione di appartenenza Near. I valori di appartenenza vanno da 0 a 1. Nel raster fuzzificato, un valore di 0 implica nessuna appartenenza all’insieme fuzzy definito, mentre un valore di 1 significa piena appartenenza. La funzione di appartenenza near è definita come $\mu(x) = \frac{1}{1 + f1 \cdot (x - f2)^2}$, dove $f1$ è la diffusione e $f2$ il punto medio.

Vedi anche:

* Fuzzify raster (appartenenza gaussiana), Raster fuzzificato (grande adesione), Raster fuzzificato (appartenenza lineare), Fuzzificare raster (appartenenza power), Fuzzificare raster (appartenenza small)

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Predefinito: La prima banda del layer raster Se il raster è multibanda, scegli la banda che vuoi rendere fuzzy.</td>
</tr>
<tr>
<td>Funzione punto centrale</td>
<td>FUZZYMIDPOINT</td>
<td>[number]</td>
<td>Predefinito: 50 Punto centrale della funzione near</td>
</tr>
<tr>
<td>Funzione di diffusione</td>
<td>FUZZYSPREAD</td>
<td>[number]</td>
<td>Predefinito: 0.01 Diffusione della funzione near</td>
</tr>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer raster in uscita contenente il risultato</td>
</tr>
<tr>
<td>Identificatore SR</td>
<td>CRS_AUTHID</td>
<td>[sr]</td>
<td>Il sistema di riferimento delle coordinate dello layer raster in uscita</td>
</tr>
<tr>
<td>Estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>L’estensione spaziale del layer raster in uscita</td>
</tr>
<tr>
<td>Larghezza in pixels</td>
<td>WIDTH_IN_PIXELS</td>
<td>[integer]</td>
<td>La larghezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Altezza in pixels</td>
<td>HEIGHT_IN_PIXELS</td>
<td>[integer]</td>
<td>L’altezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Coteggio pixel totali</td>
<td>TOTAL_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel nel layer raster in uscita</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:fuzzifyrasternearmembership

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i **Nome** e i **valori** dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Fuzzificare raster (appartenenza power)

Trasforma un raster in ingresso in un raster fuzzificato assegnando un valore di appartenenza ad ogni pixel, usando una funzione di appartenenza Power. I valori di appartenenza vanno da 0 a 1. Nel raster fuzzificato, un valore di 0 implica nessuna appartenenza all’insieme fuzzy definito, mentre un valore di 1 significa piena appartenenza. La funzione di potenza è definita come

\[
\mu(x) = \begin{cases}
0 & x \leq a \\
\left(\frac{x-a}{b-a}\right)^f & a < x < b \\
1 & x \geq b
\end{cases}
\]

 dove \(a \) è il limite basso, \(b \) è il limite alto, e \(f \) l’esponente. Questa equazione assegna i valori di appartenenza usando la trasformazione di potenza per i valori dei pixel tra il limite basso e quello alto. I valori dei pixel più piccoli del limite inferiore sono dati 0, mentre i valori dei pixel più grandi del limite superiore sono dati 1.

Vedi anche:

Fuzzify raster (appartenenza gaussiana), Raster fuzzificato (grande adesione), Raster fuzzificato (appartenenza lineare), Fuzzicare raster (vicino all’appartenenza), Fuzzicare raster (appartenenza small)
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Predefinito: La prima banda del layer raster</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Se il raster è multibanda, scegli la banda che vuoi rendere fuzzy.</td>
</tr>
<tr>
<td>Bassa appartenenza fuzzy</td>
<td>FUZZYLOWBOUND</td>
<td>[number]</td>
<td>Limite basso della funzione di potenza</td>
</tr>
<tr>
<td>Alta appartenenza fuzzy</td>
<td>FUZZYHIGHBOUND</td>
<td>[number]</td>
<td>Limite alto della funzione di potenza</td>
</tr>
<tr>
<td>Alta appartenenza fuzzy</td>
<td>FUZZYEXPONENT</td>
<td>[number]</td>
<td>Esponente della funzione di elevazione a potenza</td>
</tr>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer raster in uscita contenente il risultato</td>
</tr>
<tr>
<td>Identificatore SR authority</td>
<td>CRS_AUTHID</td>
<td>[sr]</td>
<td>Il sistema di riferimento delle coordinate dello layer raster in uscita</td>
</tr>
<tr>
<td>Estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>L'estensione spaziale del layer raster in uscita</td>
</tr>
<tr>
<td>Larghezza in pixels</td>
<td>WIDTH_IN_PIXELS</td>
<td>[integer]</td>
<td>La larghezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Altezza in pixels</td>
<td>HEIGHT_IN_PIXELS</td>
<td>[integer]</td>
<td>L'altezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Coteggio pixel totali</td>
<td>TOTAL_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel nel layer raster in uscita</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgisfuzzifyrasterpowermembership

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Fuzzificare raster (appartenenza small)

Trasforma un raster in ingresso in un raster fuzzificato assegnando un valore di appartenenza ad ogni pixel, usando una funzione di appartenenza Small. I valori di appartenenza vanno da 0 a 1. Nel raster fuzzificato, un valore di 0 implica nessuna appartenenza all’insieme fuzzy definito, mentre un valore di 1 significa piena appartenenza. La funzione di appartenenza piccola è definita come

\[\mu(x) = \frac{1}{1 + \left(\frac{x}{f2} \right)^{f1}} \]

dove \(f1 \) è la diffusione e \(f2 \) il punto centrale.

Vedi anche:

Fuzzify raster (appartenenza gaussiana), Raster fuzzificato (grande adesione) Raster fuzzificato (appartenenza lineare), Fuzzificare raster (vicino all’appartenenza), Fuzzificare raster (appartenenza power)

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in ingresso</td>
<td>INPUT [raster]</td>
<td>Layer raster in ingresso</td>
<td></td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND [raster band]</td>
<td>Predefinito: La prima banda del layer raster</td>
<td>Se il raster è multibanda, scegli la banda che vuoi renderne fuzzy.</td>
</tr>
<tr>
<td>Funzione punto centrale</td>
<td>FUZZYMIDPOINT [number]</td>
<td>Predefinito: 50</td>
<td>Punto centrale della funzione piccola</td>
</tr>
<tr>
<td>Funzione di diffusione</td>
<td>FUZZYSPREAD [number]</td>
<td>Predefinito: 5</td>
<td>Diffusione della piccola funzione</td>
</tr>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT [same as input]</td>
<td></td>
<td>Specificazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster fuzzificato</td>
<td>OUTPUT [same as input]</td>
<td>Layer raster in uscita contenente il risultato</td>
<td></td>
</tr>
<tr>
<td>Identificatore SR authority</td>
<td>CRS_AUTHID [sr]</td>
<td>Il sistema di riferimento delle coordinate dello layer raster in uscita</td>
<td></td>
</tr>
<tr>
<td>Estensione</td>
<td>EXTENT [extent]</td>
<td>L'estensione spaziale del layer raster in uscita</td>
<td></td>
</tr>
<tr>
<td>Larghezza in pixels</td>
<td>WIDTH_IN_PIXELS [integer]</td>
<td>La larghezza in pixel del layer raster in uscita</td>
<td></td>
</tr>
<tr>
<td>Altezza in pixels</td>
<td>HEIGHT_IN_PIXELS [integer]</td>
<td>L'altezza in pixel del layer raster in uscita</td>
<td></td>
</tr>
<tr>
<td>Coteaggio pixel totali</td>
<td>TOTAL_PIXEL_COUNT [integer]</td>
<td>Il conteggio dei pixel nel layer raster in uscita</td>
<td></td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: qgisfuzzifyrastersmallmembership

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'`id algoritmo` viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di elaborazione.
Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Booleano AND sui raster

Calcola il booleano `AND` per un insieme di raster in ingresso. Se tutti i raster in ingresso hanno un valore diverso da zero per un pixel, quel pixel sarà impostato a 1 nel raster in uscita. Se uno qualsiasi dei raster in ingresso ha valori 0 per il pixel, questo sarà impostato a 0 nel raster in uscita.

Il parametro layer di riferimento specifica un layer raster esistente da usare come riferimento quando si crea il raster in uscita. Il raster di uscita avrà la stessa estensione, SR e dimensioni in pixel di questo layer.

Per impostazione predefinita, un pixel nodata in QUALSIASI dei layer in ingresso risulterà in un pixel nodata nel raster in uscita. Se l'opzione `Tratta i valori nodata come falsi` è selezionata, allora i nodata in ingresso saranno trattati come un valore in ingresso 0.

Vedi anche:

Booleano OR sui raster

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster] [list]</td>
<td>Lista dei layer raster in ingresso</td>
</tr>
<tr>
<td>Layer di riferimento</td>
<td>REF_LAYER</td>
<td>[raster]</td>
<td>Il layer di riferimento da cui creare il layer in uscita (estensione, SR, dimensioni dei pixel)</td>
</tr>
<tr>
<td>Considera i valori di nodata come false.</td>
<td>NODATA_AS_FALSE</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>In uscita nessun valore di dati</td>
<td>NO_DATA</td>
<td>[number]</td>
<td>Predefinito: -9999,0</td>
</tr>
</tbody>
</table>
| **Tipo dei dati in uscita** | DATA_TYPE | [enumeration] | Predefinito: 5 | Tipo di dati raster in uscita. Opzioni:
 • 0 — Byte
 • 1 — Int16
 • 2 — Interi senza segno 16 bit
 • 3 — Interi senza segno 32 bit
 • 4 — Int32
 • 5 — Float32
 • 6 — Float64
 • 7 — Chnt16
 • 8 — Chnt32
 • 9 — CFloat32
 • 10 — CFloat64 |
| **Layer in uscita** | OUTPUT | [raster] | Layer raster in uscita |
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>L'estensione del layer raster in uscita</td>
</tr>
<tr>
<td>Identificatore</td>
<td>CRS_AUTHID</td>
<td>[sr]</td>
<td>Il sistema di riferimento delle coordinate dello layer raster in uscita</td>
</tr>
<tr>
<td>Larghezza in</td>
<td>WIDTH_IN_PIXELS</td>
<td>[integer]</td>
<td>La larghezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altezza in</td>
<td>HEIGHT_IN_PIXELS</td>
<td>[integer]</td>
<td>L'altezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conteggio</td>
<td>TOTAL_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel nel layer raster in uscita</td>
</tr>
<tr>
<td>totali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conteggio</td>
<td>NODATA_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel nodata nel layer raster in uscita</td>
</tr>
<tr>
<td>pixel NODATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conteggio</td>
<td>TRUE_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel True (valore = 1) nel layer raster in uscita</td>
</tr>
<tr>
<td>dei pixel True</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conteggio</td>
<td>FALSE_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel False (valore = 0) nel layer raster in uscita</td>
</tr>
<tr>
<td>dei pixel False</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita contenente il risultato</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:rasterbooleanand

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'`id algoritmo` viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di elaborazione. Il `dizionario dei parametri` fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Booleano OR sui raster

Calcola il booleano OR per un insieme di raster in ingresso. Se tutti i raster in ingresso hanno un valore zero per un pixel, quel pixel sarà impostato a 0 nel raster in uscita. Se uno qualsiasi dei raster in ingresso ha valori 1 per il pixel, questo sarà impostato su 1 nel raster in uscita.

Il parametro layer di riferimento specifica un layer raster esistente da usare come riferimento quando si crea il raster in uscita. Il raster di uscita avrà la stessa estensione, SR e dimensioni in pixel di questo layer.

Per impostazione predefinita, un pixel nodata in QUALSIASI dei layer in ingresso risulterà in un pixel nodata nel raster in uscita. Se l'opzione *Tratta i valori nodata come falsi* è selezionata, allora i nodata in ingresso saranno trattati come un valore in ingresso 0.

Vedi anche:

Booleano AND sui raster
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster] list</td>
<td>Lista dei layer raster in ingresso</td>
</tr>
<tr>
<td>Layer di riferimento</td>
<td>REF_LAYER</td>
<td>[raster]</td>
<td>Il layer di riferimento da cui creare il layer in uscita (estensione, SR, dimensioni dei pixel)</td>
</tr>
<tr>
<td>Considera i valori di nodata come false.</td>
<td>NODATA_AS_FALSE</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>In uscita nessun valore di dati</td>
<td>NO_DATA</td>
<td>[number]</td>
<td>Predefinito: -9999.0</td>
</tr>
<tr>
<td>Tipo dei dati in uscita</td>
<td>DATA_TYPE</td>
<td>[enumeration]</td>
<td>Predefinito: 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tipo di dati raster in uscita. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Int16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Interi senza segno 16 bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Interi senza segno 32 bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Int32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Float64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — Clnt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — Clnt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — CFloat32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — CFloat64</td>
</tr>
<tr>
<td>Layer in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>L’estensione del layer raster in uscita</td>
</tr>
<tr>
<td>Identificatore SR authority</td>
<td>CRS_AUTHID</td>
<td>[sr]</td>
<td>Il sistema di riferimento delle coordinate dello layer raster in uscita</td>
</tr>
<tr>
<td>Larghezza in pixels</td>
<td>WIDTH_IN_PIXELS</td>
<td>[integer]</td>
<td>La larghezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Altezza in pixels</td>
<td>HEIGHT_IN_PIXELS</td>
<td>[integer]</td>
<td>L’altezza in pixel del layer raster in uscita</td>
</tr>
<tr>
<td>Coteggio pixel totali</td>
<td>TOTAL_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel nel layer raster in uscita</td>
</tr>
<tr>
<td>Consegno pixel NODATA</td>
<td>NODATA_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel nodata nel layer raster in uscita</td>
</tr>
<tr>
<td>Consegno dei pixel True</td>
<td>TRUE_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel True (valore = 1) nel layer raster in uscita</td>
</tr>
<tr>
<td>Consegno dei pixel False</td>
<td>FALSE_PIXEL_COUNT</td>
<td>[integer]</td>
<td>Il conteggio dei pixel False (valore = 0) nel layer raster in uscita</td>
</tr>
<tr>
<td>Layer in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita contenente il risultato</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: qgis:rasterbooleanor

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Calcolatore raster

Esegue operazioni algebriche sui layer raster.

Il layer risultante avrà i suoi valori calcolati secondo un’espressione. L’espressione può contenere valori numerici, operatori e riferimenti a qualsiasi layer del progetto corrente.

Nota: Quando si usa il calcolatore in L’interfaccia per i processi in serie o dalla Console python di QGIS bisogna specificare i file da usare. I layer corrispondenti sono riferiti usando il nome base del file (senza il percorso completo). Per esempio, se si usa un layer in path/to/my/rasterfile.tif, la prima banda di quel layer sarà riferita come rasterfile.tif@1.

Vedi anche:

Calcolatore raster

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>Solo GUI</td>
<td></td>
<td>Mostra T stencil di tutti i layer raster caricati nella legenda. Questi possono essere usati per riempire la casella di espressione (doppio click per aggiungere). I layer raster sono indicati dal loro nome e dal numero della banda: nome_layer@numero_banda. Per esempio, la prima banda di un layer chiamato DEM sarà indicata come DEM@1.</td>
</tr>
<tr>
<td>Operatori</td>
<td>Solo GUI</td>
<td></td>
<td>Contiene alcuni pulsanti simili a quelli del calcolatore che possono essere utilizzati per riempire la casella di espressione.</td>
</tr>
<tr>
<td>Espressione</td>
<td>EXPRESSION</td>
<td>[string]</td>
<td>Espressione che verrà usata per calcolare il layer raster in uscita. Puoi usare i pulsanti operatore forniti per digitare direttamente l'espressione in questa casella.</td>
</tr>
<tr>
<td>Espressioni predefinite</td>
<td>Solo GUI</td>
<td></td>
<td>Puoi usare l'espressione predefinita NDVI o puoi definire nuove espressioni per i calcoli. Il pulsante Aggiungere... carica un'espressione definita (e ti permette di impostare i parametri). Il pulsante Salvare... ti permette di definire una nuova espressione.</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di riferimento (usato(i) per l'estensione automatica, la dimensione delle celle e il SR). Opzionale</td>
<td>LAYERS</td>
<td>[raster] [list]</td>
<td>Layer che sarà utilizzato(i) per ottenere l'estensione, la dimensione delle celle e il SR. Scegliendo il layer in questa casella si evita di riempire a mano tutti gli altri parametri. I layer raster sono indicati dal loro nome e dal numero della banda: nome_layer@numero_banda. Per esempio, la prima banda di un livello chiamato DEM sarà indicata come DEM@1.</td>
</tr>
<tr>
<td>Dimensione della cella (usare 0 o vuoto per impostarla automaticamente). Opzionale</td>
<td>CELLSIZE</td>
<td>[number]</td>
<td>Dimensione delle celle del layer raster in uscita. Se la dimensione delle celle non è specificata, verrà utilizzata la dimensione minima delle celle del(i) layer di riferimento selezionato. La dimensione della cella sarà la stessa per gli assi X e Y.</td>
</tr>
<tr>
<td>Estensione in uscita (xmin, xmax, ymin, ymax) Opzionale</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Estensione del layer raster in uscita. Se l'estensione non è specificata, verrà usata l'estensione minima che copre tutti i layer di riferimento selezionati.</td>
</tr>
<tr>
<td>SR in uscita Opzionale</td>
<td>SR</td>
<td>[sr]</td>
<td>SR del layer raster in uscita. Se il SR in uscita non è specificato, verrà usato il SR del primo layer di riferimento.</td>
</tr>
</tbody>
</table>
| In uscita | OUTPUT | [raster] | Predefinito:
Salvare come File Temporaneo
Salvare come File...
La codifica del file può anche essere cambiata qui. |

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>In uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>File raster in uscita con i valori calcolati.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:rastercalculator

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'**id algoritmo** viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomini e i valori dei parametri. Vedi **Usare gli algoritmi di Processing dalla console dei comandi** per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Statistiche sui layer raster

Calcola le statistiche di base dai valori in una data banda del layer raster. Il risultato viene caricato nel menu Processing ➤ Visualizzatore Risultati.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Predefinito: La prima banda del layer in ingresso Se il raster è multibanda, scegli la banda per la quale vuoi ottenere le statistiche.</td>
</tr>
<tr>
<td>In uscita</td>
<td>OUTPUT_HTML_FILE</td>
<td>[html]</td>
<td>Indicazione del file in uscita: Ignora risultato Salva come File Temporaneo Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore Medio</td>
<td>MEAN</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td>Valore Minimo</td>
<td>MIN</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td>In uscita</td>
<td>OUTPUT_HTML_FILE</td>
<td>[html]</td>
<td></td>
</tr>
<tr>
<td>Intervallo</td>
<td>RANGE</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td>Deviazione standard</td>
<td>STD_DEV</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td>Somma</td>
<td>SUM</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td>Somma dei quadrati</td>
<td>SUM_OF_SQUARES</td>
<td>[number]</td>
<td></td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: qgis:rasterlayerstatistics

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algortimo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione.

Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Report valori univoci del layer raster

Restituisce il conteggio e l’area di ogni valore univoco in un dato layer raster.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Se il raster è multibanda, scegli la banda per la quale vuoi ottenere le statistiche.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: La prima banda del layer in ingresso</td>
<td></td>
</tr>
<tr>
<td>Report valori univoci</td>
<td>OUTPUT_HTML_FILE</td>
<td>[file]</td>
<td>Indicazione del file in uscita:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Salva su file temporaneo]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ignora risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Tabella valori univoci</td>
<td>OUTPUT_TABLE</td>
<td>[table]</td>
<td>Indicazione della tabella per i valori univoci</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Skip output]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ignora risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in GeoPackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva nella Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificatore SR authority</td>
<td>CRS_AUTHID</td>
<td>[sr]</td>
<td></td>
</tr>
<tr>
<td>Estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td></td>
</tr>
<tr>
<td>Altezza in pixels</td>
<td>HEIGHT_IN_PIXELS</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td>Conteggio pixel NODATA</td>
<td>NODATA_PIXEL_COUNT</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td>Conteggio pixel totali</td>
<td>TOTALPIXEL_COUNT</td>
<td>[number]</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report valori univoci</td>
<td>OUTPUT_HTML_FILE [html]</td>
<td></td>
<td>Il file HTML in uscita contiene le seguenti informazioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• File analizzato: il percorso del layer raster</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Estensione: xmin, ymin, xmax, ymax coordinate dell’estensione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Proiezione: proiezione del layer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Larghezza in pixel: numero di colonne e dimensione della larghezza dei pixel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Altezza in pixel: numero di righe e dimensione dell’altezza dei pixel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Conteggio totale dei pixel: conteggio di tutti i pixel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Conteggio pixel NODATA: conteggio dei pixel con valore NODATA</td>
</tr>
<tr>
<td>Tabella valori univoci</td>
<td>OUTPUT_TABLE [table]</td>
<td></td>
<td>Una tabella con tre colonne:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• value: valore pixel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• count: conteggio dei pixel con questo valore</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• m^2: area totale in metri quadrati dei pixel con questo valore.</td>
</tr>
<tr>
<td>Larghezza in pixels</td>
<td>WIDTH_IN_PIXELS [number]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:rasterlayeruniquevaluesreport

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Statistiche zonali del layer raster

Calcola le statistiche per i valori di un layer raster, classificati per zone definite in un altro layer raster.

Vedi anche:
Statistiche zonali

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Se il raster è multibanda scegli la banda per la quale vuoi calcolare le statistiche.</td>
</tr>
<tr>
<td>Zone Layer</td>
<td>ZONES</td>
<td>[raster]</td>
<td>Layer raster che definisce le zone. Le zone sono date da pixel contigui che hanno lo stesso valore di pixel.</td>
</tr>
<tr>
<td>Numero di banda</td>
<td>ZONES_BAND</td>
<td>[raster band]</td>
<td>Se il raster è multibanda, scegli la banda che definisce le zone</td>
</tr>
<tr>
<td>delle zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer di riferimento</td>
<td>REF_LAYER</td>
<td>[enumeration]</td>
<td>Layer raster usato per calcolare i centroidi che saranno usati come riferimento per determinare le zone nel layer in uscita. Uno di:</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td>• 0 — Layer in ingresso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Zone layer</td>
</tr>
<tr>
<td>Statistiche</td>
<td>OUTPUT_TABLE</td>
<td>[table]</td>
<td>Tabella con le statistiche calcolate</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificatore SR</td>
<td>CRS_AUTHID</td>
<td>[sr]</td>
<td></td>
</tr>
<tr>
<td>authority</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td></td>
</tr>
<tr>
<td>Altezza in pixels</td>
<td>HEIGHT_IN_PIXELS</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td>Conteggio pixel NODATA</td>
<td>NODATA PIXEL_COUNT</td>
<td>[number]</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.32 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistiche</td>
<td>OUTPUT_TABLE</td>
<td>[table]</td>
<td>Il layer in uscita contiene le seguenti informazioni per ogni zona:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Area: l’area in unità raster quadrate nella zona;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Sum: la somma totale dei valori dei pixel nella zona;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Count: il numero di pixel nella zona;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Min: il valore minimo del pixel nella zona;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Max: il valore massimo del pixel nella zona;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mean: la media dei valori dei pixel nella zona;</td>
</tr>
<tr>
<td>Coteggio pixel totali</td>
<td>TOTAL_PIXEL_COUNT</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td>Larghezza in pixels</td>
<td>WIDTH_IN_PIXELS</td>
<td>[number]</td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:rasterlayerzonalstats

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Volume della superficie raster

Calcola il volume sotto una superficie raster rispetto ad un dato livello di base. Questo è utile soprattutto per i modelli digitali di elevazione (DEM).

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Raster in ingresso, rappresentante una superficie</td>
</tr>
<tr>
<td>Numero banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Se il raster è multibanda, scegli la banda che deve definire la superficie.</td>
</tr>
<tr>
<td>Livello Base</td>
<td>LEVEL</td>
<td>[number]</td>
<td>Definisci una base o un valore di riferimento. Questa base è usata nel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>calcolo del volume secondo il parametro Method (vedi sotto).</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.33 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Metodo | METHOD | [enumeration] | Definisce il metodo per il calcolo del volume dato dalla differenza tra il valore del pixel del raster e il livello base. Opzioni:
 • 0 — Count Only Above Base Level: solo i pixel sopra il livello di base saranno aggiunti al volume.
 • 1 — Count Only Below Base Level: solo i pixel sotto il livello di base si aggiungono al volume.
 • 2 — Subtract Volumes Below Base level: i pixel sopra il livello di base si aggiungono al volume, i pixel sotto il livello di base si sottraggono dal volume.
 • 3 — Add Volumes Below Base level: Aggiungere il volume indipendentemente dal fatto che il pixel sia sopra o sotto il livello di base. Questo equivale a sommare i valori assoluti della differenza tra il valore del pixel e il livello di base. |
| Report volume della superficie | OUTPUT_HTML_FILE | [html] | Indicazione del report HTML in uscita. Uno di:
 • Ignora risultato
 • Salva in un File Temporaneo
 • Salva come File…
 La codifica del file può anche essere cambiata qui. |
| Tabella del volume della superficie | OUTPUT_TABLE | [table] | Indicazione della tabella in uscita Uno di:
 • Ignora risultato
 • Crea livello temporaneo (TEMPORARY_OUTPUT)
 • Salva come File…
 • Salva come Geopackage…
 • Salva su Tabella PostGIS…
 La codifica del file può anche essere cambiata qui. |

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>VOLUME</td>
<td>[number]</td>
<td>Il volume calcolato</td>
</tr>
<tr>
<td>Area</td>
<td>AREA</td>
<td>[number]</td>
<td>L’area in unità di mappa al quadrato</td>
</tr>
<tr>
<td>Pixel_count</td>
<td>PIXEL_COUNT</td>
<td>[number]</td>
<td>Il numero totale di pixel che sono stati analizzati</td>
</tr>
<tr>
<td>Report volume della superficie</td>
<td>OUTPUT_HTML_FILE</td>
<td>[html]</td>
<td>Il report in uscita (contenente volume, area e conteggio dei pixel) in formato HTML</td>
</tr>
<tr>
<td>Tabella del volume della superficie</td>
<td>OUTPUT_TABLE</td>
<td>[table]</td>
<td>La tabella in uscita (contenente volume, area e numero di pixel)</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: qgis:rastersurfacevolume

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Riclassificare in base al layer

Riclassifica una banda raster assegnando nuove classi di valori basati sugli intervalli specificati in una tabella vettoriale.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Raster</td>
<td>INPUT_RASTER</td>
<td>[raster]</td>
<td>Layer raster da riclassificare</td>
</tr>
<tr>
<td>Numero banda</td>
<td>RASTER_BAND</td>
<td>[raster band]</td>
<td>Se il raster è multibanda, scegli la banda che vuoi riclassificare.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: La prima banda del layer raster</td>
<td></td>
</tr>
<tr>
<td>Layer contenente le discontinuità di classe</td>
<td>INPUT_TABLE</td>
<td>[vector: any]</td>
<td>Layer vettoriale contenente i valori da utilizzare per la classificazione.</td>
</tr>
<tr>
<td>Campo valore minimo della classe</td>
<td>MIN_FIELD</td>
<td>[tablefield: numeric]</td>
<td>Campo con il valore minimo dell’intervallo per la classe.</td>
</tr>
<tr>
<td>Campo valore massimo della classe</td>
<td>MAX_FIELD</td>
<td>[tablefield: numeric]</td>
<td>Campo con il valore massimo dell’intervallo per la classe.</td>
</tr>
<tr>
<td>Campo valore in uscita</td>
<td>VALUE_FIELD</td>
<td>[tablefield: numeric]</td>
<td>Campo con il valore che sarà assegnato ai pixel che rientrano nella classe (tra i valori min e max corrispondenti).</td>
</tr>
<tr>
<td>In uscita nessun valore di dati</td>
<td>NO_DATA</td>
<td>[number]</td>
<td>Valore da applicare ai valori no data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: -9999.0</td>
<td></td>
</tr>
<tr>
<td>Limiti dell’intervallo</td>
<td>RANGE_BOUNDARIES</td>
<td>[enumeration]</td>
<td>Definisce le regole di confronto per la classificazione. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — min < value <= max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — min <= value < max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — min <= value <= max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — min < value < max</td>
</tr>
<tr>
<td>Usa no data quando nessun intervallo corrisponde al valore</td>
<td>NODATA_FOR_MISS</td>
<td>[boolean]</td>
<td>I valori che non appartengono a una classe avranno il valore no data. Se False, viene mantenuto il valore originale.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
</tbody>
</table>
Tabella 24.34 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Tipo dei dati in uscita | DATA_TYPE | [enumeration] Predefinito: 5 | Definisce il tipo di dati del file raster in uscita. Opzioni:
 • 0 — Byte
 • 1 — Int16
 • 2 — Interi senza segno 16 bit
 • 3 — Interi senza segno 32 bit
 • 4 — Int32
 • 5 — Float32
 • 6 — Float64
 • 7 — CInt16
 • 8 — CInt32
 • 9 — CFloat32
 • 10 — CFloat64 |
| Raster riclassificato | OUTPUT | [raster] | Specificazione del raster in uscita. Uno di:
 • Salva come File Temporaneo
 • Salva come File…
 La codifica del file può anche essere cambiata qui. |

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster riclassificato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita con valori di banda riclassificati</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: `qgis:reclassifybylayer`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’`id algoritmo` viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il `dizionario dei parametri` fornisce i nomi e i valori dei parametri. Vedi `Usare gli algoritmi di Processing dalla console dei comandi` per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Riclassificare in base a tabella

Riclassifica una banda raster assegnando nuovi valori di classe basati sugli intervalli specificati in una fissata tabella.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Raster</td>
<td>INPUT_RASTER</td>
<td>[raster]</td>
<td>Layer raster da riclassificare</td>
</tr>
<tr>
<td>Numero banda</td>
<td>RASTER_BAND</td>
<td>[raster band]</td>
<td>Banda raster per la quale vuoi ricalcolare i valori.</td>
</tr>
<tr>
<td>Tabella di riclassificazione</td>
<td>TABLE</td>
<td>[table]</td>
<td>Una tabella a 3 colonne da riempire con i valori per impostare i limiti di ogni classe (Minimo e Massimo) e il nuovo Valore da assegnare ai valori della banda che rientrano nella classe.</td>
</tr>
<tr>
<td>In uscita nessun valore di dati</td>
<td>NO_DATA</td>
<td>[number]</td>
<td>Valore da applicare ai valori no data.</td>
</tr>
<tr>
<td>Limiti dell’intervallo</td>
<td>RANGE_BOUNDARIES</td>
<td>[enumeration]</td>
<td>Definisce le regole di confronto per la classificazione. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — min < value <= max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — min <= value < max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — min <= value <= max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — min < value < max</td>
</tr>
<tr>
<td>Usa no data quando nessun intervallo corrisponde al valore</td>
<td>NODATA_FOR_MISSING</td>
<td>[boolean]</td>
<td>Applica il valore no data ai valori di banda che non rientrano in nessuna classe. Se False, viene mantenuto il valore originale.</td>
</tr>
<tr>
<td>Tipo dei dati in uscita</td>
<td>DATA_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il formato del file raster in uscita. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 5</td>
<td>• 0 — Byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Int16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Interi senza segno 16 bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Interi senza segno 32 bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Int32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Float64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — CInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — CInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — CFloat32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — CFloat64</td>
</tr>
<tr>
<td>Raster riclassificato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica del layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “[Save to temporary file]”</td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster riclassificato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Il layer raster in uscita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “[Save to temporary file]”</td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:reclassifybytable

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Rescale raster

Rescales raster layer to a new value range, while preserving the shape (distribution) of the raster's histogram (pixel values). Input values are mapped using a linear interpolation from the source raster’s minimum and maximum pixel values to the destination minimum and maximum pixel range.

By default the algorithm preserves the original NODATA value, but there is an option to override it.

![Input raster and Output raster diagram](image)

Fig. 24.10: Rescaling values of a raster layer from [0 - 50] to [100 - 1000]
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Raster layer to use for rescaling</td>
</tr>
<tr>
<td>Numero banda</td>
<td>Band</td>
<td>[raster band]</td>
<td>Se il raster è multibanda, scegli una banda.</td>
</tr>
<tr>
<td>New minimum value</td>
<td>MINIMUM</td>
<td>[number]</td>
<td>0.0 Minimum pixel value to use in the rescaled layer</td>
</tr>
<tr>
<td>New maximum value</td>
<td>MAXIMUM</td>
<td>[number]</td>
<td>255.0 Maximum pixel value to use in the rescaled layer</td>
</tr>
<tr>
<td>New NODATA value</td>
<td>NODATA</td>
<td>[number]</td>
<td>Value to assign to the NODATA pixels. If unset, original NODATA values are preserved.</td>
</tr>
<tr>
<td>Rescaled</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica del layer raster in uscita. Uno di:</td>
</tr>
</tbody>
</table>

Codice Python

Algorithm ID: `native:rescaleraster`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'**id algoritmo** viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Round raster

Rounds the cell values of a raster dataset according to the specified number of decimals.

Alternatively, a negative number of decimal places may be used to round values to powers of a base n. For example, with a Base value n of 10 and Decimal places of -1, the algorithm rounds cell values to multiples of 10, -2 rounds to multiples of 100, and so on. Arbitrary base values may be chosen, the algorithm applies the same multiplicative principle. Rounding cell values to multiples of a base n may be used to generalize raster layers.

The algorithm preserves the data type of the input raster. Therefore byte/integer rasters can only be rounded to multiples of a base n, otherwise a warning is raised and the raster gets copied as byte/integer raster.
Fig. 24.11: Rounding values of a raster

Parametri

Basic parameters

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster</td>
<td>INPUT [raster]</td>
<td></td>
<td>The raster to process.</td>
</tr>
<tr>
<td>Numero banda</td>
<td>BAND [number]</td>
<td></td>
<td>The band of the raster</td>
</tr>
<tr>
<td>Rounding direction</td>
<td>ROUNING_DIRECTION [list]</td>
<td>Predefinito: 1</td>
<td>How to choose the target rounded value. Options are: 0 - Round up 1 - Round to nearest 2 - Round down</td>
</tr>
<tr>
<td>Number of decimals places</td>
<td>DECIMAL_PLACES [number]</td>
<td>Predefinito: 2</td>
<td>Number of decimals places to round to. Use negative values to round cell values to a multiple of a base n</td>
</tr>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT [raster]</td>
<td></td>
<td>Specification of the output file. One of: • Salve come File Temporaneo • Salva come File…</td>
</tr>
</tbody>
</table>

Advanced parameters

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base n for rounding to multiples of n</td>
<td>BASE_N [number]</td>
<td>Predefinito: 10</td>
<td>When the DECIMAL_PLACES parameter is negative, raster values are rounded to multiples of the base n value</td>
</tr>
</tbody>
</table>
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>The output raster layer with values rounded for the selected band.</td>
</tr>
</tbody>
</table>

Codice Python

Algorithm ID: native:roundrastervalues

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’**id algoritmo** viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi **Usare gli algoritmi di Processing dalla console dei comandi** per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Raster valori campione

Estrae i valori raster nelle posizioni dei punti. Se il layer raster è multibanda, ogni banda viene campionata. La tabella degli attributi del layer risultante avrà tante nuove colonne quante sono le bande del layer raster.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di punti in ingresso</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale puntuale da usare per il campionamento</td>
</tr>
<tr>
<td>Layer raster da campionare</td>
<td>RASTERCOPY</td>
<td>[raster]</td>
<td>Layer raster da campionare nelle posizioni dei punti indicati.</td>
</tr>
<tr>
<td>Prefisso colonna in uscita</td>
<td>COLUMN_PREFIX</td>
<td>[string]</td>
<td>Prefisso per i nomi delle colonne aggiunte.</td>
</tr>
</tbody>
</table>
| Punti Campionati Opzionale | OUTPUT | [vector: point] Predefinito: [Create temporary layer] | Specificare il layer in uscita che contiene i valori campionati. Uno di:
| | | | • Crea livello temporaneo (TEMPORARY_OUTPUT) |
| | | | • Salva come File… |
| | | | • Salva come Geopackage… |
| | | | • Save to Database Table… |
| | | | La codifica del file può anche essere cambiata qui. |
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti Campionati</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer in uscita che contiene i valori campionati.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: `qgis:rastersampling`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'`id algoritmo` viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di elaborazione. Il `dizionario dei parametri` fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Istogramma zonale

Aggiunge campi che rappresentano i conteggi di ogni valore univoco da un layer raster contenuto negli elementi poligonali.

La tabella degli attributi del layer in uscita avrà tanti campi quanti sono i valori univoci del layer raster che interseca il poligono(i).

![Istogramma zonale](image)

Fig. 24.12: Esempio di istogramma di layer raster

878 Capitolo 24. Fornitori di processing e algoritmi
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Raster</td>
<td>INPUT_RASTER</td>
<td>[raster]</td>
<td>Layer raster in ingresso.</td>
</tr>
<tr>
<td>Numero banda</td>
<td>RASTER_BAND</td>
<td>[raster band]</td>
<td>Se il raster è multibanda, scegli una banda.</td>
</tr>
<tr>
<td>Layer vettoriale contenente zone</td>
<td>INPUT VECTOR</td>
<td>[vector: polygon]</td>
<td>Vettore poligonale che definisce le zone.</td>
</tr>
<tr>
<td>Prefisso colonna in uscita</td>
<td>COLUMN_PREFIX</td>
<td>[string]</td>
<td>Predefinito: “HISTO_” Prefisso per i nomi delle colonne in uscita.</td>
</tr>
<tr>
<td>Zone in uscita</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specifica il layer del vettore poligonale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Crea livello temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Save to Database Table…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone in uscita</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il vettore poligonale in uscita.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>[Create temporary layer]</td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:zonalhistogram

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’**id algoritmo** viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi **Usare gli algoritmi di Processing dalla console dei comandi** per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Statistiche zonali

Calcola le statistiche di un layer raster per ogni elemento di un vettore poligonale sovrapposto.

Prima di QGIS 3.16, l'algoritmo modificava il layer in-place, aggiungendovi i nuovi campi delle statistiche. Ora, produce un nuovo layer con queste statistiche.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: polygon]</td>
<td>Vettore poligonale che contiene le zone.</td>
</tr>
<tr>
<td>Layer Raster</td>
<td>INPUT_RASTER</td>
<td>[raster]</td>
<td>Layer raster in ingresso.</td>
</tr>
<tr>
<td>Banda raster</td>
<td>RASTER_BAND</td>
<td>[raster band]</td>
<td>Se il raster è multibanda, scegli una banda per le statistiche.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: La prima banda del layer in ingresso</td>
<td></td>
</tr>
<tr>
<td>Prefisso colonna in uscita</td>
<td>COLUMN_PREFIX</td>
<td>[string]</td>
<td>Prefisso per i nomi delle colonne in uscita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: "_"</td>
<td></td>
</tr>
<tr>
<td>Statistiche da calcolare</td>
<td>STATISTICS</td>
<td>[enumeration] [list]</td>
<td>Elenco degli operatori statistici per il risultato. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [0,1,2]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0 — Conteggio</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 — Somma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2 — Media</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3 — Mediana</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 4 — Deviazione Standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 5 — Minimo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 6 — Massimo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 7 — Intervallo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 8 — Minoranza</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 9 — Maggioranza</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10 — Varietà</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 11 — Varianza</td>
<td></td>
</tr>
</tbody>
</table>

Statistiche zonali NEW in 3.16

<table>
<thead>
<tr>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specifica il layer del vettore poligonale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td>[Create temporary layer]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Crea livello temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Save to File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Save to Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Save to Database Table…</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Append to Layer…</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistiche zonali</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale della zona con l’aggiunta di statistiche.</td>
</tr>
<tr>
<td>NEW in 3.16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:zonalstatisticsfb

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il dictionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

24.1.10 Creazione Raster

Creare un layer raster uniforme

Genera un layer raster per l’estensione data e la dimensione della cella caricata con il valore specificato.

Inoltre può essere specificato un tipo di dati in uscita. L’algoritmo abortirà se è stato inserito un valore che non può essere rappresentato dal tipo di dati raster in uscita selezionato.

Parametri

Parametri di base

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione scelta</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Specifica l’estensione (xmin, xmax, ymin, ymax) del layer raster in uscita. Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l’estensione dell’area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Seleziona l’estensione nell’area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l’estensione del layer…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>SR per il layer raster in uscita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: SR del Progetto</td>
<td></td>
</tr>
<tr>
<td>Dimensione pixel</td>
<td>PIXEL_SIZE</td>
<td>[number]</td>
<td>Dimensione pixel (X=Y) in unità mappa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0.1</td>
<td>Valore minimo 0.01</td>
</tr>
<tr>
<td>Valore uniforme</td>
<td>NUMBER</td>
<td>[number]</td>
<td>Valore costante del pixel per il layer raster in uscita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 1</td>
<td></td>
</tr>
<tr>
<td>Costante</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Indicazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td>• Salva su File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
</tbody>
</table>
Parametri avanzati

Tipo dati raster in uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT_TYPE</td>
<td>[enumeration]</td>
<td>Predefinito: 5</td>
<td>Definisce il tipo dati del file raster in uscita. Opzioni:
• 0 — Byte
• 1 — Integer16
• 2 — Unsigned Integer16
• 3 — Integer32
• 4 — Unsigned Integer32
• 5 — Float32
• 6 — Float64</td>
</tr>
</tbody>
</table>

Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costante</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster che copre l’estensione desiderata con la dimensione e il valore dei pixel specificati.</td>
</tr>
</tbody>
</table>

Codice Python

IDL Algoritmo: `native:createconstantrasterlayer`

```
import processing
gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Creare un layer raster casuale (distribuzione binomiale)

Genera un layer raster per una data estensione e dimensione delle celle riempite con valori casuali distribuiti binomialmente.

Per impostazione predefinita, i valori saranno scelti con un N di 10 e una probabilità di 0,5. Questo può essere sovrascritto utilizzando il parametro avanzato per N e la probabilità. Il tipo di dati raster è impostato sui tipi Integer (Integer16 per impostazione predefinita). I valori casuali della distribuzione binomiale sono definiti come numeri interi positivi. Un raster in virgola mobile rappresenterà un cast di valori interi in virgola mobile.
## Parametri di base

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Estensione scelta</strong></td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Specifica l'estensione (xmin, xmax, ymin, ymax) del layer raster in uscita. Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l'estensione dell'area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Seleziona l'estensione nell'area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l'estensione del layer…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td><strong>SR di destinazione</strong></td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>SR per il layer raster in uscita</td>
</tr>
<tr>
<td><strong>Dimensione pixel</strong></td>
<td>PIXEL_SIZE</td>
<td>[number]</td>
<td>Dimensione pixel (X=Y) in unità mappa. Valore minimo 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0.1</td>
<td></td>
</tr>
<tr>
<td><strong>Raster in uscita</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Indicazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
</tbody>
</table>

## Parametri avanzati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tipo dati raster in uscita</strong></td>
<td>OUTPUT_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Integer16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Unsigned Integer16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Integer32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Unsigned Integer32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float64</td>
</tr>
<tr>
<td><strong>N</strong></td>
<td>N</td>
<td>[number]</td>
<td>Predefinito: 10</td>
</tr>
<tr>
<td><strong>Probabilità</strong></td>
<td>PROBABILITY</td>
<td>[number]</td>
<td>Predefinito: 0.5</td>
</tr>
</tbody>
</table>
Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster che copre l’estensione desiderata con la dimensione della cella riempita con valori casuali</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** `native:createrandombinomialrasterlayer`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ID algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Creare un layer raster casuale (distribuzione esponenziale)**

Genera un layer raster per una data estensione e dimensione delle celle riempito con valori casuali distribuiti esponenzialmente.

Per impostazione predefinita, i valori saranno scelti con un lambda di 1,0. Questo può essere sovrascritto usando il parametro avanzato per lambda. Il tipo di dati raster è impostato per impostazione predefinita su Float32 poiché i valori casuali della distribuzione esponenziale sono numeri in virgola mobile.

**Parametri**

**Parametri di base**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione scelta</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Specifica l’estensione (xmin, xmax, ymin, ymax) del layer raster in uscita. Una di: • Usa l’estensione dell’area di disegno mappa • Seleziona l’estensione nell’area di disegno mappa • Usa l’estensione del layer… Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>SR per il layer raster in uscita</td>
</tr>
<tr>
<td>Dimensione pixel</td>
<td>PIXEL_SIZE</td>
<td>[number]</td>
<td>Dimensione pixel (X=Y) in unità mappa. Valore minimo 0.01</td>
</tr>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Indicazione del raster in uscita. Uno di: • Salva su File Temporaneo • Salva su File…</td>
</tr>
</tbody>
</table>
Parametri avanzati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo dati raster in uscita</td>
<td>OUTPUT_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita.</td>
</tr>
<tr>
<td></td>
<td>Predefinito: 0</td>
<td></td>
<td>Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Float64</td>
</tr>
<tr>
<td>Lambda</td>
<td>LAMBDA</td>
<td>[number]</td>
<td>Predefinito: 1.0</td>
</tr>
</tbody>
</table>

Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster che copre l’estensione desiderata con la dimensione della cella riempita con valori casuali</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** native:creatorandomexponentialrasterlayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’”id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

Creare un layer raster casuale (distribuzione gamma)

Genera un layer raster per una data estensione e dimensione delle celle riempito con distribuzione valori casuali gamma.

Per impostazione predefinita, i valori saranno scelti con un valore alfa e beta di 1.0. Questo può essere sovrascritto usando il parametro avanzato per alfa e beta. Il tipo di dati raster è impostato per impostazione predefinita su Float32 poiché i valori casuali della distribuzione gamma sono numeri in virgola mobile.

Parametri
## Parametri di base

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione scelta</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Specifica l'estensione (xmin, xmax, ymin, ymax) del layer raster in uscita. Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l'estensione dell'area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Seleziona l'estensione nell'area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l'estensione del layer…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>SR per il layer raster in uscita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: SR del Progetto</td>
<td></td>
</tr>
<tr>
<td>Dimensione pixel</td>
<td>PIXEL_SIZE</td>
<td>[number]</td>
<td>Dimensione pixel (X=Y) in unità mappa. Valore minimo 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 1.0</td>
<td></td>
</tr>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Indicazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td>• Salva su File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
</tbody>
</table>

## Parametri avanzati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo dati raster in uscita</td>
<td>OUTPUT_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Float64</td>
</tr>
<tr>
<td>Alpha</td>
<td>ALPHA</td>
<td>[number]</td>
<td>Predefinito: 1.0</td>
</tr>
<tr>
<td>Beta</td>
<td>BETA</td>
<td>[number]</td>
<td>Predefinito: 1.0</td>
</tr>
</tbody>
</table>

## Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster che copre l'estensione desiderata con la dimensione della cella riempita con valori distribuiti in modo casuale</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** `native:createrandomgammarasterlayer`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

**Creare un layer raster casuale (distribuzione geometrica)**

Genera un layer raster per una data estensione e dimensione delle celle riempito con valori casuali distribuiti geometricamente.

Per impostazione predefinita, i valori saranno scelti con una probabilità di 0.5. Questo può essere sovrascritto usando il parametro avanzato per il valore medio. Il tipo di dati raster è impostato sui tipi Integer (Integer16 per impostazione predefinita). I valori casuali della distribuzione geometrica sono definiti come numeri interi positivi. Un raster in virgola mobile rappresenterà un cast di valori interi in virgola mobile.

**Parametri**

**Parametri di base**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Estensione scelta</strong></td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Specifica l’estensione (xmin, xmax, ymin, ymax) del layer raster in uscita. Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l’estensione dell’area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Seleziona l’estensione nell’area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l’estensione del layer… Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td><strong>SR di destinazione</strong></td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>SR per il layer raster in uscita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: SR del Progetto</td>
<td></td>
</tr>
<tr>
<td><strong>Dimensione pixel</strong></td>
<td>PIXEL_SIZE</td>
<td>[number]</td>
<td>Dimensione pixel (X=Y) in unità mappa. Valore minimo 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 1.0</td>
<td></td>
</tr>
<tr>
<td><strong>Raster in uscita</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Indicazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salva su File Temporaneo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salva su File…</td>
<td></td>
</tr>
</tbody>
</table>

24.1. Fornitore di algoritmo QGIS
### Parametri avanzati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo dati raster in uscita</td>
<td>OUTPUT_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita. Opzioni:</td>
</tr>
<tr>
<td></td>
<td>Predefinito: 0</td>
<td></td>
<td>• 0 — Integer16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Unsigned Integer16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Integer32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Unsigned Integer32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float64</td>
</tr>
<tr>
<td>Probabilità</td>
<td>PROBABILITY</td>
<td>[number]</td>
<td>Predefinito: 0.5</td>
</tr>
</tbody>
</table>

### Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster che copre l’estensione desiderata con la dimensione della cella riempita con valori distribuiti in modo casuale</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** `native:createrandomgeometricrasterlayer`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Creare un layer raster casuale (distribuzione binomiale negativa)**

Genera un layer raster per una data estensione e dimensione delle celle riempito con valori casuali con distribuzione binomiale negativa.

Per impostazione predefinita, i valori saranno scelti con un parametro di distribuzione k di 10,0 e una probabilità di 0,5. Questo può essere annullato utilizzando i parametri avanzati per k e la probabilità. Il tipo di dati raster è impostato sui tipi Integer (Integer16 per impostazione predefinita). I valori casuali della distribuzione binomiale negativa sono definiti come numeri interi positivi. Un raster in virgola mobile rappresenterà un cast di valori interi in virgola mobile.
## Parametri

### Parametri di base

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione scelta</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Specifica l'estensione (xmin, xmax, ymin, ymax) del layer raster in uscita. Una di: • Usa l'estensione dell'area di disegno mappa • Seleziona l'estensione nell'area di disegno mappa • Usa l'estensione del layer... Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>SR per il layer raster in uscita</td>
</tr>
<tr>
<td>Dimensione pixel</td>
<td>PIXEL_SIZE</td>
<td>[number]</td>
<td>Dimensione pixel (X=Y) in unità mappa. Valore minimo 0.01</td>
</tr>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Indicazione del raster in uscita. Uno di: • Salva su File Temporaneo • Salva su File...</td>
</tr>
</tbody>
</table>

### Parametri avanzati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo dati raster in uscita</td>
<td>OUTPUT_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita. Opzioni: • 0 — Integer16 • 1 — Unsigned Integer16 • 2 — Integer32 • 3 — Unsigned Integer32 • 4 — Float32 • 5 — Float64</td>
</tr>
<tr>
<td>Distribuzione parametro k</td>
<td>K_PARAMETER</td>
<td>[number]</td>
<td>Predefinito: 10</td>
</tr>
<tr>
<td>Probabilità</td>
<td>PROBABILITY</td>
<td>[number]</td>
<td>Predefinito: 0.5</td>
</tr>
</tbody>
</table>

### Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster che copre l'estensione desiderata con la dimensione della cella riempita con valori distribuiti in modo casuale</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** `native:createrandomnegativebinomialrasterlayer`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Creare un layer raster casuale (distribuzione normale)**

Genera un layer raster per una data estensione e dimensione delle celle riempito con valori casuali normalmente distribuiti.

Per impostazione predefinita, i valori saranno scelti con una media di 0,0 e una deviazione standard di 1,0. Questo può essere sovrascritto utilizzando i parametri avanzati per il valore della media e della deviazione standard. Il tipo di dati raster per impostazione predefinita è impostato su Float32 poiché i valori casuali della distribuzione normale sono numeri in virgola mobile.

**Parametri**

**Parametri di base**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Estensione scelta</strong></td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Specifica l'estensione (xmin, xmax, ymin, ymax) del layer raster in uscita. Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l'estensione dell'area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Seleziona l'estensione nell'area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l'estensione del layer…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td><strong>SR di destinazione</strong></td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>SR per il layer raster in uscita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: SR del Progetto</td>
<td></td>
</tr>
<tr>
<td><strong>Dimensione pixel</strong></td>
<td>PIXEL_SIZE</td>
<td>[number]</td>
<td>Dimensione pixel (X=Y) in unità mappa. Valore minimo 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 1.0</td>
<td></td>
</tr>
<tr>
<td><strong>Raster in uscita</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Indicazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
</tbody>
</table>
Parametri avanzati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tipo dati raster in uscita</strong></td>
<td>OUTPUT_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita.</td>
</tr>
<tr>
<td>Predefinito: 0</td>
<td></td>
<td></td>
<td>Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Float64</td>
</tr>
<tr>
<td><strong>Media della distribuzione normale</strong></td>
<td>MEAN</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td><strong>Deviazione standard della distribuzione normale</strong></td>
<td>STDDEV</td>
<td>[number]</td>
<td>Predefinito: 1.0</td>
</tr>
</tbody>
</table>

Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Raster in uscita</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster che copre l'estensione desiderata con la dimensione della cella riempita con valori distribuiti in modo casuale</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** native:createrandomnormalrasterlayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Creare un layer raster casuale (distribuzione poisson)**

Genera un layer raster per una data estensione e dimensione delle celle riempito con valori casuali con distribuzione di poisson.

Per impostazione predefinita, i valori saranno scelti con una media di 1,0. Questo può essere sovrascritto usando il parametro avanzato per il valore medio. Il tipo di dati raster è impostato sui tipi Integer (Integer16 per impostazione predefinita). I valori casuali della distribuzione Poisson sono numeri interi positivi. Un raster in virgola mobile rappresenterà un cast di valori interi in virgola mobile.
### Parametri

#### Parametri di base

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione scelta</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Specifica l'estensione (xmin, xmax, ymin, ymax) del layer raster in uscita. Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l'estensione dell'area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Seleziona l'estensione nell'area di disegno mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l'estensione del layer…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>SR per il layer raster in uscita</td>
</tr>
<tr>
<td>Dimensione pixel</td>
<td>PIXEL_SIZE</td>
<td>[number] Predefinito: 1.0</td>
<td>Dimensione pixel (X=Y) in unità mappa. Valore minimo 0.01</td>
</tr>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster] Predefinito: [Save to temporary file]</td>
<td>Indicazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
</tbody>
</table>

#### Parametri avanzati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo dati raster in uscita</td>
<td>OUTPUT_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita. Opzioni:</td>
</tr>
<tr>
<td></td>
<td>Predefinito: 0</td>
<td></td>
<td>• 0 — Integer16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Unsigned Integer16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Integer32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Unsigned Integer32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float64</td>
</tr>
<tr>
<td>Media</td>
<td>MEAN</td>
<td>[number] Predefinito: 1.0</td>
<td></td>
</tr>
</tbody>
</table>

#### Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster che copre l'estensione desiderata con la dimensione della cella riempita con valori distribuiti in modo casuale</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: native:creatorandompoissonrasterlayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Creare un layer raster casuale (distribuzione uniforme)**

Genera un layer raster per una data estensione e dimensione delle celle riempito con valori casuali.

Per impostazione predefinita, i valori saranno compresi tra il valore minimo e massimo del tipo di raster in uscita specificato. Questo può essere sovrascritto usando i parametri avanzati per i valori limite inferiori e superiori. Se i limiti hanno lo stesso valore o entrambi sono zero (valore predefinito) l'algoritmo creerà valori casuali nell'intera gamma di valori del tipo di dati raster scelto. La scelta di limiti al di fuori dell'intervallo accettabile del tipo di raster in uscita provocherà l'interruzione dell'algoritmo.

**Parametri**

**Parametri di base**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Estensione scelta | EXTENT         | [extent]    | Specifica l'estensione (xmin, xmax, ymin, ymax) del layer raster in uscita. Una di:  
• Usa l'estensione dell'area di disegno mappa  
• Seleziona l'estensione nell'area di disegno mappa  
• Usa l'estensione del layer… Sarà internamente esteso a un multiplo della dimensione del tassello. |
| SR di destinazione| TARGET_CRS     | [crs]       | SR per il layer raster in uscita |
| Dimensione pixel | PIXEL_SIZE     | [number]    | Dimensione pixel (X=Y) in unità mappa. Valore minimo 0.01 |
| Raster in uscita  | OUTPUT         | [raster]    | Indicazione del raster in uscita. Uno di:  
• Salva su File Temporaneo  
• Salva su File… |
**Parametri avanzati**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tipo dati raster in uscita</strong></td>
<td>OUTPUT_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita.</td>
</tr>
<tr>
<td></td>
<td>Predefinito: 5</td>
<td></td>
<td>Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Integer16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Unsigned Integer16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Integer32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Unsigned Integer32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Float64</td>
</tr>
<tr>
<td><strong>Limite inferiore per l’intervallo di numeri casuali</strong></td>
<td>LOWER_BOUND</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td><strong>Limite superiore per l’intervallo di numeri casuali</strong></td>
<td>UPPER_BOUND</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
</tbody>
</table>

**Risultati**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Raster in uscita</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster che copre l’estensione desiderata con la dimensione della cella riempita con valori distribuiti in modo casuale</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:createrandomuniformrasterlayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

**24.1.11 Analisi geomorfologica raster**

**Esposizione**

Calcola l’esposizione del modello digitale del terreno in ingresso. Il layer raster finale dell’esposizione contiene valori da 0 a 360 che esprimono la direzione dell’inclinazione, partendo dal nord (0°) e continuando in senso orario.
Fig. 24.13: Valori esposizione

L’immagine seguente mostra il layer esposizione riclassificato con una scala di colori:

Fig. 24.14: Layer esposizione riclassificato
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di elevazione</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster del modello digitale del terreno</td>
</tr>
<tr>
<td>Componente Z</td>
<td>Z_FACTOR</td>
<td>[number] Predefinito: 1.0</td>
<td>Esagerazione verticale. Questo parametro è utile quando le unità Z differiscono dalle unità X e Y, per esempio piedi e metri. Puoi usare questo parametro per regolarla. Il valore predefinito è 1 (nessuna esagerazione).</td>
</tr>
<tr>
<td>Esposizione</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica il layer raster dell'esposizione in uscita. Uno di: • Salva in un layer temporaneo (TEMPORARY_OUTPUT) • Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esposizione</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>L'esposizione del layer raster in uscita</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:aspect

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ id dell’algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Ombreggiatura

Calcola il layer raster ombreggiatura dato un modello digitale del terreno in ingresso.

L’ombreggiatura del layer è calcolata in base alla posizione del sole: hai le opzioni per cambiare sia l’angolo orizzontale (azimut) che l’angolo verticale (elevazione del sole) del sole.

![Fig. 24.15: Azimut e angolo della normale](image)

Il layer ombreggiatura contiene valori da 0 (ombra completa) a 255 (sole completo). L’ombreggiatura è usata di solito per capire meglio il rilievo dell’area.

![Fig. 24.16: Layer ombreggiatura con azimut 300 e angolo verticale 45](image)

Particolarmente interessante è dare al layer ombreggiatura un valore di trasparenza e sovrapporlo al raster di elevazione:
Fig. 24.17: Sovrapporre l'ombreggiatura con il layer di elevazione

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di elevazione</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster del modello digitale del terreno</td>
</tr>
<tr>
<td>Azimut (angolo sul piano orizzontale)</td>
<td>AZIMUTH</td>
<td>[number]</td>
<td>Imposta l'angolo orizzontale (in gradi) del sole (in senso orario). Intervallo: 0 a 360. 0 è il nord.</td>
</tr>
<tr>
<td>Angolo rispetto alla normale</td>
<td>V_ANGLE</td>
<td>[number]</td>
<td>Imposta l'angolo verticale (in gradi) del sole, cioè l'altezza del sole. I valori possono andare da 0 (elevazione minima) a 90 (elevazione massima).</td>
</tr>
<tr>
<td>Ombreggiatura</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica il layer raster ombreggiatura in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva in un layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ombreggiatura</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Il layer raster ombreggiatura in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:hillshade`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id dell’algoritmo* viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Curve ipsometriche**

Calcola le curve ipsometriche per un modello di elevazione digitale in entrata. Le curve sono prodotte come file CSV in una cartella di uscita specificata dall’utente.

Una curva ipsometrica è un istogramma cumulativo dei valori di elevazione in una zona geografica.

Puoi utilizzare le curve ipsometriche per evidenziare le differenze nel paesaggio dovute alla geomorfologia del territorio.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DEM da analizzare</strong></td>
<td>INPUT_DEM</td>
<td>[raster]</td>
<td>Modello digitale del terreno del Layer raster da usare per calcolare le altitudini</td>
</tr>
<tr>
<td><strong>Confine layer</strong></td>
<td>BOUNDARY_LAYER</td>
<td>[vector: polygon]</td>
<td>Layer vettoriale poligonale con i confini delle aree utilizzate per calcolare le curve ipsometriche</td>
</tr>
<tr>
<td><strong>Passo</strong></td>
<td>STEP</td>
<td>[number]</td>
<td>Predefinito: 100.0 Distanza verticale tra le curve</td>
</tr>
<tr>
<td><strong>Usa la % dell’area invece del valore assoluto</strong></td>
<td>USE_PERCENTAGE</td>
<td>[boolean]</td>
<td>Predefinito: False Scrivi la percentuale di area nel campo «Area» del file CSV invece dell’area assoluta</td>
</tr>
<tr>
<td><strong>Curve ipsometriche</strong></td>
<td>OUTPUT_DIRECTORY</td>
<td>[folder]</td>
<td>Specifica la cartella in uscita per le curve ipsometriche. Una delle seguenti:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in un layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve ipsometriche</td>
<td>OUTPUT_DIRECTORY [folder]</td>
<td></td>
<td>Cartella contenente i file con le curve ipsometriche. Per ogni elemento del layer vettoriale in ingresso, verrà creato un file CSV con i valori di area e altitudine. I nomi dei file iniziano con histogram_, seguiti dal nome del layer e dall'ID dell’elemento.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:hypsometriccurves

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Rilievo

Crea un layer di rilievo ombreggiato dai dati di elevazione digitale. Puoi specificare il colore del rilievo manualmente, oppure puoi lasciare che l'algorithm sceglia automaticamente tutte le classi di rilievo.

![Layer in rilievo](image)

Fig. 24.18: Layer in rilievo

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di elevazione</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster del modello digitale del terreno</td>
</tr>
<tr>
<td>Genera automaticamente le classi di rilievo</td>
<td>AUTO_COLORS</td>
<td>[boolean]</td>
<td>Se selezioni questa opzione l'algoritmo creerà automaticamente tutte le classi di colore nel rilievo</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.41 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colori del rilievo</td>
<td>COLORS</td>
<td>[table widget]</td>
<td>Usa il widget tabella se vuoi scegliere manualmente i colori in rilievo. Puoi aggiungere tutte le classi di colore che vuoi; per ogni classe puoi scegliere il limite inferiore e superiore e infine cliccando sulla riga del colore puoi scegliere il colore grazie al widget del colore.</td>
</tr>
</tbody>
</table>

![Fig. 24.19: Imposta manualmente le classi di colore nel rilievo](image)

I pulsanti nel pannello laterale destro ti danno la possibilità di: aggiungere o rimuovere classi di colore, cambiare l'ordine delle classi di colore già definite, aprire un file esistente con classi di colore e salvare le classi attuali come file.

| Rilievo                    | OUTPUT       | [raster]            | Predefinito: [Save to temporary file] Specifica il layer raster di rilievo in uscita. Uno di:  
|                           |              |                     | • Salva in un layer temporaneo (TEMPORARY_OUTPUT)  
|                           |              |                     | • Salva come File...  
|                           |              |                     | La codifica del file può anche essere cambiata qui. |

| Distribuzione di frequenza | FREQUENCY_DISTRIBUTION | [table]            | Predefinito: [Skip output] Specifica la tabella CSV per la distribuzione di frequenza in uscita. Uno di:  
|                           |                         |                     | • Ignora risultato  
|                           |                         |                     | • Salva in un layer temporaneo (TEMPORARY_OUTPUT)  
|                           |                         |                     | • Salva come File...  
|                           |                         |                     | La codifica del file può anche essere cambiata qui. |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rilievo</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Il layer raster di rilievo in uscita</td>
</tr>
<tr>
<td>Distribuzione di frequenza</td>
<td>OUTPUT</td>
<td>[table]</td>
<td>Il risultato della distribuzione della frequenza</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** `qgis:relief`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Indice di rugosità**

Calcola la misura quantitativa dell’eterogeneità del terreno descritta da Riley et al. (1999). Viene calcolata per ogni luogo, sintetizzando il cambiamento di elevazione all’interno della griglia di 3x3 pixel.

Ogni pixel contiene la differenza di elevazione da una cella centrale e le 8 celle che la circondano.

![Fig. 24.20: Layer di rugosità da valori bassi (rosso) ad alti (verde)](image-url)
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di elevazione</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster del modello digitale del terreno</td>
</tr>
<tr>
<td>Rugosità</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Predefinito: [Save to temporary file] Specifica il layer raster di rugosità in uscita. Uno di: • Salva in un layer temporaneo (TEMPORARY_OUTPUT) • Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rugosità</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Il layer raster di rugosità in uscita</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** qgis:ruggednessindex

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id dell’algoritmo* viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Pendenza

Calcola la pendenza di un layer raster in ingresso. La pendenza è l’angolo di inclinazione del terreno ed è espressa in gradi.

Nell’immagine seguente puoi vedere a sinistra il layer DTM con l’elevazione del terreno, mentre a destra la pendenza calcolata:
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di elevazione</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster del modello digitale del terreno</td>
</tr>
</tbody>
</table>
| Pendenza         | OUTPUT    | [raster]      | Predefinito: [Save to temporary file]. Specifica il layer raster della pendenza in uscita. Uno di:
|                  |           |               | • Salva in un layer temporaneo (TEMPORARY_OUTPUT)
|                  |           |               | • Salva come File… La codifica del file può anche essere cambiata qui. |
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendenza</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Il layer raster della pendenza in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:slope`

```python
defid_algoritmo = 'qgis:slope'
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’`id dell’algoritmo` viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il `dizionario dei parametri` fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.1.12 Strumenti Raster

**Convertire la mappa in raster**

Crea un’immagine raster del contenuto della mappa.

Un *map theme* può essere selezionato per visualizzare un insieme prestabilito di layer con uno stile definito per ogni layer.

In alternativa, un singolo layer può essere selezionato se non è impostato alcun tema per la mappa.

Se non è impostato né il tema per la mappa né il layer, verrà visualizzato il contenuto corrente della mappa.

L’estensione minima inserita sarà internamente estesa per essere un multiplo della dimensione del tassello.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minima estensione da visualizzare (xmin, xmax, ymin, ymax)</td>
<td>EXENT</td>
<td>[extent]</td>
<td>Indicare l’estensione del layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l’estensione della mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Seleziona l’estensione sulla mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l’estensione del layer…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td>Dimensione Tassello</td>
<td>TILE_SIZE</td>
<td>[number]</td>
<td>Dimensione del tassello del layer raster in uscita. Valore minimo: 64.</td>
</tr>
<tr>
<td>Unità di mappa per pixel</td>
<td>MAP_UNITS_PER_PIXEL</td>
<td>[number]</td>
<td>Dimensione del pixel (in unità di mappa). Valore minimo: 0,0</td>
</tr>
<tr>
<td>Rendere lo sfondo trasparente</td>
<td>MAKE_BACKGROUND</td>
<td>[boolean]</td>
<td>Permette di esportare la mappa con uno sfondo trasparente. Emette un’immagine RGBA (invece di RGB) se impostata su True.</td>
</tr>
<tr>
<td>Tema Mappa tema da visualizzare Opzionale</td>
<td>MAP_THEME</td>
<td>[enumeration]</td>
<td>Utilizzare un <em>map theme</em> esistente per la visualizzazione.</td>
</tr>
</tbody>
</table>
Tabella 24.42 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singolo layer da visualizzare Opzionale</td>
<td>LAYER</td>
<td>[enumeration]</td>
<td>Scegliere un singolo layer da visualizzare</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in uscita</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID algoritmo:** qgis:rasterize

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Riempire celle NoData**

Reimposta i valori NoData nel raster in ingresso ad un valore scelto, ottenendo un insieme di dati raster senza pixel NoData.

L’algoritmo rispetta il tipo di dati raster in ingresso, ad esempio un valore di riempimento in virgola mobile sarà troncato quando applicato a un raster di interi.

**Input raster**

```
 40 10 10 0 30
 50 20 10 20 50
 10 40 30 20
 20 30 10 50 20
 40
```

**Output raster**

```
 40 10 10 0 30
 50 20 10 20 50
 10 40 30 20 25
 20 30 10 50 20
 40 25 40 50 10
```

Fig. 24.22: Riempimento dei valori NoData (in grigio) di un raster
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Il raster da processare</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[number]</td>
<td>La banda del raster</td>
</tr>
<tr>
<td>Valore di riempimento</td>
<td>FILL_VALUE</td>
<td>[number]</td>
<td>Imposta il valore da usare per i pixel NoData</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 1</td>
<td></td>
</tr>
<tr>
<td>Output raster</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Indicazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output raster</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Il layer raster in uscita con la celle di dati riempite.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:fillnodata

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing.
Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi **Usare gli algoritmi di Processing dalla console dei comandi** per dettagli su come eseguire algoritmi di processing dalla console Python.

**Generare tasselli XYZ (Cartella)**

Genera tasselli raster «XYZ» utilizzando il progetto QGIS corrente come immagini separate in una gerarchia di cartelle.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione (xmin, xmax, ymin, ymax)</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Specificare l’estensione dei tasselli. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l’estensione della mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Seleziona l’estensione sulla mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa l’estensione del layer…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td>Zoom minimo</td>
<td>ZOOM_MIN</td>
<td>[number]</td>
<td>Minimo 0, massimo 25.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 12</td>
<td></td>
</tr>
<tr>
<td>Zoom massimo</td>
<td>ZOOM_MAX</td>
<td>[number]</td>
<td>Minimo 0, massimo 25.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 12</td>
<td></td>
</tr>
<tr>
<td>DPI</td>
<td>DPI</td>
<td>[number]</td>
<td>Minimo 48, massimo 600.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 96</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.43 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Colore di sfondo</strong></td>
<td>BACKGROUND_COLOR</td>
<td>[color]</td>
<td>Scegliere il colore di sfondo per i tasselli</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Predefinito: QColor(0, 0, 0)</td>
<td></td>
</tr>
<tr>
<td><strong>Formato tassello</strong></td>
<td>TILE_FORMAT</td>
<td>[enumeration]</td>
<td>Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — PNG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — JPG</td>
</tr>
<tr>
<td><strong>Qualità (solo per JPG)</strong></td>
<td>QUALITY</td>
<td>[number]</td>
<td>Minimo 1, massimo 100.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Predefinito: 75</td>
<td></td>
</tr>
<tr>
<td><strong>Dimensione Meta tassello</strong></td>
<td>METATILESIZE</td>
<td>[number]</td>
<td>Specificare una dimensione meta tassello personalizzata quando si generano tasselli XYZ. Valori più grandi possono accelerare il processo di visualizzazione dei tasselli e fornire una migliore etichettatura (meno spazi vuoti senza etichette) a scapito dell'utilizzo di più memoria. Minimo 1, massimo 20.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Predefinito: 4</td>
<td></td>
</tr>
<tr>
<td><strong>Larghezza tassello</strong></td>
<td>TILE_WIDTH</td>
<td>[number]</td>
<td>Minimo 1, massimo 4096.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Predefinito: 256</td>
<td></td>
</tr>
<tr>
<td><strong>Altezza tassello</strong></td>
<td>TILE_HEIGHT</td>
<td>[number]</td>
<td>Minimo 1, massimo 4096.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Predefinito: 256</td>
<td></td>
</tr>
<tr>
<td><strong>Utilizzare l’asse Y invertito per i tasselli (convenzioni TMS)</strong></td>
<td>TMS_CONVENTION</td>
<td>[boolean]</td>
<td>Indicazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Predefinito: False</td>
<td>• Tralascia il risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in una Cartella Temporanea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in una Cartella…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td><strong>Cartella in uscita</strong></td>
<td>OUTPUT_DIRECTORY</td>
<td>[folder]</td>
<td>Indicazione del file HTML in uscita. Uno di:</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Predefinito:</td>
<td>• Tralascia il risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Save to temporary file]</td>
<td></td>
</tr>
<tr>
<td><strong>Html in uscita (Leaflet)</strong></td>
<td>OUTPUT_HTML</td>
<td>[html]</td>
<td>Indicazione del file HTML in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Tralascia il risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Save to temporary file]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cartella in uscita</strong></td>
<td>OUTPUT_DIRECTORY</td>
<td>[folder]</td>
<td>Cartella in uscita (per i tasselli)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Html in uscita (Leaflet)</strong></td>
<td>OUTPUT_HTML</td>
<td>[html]</td>
<td>Il file HTML (Leaflet) in uscita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Codice Python**

**ID algoritmo**: qgis:tilestylesdirectory

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'**id algoritmo** viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi **Usare gli algoritmi di Processing dalla console dei comandi** per dettagli su come eseguire algoritmi di processing dalla console Python.

**Generare tasselli XYZ (MBTiles)**

Genera tasselli raster «XYZ» usando il progetto QGIS corrente come un singolo file nel formato «MBTiles».

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione (xmin, xmax, ymin, ymax)</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Specificare l'estensione dei tasselli. Uno di: • Usa l'estensione della mappa • Seleziona l'estensione sulla mappa • Usa l'estensione del layer… Sarà internamente esteso a un multiplo della dimensione del tassello.</td>
</tr>
<tr>
<td>Zoom minimo</td>
<td>ZOOM_MIN</td>
<td>[number]</td>
<td>Predefinito: 12 Minimo 0, massimo 25.</td>
</tr>
<tr>
<td>Zoom massimo</td>
<td>ZOOM_MAX</td>
<td>[number]</td>
<td>Predefinito: 12 Minimo 0, massimo 25.</td>
</tr>
<tr>
<td>DPI</td>
<td>DPI</td>
<td>[number]</td>
<td>Predefinito: 96 Minimo 48, massimo 600.</td>
</tr>
<tr>
<td>Colore di sfondo Opzionale</td>
<td>BACKGROUND_COLOR</td>
<td>[color]</td>
<td>Predefinito: QColor(0, 0, 0) Scegliere il colore di sfondo per i tasselli</td>
</tr>
<tr>
<td>Formato tassello Opzionale</td>
<td>TILE_FORMAT</td>
<td>[enumeration]</td>
<td>Predefinito: 0 Uno di: • 0 — PNG • 1 — JPG</td>
</tr>
<tr>
<td>Qualità (solo per JPG) Opzionale</td>
<td>QUALITY</td>
<td>[number]</td>
<td>Predefinito: 75 Minimo 1, massimo 100.</td>
</tr>
<tr>
<td>Dimensione Meta tassello Opzionale</td>
<td>METATILESIZE</td>
<td>[number]</td>
<td>Predefinito: 4 Specificare una dimensione meta tassello personalizzata quando si generano tasselli XYZ. Valori più grandi possono accelerare il processo di visualizzazione dei tasselli e fornire una migliore etichettatura (meno spazi vuoti senza etichette) a scapito dell'utilizzo di più memoria. Minimo 1, massimo 20.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.44 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| File in uscita (per MBTiles) | OUTPUT_FILE | [file] | Specifica del file in uscita. Uno di:  
Predefinito: [Save to temporary file] La codifica del file può anche essere cambiata qui. |

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File in uscita (per MBTiles)</td>
<td>OUTPUT_FILE</td>
<td>[file]</td>
<td>Il file in uscita.</td>
</tr>
</tbody>
</table>

Codice Python

**ID algoritmo:** qgis:tilestilesxyzmbtiles

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

### 24.1.13 Analisi sui vettori

#### Statistiche di base sui campi

Genera statistiche di base per un campo della tabella degli attributi di un layer vettoriale.  
Sono supportati i campi numerici, data, ora e stringa.  
Le statistiche che vengono restituite dipendono dal tipo di campo.  
Le statistiche sono generate come file HTML e sono disponibili in : menuselection:Processing -> Visualizzatore Risultati.

**Menu predefinito:** Vettore ➤ Strumenti di Analisi...

#### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore in ingresso</td>
<td>INPUT_LAYER</td>
<td>[vector: any]</td>
<td>Layer vettoriale su cui calcolare le statistiche</td>
</tr>
<tr>
<td>Campo su cui calcolare le statistiche</td>
<td>FIELD_NAME</td>
<td>[tablefield: any]</td>
<td>Qualsiasi campo della tabella compatibile per poter calcolare le statistiche</td>
</tr>
<tr>
<td>Statistiche</td>
<td>OUTPUT_HTML_FILE</td>
<td>[html]</td>
<td>file HTML per le statistiche che sono state calcolate</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Statistiche</strong></td>
<td>OUTPUT_HTML_FILE</td>
<td>[html]</td>
<td>file HTML con le statistiche ottenute</td>
</tr>
<tr>
<td><strong>Conteggio</strong></td>
<td>COUNT</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Numero di valori univoci</strong></td>
<td>UNIQUE</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Numero di valori mancanti (nulli)</strong></td>
<td>EMPTY</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Numero di valori non vuoti</strong></td>
<td>FILLED</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Valore minimo</strong></td>
<td>MIN</td>
<td>[same as input]</td>
<td></td>
</tr>
<tr>
<td><strong>Valore massimo</strong></td>
<td>MAX</td>
<td>[same as input]</td>
<td></td>
</tr>
<tr>
<td><strong>Lunghezza minima</strong></td>
<td>MIN_LENGTH</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Lunghezza massima</strong></td>
<td>MAX_LENGTH</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Lunghezza Media</strong></td>
<td>MEAN_LENGTH</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Coefficiente di Variazione</strong></td>
<td>CV</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Somma</strong></td>
<td>SUM</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Valore medio</strong></td>
<td>MEAN</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Deviazione Standard</strong></td>
<td>STD_DEV</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Intervallo</strong></td>
<td>RANGE</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Mediana</strong></td>
<td>MEDIAN</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Minoritario (valore meno frequente)</strong></td>
<td>MINORITY</td>
<td>[same as input]</td>
<td></td>
</tr>
<tr>
<td><strong>maggioranza (valore più frequente)</strong></td>
<td>MAJORITY</td>
<td>[same as input]</td>
<td></td>
</tr>
<tr>
<td><strong>Primo quartile</strong></td>
<td>FIRSTQUARTILE</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Terzo quartile</strong></td>
<td>THIRDQUARTILE</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td><strong>Intervallo Interquartile Range</strong></td>
<td>IQR</td>
<td>[number]</td>
<td></td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo**: qgis:basicstatisticsforfields

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di Processing dalla console Python.

**Salita lunga la linea**

Calcola la salita e la discesa totale lungo le geometrie lineari. Il layer in ingresso deve avere valori Z presenti. Se i valori Z non sono disponibili, l’algoritmo *Trama (imposta il valore Z dal raster)* può essere usato per aggiungere valori Z da un layer DEM.

Il layer in uscita è una copia del layer in ingresso con campi aggiuntivi che contengono la salita totale (*climb*), la discesa totale (*descent*), la quota minima (*minelev*) e la quota massima (*maxelev*) per ogni geometria lineare. Se il layer in ingresso contiene campi con gli stessi nomi di questi campi aggiunti, essi saranno rinominati (i nomi dei campi saranno alterati in "name_2", "name_3", ecc, trovando il primo nome non duplicato).
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore lineare</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Vettore lineare su cui calcolare la salita. Deve avere valori Z</td>
</tr>
<tr>
<td>Salita Layer</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il layer in uscita (linea)</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salita Layer</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Vettore lineare contenente nuovi attributi con i risultati dei conteggi delle salite.</td>
</tr>
<tr>
<td>Totale salita</td>
<td>TOTALCLIMB</td>
<td>[number]</td>
<td>La somma delle salite di tutte le geometrie lineari nel layer in ingresso</td>
</tr>
<tr>
<td>Totale discesa</td>
<td>TOTALDESCENT</td>
<td>[number]</td>
<td>La somma dei tratti in discesa per tutte le geometrie lineari nel layer in ingresso</td>
</tr>
<tr>
<td>Elevazione minima</td>
<td>MINELEVATION</td>
<td>[number]</td>
<td>L'elevazione minima delle geometrie nel layer</td>
</tr>
<tr>
<td>Elevazione massima</td>
<td>MAXELEVATION</td>
<td>[number]</td>
<td>L'elevazione massima delle geometrie nel layer</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** qgis:climbalongline

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing.
Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di Processing dalla console Python.

### Conta i punti nel poligono

Utilizza un layer di punti e un vettore poligonale e conta il numero di punti del layer di punti in ciascuno dei poligoni del vettore poligonale.

Viene generato un nuovo vettore poligonale, con lo stesso identico contenuto del vettore poligonale in ingresso, ma contenente un campo addizionale con il conteggio dei punti corrispondenti ad ogni poligono.
Fig. 24.23: Le etichette nei poligoni mostrano il conteggio dei punti

Un campo peso opzionale può essere usato per assegnare dei pesi ad ogni punto. In alternativa, può essere specificato un campo classe univoca. Se entrambe le opzioni sono usate, il campo peso avrà la precedenza e il campo classe univoca sarà ignorato.

Menu predefinito: Vettore ➤ Strumenti di Analisi

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Poligoni</strong></td>
<td>POLYGONS</td>
<td>[vector: polygon]</td>
<td>Vettore poligonale i cui elementi sono associati al numero di punti che contengono</td>
</tr>
<tr>
<td><strong>Punti</strong></td>
<td>POINTS</td>
<td>[vector: point]</td>
<td>Layer punto con elementi da contare</td>
</tr>
<tr>
<td><strong>Campo Sommatoria</strong></td>
<td>WEIGHT</td>
<td>[tablefield: any]</td>
<td>Un campo del layer puntuale. Il conteggio generato sarà la somma del campo peso dei punti contenuti nel poligono. Se il campo peso non è numerico, il conteggio sarà 0.</td>
</tr>
<tr>
<td><strong>Opzionale</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Campo Classe</strong></td>
<td>CLASSFIELD</td>
<td>[tablefield: any]</td>
<td>I punti sono classificati in base all'attributo selezionato e se più punti con lo stesso valore di attributo sono all'interno del poligono, solo uno di loro viene contato. Il conteggio finale dei punti in un poligono è, quindi, il conteggio delle diverse classi che si trovano in esso.</td>
</tr>
<tr>
<td><strong>Opzionale</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Nome campo per il conteggio</strong></td>
<td>FIELD</td>
<td>[stringa]</td>
<td>Predefinito: “NUMPOINTS”</td>
</tr>
<tr>
<td><strong>Conteggio</strong></td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Indicazione del layer in uscita</td>
</tr>
</tbody>
</table>
**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conteggio</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Layer risultante con la tabella degli attributi contenente la nuova colonna con il conteggio dei punti</td>
</tr>
</tbody>
</table>

**Clustering DBSCAN**

Raggruppa gli elementi puntuali basati su un’implementazione 2D dell’algoritmo Density-based spatial clustering of applications with noise (DBSCAN).

L’algoritmo richiede due parametri, una dimensione minima dei cluster e la distanza massima consentita tra i punti raggruppati.

**Vedi anche:**

*K-means clustering*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di input</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer da analizzare</td>
</tr>
<tr>
<td>Dimensione minima del cluster</td>
<td>MIN_SIZE</td>
<td>[number]</td>
<td>Numero minimo di elementi per formare un cluster</td>
</tr>
<tr>
<td>Predefinito: 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distanza massima tra i punti</td>
<td>EPS</td>
<td>[number]</td>
<td>Distanza oltre la quale due elementi non possono appartenere allo stesso cluster (eps)</td>
</tr>
<tr>
<td>Predefinito: 1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nome campo per il cluster</td>
<td>FIELD_NAME</td>
<td>[stringa]</td>
<td>Nome del campo in cui deve essere memorizzato il numero di cluster associato</td>
</tr>
<tr>
<td>Predefinito: “CLUSTER_ID”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratta i punti di confine come</td>
<td>DBSCAN*</td>
<td>[boolean]</td>
<td>Se spuntato, i punti sul confine di un cluster sono trattati come punti non raggruppati, e solo i punti all’interno di un cluster sono etichettati come raggruppati.</td>
</tr>
<tr>
<td>rumore (DBSCAN*)</td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale per il risultato del clustering</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale contenente gli elementi originali con un campo che imposta il cluster a cui appartengono</td>
</tr>
<tr>
<td>Numero di cluster</td>
<td>NUM_CLUSTERS</td>
<td>[number]</td>
<td>Il numero di cluster trovati</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo**: qgis:dbscanclustering

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di Processing dalla console Python.

**Matrice di distanze**

Calcola per gli elementi punto le distanze dai loro elementi più vicini nello stesso layer o in un altro layer.

**Menu predefinito**: Vettorer ➤ Strumenti di Analisi...

**Vedi anche**: Unire gli attributi per il più vicino

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di punti in ingresso</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer punto per cui viene calcolata la matrice di distanze (dai punti)</td>
</tr>
<tr>
<td>Layer punto obiettivo</td>
<td>TARGET</td>
<td>[vector: point]</td>
<td>Layer punto contenente il punto(i) più vicino da cercare (ai punti)</td>
</tr>
<tr>
<td>Tipo di matrice in uscita</td>
<td>MATRIX_TYPE</td>
<td>[enumeration] Predefinito: 0</td>
<td>Sono disponibili diversi tipi di calcolo:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Matrice di distanze lineare (N * k x 3): per ogni punto in ingresso, riporta la distanza da ciascuno dei k punti obiettivo più vicini. La matrice in uscita consiste di un massimo di k righe per punto in ingresso, e ogni riga ha tre colonne: InputID, TargetID e Distance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Matrice di distanze standard (N x T)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Matrice di distanze riassuntiva (media, dev. std., min, max): per ogni punto in ingresso, riporta le statistiche sulle distanze dai suoi punti di destinazione.</td>
</tr>
</tbody>
</table>

*continues on next page*
Tabella 24.48 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usa solo i punti di destinazione più vicini (k)</td>
<td>NEAREST_POINTS</td>
<td>[number]</td>
<td>Puoi scegliere di calcolare la distanza di tutti i punti nel layer di destinazione (0) o limitarti a un numero (k) di elementi più vicini.</td>
</tr>
<tr>
<td>Matrice di distanze</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td></td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrice di distanze</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale punto (o multipunto per il caso «Linear (N * k * 3)») contenente il calcolo della distanza per ogni elemento in ingresso. I suoi elementi e la tabella degli attributi dipendono dal tipo di matrice di uscita selezionata.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:distancematrix

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di Processing dalla console Python.

**Distanza dall’punto centrale più vicino (linea di collegamento con il punto centrale)**

Crea linee che uniscono ogni elemento di un vettore in ingresso all’elemento più vicino in un layer di destinazione. Le distanze sono calcolate in base al *center* di ogni elemento.
Vedi anche:

*Distanza dall’hub più vicino (punti), Unire gli attributi per il più vicino*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer punto di origine</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale per il quale si cerca l’elemento più vicino</td>
</tr>
<tr>
<td>Layer degli snodi di destinazione</td>
<td>HUBS</td>
<td>[vector: any]</td>
<td>Vettore che contiene gli elementi da cercare</td>
</tr>
<tr>
<td>Nome dell’attributo del layer dell’hub</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Campo da usare per identificare univocamente gli elementi del layer di destinazione. Usato nella tabella degli attributi in uscita</td>
</tr>
<tr>
<td>Unità di misura</td>
<td>UNIT</td>
<td>[enumeration]</td>
<td>Unità in cui riportare la distanza dall’elemento più vicino:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — Metri</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Piedi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Miglia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Chilometri</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Unità layer</td>
</tr>
<tr>
<td>Distanza dall’Hub</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale linea in uscita per la matrice di distanze</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distanza dall'Hub</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale linea con gli attributi degli elementi in ingresso, l'identificatore dell'elemento più vicino e la distanza calcolata.</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** qgis:distancetonearesthublinetohub

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di Processing dalla console Python.

**Distanza dall'hub più vicino (punti)**

Crea un layer punto che rappresenta il center degli elementi in ingresso con l'aggiunta di due campi contenenti l'identificatore dell'elemento più vicino (basato sul suo punto centrale) e la distanza tra i punti.

Vedi anche:

*Distanza dall'punto centrale più vicino (linea di collegamento con il punto centrale), Unire gli attributi per il più vicino*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer punto di origine</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale per il quale si cerca l'elemento più vicino</td>
</tr>
<tr>
<td>Layer degli snodi di destinazione</td>
<td>HUBS</td>
<td>[vector: any]</td>
<td>Vettore che contiene gli elementi da cercare</td>
</tr>
</tbody>
</table>
| Unità di misura                | UNIT       | [enumeration] Predefinito: 0 | Unità in cui riportare la distanza dall'elemento più vicino:  
  - 0 — Metri  
  - 1 — Piedi  
  - 2 — Miglia  
  - 3 — Chilometri  
  - 4 — Unità layer |
| Distanza dall'Hub             | OUTPUT     | [vector: point]      | Layer vettoriale punto in uscita per la matrice di distanze.               |
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distanza dall’Hub</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale punto con gli attributi degli elementi in ingresso, l’identificatore dell’elemento più vicino e la distanza calcolata.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:distancetonearesthubpoints

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di Processing dalla console Python.

**Collegare tramite linee (linee centrali)**

Crea diagrammi punti centrali e punti remoti collegando linee da punti sul layer remoto a punti che si trovano nel layer centrale.

La scelta di quale punto centrale sia associato a ciascun punto si basa su una corrispondenza tra il campo ID Hub dei punti centrali e il campo ID Spoke ID dei punti remoti.

Se i layer in ingresso non sono layer puntuali, un punto sulla superficie delle geometrie sarà preso come posizione di connessione.

Opzionalmente, possono essere create linee geodetiche, che rappresentano il percorso più breve sulla superficie di un ellissoide. Quando si usa la modalità geodetica, è possibile dividere le linee create all’antimeridiano (±180 gradi di longitudine), il che può migliorare la visualizzazione delle linee. Inoltre, la distanza tra i vertici può essere specificata. Una distanza minore risulta in una linea più densa e accurata.

![Diagramma di collegamento punkti centrali e remoti](image)

Fig. 24.25: Unire punti sulla base di un campo/attributo comune

920 Capitolo 24. Fornitori di processing e algoritmi
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hub layer</td>
<td>HUBS</td>
<td>[vector: any]</td>
<td>Layer in ingresso</td>
</tr>
<tr>
<td>ID campo Hub</td>
<td>HUB_FIELD</td>
<td>[tablefield: any]</td>
<td>Campo del layer hub con ID da unire</td>
</tr>
<tr>
<td>Campi del layer</td>
<td>HUB_FIELDS</td>
<td>[tablefield: any] [list]</td>
<td>Il campo(i) del layer hub da copiare. Se non viene scelto alcun campo(i), vengono presi tutti i campi.</td>
</tr>
<tr>
<td>Hub da copiare</td>
<td>HUBS</td>
<td>[vector: any]</td>
<td>Layer aggiuntivo punto spoke</td>
</tr>
<tr>
<td>ID campo spoke</td>
<td>SPOKE_FIELD</td>
<td>[tablefield: any]</td>
<td>Campo del layer spoke con ID da unire</td>
</tr>
<tr>
<td>Campi del layer</td>
<td>SPOKE_FIELDS</td>
<td>[tablefield: any] [list]</td>
<td>Campo(i) del layer spoke da copiare. Se non viene scelto nessun campo, vengono presi tutti i campi.</td>
</tr>
<tr>
<td>Creare linee geodetiche</td>
<td>GEODESIC</td>
<td>[boolean] Predefinito: False</td>
<td>Creare linee geodetiche (il percorso più breve sulla superficie di un ellissoide)</td>
</tr>
<tr>
<td>Distanza tra i vertici (solo linee geodetiche)</td>
<td>GEODESIC_DISTANCE</td>
<td>[number] Predefinito: 1000.0 (chilometri)</td>
<td>Distanza tra vertici consecutivi (in chilometri). Una distanza minore ha come risultato una linea più densa e accurata</td>
</tr>
<tr>
<td>Linee suddivise all’antimeridiano (±180 gradi di longitudine)</td>
<td>ANTIMERIDIAN_SPLIT</td>
<td>[boolean] Predefinito: False</td>
<td>Linee suddivise a ±180 gradi di longitudine (per migliorare la visualizzazione delle linee)</td>
</tr>
<tr>
<td>Hub linee</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il vettore lineare risultante</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hub linee</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il vettore lineare risultante</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** qgis:hublines

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di Processing dalla console Python.
K-means clustering

Calcola il numero di cluster k-means basato sulla distanza 2D per ogni elemento in ingresso.

Il clustering K-means mira a partizionare gli elementi in k cluster in cui ogni elemento appartiene al cluster con la media più vicina. Il punto medio è rappresentato dal baricentro degli elementi raggruppati.

Se le geometrie in ingresso sono linee o poligoni, il clustering è basato sul centroide dell’elemento.

Vedi anche:

Clustering DBSCAN

Fig. 24.26: Un gruppo di cinque classi punto
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di input</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer da analizzare</td>
</tr>
<tr>
<td>Numero di cluster</td>
<td>CLUSTERS</td>
<td>[number]</td>
<td>Numero di cluster da creare con gli elementi</td>
</tr>
<tr>
<td>Nome campo per il</td>
<td>FIELD_NAME</td>
<td>[stringa]</td>
<td>Nome del campo del numero del cluster</td>
</tr>
<tr>
<td>cluster</td>
<td></td>
<td>“CLUSTER_ID”</td>
<td>Predefinito: 5</td>
</tr>
<tr>
<td>Cluster</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale per generare i cluster</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale contenente gli elementi originali con un campo che specifica il cluster a cui appartengono</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** qgis:kmeansclustering

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di Processing dalla console Python.

### Elenco dei valori univoci

Elenca i valori univoci di un campo della tabella degli attributi e conta il loro numero.

**Menu predefinito:** Vettori ➤ Strumenti di Analisi…

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di input</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer da analizzare</td>
</tr>
<tr>
<td>Campo(i) di</td>
<td>FIELDS</td>
<td>[tablefield: any]</td>
<td>Campo da analizzare</td>
</tr>
<tr>
<td>destinazione</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valori univoci</td>
<td>OUTPUT</td>
<td>[table]</td>
<td>Layer tabella riassuntiva con valori univoci</td>
</tr>
<tr>
<td>Report HTML</td>
<td>OUTPUT_HTML_FILE</td>
<td>[html]</td>
<td>HTML report of unique values in the Processing ➤ Visualizzatore Risultati</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valori univoci</td>
<td>OUTPUT</td>
<td>[table]</td>
<td>Layer tabella riassuntiva con valori univoci</td>
</tr>
<tr>
<td>Totale valori univoci</td>
<td>TOTAL_VALUES</td>
<td>[number]</td>
<td>Il numero di valori univoci nel campo di input</td>
</tr>
<tr>
<td>UNIQUE_VALUES</td>
<td>“Valori univoci”</td>
<td>[stringa]</td>
<td>Una stringa con la lista separata da virgole dei valori univoci trovati nel campo in ingresso.</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** qgis:listuniquevalues

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing.
Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di Processing dalla console Python.

**Coordinata(e) media**

Calcolare un layer di punti con il centro di massa delle geometrie in un layer in ingresso.

Un attributo può essere specificato come contenente i pesi da applicare ad ogni elemento quando si calcola il centro di massa.

Se un attributo è selezionato nel parametro, gli elementi saranno raggruppati secondo i valori in questo campo. Invece di un singolo punto con il centro di massa dell’intero layer, il layer in uscita conterrà un centro di massa per gli elementi di ogni categoria.

**Menu predefinito:** Vettorer ➤ Strumenti di Analisi…

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di input</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in input</td>
</tr>
<tr>
<td>Campo Sommatoria Opzionale</td>
<td>WEIGHT</td>
<td>[tablefield: numeric]</td>
<td>Campo univoco su cui verrà effettuato il calcolo della media pesata</td>
</tr>
<tr>
<td>Campo ID univoco</td>
<td>UID</td>
<td>[tablefield: numeric]</td>
<td>Campo univoco su cui verrà effettuato il calcolo della media</td>
</tr>
<tr>
<td>Coordinate media</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer (vettore punto) per il risultato</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinate medie</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer punto(i) risultante</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:meancoordinates

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di Processing dalla console Python.

Analisi del vicino più vicino

Esegue l’analisi del vicino più vicino per un layer punto. Il risultato ti dice come sono distribuiti i tuoi dati (raggruppati, casuali o distribuiti).

Il risultato viene generato come un file HTML con i valori statistici calcolati:

- Distanza media osservata
- Distanza media prevista
- Indice del vicino più vicino
- Numero di punti
- Z-Score: Confrontando lo Z-Score con la distribuzione normale si capisce come sono distribuiti i dati. Un basso Z-Score significa che è improbabile che i dati siano il risultato di un processo spazialmente casuale, mentre un alto Z-Score significa che i tuoi dati sono probabilmente il risultato di un processo spazialmente casuale.
Menu predefinito: Vettori ➤ Strumenti di Analisi…

Vedi anche:

*Unire gli attributi per il più vicino*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di input</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale puntuale su cui calcolare le statistiche</td>
</tr>
<tr>
<td>Vicino più vicino</td>
<td>OUTPUT_HTML_FILE</td>
<td>[html]</td>
<td>file HTML per le statistiche calcolate</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vicino più vicino</td>
<td>OUTPUT_HTML_FILE</td>
<td>[html]</td>
<td>file HTML con le statistiche calcolate</td>
</tr>
<tr>
<td>Distanza media osservata</td>
<td>OBSERVED_MD</td>
<td>[number]</td>
<td>Distanza media osservata</td>
</tr>
<tr>
<td>Distanza media prevista</td>
<td>EXPECTED_MD</td>
<td>[number]</td>
<td>Distanza media prevista</td>
</tr>
<tr>
<td>Indice del vicino più vicino</td>
<td>NN_INDEX</td>
<td>[number]</td>
<td>Indice del vicino più vicino</td>
</tr>
<tr>
<td>Numero di punti</td>
<td>POINT_COUNT</td>
<td>[number]</td>
<td>Numero di punti</td>
</tr>
<tr>
<td>Z-Score</td>
<td>z_SCORE</td>
<td>[number]</td>
<td>Z-Score</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** qgis:nearestneighbouranalysis

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di Processing dalla console Python.

**Analisi sovrapposizione**

Calcola l’area e la percentuale di copertura con cui gli elementi di un layer in ingresso sono sovrapposti agli elementi di una selezione di layer sovrapposti.

Vengono aggiunti nuovi attributi al layer in uscita che riportano l’area totale di sovrapposizione e la percentuale dell’elemento in ingresso sovrapposto a ciascuno dei layer di sovrapposizione selezionati.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di input</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer di input.</td>
</tr>
<tr>
<td>Layer sovrapposti</td>
<td>LAYERS</td>
<td>[vector: any] [list]</td>
<td>Layer in sovrapposizione</td>
</tr>
</tbody>
</table>
| Layer in uscita | OUTPUT | [same as input] Predefinito: [Crea livello temporaneo] | Indicare il layer vettoriale in uscita. Uno di:  
  • Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
  • Salva come File…  
  • Salva come Geopackage…  
  • Salva su Tabella PostGIS…  
  La codifica del file può anche essere cambiata qui.  |
### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in uscita</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer in uscita con campi aggiuntivi che riportano la sovrapposizione (in unità di mappa e percentuale) dell’elemento in ingresso sovrapposto a ciascuno dei layer selezionati.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** qgis:calculatevectoroverlaps

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di Processing dalla console Python.

### Statistiche per categorie

Calcola le statistiche di un campo in funzione di una classe padre. La classe padre è una combinazione di valori di altri campi.

#### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer vettoriale in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso con classi e valori univoci</td>
</tr>
<tr>
<td><strong>Campo su cui calcolare le statistiche (se vuoto, viene considerato solo il conteggio)</strong></td>
<td>VALUES_FIELD_NAME</td>
<td>[tablefield: any]</td>
<td>Se vuoto, sarà calcolato solo il conteggio</td>
</tr>
<tr>
<td><strong>Campo(i) con le categorie</strong></td>
<td>CATEGORIES_FIELD_NAME</td>
<td>[vector: any] [list]</td>
<td>I campi che (combinati) definiscono le categorie</td>
</tr>
<tr>
<td>Statistiche per categoria</td>
<td>OUTPUT</td>
<td>[table]</td>
<td>Tabella per le statistiche generate</td>
</tr>
</tbody>
</table>
**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistiche per categoria</td>
<td>OUTPUT</td>
<td>[table]</td>
<td>Tabella contenente le statistiche</td>
</tr>
</tbody>
</table>

A seconda del tipo di campo analizzato, vengono restituite le seguenti statistiche per ogni valore aggregato:

<table>
<thead>
<tr>
<th>Statistiche</th>
<th>Stringa</th>
<th>Numerico</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conteggio (COUNT)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Valori univoci (UNIQUE)</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valori vuoti (nulli) (EMPTY)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Valori non vuoti (FILLED)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Valore minimo (MIN)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Valore massimo (MAX)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Intervallllo (RANGE)</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somma (SUM)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Valore medio (MEAN)</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valore mediano (MEDIAN)</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviazione Standard (STD_DEV)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Coefficiente di variazione (CV)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Minoranza (valore più raro - MINORITY)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Maggioranza (valore più frequente - MAJORITY)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Primo Quartile (FIRSTQUARTILE)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Terzo Quartile (THIRDQUARTILE)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Intervallllo inter-quartile (IQR)</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunghezza Minima (MIN_LENGTH)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Lunghezza medie (MEAN_LENGTH)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Lunghezza massima (MAX_LENGTH)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** qgis:statisticsbycategories

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing.
Il **dizionario dei parametri** fornisce i Nomii e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di Processing dalla console Python.
**Somma delle lunghezze delle linee**

Utilizza un vettore poligonale e un vettore lineare e misura la lunghezza totale delle linee e il numero totale di esse che attraversano ogni poligono.

Il layer risultante ha gli stessi elementi del vettore poligonale in ingresso, ma con due attributi aggiuntivi che contengono la lunghezza e il conteggio delle linee che attraversano ogni poligono.

**Menu predefinito:** Vettore ➤ Strumenti di Analisi…

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linee</td>
<td>LINES</td>
<td>[vector: line]</td>
<td>Vettore lineare in ingresso</td>
</tr>
<tr>
<td>Poligoni</td>
<td>POLYGONS</td>
<td>[vector: polygon]</td>
<td>Layer vettoriale poligonale</td>
</tr>
<tr>
<td>Nome campo lunghezza delle linee</td>
<td>LEN_FIELD</td>
<td>[stringa]</td>
<td>Nome del campo per la lunghezza delle linee</td>
</tr>
<tr>
<td>Nome campo conteggio delle linee</td>
<td>COUNT_FIELD</td>
<td>[stringa]</td>
<td>Nome del campo per il conteggio delle linee</td>
</tr>
<tr>
<td>Lunghezza linea</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale poligonale in uscita</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunghezza linea</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Layer poligonale in uscita con i campi della lunghezza delle linee e del numero di linee</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:sumlinelengths

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing.
Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di Processing dalla console Python.

### 24.1.14 Creazione di vettori

**Serie di linee di offset (parallele)**

Crea copie di elementi lineari in un layer, creando versioni con offset multipli di ogni elemento. Ogni nuova versione è incrementalmente spostata di una distanza specificata.

Una distanza positiva crea delle linee con offset a sinistra e una distanza negativa crea delle linee con offset a destra.
Permette features in-place modification

Vedi anche:

Linee di offset, Array di elementi traslati

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso da usare per gli offset.</td>
</tr>
<tr>
<td>Numero di elementi da creare</td>
<td>COUNT</td>
<td>[number]</td>
<td>Numero di copie di offset da generare per ogni elemento.</td>
</tr>
<tr>
<td>Distanza di passo offset</td>
<td>OFFSET</td>
<td>[number]</td>
<td>Distanza tra due copie consecutive di offset.</td>
</tr>
<tr>
<td>Segmenti</td>
<td>SEGMENTS</td>
<td>[number]</td>
<td>Numero di segmenti lineari da usare per approssimare un quarto di cerchio quando si creano offset arrotondati</td>
</tr>
</tbody>
</table>
| Stile della giunzione   | JOIN_STYLE | [enumeration]             | Specifica se devono essere usate le giunzioni rotonde, oblique o smussate quando si fanno offset di angoli in una linea. Uno dei due:  
  • 0 — Arrotondato  
  • 1 — Seghettato  
  • 2 — Smussato |
| Margine giunzione ad angolo | MITER_LIMIT | [number]                  | Applicabile solo per gli stili di giunzione ad angolo, e controlla la distanza massima dalla curva di offset da usare quando si crea una giunzione ad angolo. |

continues on next page
Tabella 24.53 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linee di offset</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specifica il vettore lineare in uscita con le opzioni di offset. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

**Codice Python**

ID algoritmo: qgis:arrayoffsetlines

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ID algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dictionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Array di elementi traslati**

Crea copie di elementi in un layer creando versioni multiple traslate di ciascuno. Ogni copia è spostata in modo incrementale di una quantità preimpostata negli assi X, Y e/o Z.

Anche i valori M presenti nella geometria possono essere traslati.
Fig. 24.28: Layer in ingresso nei colori blu, layer in uscita con elementi traslati nei colori rosso

Permette *features in-place modification*

Vedi anche:

*Trasla, Serie di linee di offset (parallele)*

## Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso da traslare</td>
</tr>
<tr>
<td>Numero di elementi da creare</td>
<td>COUNT</td>
<td>[number ]</td>
<td>Predefinito: 10 Numero di copie da generare per ogni elemento</td>
</tr>
<tr>
<td>Distanza spostamento (asse x)</td>
<td>DELTA_X</td>
<td>[number ]</td>
<td>Predefinito: 0.0 Spostamento da applicare sull’asse X</td>
</tr>
<tr>
<td>Distanza spostamento (asse Y)</td>
<td>DELTA_Y</td>
<td>[number ]</td>
<td>Predefinito: 0.0 Spostamento da applicare sull’asse Y</td>
</tr>
<tr>
<td>Distanza spostamento (asse z)</td>
<td>DELTA_Z</td>
<td>[number ]</td>
<td>Predefinito: 0.0 Spostamento da applicare sull’asse Z</td>
</tr>
<tr>
<td>Distanza spostamento (valori m)</td>
<td>DELTA_M</td>
<td>[number ]</td>
<td>Predefinito: 0.0 Spostamento da applicare su M</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.54 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traslato</td>
<td>OUTPUT</td>
<td>[same as input] Predefinito: [Create temporary layer]</td>
<td>Layer vettoriale in uscita con copie traslate (spostate) degli elementi. Anche gli elementi originali vengono copiati. Uno di: • Crea Layer Temporaneo (TEMPORARY_OUTPUT) • Salva come File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traslato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita con copie traslate (spostate) degli elementi. Anche gli elementi originali vengono copiati.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID algoritmo:** qgis:arraytranslatedfeatures

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'**id algoritmo** viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi **Usare gli algoritmi di Processing dalla console dei comandi** per dettagli su come eseguire algoritmi di processing dalla console Python.

**Creare reticoli**

Crea un layer vettoriale con un reticoli che copre una data estensione. Le celle del reticolo possono avere forme diverse:

![Fig. 24.29: Diverse forme della cella del reticolo](image)

La dimensione di ogni elemento del reticolo è definita utilizzando una spaziatura orizzontale e verticale. Deve essere definito il SR del layer in uscita. L'estensione del reticolo e i valori della spaziatura devono essere espressi nelle coordinate e nelle unità di questo SR.

**Menu predefinito:** Vettore ► Strumenti di Ricerca
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tipo di reticolo</strong></td>
<td>TYPE</td>
<td>[enumeration] Predefinito: 0</td>
<td>Forma del reticolo. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Punto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Linea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Rettangolo (poligono)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Rombo (poligono)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Esagono (poligono)</td>
</tr>
<tr>
<td><strong>Estensione reticolo</strong></td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Estensione del reticolo</td>
</tr>
<tr>
<td><strong>Spaziatura orizzontale</strong></td>
<td>HSPACING</td>
<td>[number] Predefinito: 1.0</td>
<td>Dimensione di una cella del reticolo sull'asse X</td>
</tr>
<tr>
<td><strong>Spaziatura verticale</strong></td>
<td>VSPACING</td>
<td>[number] Predefinito: 1.0</td>
<td>Dimensione di una cella del reticolo sull'asse Y</td>
</tr>
<tr>
<td><strong>Sovrapposizione orizzontale</strong></td>
<td>HOVERLAY</td>
<td>[number] Predefinito: 0.0</td>
<td>Distanza di sovrapposizione tra due celle consecutive del reticolo sull'asse X</td>
</tr>
<tr>
<td><strong>Sovrapposizione verticale</strong></td>
<td>VUOVERLAY</td>
<td>[number] Predefinito: 0.0</td>
<td>Distanza di sovrapposizione tra due celle consecutive del reticolo sull'asse Y</td>
</tr>
<tr>
<td><strong>SR reticolo</strong></td>
<td>CRS</td>
<td>[crs] Predefinito: SR del Progetto</td>
<td>Sistema di riferimento delle coordinate da applicare al reticolo</td>
</tr>
<tr>
<td><strong>Reticolo</strong></td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Layer del reticolo vettoriale risultante. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Reticolo</strong></td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Layer del reticolo vettoriale risultante. Il tipo di geometria in uscita (punto, linea o poligono) dipende dalla <em>Tipo reticolo</em>.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID algoritmo:** qgis:creategrid

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Creare layer puntuale da tabella

Crea un layer di punti da una tabella con colonne che contengono campi di coordinate.
Oltre alle coordinate X e Y puoi anche specificare i campi Z e M.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso o una tabella.</td>
</tr>
<tr>
<td>Campo X</td>
<td>XFIELD</td>
<td>[tablefield: any]</td>
<td>Campo contenente la coordinata X</td>
</tr>
<tr>
<td>Campo Y</td>
<td>YFIELD</td>
<td>[tablefield: any]</td>
<td>Campo contenente la coordinata Y</td>
</tr>
<tr>
<td>Campo Z</td>
<td>ZFIELD</td>
<td>[tablefield: any]</td>
<td>Campo contenente la coordinata Z</td>
</tr>
<tr>
<td>Campo M</td>
<td>MFIELD</td>
<td>[tablefield: any]</td>
<td>Campo contenente il valore M</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>Sistema di riferimento delle coordinate da usare per il layer. Si presume che le coordinate fornite siano adeguate.</td>
</tr>
</tbody>
</table>

Punti da tabella

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti da tabella</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer punto risultante</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti da tabella</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer punto risultante</td>
</tr>
</tbody>
</table>

Codice Python

**ID algoritmo:** qgis:createpointslayerfromtable

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Generare punti (centroidi di pixel) lungo la linea

Genera un layer vettoriale puntuale da un layer raster e un vettore lineare in ingresso.
I punti corrispondono ai centroidi dei pixel che intersecano il vettore lineare.

![Fig. 24.30: Punti dei centroidi dei pixel](image)

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Raster</td>
<td>INPUT_RASTER</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Layer Vettoriale</td>
<td>INPUT_VECTOR</td>
<td>[vector: line]</td>
<td>Layer vettoriale linea in ingresso</td>
</tr>
<tr>
<td>Punti lungo la</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer punto risultante con i centroidi dei pixel. Uno di:</td>
</tr>
<tr>
<td>linea</td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti lungo la</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer punto risultante con i centroidi dei pixel</td>
</tr>
<tr>
<td>linea</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Codice Python**

**ID algoritmo:** qgis:generatepointspixelcentroidsalongline

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing.
Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Generare punti (centroidi dei pixel) all’interno del poligono

Genera un layer vettoriale punto da un raster e un vettore poligonale in ingresso. I punti corrispondono ai centroidi dei pixel che intersecano il vettore poligonale.

Fig. 24.31: Punti dei centroidi dei pixel
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Raster</td>
<td>INPUT_RASTER</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Layer Vettoriale</td>
<td>INPUT_VECTOR</td>
<td>[vector: polygon]</td>
<td>Vettore poligonale in ingresso</td>
</tr>
<tr>
<td>Punti all’interno dei poligoni</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer punto risultante dei centroidi dei pixel. Predefinito:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti all’interno dei poligoni</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer punto risultante dei centroidi dei pixel</td>
</tr>
</tbody>
</table>

### Codice Python

**ID algoritmo:** qgis:generatepointspixelcentroidsinsidepolygons

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’“id algoritmo” viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

### Importare foto georeferenziate

Crea un layer punto corrispondente ai luoghi georeferenziati di immagini JPEG da una cartella di origine.

Il layer punto conterrà una singolo elemento PointZ per ogni file in ingresso da cui le informazioni georeferenziate possono essere lette. Qualsiasi informazione sull’altitudine dalle informazioni georeferenziate sarà usata per impostare il valore Z del punto.

Oltre a longitudine e latitudine anche l’altitudine, la direzione e le informazioni di timestamp, se presenti nella foto, saranno aggiunte al punto come attributi.
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartella in ingresso</td>
<td>FOLDER</td>
<td>[folder]</td>
<td>Percorso della cartella di origine che contiene le foto georeferenziate.</td>
</tr>
<tr>
<td>Scansione ricorsiva</td>
<td>RECURSIVE</td>
<td>[boolean] Predefinito: False</td>
<td>Se spuntato, la cartella e le sue sottocartelle saranno scansionate.</td>
</tr>
<tr>
<td>Foto</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Specifica il layer vettoriale punto per le foto georeferenziate. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Tabella di foto non valida Opzionale</td>
<td>INVALID</td>
<td>[table] Predefinito: [Skip output]</td>
<td>Specifica la tabella delle foto illeggibili o non georeferenziate. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Risultato non disponibile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foto</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale punto con foto georeferenziate. Il modulo del layer viene riempito automaticamente con i percorsi e le impostazioni delle antepreme delle foto.</td>
</tr>
<tr>
<td>Tabella di foto non valida Opzionale</td>
<td>INVALID</td>
<td>[table]</td>
<td>Si può anche creare una tabella di foto illeggibili o non georeferenziate.</td>
</tr>
</tbody>
</table>

**Codice Python**

ID Algoritmo: qgis:importphotos

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Da punti a percorso

Converte un layer punto in un vettore lineare, unendo i punti in un ordine definito da un campo nel layer punto in ingresso (se il campo dell'ordine è un campo data/ora, il formato deve essere specificato).

I punti possono essere raggruppati da un campo per distinguere gli elementi della linea.

Oltre al layer vettoriale lineare, viene emesso un file di testo che descrive la linea risultante come un punto di partenza e una sequenza di orientamenti / direzioni (relative all’azimut) e distanze.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer punto in ingresso</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale punto in ingresso</td>
</tr>
<tr>
<td>Percorso chiuso</td>
<td>CLOSE_PATH</td>
<td>[boolean]</td>
<td>Se selezionato, il primo e l’ultimo punto della linea saranno collegati e chiuderanno il percorso generato</td>
</tr>
<tr>
<td>Campo ordine</td>
<td>ORDER_FIELD</td>
<td>[tablefield: any]</td>
<td>Campo contenente l’ordine per connettere i punti nel percorso</td>
</tr>
<tr>
<td>Campo gruppo</td>
<td>GROUP_FIELD</td>
<td>[tablefield: any]</td>
<td>I punti con lo stesso valore nel campo saranno raggruppati nella stessa linea. Se non è impostato, viene disegnato un unico percorso con tutti i punti in ingresso.</td>
</tr>
<tr>
<td>Formato data (se il campo dell’ordine è DateTime)</td>
<td>DATE_FORMAT</td>
<td>[string]</td>
<td>Il formato da usare per il parametro Campo ordine. Specifica questo solo se il Campo ordine è di tipo Date/Time.</td>
</tr>
<tr>
<td>Percorsi</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specifica il layer vettoriale linea del percorso. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Cartella per il risultato in formato testo</td>
<td>OUTPUT_TEXT_DIR</td>
<td>[folder]</td>
<td>Specificare la cartella che conterrà i file di descrizione dei punti e dei percorsi. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Risultato non disponibile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in una cartella temporanea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva nella cartella…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percorsi</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale linea del percorso</td>
</tr>
<tr>
<td>Cartella per il risultato in formato testo</td>
<td>OUTPUT_TEXT_DIR</td>
<td>[folder]</td>
<td>Cartella contenente i file di descrizione dei punti e dei percorsi</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** qgis:pointstopath

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Punti casuali lungo la linea**

Crea un nuovo layer punto, con punti posizionati sulle linee di un altro layer.

Per ogni linea nel layer in ingresso, un certo numero di punti viene aggiunto al layer risultante. La procedura per aggiungere un punto è la seguente:

1. seleziona casualmente un elemento lineare dal layer in ingresso
2. se l’elemento è in parti multiple, seleziona casualmente una parte di esso
3. seleziona casualmente un segmento di quella linea
4. seleziona casualmente una posizione su quel segmento.

La procedura significa che le parti curve delle linee (con segmenti relativamente corti) otterranno più punti delle parti diritte (con segmenti relativamente lunghi), come dimostrato nell’illustrazione qui sotto, dove il risultato dell’algoritmo Punti casuali lungo le linee può essere confrontato con il risultato dell’algoritmo Punti casuali sulle linee (che produce punti con una distribuzione, in media, uniforme lungo le linee).

![Punti casuali lungo le linee](image)

Fig. 24.32: Esempio di risultato dell’algoritmo. A sinistra: Punti casuali lungo la linea, a destra: Punti casuali sulle linee

Si può specificare una distanza minima, per evitare che i punti siano troppo vicini tra loro.

**Vedi anche:**

Punti casuali sulle linee
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer punto in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale linea in ingresso</td>
</tr>
<tr>
<td>Numero di punti</td>
<td>POINTS_NUMBER</td>
<td>[number]</td>
<td>Numero di punti da creare</td>
</tr>
<tr>
<td>Distanza minima tra i punti</td>
<td>MIN_DISTANCE</td>
<td>[number]</td>
<td>La distanza minima tra i punti</td>
</tr>
<tr>
<td>Punti casuali</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>I punti casuali in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti casuali</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer di punti casuali in uscita</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo**: qgis:qgisrandompointsalongline

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'"id algoritmo" viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di **Processing** dalla console dei comandi* per dettagli su come eseguire algoritmi di **processing** dalla console Python.

**Punti casuali nell’estensione**

Crea un nuovo layer punto con un dato numero di punti casuali, tutti entro una data estensione.

Un fattore di distanza può essere specificato, per evitare che i punti siano troppo vicini tra loro. Se la distanza minima tra i punti rende impossibile la creazione di nuovi punti, si può diminuire la distanza o aumentare il numero massimo di tentativi.

**Menu predefinito**: Vettore ➤ Strumenti di Ricerca
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione in ingresso</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Estensione della mappa per i punti casuali</td>
</tr>
<tr>
<td>Numero di punti</td>
<td>POINTS_NUMBER</td>
<td>[number]</td>
<td>Numero di punti da creare</td>
</tr>
<tr>
<td>Distanza minima tra i punti</td>
<td>MIN_DISTANCE</td>
<td>[number]</td>
<td>Predefinito: 1, La distanza minima tra i punti</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>Predefinito: SR del Progetto, SR del layer di punti casuali</td>
</tr>
<tr>
<td>Numero massimo di tentativi di</td>
<td>MAX_ATTEMPTS</td>
<td>[number]</td>
<td>Predefinito: 200, Numero massimo di tentativi per il posizionamento dei punti</td>
</tr>
<tr>
<td>ricerche data la distanza minima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punti casuali</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>I punti casuali in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** `native:randompointsinextent`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’`id algoritmo` viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dicionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

### Punti casuali nei confini del layer

Crea un nuovo layer punto con un dato numero di punti casuali, tutti all’interno dell’estensione di un dato layer.

Si può specificare una distanza minima, per evitare che i punti siano troppo vicini tra loro.

**Menu predefinito:** Vettore ➤ Strumenti di Ricerca
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: polygon]</td>
<td>Vettore poligonale in ingresso che definisce l’area</td>
</tr>
<tr>
<td>Numero di punti</td>
<td>POINTS_NUMBER</td>
<td>[number]</td>
<td>Numero di punti da creare</td>
</tr>
<tr>
<td>Distanza minima tra i punti</td>
<td>MIN_DISTANCE</td>
<td>[number]</td>
<td>La distanza minima tra i punti</td>
</tr>
<tr>
<td>Punti casuali</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>I punti casuali in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti casuali</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer di punti casuali in uscita.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:randompointsinlayerbounds

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing.
Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Punti casuali nei poligoni**

Crea un layer punto con punti posizionati all’interno dei poligoni di un altro layer.

Per ogni elemento geometria (poligono / poligoni multipli) nel layer in ingresso, il numero dato di punti è aggiunto al layer risultato.

Le distanze minime per elemento e globali possono essere specificate per evitare che i punti siano troppo vicini nel layer punto in uscita. Se viene specificata una distanza minima, potrebbe non essere possibile generare il numero specificato di punti per ogni elemento. Il numero totale di punti generati e i punti non generati sono disponibili come risultato dell’algoritmo.

L’illustrazione qui sotto mostra l’effetto delle distanze minime per elemento e globali e delle distanze minime zero/non-zero (generate con lo stesso valore di partenza), quindi almeno il primo punto generato sarà lo stesso.

24.1. Fornitore di algoritmo QGIS
Fig. 24.33: Dieci punti per ciascun elemento poligono, a sinistra: min. distanze = 0, al centro: min. distanze = 1, a destra: min. distanza = 1, min. distanza globale = 0

Il numero massimo di tentativi per punto può essere specificato. Questo è pertinente solo per una distanza minima non nulla.

Un valore di partenza per il generatore di numeri casuali può essere fornito, rendendo possibile ottenere sequenze di numeri casuali identiche per diverse esecuzioni dell'algoritmo.

Gli attributi dell'elemento poligonale su cui è stato generato un punto possono essere inclusi (Includi gli attributi del poligono).

Se vuoi approssimativamente la stessa densità di punti per tutti gli elementi, puoi definire il numero di punti usando l'area della geometria dell'elemento poligonale.

Vedi anche:

Punti casuali all'interno di poligoni

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore poligonale in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Vettore poligonale in ingresso</td>
</tr>
<tr>
<td>Numero di punti per ogni elemento</td>
<td>POINTS_NUMBER</td>
<td>[number ]</td>
<td>Numero di punti da creare</td>
</tr>
<tr>
<td>Distanza minima tra i punti Opzionale</td>
<td>MIN_DISTANCE</td>
<td>[number ]</td>
<td>La distanza minima tra i punti all'interno di una element poligonone</td>
</tr>
<tr>
<td>Distanza minima globale tra i punti Opzionale</td>
<td>MIN_DISTANCE_GLOBAL</td>
<td>[number ]</td>
<td>La distanza minima globale tra i punti. Dovrebbe essere inferiore alla Distanza minima tra i punti (per elemento) perché questo parametro abbia un effetto.</td>
</tr>
<tr>
<td>Numero massimo di tentativi di ricerca (per Min. dist. &gt; 0) Opzionale</td>
<td>MAX_TRIES_PER_POINT</td>
<td>[number ]</td>
<td>Il numero massimo di tentativi per punto. È pertinente solo se la distanza minima tra i punti è impostata (e maggiore di 0).</td>
</tr>
<tr>
<td>Valore di partenza casuale Opzionale</td>
<td>SEED</td>
<td>[number ]</td>
<td>Il valore di partenza da usare per il generatore di numeri casuali.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.59 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includere gli attributi del poligono</td>
<td>INCLUDE_POLYGON_ATTRIBUTES [boolean]</td>
<td>Predefinito: True</td>
<td>Se impostato, un punto riceverà gli attributi dalla linea su cui è posto.</td>
</tr>
<tr>
<td>Punti casuali nei poligoni</td>
<td>OUTPUT [vector:point]</td>
<td>Predefinito: [Create temporary layer]</td>
<td>I punti casuali in uscita. Uno di: • Crea Layer Temporaneo (TEMPORARY_OUTPUT) • Salva come File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti casuali nei poligoni</td>
<td>OUTPUT [vector:point]</td>
<td></td>
<td>Il layer di punti casuali in uscita.</td>
</tr>
<tr>
<td>Numero di elementi con geometria vuota o senza geometria</td>
<td>FEATURES_WITH_E [number]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numero totale di punti generati</td>
<td>OUTPUT_POINTS [number]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numero di punti persi</td>
<td>POINTS_MISSED [number]</td>
<td></td>
<td>Il numero di punti che non hanno potuto essere生成a causa del vincolo della distanza minima.</td>
</tr>
<tr>
<td>Numero di elementi con punti persi</td>
<td>POLYGONS_WITH_MISSED_POINTS [number]</td>
<td></td>
<td>Non includere gli elementi con geometria vuota o senza geometria</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:randompointsinpolygons

```
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Punti casuali all’interno di poligoni**

Crea un nuovo layer punto con un dato numero di punti casuali all’internro di ogni poligono del vettore poligonale in ingresso.

Sono disponibili due modalità di distribuzione:
- Conto punti: numero di punti per ogni elemento.
- Densità punti: densità di punti per ogni elemento

Si può specificare una distanza minima, per evitare che i punti siano troppo vicini tra loro.
Menu predefinito: Vettore ➤ Strumenti di Ricerca

Vedi anche:

Punti casuali nei poligoni

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: polygon]</td>
<td>Vettore poligonale in ingresso</td>
</tr>
<tr>
<td>Strategia di distribuzione</td>
<td>STRATEGY</td>
<td>[enumeration]</td>
<td>Strategia di distribuzione da utilizzare. Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Conteggio punti: numero di punti per ogni elemento</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Densità punti: densità di punti per ogni elemento</td>
</tr>
<tr>
<td>Numero punti o densità</td>
<td>VALUE</td>
<td>[number]</td>
<td>Il numero o la densità di punti, a seconda della Strategia di distribuzione scelta.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 1.0</td>
<td></td>
</tr>
<tr>
<td>Distanza minima tra i punti</td>
<td>MIN_DISTANCE</td>
<td>[number]</td>
<td>La distanza minima tra i punti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0.0</td>
<td></td>
</tr>
<tr>
<td>Punti casuali</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>I punti casuali in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti casuali</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer di punti casuali in uscita.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:randompointsinsidepolygons

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Punti casuali su linee

Crea un layer punto con punti posizionati sulle linee di un altro layer.

Per ogni elemento geometria (linea / multilinea) nel layer in ingresso, il numero dato di punti è aggiunto al layer risultato.

Le distanze minime per elemento e globali possono essere specificate per evitare che i punti siano troppo vicini nel layer punto in uscita. Se viene specificata una distanza minima, potrebbe non essere possibile generare il numero specificato di punti per ogni elemento. Il numero totale di punti generati e i punti non generati sono disponibili come risultato dell'algoritmo.

L’illustrazione qui sotto mostra l’effetto delle distanze minime per elemento e globali e delle distanze minime zero/non-zero (generate con lo stesso valore di partenza), quindi almeno il primo punto generato sarà lo stesso.

Fig. 24.34: Cinque punti per elemento linea, a sinistra: min. distanze = 0, al centro: min. distanze != 0, a destra: min. distanza != 0, min. distanza globale = 0

Il numero massimo di tentativi per punto può essere specificato. Questo è pertinente solo per una distanza minima non nulla.

Un valore di partenza per il generatore di numeri casuali può essere fornito, rendendo possibile ottenere sequenze di numeri casuali identiche per diverse esecuzioni dell'algoritmo.

Gli attributi dell'elemento linea su cui è stato generato un punto possono essere inclusi (Include attributi linea).

Se vuoi approssimativamente la stessa densità di punti per tutte gli elementi linea, puoi definire il numero di punti usando la lunghezza della geometria dell'elemento linea.

Vedi anche:

Punti casuali lungo la linea

24.1. Fornitore di algoritmo QGIS 949
## Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore lineare in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale linea in ingresso</td>
</tr>
<tr>
<td>Numero di punti per ogni elemento</td>
<td>POINTS_NUMBER</td>
<td>[number ≤ ] Predefinito: 1</td>
<td>Numero di punti da creare</td>
</tr>
<tr>
<td>Distanza minima tra i punti (per elemento) Opzionale</td>
<td>MIN_DISTANCE</td>
<td>[number ≤ ] Predefinito: 0.0</td>
<td>La distanza minima tra i punti all’interno di un elemento lineare</td>
</tr>
<tr>
<td>Distanza minima globale tra i punti Opzionale</td>
<td>MIN_DISTANCE_GLOBAL</td>
<td>[number ≤ ] Predefinito: 0.0</td>
<td>La distanza minima globale tra i punti. Dovrebbe essere inferiore alla Distanza minima tra i punti (per elemento) perché questo parametro abbia un effetto.</td>
</tr>
<tr>
<td>Numero massimo di tentativi di ricerca (per Min. dist. &gt; 0) Opzionale</td>
<td>MAX_TRIES_PER_POINT</td>
<td>[number ≤ ] Predefinito: 10</td>
<td>Il numero massimo di tentativi per punto. È pertinente solo se la distanza minima tra i punti è impostata (e maggiore di 0).</td>
</tr>
<tr>
<td>Valore di partenza casuale Opzionale</td>
<td>SEED</td>
<td>[number] Predefinito: Non impostato</td>
<td>Il valore di partenza da usare per il generatore di numeri casuali.</td>
</tr>
<tr>
<td>Includere gli attributi della linea</td>
<td>INCLUDE_LINE_ATTRIBUTES</td>
<td>[boolean ≤ ] Predefinito: True</td>
<td>Se impostato, un punto riceverà gli attributi dalla linea su cui è posto.</td>
</tr>
<tr>
<td>Punti casuali sulle linee</td>
<td>OUTPUT</td>
<td>[vector: point] Predefinito: [Create temporary layer]</td>
<td>I punti casuali in uscita. Uno di: • Crea Layer Temporaneo (TEMPORARY_OUTPUT) • Salva come File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti casuali sulle linee</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer di punti casuali in uscita.</td>
</tr>
<tr>
<td>Numero di elementi con geometria vuota o senza geometria</td>
<td>FEATURES_WITH_EITHER_NO_GEOMETRY</td>
<td>[number ≤ ]</td>
<td>Non includere gli elementi con geometria vuota o senza geometria</td>
</tr>
<tr>
<td>Numero di elementi con punti persi</td>
<td>LINES_WITH_MISSING_POINTS</td>
<td>[number ≤ ]</td>
<td>Non includere gli elementi con geometria vuota o senza geometria</td>
</tr>
<tr>
<td>Numero totale di punti generati</td>
<td>OUTPUT_POINTS</td>
<td>[number ≤ ]</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.63 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero di punti</td>
<td>POINTS_MISSED</td>
<td>[number]</td>
<td>Il numero di punti che non hanno potuto essere generati a causa del vincolo della distanza minima.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:randompointsonlines

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Da pixel raster a punti**

Crea un layer vettoriale di punti corrispondenti ad ogni pixel di un layer raster.

Converte un layer raster in un layer vettoriale, creando elementi puntuali al centro di ogni singolo pixel nel layer raster. Qualsiasi pixel nodata viene ignorato in uscita.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Raster</td>
<td>INPUT_RASTER</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>RASTER_BAND</td>
<td>[raster band]</td>
<td>Banda raster da cui estrarre i dati</td>
</tr>
<tr>
<td>Nome campo</td>
<td>FIELD_NAME</td>
<td>[string]</td>
<td>Nome del campo in cui memorizzare il valore della banda raster</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: “VALUE”</td>
</tr>
<tr>
<td>Punti vettoriali</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Specificare il layer punto risultante dai centroidi dei pixel. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti vettoriali</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer punto risultante con i centroidi dei pixel</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** qgis:pixelstopoints

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Da pixel raster a poligoni**

Crea un layer vettoriale di poligoni in corrispondenza di ogni pixel di un layer raster.

Converte un layer raster in un layer vettoriale, creando elementi poligonali in corrispondenza di ogni singolo pixel del layer raster. Qualsiasi pixel nodata viene ignorato in uscita.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Raster</td>
<td>INPUT_RASTER</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>RASTER_BAND</td>
<td>[raster band]</td>
<td>Banda raster da cui estrarre i dati</td>
</tr>
<tr>
<td>Nome campo</td>
<td>FIELD_NAME</td>
<td>[string]</td>
<td>Nome del campo in cui memorizzare il valore della banda raster</td>
</tr>
</tbody>
</table>

**Vettore di poligoni**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore di poligoni</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il vettore poligonale risultante dalle estensioni in pixel. Uno di:</td>
</tr>
</tbody>
</table>

- Crea Layer Temporaneo (TEMPORARY_OUTPUT)
- Salva come File…
- Salva come Geopackage…
- Salva su Tabella PostGIS…

La codifica del file può anche essere cambiata qui.

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore di poligoni</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Vettore poligonale risultante dalle estensioni in pixel</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:pixelstopolygons

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Punti regolari

Crea un nuovo layer punto con i suoi punti posizionati in un reticolo regolare all'interno di una data superficie.

Il reticolo è specificato o dalla spaziatura tra i punti (stessa spaziatura per tutte le dimensioni) o dal numero di punti da generare. In quest'ultimo caso, la spaziatura sarà determinata dall'estensione. Se si vuole generare una griglia rettangolare perfetta, almeno il numero di punti specificato dall'utente deve essere generato in quest'ultimo caso.

Si possono applicare offset casuali alla spaziatura dei punti, ottenendo un pattern di punti non regolare.

Menu predefinito: Vettore ➤ Strumenti di Ricerca

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione in ingresso (xmin, xmax, ymin, ymax)</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Estensione della mappa per i punti casuali</td>
</tr>
<tr>
<td>Spaziatura/numero punti</td>
<td>SPACING</td>
<td>[number] Predefinito: 100</td>
<td>Spaziatura tra i punti, o il numero di punti, a seconda che la casella Usa spaziatura punti sia selezionata o meno.</td>
</tr>
<tr>
<td>Iniziale riquadro a partire dall’angolo (lato sinistro)</td>
<td>INSET</td>
<td>[number] Predefinito: 0.0</td>
<td>Offset dei punti rispetto all’angolo superiore sinistro. Il valore viene utilizzato sia per l’asse X che per l’asse Y.</td>
</tr>
<tr>
<td>Applicare un offset casuale alla spaziatura fra i punti</td>
<td>RANDOMIZE</td>
<td>[boolean] Predefinito: False</td>
<td>Se selezionato, i punti avranno una spaziatura casuale</td>
</tr>
<tr>
<td>Usa la spaziatura punto.</td>
<td>IS_SPACING</td>
<td>[boolean] Predefinito: True</td>
<td>Se non selezionato, la spaziatura punto non è presa in considerazione</td>
</tr>
<tr>
<td>SR layer in uscita</td>
<td>CRS</td>
<td>[crs] Predefinito: SR del Progetto</td>
<td>SR del layer di punti casuali</td>
</tr>
<tr>
<td>Punti regolari</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Specificare il layer punto regolare in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti regolari</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer punto regolare in uscita.</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** qgis:regularpoints

```python
import processing
defunzione
processing.run("algorithm_id", {parameter_dictionary})
```

L’`id algoritmo` viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il `dizionario dei parametri` fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

### 24.1.15 Vettore generalità

**Assegnare proiezione**

Assegna una nuova proiezione ad un layer vettoriale.

Crea un nuovo layer con le stesse identiche caratteristiche e geometrie di quello in ingresso, ma assegnato a un nuovo SR. Le geometrie **non** sono riproiettate, sono solo assegnate a un diverso SR.

Questo algoritmo può essere usato per aggiustare i layer ai quali è stata assegnata una proiezione errata.

Gli attributi non vengono modificati da questo algoritmo.

Vedi anche:

- Definire la proiezione dello shapefile
- Trovare la proiezione
- Layer riproiettato

#### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale con SR errato o mancante</td>
</tr>
<tr>
<td>SR assegnato</td>
<td>SR</td>
<td>[crs]</td>
<td>Predefinito: EPSG:4326 - WGS84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seleziona il nuovo SR da assegnare al layer vettoriale</td>
</tr>
<tr>
<td>SR assegnato Opzionale</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer di uscita che contiene solo i duplicati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea layer temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Crea layer</td>
<td>(TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>temporaneo]</td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

#### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR assegnato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con proiezione assegnata</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** qgis:assignprojection

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Convertire il layer in segnalibri spaziali

Crea segnalibri spaziali corrispondenti all’estensione degli elementi contenuti in un layer.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Il layer del vettore in ingresso</td>
</tr>
</tbody>
</table>
| Destinazione segnalibro    | DESTINATION         | [enumeration] Predefinito: 0  | Seleziona la destinazione per i segnalibri. Una delle seguenti:  
  • 0 — Segnalibri di progetto  
  • 1 — Segnalibri utente |
| Nome campo                 | NAME_EXPRESSION    | [expression]                  | Campo o espressione che darà i nomi ai segnalibri generati |
| Campo del gruppo           | GROUP_EXPRESSION   | [expression]                  | Campo o espressione che fornirà i gruppi per i segnalibri generati |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conteggio dei segnalibri aggiunti</td>
<td>COUNT</td>
<td>[number]</td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** qgis:layertobookmarks

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Converte i segnalibri spaziali in layer

Crea un nuovo layer contenente elementi poligonali per i segnalibri spaziali memorizzati. L'esportazione può essere filtrata solo per i segnalibri appartenenti al progetto corrente, per tutti i segnalibri dell'utente, o una combinazione di entrambi.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fonte segnalibo</strong></td>
<td>SOURCE</td>
<td>[enumeration] [list]</td>
<td>Predefinito: [0,1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: [0,1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: [0,1]</td>
</tr>
<tr>
<td><strong>SR in uscita</strong></td>
<td>SR</td>
<td>[crs]</td>
<td>Predefinito: EPSG:4326 - WGS 84</td>
</tr>
<tr>
<td><strong>Output</strong></td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Predefinito:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[Crea layer temporaneo]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[Crea layer temporaneo]</td>
</tr>
<tr>
<td></td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Predefinito:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[Crea layer temporaneo]</td>
</tr>
<tr>
<td></td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Predefinito:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[Crea layer temporaneo]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[Crea layer temporaneo]</td>
</tr>
<tr>
<td></td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Predefinito:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[Crea layer temporaneo]</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale in uscita (segnalibri)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:bookmarkstolayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'"id dell'algoritmo" viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il direzione dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
**Creare attributo indice**

Crea un indice su un campo della tabella degli attributi per velocizzare le query. Il supporto per la creazione di un indice dipende sia dal fornitore di dati del layer che dal tipo di campo.

Nessun risultato viene creato: l’indice viene memorizzato sul layer stesso.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Seleziona il layer vettoriale per il quale vuoi creare un attributo indice</td>
</tr>
<tr>
<td>Attributo per l’indice</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Campo del layer vettoriale</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer indicizzato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Una copia del layer vettoriale in ingresso con un indice per il campo specificato</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:createattributeindex`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Crea indice spaziale**

Crea un indice per accelerare l’accesso agli elementi di un layer in base alla loro posizione spaziale. Il supporto per la creazione di un indice spaziale dipende dal fornitore di dati del layer.

Nessun nuovo layer in uscita viene generato

**Menu predefinito:** *Vettore ➤ Strumenti di Gestione Dati*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer indicizzato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Una copia del layer vettoriale in ingresso con un indice spaziale</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo**: qgis:createspatialindex

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Definire la proiezione dello shapefile**

Imposta il SR (proiezione) di un insieme di dati in formato Shapefile esistente al SR fornito. È molto utile quando un dataset in formato Shapefile manca del file *prj* e si conosce la proiezione corretta.

Contrariamente all’algoritmo *Assegnare proiezione*, modifica il layer corrente e non produce un nuovo layer.

**Nota**: Per gli insiemi di dati Shapefile, i file *.prj* e *.qpj* saranno sovrascritti - o creati se mancanti - per corrispondere al SR fornito.

**Menu predefinito**: Vettore ➤ Strumenti di Gestione Dati

**Vedi anche:**

*Assegnare proiezione, Trovare la proiezione, Layer riproiettato*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale con informazioni di proiezione mancanti</td>
</tr>
<tr>
<td>SR</td>
<td>SR</td>
<td>[crs]</td>
<td>Selezionare il SR da assegnare al layer vettoriale</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>[same as input]</td>
<td></td>
<td>Il layer in ingresso con la proiezione definita</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo**: qgis:definecurrentprojection

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Eliminare le geometrie duplicate

Trova e rimuove le geometrie duplicate.

Gli attributi non sono verificati, quindi nel caso in cui due elementi abbiano geometrie identiche ma attributi diversi, solo una di esse sarà aggiunta al layer risultante.

Vedi anche:

*Geometrie eliminate, Rimuove geometrie nulle, Eliminare i duplicati in base all’attributo*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer con geometrie duplicate che vuoi pulire</td>
</tr>
<tr>
<td>Pulito</td>
<td>OUTPUT</td>
<td>[same as input] (TEMPORARY_OUTPUT)</td>
<td>Specificare il layer in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conteggio dei record duplicati scartati</td>
<td>DUPLICATE_COUNT</td>
<td>[number]</td>
<td>Conteggio dei record duplicati scartati</td>
</tr>
<tr>
<td>Pulito</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer in uscita senza geometrie duplicate</td>
</tr>
<tr>
<td>Conteggio dei record mantenuti</td>
<td>RETAINED_COUNT</td>
<td>[number]</td>
<td>Conteggio dei record univoci</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** qgis:deleteduplicategeometries

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Eliminare i duplicati in base all’attributo

Elimina le righe duplicate considerando solo il campo o i campi specificati. La prima riga corrispondente sarà mantenuta, e i duplicati saranno scaricati.

Opzionalmente, questi record duplicati possono essere salvati in un risultato separato per l’analisi.

Vedi anche:

* Eliminare le geometrie duplicate

#### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer in ingresso</td>
</tr>
<tr>
<td><strong>Campi su cui trovare i duplicati</strong></td>
<td>FIELDS</td>
<td>[tablefield: any] [list]</td>
<td>Campi che contengono duplicati. Gli elementi con valori identici per tutti questi campi sono considerati duplicati.</td>
</tr>
<tr>
<td><strong>Filtri (nessun duplicato)</strong></td>
<td>OUTPUT</td>
<td>[same as input] Predefinito: [Crea layer temporaneo]</td>
<td>Specifica il layer in uscita che contiene gli elementi univoci. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td><strong>Filtri (duplicati)</strong> Opzionale</td>
<td>DUPLICATES</td>
<td>[same as input] Predefinito: [Skip output]</td>
<td>Specifica il layer in uscita che contiene solo i duplicati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tralascia il risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtrati (duplicati)</td>
<td>DUPLICATES</td>
<td>[same as input]</td>
<td>Layer vettoriale contenente gli elementi rimossi. Non verrà generato se non specificato (lasciato come [Skip output]).</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conteggio dei record</td>
<td>DUPLICATE_COUNT</td>
<td>[number]</td>
<td>Conteggio dei record duplicati scartati</td>
</tr>
<tr>
<td>duplicati scartati</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtrati (nessun duplicato)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale contenente gli elementi univoci.</td>
</tr>
<tr>
<td>Conteggio dei record</td>
<td>RETAINED_COUNT</td>
<td>[number]</td>
<td>Conteggio dei record univoci</td>
</tr>
<tr>
<td>mantenuti</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:deleteduplicatesbyattribute

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Rileva i cambiamenti nell’insieme dei dati**

Confronta due layer vettoriali e determina quali elementi sono invariati, aggiunti o cancellati tra i due. È progettato per confrontare due diverse versioni dello stesso insieme di dati.

![Diagramma](image)

Fig. 24.35: Rilevare il cambiamento dell’insieme dei dati di esempio
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer originale</td>
<td>ORIGINAL</td>
<td>[vector: any]</td>
<td>Il layer vettoriale considerato come versione originale</td>
</tr>
<tr>
<td>Layer revisionato</td>
<td>REVISI</td>
<td>[vector: any]</td>
<td>Il layer vettoriale revisionato o modificato</td>
</tr>
<tr>
<td>Attributi da considerare per il confronto Opzionale</td>
<td>COMPARE_ATTRIBUTES</td>
<td>[tablefield: any] [list]</td>
<td>Attributi da considerare per il confronto. Per impostazione predefinita, vengono confrontati tutti gli attributi.</td>
</tr>
<tr>
<td>Composizione confronto geometric</td>
<td>MATCH_TYPE</td>
<td>[enumeration]</td>
<td>Predefinito: 1 Definisce i criteri di confronto. Opzioni:</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td>• 0 — Exact Match: include l'ordine e il conteggio dei vertici delle geometrie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Tolerant Match (uguaglianza topologica): le geometrie sono considerate uguali</td>
</tr>
<tr>
<td>Elementi immutati</td>
<td>UNCHANGED</td>
<td>[vector: same as Original layer]</td>
<td>Specificare il layer vettoriale in uscita che contiene gli elementi immutati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo ([TEMPORARY_OUTPUT])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Elementi aggiunti</td>
<td>ADDED</td>
<td>[vector: same as Original layer]</td>
<td>Specificare il layer vettoriale in uscita che contiene gli elementi aggiunti. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo ([TEMPORARY_OUTPUT])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Elementi eliminati</td>
<td>DELETED</td>
<td>[vector: same as Original layer]</td>
<td>Specificare il layer vettoriale in uscita che contiene gli elementi eliminati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo ([TEMPORARY_OUTPUT])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementi immutati</td>
<td>UNCHANGED</td>
<td>[vector: same as Original layer]</td>
<td>Layer vettoriale contenente gli elementi immutati.</td>
</tr>
<tr>
<td>Elementi aggiunti</td>
<td>ADDED</td>
<td>[vector: same as Original layer]</td>
<td>Layer vettoriale contenente gli elementi aggiunti.</td>
</tr>
<tr>
<td>Elementi eliminati</td>
<td>DELETED</td>
<td>[vector: same as Original layer]</td>
<td>Layer vettoriale contenente gli elementi eliminati.</td>
</tr>
<tr>
<td>Conteggio degli elementi immutati</td>
<td>UNCHANGED_COUNT</td>
<td>[number]</td>
<td>Conteggio degli elementi immutati</td>
</tr>
<tr>
<td>Conteggio degli elementi aggiunti nel layer revisionato</td>
<td>ADDED_COUNT</td>
<td>[number]</td>
<td>Conteggio degli elementi aggiunti nel layer revisionato</td>
</tr>
<tr>
<td>Conteggio degli elementi eliminati dal layer originale</td>
<td>DELETED_COUNT</td>
<td>[number]</td>
<td>Conteggio degli elementi eliminati dal layer originale</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:detectdatasetchanges

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Geometrie eliminate**

Crea una semplice copia *senza geometria* della tabella degli attributi del layer in ingresso. Mantiene la tabella degli attributi del layer di origine.

Se il file viene salvato in una cartella locale, puoi scegliere tra molti formati di file.

- Permette features in-place modification 1

**Vedi anche:**

*Eliminare le geometrie duplicate*, *Rimuove geometrie nulle*
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector:any]</td>
<td>Il layer del vettore in ingresso</td>
</tr>
<tr>
<td>Geometrie</td>
<td>OUTPUT</td>
<td>[table]</td>
<td>Specifica il layer di uscita senza geometria. Uno di:</td>
</tr>
<tr>
<td>Eliminate</td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

#### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

#### Codice Python

**ID Algoritmo:** qgis:dropgeometries

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomii e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

#### Eseguire SQL

Esegue una query semplice o complessa con sintassi SQL sul layer di origine.

Le fonti di dati di input sono identificate con `input1, input2... inputN` e una semplice query sarà del tipo `SELECT * FROM input1`.

Oltre a una semplice query, è possibile aggiungere espressioni o variabili all’interno del parametro `SQL query` stesso. Questo è particolarmente utile se questo algoritmo viene eseguito all’interno di un modello di elaborazione e si desidera utilizzare un input del modello come parametro della query. Un esempio di query sarà quindi `SELECT * FROM[% @table %]` dove `%table%` è la variabile che identifica l’input del modello.

Il risultato della query sarà aggiunto come un nuovo layer.

**Vedi anche:**

* SpatialLite esegue SQL, PostgreSQL esegue SQL*
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonti di dati in entrata aggiuntive (chiamate input1, .., inputN nella query).</td>
<td>INPUT_DATASOURCES</td>
<td>[vector: any] [list]</td>
<td>Elenco dei layer da interrogare. Nell’editor SQL si può fare riferimento a questi layer con il loro nome <strong>reale</strong> o anche con <strong>input1</strong>, <strong>input2</strong>, <strong>inputN</strong> a seconda di quanti layer sono stati scelti.</td>
</tr>
<tr>
<td>SQL query</td>
<td>INPUT_QUERY</td>
<td>[string]</td>
<td>Scrivi la stringa della tua query SQL, ad esempio <code>SELECT * FROM input1</code>.</td>
</tr>
<tr>
<td>Campo di identificazione univoco</td>
<td>INPUT_UID_FIELD</td>
<td>[string]</td>
<td>Specificare la colonna con ID univoco</td>
</tr>
<tr>
<td>Campo geometria</td>
<td>INPUT_GEOMETRY</td>
<td>[string]</td>
<td>Specificare il campo geometria</td>
</tr>
</tbody>
</table>
| Tipo geometria | INPUT_GEOMETRY | [enumeration] Predefinito: 0 | Scegli la geometria per il risultato. Per default l’algoritmo la rileverà automaticamente. Uno di:  
• 0 — Rilevamento automatico  
• 1 — Nessuna geometria  
• 2 — Punto  
• 3 — Linea  
• 4 — Poligono  
• 5 — Multi Punto  
• 6 — Multi Linea  
• 7 — Multi Poligono |
| SR | INPUT_GEOMETRY | [crs] | Il SR da assegnare al layer in uscita |
| Risultato SQL | OUTPUT | [vector: any] Predefinito: [Crea layer temporaneo](TEMPORARY_OUTPUT) | Specificare il layer in uscita creato dalla query. Uno di:  
• Crea layer temporaneo (TEMPORARY_OUTPUT)  
• Salva come File…  
• Salva come Geopackage…  
• Salva su Tabella PostGIS…  
La codifica del file può anche essere cambiata qui. |

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risultato SQL</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale creato dalla query</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** qgis:executesql

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Estrarre elementi selezionati**

Salva gli elementi selezionati come un nuovo layer.

**Nota:** Se il layer selezionato non ha elementi selezionati, il nuovo layer creato sarà vuoto.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer da cui salvare la selezione</td>
</tr>
<tr>
<td>Elementi selezionati</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale per gli elementi selezionati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementi selezionati</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con solo gli elementi selezionati, o nessun elemento se nessuno è stato selezionato.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:saveselectedfeatures

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Trovare la proiezione

Crea un elenco di sistemi di riferimento delle coordinate possibili, per esempio per un layer con una proiezione sconosciuta.

L’area che il layer dovrebbe coprire deve essere specificata tramite il parametro dell’area di destinazione. Il sistema di riferimento delle coordinate per questa area di destinazione deve essere noto a QGIS.

L’algoritmo opera testando l'estensione del layer in ogni sistema di riferimento conosciuto e poi elencando tutti quelli per i quali i confini sarebbero vicini all'area di destinazione se il layer fosse in tale proiezione.

Vedi anche:
Assegnare proiezione, Definire la proiezione dello shapefile, Layer riproiettato

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer con proiezione sconosciuta</td>
</tr>
<tr>
<td>Area di destinazione</td>
<td>TARGET_AREA</td>
<td>[extent]</td>
<td>L’area che il layer copre. Le opzioni per specificare l'estensione sono:</td>
</tr>
<tr>
<td>per il layer (xmin,</td>
<td></td>
<td></td>
<td>• Usare l'estensione dell'area grafica della mappa</td>
</tr>
<tr>
<td>xmax, ymin, ymax)</td>
<td></td>
<td></td>
<td>• Selezionare l'estensione sull'area grafica della mappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Utilizzare l'estensione del layer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>È anche possibile fornire direttamente le coordinate dell'estensione (xmin, xmax, ymin, ymax).</td>
</tr>
<tr>
<td>SR possibili</td>
<td>OUTPUT</td>
<td>[table]</td>
<td>Specificare la tabella (layer senza geometria) per i suggerimenti SR (codici EPSG). Uno di:</td>
</tr>
<tr>
<td>Predefinito:</td>
<td>TEMPORARYOUTPUT</td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td>[Crea layer</td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td>temporaneo]</td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR possibili</td>
<td>OUTPUT</td>
<td>[table]</td>
<td>Una tabella con tutti i SR (codici EPSG) che corrispondono ai criteri.</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** qgis:findprojection

```
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Appiattire la funzione**

Appiattisce una relazione per un layer vettoriale, esportando un singolo layer contenente un elemento padre per ogni elemento figlio correlato. Questo elemento principale contiene tutti gli attributi per gli elementi correlati. Questo permette di avere la relazione come una semplice tabella che può essere per esempio esportata in CSV.

![Immagini di relazione](image.png)

Fig. 24.36: Scheda di una regione con figli correlati (sinistra) - Un elemento regione duplicato per ogni figlio correlato, con attributi uniti (destra)

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer con la relazione che dovrebbe essere rinormalizzata</td>
</tr>
<tr>
<td>Layer appiattito</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer in uscita (appiattito). Uno di:</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>[Save to temporary file]</td>
<td>• Salva in un file temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in GeoPackage...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva nella tabella del database...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer appiattito</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Un layer contenente gli elementi principali con tutti gli attributi per gli elementi correlati</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:flattenrelationships

```python
import processing
def flattenRelationships(input_layer):
 output_layer = processing.run("native:flattenrelationships", {"input": input_layer})
 return output_layer
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dicotomia dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Unire gli attributi per valore di campo**

Prende un layer vettoriale in ingresso e crea un nuovo layer vettoriale che è una versione estesa di quello in ingresso, con attributi aggiuntivi nella sua tabella degli attributi.

Gli attributi aggiuntivi e i loro valori sono presi da un secondo layer vettoriale. Un attributo è selezionato in ciascuno di essi per definire i criteri di unione.

**Vedi anche:**
*Unire gli attributi per il più vicino*, *Unire gli attributi per luogo*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso. Il layer in uscita consiste di elementi di questo layer con gli attributi degli elementi corrispondenti nel secondo layer.</td>
</tr>
<tr>
<td>Layer in ingresso 2</td>
<td>INPUT_2</td>
<td>[vector: any]</td>
<td>Layer con la tabella degli attributi da unire.</td>
</tr>
<tr>
<td>Campo tabella 2</td>
<td>FIELD_2</td>
<td>[tablefield: any]</td>
<td>Campo del secondo layer (join) da usare per l’unione. La tipologia del campo deve essere uguale a (o compatibile con) la tipologia del campo della tabella in ingresso.</td>
</tr>
<tr>
<td>Campi del layer 2 da copiare</td>
<td>FIELDS_TO_COPY</td>
<td>[tablefield: any] [list]</td>
<td>Seleziona i campi specifici che vuoi aggiungere. Per impostazione predefinita vengono aggiunti tutti i campi.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.72 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipologie di unione</td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Il tipo del layer finale unito. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 1</td>
<td>• 0 — Crea un elemento separato per ogni elemento corrispondente (uno-a-molti)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Prende solo gli attributi del primo elemento corrispondente (uno a uno)</td>
</tr>
<tr>
<td>Scartare i record che non possono essere uniti</td>
<td>DISCARD_NONMATCHING</td>
<td>[boolean]</td>
<td>Predefinito: True</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verifica se non vuoi conservare gli elementi che non possono essere uniti</td>
</tr>
<tr>
<td>Prefisso per il campo unito</td>
<td>PREFIX</td>
<td>[string]</td>
<td>Aggiungi un prefisso ai campi uniti per identificarli facilmente ed evitare la collisione dei nomi dei campi</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer unito</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita per l’unione. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Crea layer temporaneo]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Elementi non collegabili del primo layer</td>
<td>NON_MATCHING</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale in uscita per gli elementi non collegabili del primo layer. Uno di:</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Predefinito: [Skip output]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tralascia il risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero di elementi uniti dalla tabella di ingresso</td>
<td>JOINED_COUNT</td>
<td>[number]</td>
<td></td>
</tr>
<tr>
<td>Elementi non collegabili del primo layer</td>
<td>NON_MATCHING</td>
<td>[same as input]</td>
<td>Layer vettoriale con gli elementi non accoppiati</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer unito</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita con gli attributi aggiunti in seguito all’unione</td>
</tr>
<tr>
<td>Numero di elementi non accoppiabili provenienti dalla tabella in ingresso Opzionale</td>
<td>UNJOINABLE_COUNT</td>
<td>[number]</td>
<td></td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** qgis:joinattributestable

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Unire gli attributi per luogo**

Prende un layer vettoriale in ingresso e crea un nuovo layer vettoriale che è una versione estesa di quello in ingresso, con attributi aggiuntivi nella sua tabella degli attributi.

Gli attributi addizionali e i loro valori sono presi da un secondo layer vettoriale. Un criterio spaziale è applicato per selezionare i valori del secondo layer che sono aggiunti ad ogni elemento del primo layer.

**Menu predefinito:** Vettore ► Strumenti di Gestione Dati

**Vedi anche:**

*Unire gli attributi per il più vicino, Unire gli attributi per valore di campo, Unire gli attributi per località (sintesi)*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso. Il layer in uscita consisterà di elementi di questo layer con gli attributi degli elementi corrispondenti nel secondo layer.</td>
</tr>
</tbody>
</table>
| **Predicato geometrico**       | PREDICATE    | [enumeration] [list] | Selezionare i criteri geometrici. Uno o più di:  
• 0 — interseca  
• 1 — contiene  
• 2 — equivale  
• 3 — tocca  
• 4 — si sovrappone  
• 5 — è all’interno  
• 6 — attraversa |
| **Campi da aggiungere**         | JOIN_FIELDS  | [tablefield: any] | Seleziona i campi specifici che vuoi aggiungere. Per impostazione predefinita vengono aggiunti tutti i campi. |

(continues on next page)
Tabella 24.73 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tipologie di unione</strong></td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Il tipo del layer finale unito. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Crea un elemento separato per ogni elemento corrispondente (uno-a-molti)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Prende solo gli attributi del primo elemento corrispondente (uno a uno)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Prendere solo gli attributi dell” elemento con la maggiore sovrapposizione (uno-a-uno)</td>
</tr>
<tr>
<td><strong>Scartare i record che non possono essere uniti</strong></td>
<td>DISCARD_NONMATCHING</td>
<td>[boolean]</td>
<td>Rimuovere dal risultato i record del layer in ingresso che non è stato possibile unire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td><strong>Prefisso per il campo unito Opzionale</strong></td>
<td>PREFIX</td>
<td>[string]</td>
<td>Aggiungi un prefisso ai campi uniti per identificarli facilmente ed evitare la collisione dei nomi dei campi</td>
</tr>
<tr>
<td><strong>Layer unito</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita per l’unione. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Crea layer temporaneo (TEMPORARY_OUTPUT)]</td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td><strong>Elementi non collegabili del primo layer</strong></td>
<td>NON_MATCHING</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale in uscita per gli elementi non collegabili del primo layer. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Skip output]</td>
<td>• Tralascia il risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Numero di elementi uniti dalla tabella di ingresso</strong></td>
<td>JOINED_COUNT</td>
<td>[number]</td>
<td>Layer vettoriale degli elementi non accoppiati</td>
</tr>
<tr>
<td><strong>Elementi non collegabili del primo layer Opzionale</strong></td>
<td>NON_MATCHING</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita con gli attributi aggiunti in seguito all’unione</td>
</tr>
<tr>
<td><strong>Layer unito</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td></td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** qgis:joinattributesbylocation

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Unire gli attributi per località (sintesi)**

Prende un layer vettoriale in ingresso e crea un nuovo layer vettoriale che è una versione estesa di quello in ingresso, con attributi aggiuntivi nella sua tabella degli attributi.

Gli attributi addizionali e i loro valori sono presi da un secondo layer vettoriale. Un criterio spaziale è applicato per selezionare i valori del secondo layer che sono aggiunti ad ogni elemento del primo layer.

L’algoritmo calcola una sintesi statistica per i valori degli elementi corrispondenti nel secondo layer (ad es. valore massimo, valore medio, ecc.).

Vedi anche:

*Unire gli attributi per luogo*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso. Il layer in uscita consiste di elementi di questo layer con gli attributi degli elementi corrispondenti nel secondo layer.</td>
</tr>
<tr>
<td>Predicato geometrico</td>
<td>PREDICATE</td>
<td>[enumeration] [list]</td>
<td>Selezionare i criteri geometrici. Uno o più di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [0]</td>
<td>• 0 — interseca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — contiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — equivalente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — tocca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — si sovrappone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — è all’interno</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — attraversa</td>
</tr>
<tr>
<td>Campi da sintetizzare (lasciare vuoto per usare tutti i campi)</td>
<td>JOIN_FIELDS</td>
<td>[tablefield: any] [list]</td>
<td>Seleziona i campi specifici che vuoi aggiungere e sintetizzare. Per impostazione predefinita vengono aggiunti tutti i campi.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.74 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sintesi da elaborare</strong> (lasciare vuoto per utilizzare tutti i campi)</td>
<td>SUMMARIES</td>
<td>[enumeration] [list]</td>
<td>Scegli quale tipo di sintesi vuoi aggiungere a ciascun campo e per ciascun elemento. Uno o più di:</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td>Predefinito: []</td>
<td>• 0 — count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — unique</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — range</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — sum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — mean</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — median</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — stddev</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — minority</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — majority</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — q1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — q3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — IQR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — empty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — filled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — min_length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — max_length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — mean_length</td>
</tr>
<tr>
<td><strong>Scartare i record che non possono essere uniti</strong></td>
<td>DISCARD_NONMATCHING</td>
<td>[boolean]</td>
<td>Rimuovere dal risultato i record del layer in ingresso che non è stato possibile unire</td>
</tr>
<tr>
<td><strong>Layer unito</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita per l’unione. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Crea layer temporaneo]</td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer unito</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita con gli attributi sintetizzati dall’”unione”</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:joinbylocationsummary

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’”id dell’algoritmo” viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Unire gli attributi per il più vicino

Prende un layer vettoriale in ingresso e crea un nuovo layer vettoriale con campi aggiuntivi nella sua tabella degli attributi. Gli attributi aggiuntivi e i loro valori sono presi da un secondo layer vettoriale. Gli elementi sono uniti trovando gli elementi più vicini da ciascun layer.

Per impostazione predefinita viene unito solo l’elemento più vicino, ma l’unione può anche essere fatta con gli elementi k più vicini.

Se viene specificata una distanza massima, solo gli elementi che sono più vicini di questa distanza saranno accoppiati.

Vedi anche:
Analisi del vicino più vicino, Unire gli attributi per valore di campo, Unire gli attributi per luogo, Matrice di distanze

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer in ingresso.</td>
</tr>
<tr>
<td>Campi del layer 2 da copiare</td>
<td>FIELDS_TO_COPY</td>
<td>[fields]</td>
<td>Unire i campi del layer da copiare (se vuoto, tutti i campi saranno copiati).</td>
</tr>
<tr>
<td>per copiare tutti i campi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scartare i record che non</td>
<td>DISCARD_NONMATCHED</td>
<td>[boolean]</td>
<td>Rimuovere dal risultato i record del layer in ingresso che non è stato possibile unire</td>
</tr>
<tr>
<td>possono essere uniti</td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td>Prefisso per il campo unito</td>
<td>PREFIX</td>
<td>[string]</td>
<td>Prefisso del campo unito</td>
</tr>
<tr>
<td>Massimo più vicino</td>
<td>NEIGHBORS</td>
<td>[number]</td>
<td>Numero massimo di vicini più vicini</td>
</tr>
<tr>
<td>Predefinito: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massima distanza</td>
<td>MAX_DISTANCE</td>
<td>[number]</td>
<td>Distanza di ricerca massima</td>
</tr>
<tr>
<td>Layer unito</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale che contiene gli elementi uniti. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Elementi non collegabili del</td>
<td>NON_MATCHING</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale che contiene gli elementi che non è stato possibile unire. Uno di:</td>
</tr>
<tr>
<td>primo layer</td>
<td></td>
<td>Preddefinito: [Skip output]</td>
<td>• Tralascia il risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer unito</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer unito in uscita.</td>
</tr>
<tr>
<td>Elementi non collegabili del primo layer</td>
<td>NON_MATCHING</td>
<td>[same as input]</td>
<td>Layer contenente gli elementi del primo layer che non possono essere uniti a nessun elemento nel layer unito.</td>
</tr>
<tr>
<td>Numero di elementi uniti dalla tabella di ingresso</td>
<td>JOINED_COUNT</td>
<td>[number]</td>
<td>Numero di elementi della tabella in ingresso che sono stati uniti.</td>
</tr>
<tr>
<td>Numero di elementi non accoppiabili provenienti dalla tabella in ingresso</td>
<td>UNJOINABLE_COUNT</td>
<td>[number]</td>
<td>Numero di elementi della tabella in ingresso che non è stato possibile unire.</td>
</tr>
</tbody>
</table>

**Codice Python**

**Algorithm ID:** qgis:joinbynearest

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell'algoritmo* viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Fondere layer vettoriali**

Accorpa più layer vettoriali dello stesso tipo di geometria in uno solo.

La tabella degli attributi del layer risultante conterrà i campi di tutti i layer in ingresso. Se si trovano campi con lo stesso nome ma di tipo diverso, allora il campo esportato sarà automaticamente convertito in un campo di tipo stringa. Vengono anche aggiunti nuovi campi che memorizzano il nome del layer originale e la fonte.

Se uno qualsiasi dei layer in ingresso contiene valori Z o M, allora anche il layer in uscita conterrà questi valori. Allo stesso modo, se uno qualsiasi dei layer in ingresso è composto da più parti, anche il layer di uscita sarà un layer composto da più parti.

Opzionalmente, il sistema di riferimento delle coordinate di destinazione (SR) per il layer fuso può essere impostato. Se non è impostato, il SR sarà preso dal primo layer in ingresso. Tutti i layer saranno riproiettati per corrispondere a questo SR.

**Menu predefinito:** Vettore ➤ Strumenti di Gestione Dati
Vedi anche:

*Dividere layer vettoriale*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>LAYERS</td>
<td>[vector: any] [list]</td>
<td>I layer che devono essere uniti in un unico layer. I layer dovrebbero essere dello stesso tipo di geometria.</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>SR</td>
<td>[crs]</td>
<td>Scegliere il SR per il layer in uscita. Se non viene specificato, viene usato il SR del primo layer in ingresso.</td>
</tr>
<tr>
<td>Fusi</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusi</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita che contiene tutti gli elementi e gli attributi dei layer in ingresso.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:mergevectorlayers`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Ordinare tramite espressione**

Ordina un layer vettoriale secondo un’espressione: cambia l’indice dell’elemento in base a un’espressione.

Fai attenzione, potrebbe non funzionare come previsto con alcuni provider, l’ordine potrebbe non essere rispettato ogni volta.
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso da ordinare</td>
</tr>
<tr>
<td>Espressione</td>
<td>EXPRESSION</td>
<td>[expression]</td>
<td>Espressione da usare per l'ordinamento</td>
</tr>
<tr>
<td>Ordinamento ascendente</td>
<td>ASCENDING</td>
<td>[boolean]</td>
<td>Se spuntato, il layer vettoriale sarà ordinato da valori piccoli a valori grandi.</td>
</tr>
<tr>
<td>Ordina i nulli per primi</td>
<td>NULLS_FIRST</td>
<td>[boolean]</td>
<td>Se spuntato, i valori Null sono messi per primi</td>
</tr>
<tr>
<td>Ordinato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Crea layer temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come File</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come Geopackage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su Tabella PostGIS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita (ordinato)</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** qgis:orderbyexpression

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Riparare Shapefile

Ripara un insieme dei dati ESRI Shapefile corrotto (ri)creando il file SHX.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shapefile in ingresso</td>
<td>INPUT</td>
<td>[file]</td>
<td>Percorso completo all’insieme dei dati ESRI Shapefile con un file SHX mancante o corrotto.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer riparato</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Il layer vettoriale in ingresso con il file SHX riparato</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:repairshapefile

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Layer riproiettato**

Riproietta un layer vettoriale in un diverso SR. Il layer riproiettato avrà gli stessi elementi e attributi del layer in ingresso.

✅ Permette features in-place modification 1

Vedi anche:

*Assegnare proiezione, Definire la proiezione dello shapefile, Trovare la proiezione*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso da riproiettare</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>Sistema di riferimento delle coordinate di destinazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPGS:4326 WGS 84</td>
<td></td>
</tr>
<tr>
<td>Riproiettato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Crea layer temporaneo]</td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riproiettato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita (riproiettato)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:reprojectlayer`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nom i e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Dividere elementi tramite un carattere**

Gli elementi sono suddivisi in più elementi in uscita dividendo il valore di un campo in corrispondenza di un carattere specificato. Per esempio, se un layer contiene elementi con più valori separati da virgola contenuti in un singolo campo, questo algoritmo può essere usato per dividere questi valori in più elementi in uscita. Le geometrie e gli altri attributi rimangono invariati in uscita. Opzionalmente, la stringa separatrice può essere un’espressione regolare per una maggiore flessibilità.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso</td>
</tr>
<tr>
<td><strong>Dividere usando valori nel campo</strong></td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Campo da usare per la divisione</td>
</tr>
<tr>
<td><strong>Valore di divisione tramite carattere</strong></td>
<td>CHAR</td>
<td>[string]</td>
<td>Carattere da usare per la divisione</td>
</tr>
<tr>
<td><strong>Usa il separatore di espressione regolare</strong></td>
<td>REGEX</td>
<td>[boolean]</td>
<td>Specifica il layer vettoriale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>True</td>
<td>Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividi</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:splitfeaturesbycharacter`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id dell’algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Dividere layer vettoriale**

Crea un insieme di vettori in una cartella in uscita sulla base di un layer in ingresso e di un attributo. La cartella di output conterrà tanti layer quanti sono i valori univoci trovati nel campo scelto.

Il numero di file generati è uguale al numero di valori diversi trovati per l’attributo specificato.

È l’operazione opposta a quella di *fusione*.

**Menu predefinito:** Vettore ► Strumenti di Gestione Dati

**Vedi anche:**

*Fondere layer vettoriali*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso</td>
</tr>
<tr>
<td>ID campo univoco</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Campo da usare per la divisione</td>
</tr>
<tr>
<td>Cartella per il risultato</td>
<td>OUTPUT</td>
<td>[folder]</td>
<td>Specifica la cartella per i layer in uscita. Uno di:</td>
</tr>
</tbody>
</table>
|                                       |               | Predefinito: [Save to temporary folder] | • Salva in una Cartella Temporanea
|                                       |               |                    | • Salva nella Cartella…                |
|                                       |               |                    | La codifica del file può anche essere cambiata qui. |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartella per il risultato</td>
<td>OUTPUT</td>
<td>[folder]</td>
<td>La cartella per i layer in uscita</td>
</tr>
<tr>
<td>Layer in uscita</td>
<td>OUTPUT_LAYERS</td>
<td>[same as input]</td>
<td>I layer vettoriali in uscita risultanti dalla divisione.</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: qgis:splitvectorlayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Ridurre tabella**

Ridurre un layer, cancellando tutte gli elementi dall’interno del layer.

**Avvertimento:** Questo algoritmo modifica il layer sul posto, e gli elementi cancellati non possono essere ripristinati!

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer ridotto</td>
<td>OUTPUT</td>
<td>[folder]</td>
<td>Il layer ridotto (vuoto)</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:truncatetable

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**24.1.16 Geometria vettore**

**Aggiungere gli attributi della geometria**

Calcolare le proprietà geometriche degli elementi in un vettore e le include nel layer in uscita.

Si genera un nuovo vettore con gli stessi contenuti del livello in ingresso, ma con attributi aggiuntivi contenenti le misure geometriche basate sul SR selezionato.

Gli attributi aggiunti alla tabella dipendono dal tipo di geometria e dimensioni del vettore in ingresso:

- per layer *puntuali*: coordinate X (xcoord), Y (ycoord), Z (zcoord) e/o valore M (mvalue)
• per layer lineari: lunghezza e, per geometrie di tipo LineString e CompoundCurve, la sinuosità degli elementi e la distanza rettilinea (straightdis)

• per layer poligonali: perimetro e area

Menu predefinito: Vettore ► Strumenti di Geometria

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Calcola usando</td>
<td>CALC_METHOD</td>
<td>[enumeration]</td>
<td>Parametri di calcolo da usare per le proprietà geometriche. Uno tra:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — SR del vettore</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — SR del Progetto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Ellisoidale</td>
</tr>
<tr>
<td>Informazioni geometriche</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale in uscita (copia di quello in ingresso con informazioni geometriche). Uno tra:</td>
</tr>
<tr>
<td>aggiunte</td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informazioni geometriche</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Copia del layer vettoriale in ingresso con l’aggiunta dei campi della geometria</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:exportaddgeometrycolumns

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Trasformazione affine

Applica una trasformazione affine alle geometrie del layer. Le trasformazioni affini possono includere traslazione, scalatura e rotazione. Le operazioni vengono eseguite nel seguente ordine: scala, rotazione e traslazione.

I valori Z e M (se presenti) possono essere traslati e scalati.

![Fig. 24.37: Layer vettoriale di punti (punti verdi) prima (a sinistra) e dopo (a destra) una trasformazione affine (traslazione).](image)

Vedi anche:

*Trasla*

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector:any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Traslazione (asse x)</td>
<td>DELTA_X</td>
<td>[number]</td>
<td>Spostamento da applicare sull’asse X.</td>
</tr>
<tr>
<td>Traslazione (asse y)</td>
<td>DELTA_Y</td>
<td>[number]</td>
<td>Spostamento da applicare sull’asse Y.</td>
</tr>
<tr>
<td>Traslazione (asse z)</td>
<td>DELTA_Z</td>
<td>[number]</td>
<td>Spostamento da applicare sull’asse Z.</td>
</tr>
<tr>
<td>Traslazione (valori-m)</td>
<td>DELTA_M</td>
<td>[number]</td>
<td>Offset da applicare ai valori m.</td>
</tr>
<tr>
<td>Fattore di scala (asse-x)</td>
<td>SCALE_X</td>
<td>[number]</td>
<td>Valore di scala (espansione o contrazione) da applicare sull’asse X.</td>
</tr>
<tr>
<td>Fattore di scala (asse-y)</td>
<td>SCALE_Y</td>
<td>[number]</td>
<td>Valore di scala (espansione o contrazione) da applicare sull’asse Y.</td>
</tr>
<tr>
<td>Fattore di scala (asse-z)</td>
<td>SCALE_Z</td>
<td>[number]</td>
<td>Valore di scala (espansione o contrazione) da applicare sull’asse Z.</td>
</tr>
<tr>
<td>Fattore di scala (valore-m)</td>
<td>SCALE_M</td>
<td>[number]</td>
<td>Il valore della scala (espansione o contrazione) da applicare ai valori m.</td>
</tr>
</tbody>
</table>
Tabella 24.80 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotazione intorno all'asse z (gradi in senso antiorario)</td>
<td>ROTATION_Z</td>
<td>[number]</td>
<td>Angolo di rotazione in gradi.</td>
</tr>
<tr>
<td>Trasformato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trasformato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita (trasformato)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:affinetransform

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Raggruppa geometrie**

Prende un vettore o una tabella e crea un nuovo livello aggregando gli elementi basati su un’espressione di tipo **ID univoco**

Gli elementi per cui l’espressione ID univoco restituisce lo stesso valore sono raggruppati insieme. È possibile raggruppare insieme tutti gli elementi della risorsa usando un valore costante nel parametro ID univoco, ad esempio: NULL.

È anche possibile raggruppare elementi in base a multipli campi usando funzioni Array, ad esempio: Array(«Campo1», «Campo2»).

Le geometrie (se presenti) sono combinate in un’unica geometria multi parte per ogni gruppo. Gli attributi in uscita sono calcolati in base ad ogni definizione di raggruppamento data.

Questo algoritmo permette di utilizzare le funzioni predefinite aggregates del motore Espressioni di QGIS.

**Vedi anche:**

Riassemblare geometrie, Dissolvere
## Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Raggruppa tramite un’espressione</td>
<td>GROUP_BY</td>
<td>[tablefield: any]</td>
<td>Predefinito: “NULL” Se NULL tutti gli elementi saranno aggregati.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.82 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregati</td>
<td>AGGREGATES</td>
<td>[list]</td>
<td>Elenco delle definizioni dei campi del layer in uscita. Esempio di definizione campo:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per impostazione predefinita, la lista contiene tutti i campi del layer in ingresso. Nella GUI, puoi modificare questi campi e le loro definizioni, e puoi anche:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Fare clic sul pulsante per aggiungere un nuovo campo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Clicca su per eliminare il campo selezionato.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Usa e per cambiare l'ordine dei campi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Fai clic su per ripristinare i valori predefiniti (i campi del layer in ingresso).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per ognuno dei campi da cui vorresti recuperare informazioni, devi definire quanto segue:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Input expression <a href="input">expression</a></strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Campo o espressione del vettore in ingresso.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Aggregate function <a href="aggregate">enumeration</a></strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Function 1 da usare sull'espressione in ingresso per restituire il valore aggregato.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: <em>concatena</em> (per stringhe), <em>somma</em> (per dati numerici)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Delimiter <a href="delimiter">string</a></strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stringa di testo per separare valori aggregati, per esempio nel caso di concatenazioni.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: .</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Output field name <a href="name">string</a></strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nome dei campi aggregati nel vettore in uscita. Come opzione predefinita viene mantenuto il nome del campo in ingresso.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Type <a href="type">enumeration</a></strong> Tipo dati del campo in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Booleano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Inter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Intero 64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Doppia precisione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — Stringa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — DataOra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Length <a href="length">number</a></strong> Lunghezza del campo in uscita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Precision <a href="precision">number</a></strong> Precisione del campo in uscita.</td>
</tr>
</tbody>
</table>

continues on next page
### Tabella 24.82 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Caricare i campi dal layer</strong></td>
<td>Solo GUI</td>
<td>[vector: any]</td>
<td>Puoi caricare campi da un altro layer e usarli per l'aggregazione</td>
</tr>
<tr>
<td><strong>Aggregati</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer in uscita (aggregato) Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Aggregati</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale multigeometria con i valori aggregati</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** native:aggregate

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Confine

Restituisce la chiusura del confine combinato della geometria (cioè il confine topologico della geometria)

Solo per i layer poligonalì e lineari.

Per le **geometrie poligonali**, il confine è costituito da tutte le linee che compongono gli archi del poligono.
Fig. 24.38: Confini (linea tratteggiata nera) del vettore poligonale di origine

Per le geometriche lineari, i confini sono i punti finali.
Fig. 24.39: Confini con layer (punti rossi) per in. In giallo un elemento selezionato.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Confini</td>
<td>OUTPUT</td>
<td>[vector: point, line]</td>
<td>Predefinito: [Create temporary layer] Specificare il layer in uscita (confini). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confini</td>
<td>OUTPUT</td>
<td>[vector: point, line]</td>
<td>Confini dal layer in ingresso (punto per linea, e linea per poligono)</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** native:boundary

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi _Usare gli algoritmi di Processing dalla console dei comandi_ per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Perimetri di delimitazione**

Questo algoritmo calcola il perimetro di delimitazione (inviluppo) per ciascun elemento in un vettore in ingresso. Sono supportati geometrie poligonali e lineari.

Fig. 24.40: Le linee nere rappresentano i perimetri di delimitazione di ogni poligono dell’elemento

Permette features in-place modification 1

Vedi anche:

*Geometria minima di delimitazione*
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Perimetri</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il layer in uscita (perimetro di delimitazione). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimetri</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Perimetro di delimitazione del layer in ingresso</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:boundingboxes

```
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Buffer**

Calcola un’area di buffer per tutte gli elementi del vettore in ingresso, usando una distanza fissa.

È possibile usare una distanza negativa per i layer in ingresso dei poligoni. In questo caso il buffer risulterà in un poligono più piccolo (setback).

![Fig. 24.41: Buffer (in giallo) di punti, linee e poligoni](image)

**Permette features in-place modification 1**

**Menu predefinito:** Vettore ➤ Strumenti di Geoprocessing
**Vedi anche:**

*Distanza buffer variabile, Buffer a più anelli (distanza costante), Larghezza buffer variabile (per valore di M)*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Layer in ingresso</td>
<td>INPUT [vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td></td>
<td>Distanza</td>
<td>DISTANCE [number]</td>
<td>Predefinito: 10.0 Distanza del buffer (dal confine di ogni elemento). Puoi usare il pulsante Sovrascrittura definita dai dati sulla destra per scegliere un campo dal quale il raggio sarà calcolato. In questo modo puoi avere un raggio diverso per ogni elemento (vedi <em>Distanza buffer variabile</em>).</td>
</tr>
<tr>
<td></td>
<td>Segmenti</td>
<td>SEGMENTS [number]</td>
<td>Predefinito: 5 Controlla il numero di segmenti di linea da usare per approssimare un quarto di cerchio quando si creano offset arrotondati.</td>
</tr>
</tbody>
</table>
|           | Stile testata terminale | END_CAP_STYLE [enumeration] | Predefinito: 0 Controlla come vengono gestiti i terminali di linea nel buffer. Uno di:  
- 0 — Arrotondato  
- 1 — Piatto  
- 2 — Quadrato  

![Fig. 24.42: Stile testata arrotondato, piatto e quadrato](image)

|           | Stile unione    | JOIN_STYLE [enumeration] | Predefinito: 0 Specifica se devono essere utilizzati stile di unione di tipo arrotondato, seghettato o smussato quando si esegue l'offset degli angoli in una linea. Le opzioni sono:  
- 0 — Arrotondato  
- 1 — Seghettato  
- 2 — Smussato |
|           | Limite a taglio obliquo | MITER_LIMIT [number] | Predefinito: 2.0 Controlla la distanza massima dalla curva di offset da usare quando si crea una giunzione obliqua (applicabile solo agli stili di giunzione con taglio obliquo). Minimo: 1. |
|           | Dissolvere il risultato | DISSOLVE [boolean] | PredefINITO: False Dissolvere il buffer finale. Se True (controllato), i buffer sovrapposti saranno dissolti (combinati) in una nuovo elemento. |

Fig. 24.43: Buffer standard e dissolto

continues on next page
Tabella 24.83 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufferizzato</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il layer in uscita (buffer). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufferizzato</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Vettore poligonale in uscita (buffer)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:buffer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Centroidi**

Crea un nuovo layer di punti, con punti che rappresentano i centroidi delle geometrie del layer in ingresso.

Il centroide è un singolo punto che rappresenta il baricentro (di tutte le parti) dell’elemento, quindi può essere fuori dai confini dell’elemento. Ma può anche essere un punto su ogni parte dell’elemento.

Gli attributi dei punti nel layer in uscita sono gli stessi degli elementi originali.
Permette features in-place modification 1

**Menu predefinito:** Vettore ➤ Strumenti di Geometria

**Vedi anche:**
- **Punto su Superficie**

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Crea il centroide per ogni parte</td>
<td>ALL_PARTS</td>
<td>[boolean]</td>
<td>Se True (selezionato), verrà creato un centroide per ogni parte della geometria</td>
</tr>
<tr>
<td>Centroidi</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Specifica il layer in uscita (centroide). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centroidi</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Risultato layer di punti (centroidi)</td>
</tr>
</tbody>
</table>

**Codice Python**

ID Algoritmo: native:centroids

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Controllo validità**

Esegue un controllo di validità delle geometrie del vettore.

Le geometrie sono classificate in tre gruppi (valido, non valido ed errore) e per ogni gruppo, viene generato uno layer vettoriale con i suoi elementi:

- Il layer **Risultato valido** contiene solo gli elementi validi (senza errori topologici).
- Il layer **Risultato non valido** contiene tutte gli elementi non validi trovati dall’algoritmo.
- Il layer **Risultato con errore** è un layer puntuale che segnala il punto in cui sono state trovate gli elementi non validi.

Le tabelle degli attributi dei layer generati conterranno alcune informazioni aggiuntive («message» per il layer error, «FID» e «_errors» per il layer invalid e solo «FID» per il layer valid):

La tabella degli attributi di ogni layer vettoriale generato conterrà alcune informazioni aggiuntive (numero di errori trovati e tipi di errore):

Fig. 24.45: A sinistra: il layer in ingresso. A destra: il layer valido (verde), il layer non valido (arancione)

**Menu predefinito:** Vettore ► Strumenti di Geometria

Vedi anche:

Correggere geometrie e il plugin di base Plugin Controllo Geometria
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT_LAYER</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td><strong>Metodo</strong></td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Metodo da usare per verificare la validità. Opzioni:</td>
</tr>
</tbody>
</table>
|                                  |                       | Predefinito: 2              | • 0: Quello selezionato nelle impostazioni di digitalizzazione  
• 1: QGIS  
• 2: GEOS                                                                                                                                             |
| **Ignora auto intersezione dell’anello** | IGNORE_RING_SELF_INTERSECTION | [boolean]                  | Ignorare gli anelli che si auto intersecano quando viene controllata la validità.                                                                                                                          |
| **Risultato valido**             | VALID_OUTPUT          | [same as input]             | Specificare il layer vettoriale per salvare una copia degli elementi validi del layer di origine. Uno di:                                                                                                  |
|                                  |                       | Predefinito:                | • Tralascia risultato  
• Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
• Salva su File…  
• Salva come Geopackage…  
• Salva su Tabella PostGIS…  
La codifica del file può anche essere cambiata qui.                                                                                                     |
| **Risultato non valido**         | INVALID_OUTPUT        | [same as input]             | Layer vettoriale contenente la copia degli elementi non validi del layer di origine con il campo _errori che elenca il resoconto dell’errore(i) trovato. Uno di:                                                |
|                                  |                       | Predefinito:                | • Tralascia risultato  
• Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
• Salva su File…  
• Salva come Geopackage…  
• Salva su Tabella PostGIS…  
La codifica del file può anche essere cambiata qui.                                                                                                     |
| **Errore in uscita**             | ERROR_OUTPUT          | [vector: point]             | Layer puntuale della posizione esatta dei problemi di validità rilevati con il campo messaggio che descrive l’errore(i) trovato. Uno di:                                                                  |
|                                  |                       | Predefinito:                | • Tralascia risultato  
• Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
• Salva su File…  
• Salva come Geopackage…  
• Salva su Tabella PostGIS…  
La codifica del file può anche essere cambiata qui.                                                                                                     |
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conteggio errori</td>
<td>ERROR_COUNT</td>
<td>[number]</td>
<td>Il numero di geometrie che hanno causato errori.</td>
</tr>
<tr>
<td>Errore in uscita</td>
<td>ERROR_OUTPUT</td>
<td>[vector: point]</td>
<td>Vettore puntuale dell'esatta posizione del problema di validità individuato con il campo message che descrive l'errore(i) trovato.</td>
</tr>
<tr>
<td>Conteggio di elementi non validi</td>
<td>INVALID_COUNT</td>
<td>[number]</td>
<td>Il numero di geometrie non valide.</td>
</tr>
<tr>
<td>Risultato non valido</td>
<td>INVALID_OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale contenente la copia degli elementi non validi del layer di origine con il campo _errori che elenca il riepilogo dell'errore(i) trovato.</td>
</tr>
<tr>
<td>Conteggio degli elementi validi</td>
<td>VALID_COUNT</td>
<td>[number]</td>
<td>Il numero di geometrie valide.</td>
</tr>
<tr>
<td>Risultato valido</td>
<td>VALID_OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale che contiene una copia degli elementi validi del layer di origine.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:checkValidity`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'“id algoritmo” viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomie i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Tipi di messaggi di errore e loro significati**

Tabella 24.86: Se viene utilizzato il metodo GEOS, possono verificarsi i seguenti messaggi di errore:

<table>
<thead>
<tr>
<th>Messaggio di errore</th>
<th>Spiegazione</th>
<th>Esempio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto ripetuto</td>
<td>Questo errore si verifica quando un dato vertice viene ripetuto.</td>
<td><img src="image.png" alt="Diagramma" /></td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Messaggio di errore</th>
<th>Spiegazione</th>
<th>Esempio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto intersezione con anello</td>
<td>Questo errore si verifica quando una geometria tocca se stessa e genera un anello.</td>
<td><img src="image1.png" alt="Image" /></td>
</tr>
<tr>
<td>Auto intersezione</td>
<td>Questo errore si verifica quando una geometria tocca se stessa.</td>
<td><img src="image2.png" alt="Image" /></td>
</tr>
<tr>
<td>Errore di validazione topologica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Il buco si trova all’esterno del confine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internamente è scollegato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confini annidati</td>
<td>Questo errore si verifica quando una geometria poligonale è sopra un’altra geometria poligonale.</td>
<td><img src="image3.png" alt="Image" /></td>
</tr>
<tr>
<td>Anelli duplicati</td>
<td>Questo errore si verifica quando due anelli (esterni o interni) di una geometria poligonale sono identici</td>
<td><img src="image4.png" alt="Image" /></td>
</tr>
<tr>
<td>Troppi pochi punti nella geometria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinata non valida</td>
<td>Per una geometria puntuale, questo errore si verifica quando la geometria non ha una coppia di coordinate adeguata. La coppia di coordinate non contiene un valore di latitudine e un valore di longitudine in ordine coerente.</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.86 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Messaggio di errore</th>
<th>Spiegazione</th>
<th>Esempio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anello non chiuso</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 24.87: Se viene utilizzato il metodo QGIS, possono verificarsi i seguenti messaggi di errore:

<table>
<thead>
<tr>
<th>Messaggio di errore</th>
<th>Spiegazione</th>
<th>Esempio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il segmento %1 dell'anello %2 del poligono %3 interseca il segmento %4 dell'anello %5 del poligono %6 in %7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anello %1 con meno di quattro punti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anello %1 non chiuso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linea %1 con meno di due punti</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La linea %1 contiene %n nodo(i) duplicato in %2

Questo errore si verifica quando punti consecutivi su una linea hanno le stesse coordinate.

Segmenti %1 e %2 della linea %3 interseca in %4

Questo errore si verifica quando una linea si interseca (due segmenti della linea si intersecano tra loro).

Auto intersezione con anello

Questo errore si verifica quando un anello/confine esterno o interno (isola) di una geometria poligonale interseca se stesso.

L'anello %1 del poligono %2 non è nell'anello esterno

continues on next page
Tabella 24.87 – continua dalla pagina precedente

**Messaggio di errore**	**Spiegazione**	**Esempio**
Il poligono %1 è all’ interno del poligono %2 | Questo errore si verifica quando una parte di una geometria MultiPoligono è dentro un buco di una geometria MultiPoligono.

**Riassemblare geometrie**

Prende un layer vettoriale e riassembla le sue geometrie in nuove geometrie multiparte.

Uno o più attributi possono essere specificati per riassemblare le geometrie appartenenti alla stessa classe (che hanno lo stesso valore per gli attributi specificati), in alternativa possono essere riassemblate tutte le geometrie.

Tutte le geometrie in uscita saranno convertite in multi geometrie, anche quelle con una sola parte. Questo algoritmo non dissolve le geometrie sovrapposte - saranno riassemblate insieme senza modificare la forma di ogni parte della geometria.

Vedi gli algoritmi “Promote to multipart” o “Aggregate” per opzioni alternative.

**Menu predefinito:** Vettore ► Strumenti di Geometria

**Vedi anche:**

Raggruppa geometrie, Passare a multi parte, Dissolvere

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Campi con ID univoco</td>
<td>FIELD</td>
<td>[tablefield: any] [list]</td>
<td>Scegli uno o più attributi per riassemblare le geometrie</td>
</tr>
<tr>
<td>Riassembiate</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con le geometrie riassemblate</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Riassembiate    | OUTPUT        | [same as input] Predefinito: [Create temporary layer] | Specifica il layer vettoriale in uscita per le geometrie riassemblate. Uno di:
|                 |               |                           | • Crea Layer Temporaneo (TEMPORARY_OUTPUT)          |
|                 |               |                           | • Salva su File…                                    |
|                 |               |                           | • Salva come Geopackage…                             |
|                 |               |                           | • Salva su Tabella PostGIS…                          |
|                 |               |                           | La codifica del file può anche essere cambiata qui.  |
Codice Python

**ID Algoritmo:** native:collect

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Poligono concavo (forme alfa)**

Calcolare il poligono concavo degli elementi in un layer di punti in ingresso.

![Fig. 24.46: Poligoni concavi con diverse soglie (0,3, 0,6, 0,9)](image)

Vedi anche:

*Poligono convesso, Poligono convesso (k-nearest neighbor)*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer puntuale in ingresso</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale di punti in ingresso</td>
</tr>
<tr>
<td>Soglia</td>
<td>ALPHA</td>
<td>[number]</td>
<td>Numero da 0 (massimo involucro concavo) a 1 (involucro convesso).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0.3</td>
<td></td>
</tr>
<tr>
<td>Permettere buchi</td>
<td>HOLES</td>
<td>[boolean]</td>
<td>Scegliere se permettere buchi nel poligono concavo finale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: True</td>
<td></td>
</tr>
<tr>
<td>Dividere geometria multipartie</td>
<td>NO_MULTIGEOMETRY</td>
<td>[boolean]</td>
<td>Verifica se vuoi avere geometrie a parti singole invece di quelle multi parte.</td>
</tr>
<tr>
<td>in geometrie a parti singole</td>
<td></td>
<td>Predefinito: True</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.88 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poligono convesso</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poligono convesso</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Livello vettoriale in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:concavehull`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Poligono convesso (k-nearest neighbor)**

Genera un poligono convesso da un insieme di punti. Se il layer in ingresso è un vettore lineare o un vettore poligonale, userà i vertici.


Se viene selezionato un campo, l’algoritmo raggrupperà gli elementi nel layer in ingresso usando valori unici in quel campo e genererà poligoni singoli nel layer in uscita per ogni gruppo.

**Vedi anche:**

*Poligono concavo (forme alfa)*

24.1. Fornitore di algoritmo QGIS
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Numero di punti vicini da considerare (un numero più basso ha un effetto più concavo, un numero più alto ha un effetto più liscio)</td>
<td>RNEIGHBORS</td>
<td>[number] Predefinito: 3</td>
<td>Determina la concavità del poligono di uscita. Un numero piccolo risulterà in un poligono concavo che segue molto da vicino i punti, mentre un numero alto farà sì che il poligono assomigli di più al poligono convesso (se il numero è uguale o maggiore del numero di elementi, il risultato sarà il poligono convesso). Valore minimo: 3.</td>
</tr>
<tr>
<td>Campo Opzionale</td>
<td>FIELD</td>
<td>[tablefield: any] Predefinito: None</td>
<td>Se specificato, viene generato un poligono concavo per ogni valore univoco del campo (selezionando gli elementi che utilizzano questo valore).</td>
</tr>
</tbody>
</table>
| Poligono convesso | OUTPUT     | [vector: polygon] Predefinito: [Create temporary layer] | Specificare il vettore in uscita. Uno di:  
  - Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
  - Salva su File…  
  - Salva come Geopackage…  
  - Salva su Tabella PostGIS…  
  La codifica del file può anche essere cambiata qui. |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poligono convesso</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Livello vettoriale in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:knearestconcavehull

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione.  
Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Convertire il tipo di geometria**

Genera un nuovo layer basato su uno esistente, con un diverso tipo di geometria.  
La tabella degli attributi del layer in uscita è la stessa di quella del layer in entrata.  
Non tutte le conversioni sono possibili. Per esempio, un layer lineare può essere convertito in un layer di punti, ma un layer di punti non può essere convertito in un layer lineare.  
Vedi anche:  
*Polygonizzare, Da linee a poligoni, Da poligoni a linee, Da punti a percorso*
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Nuovo tipo di</td>
<td>TYPE</td>
<td>[enumeration]</td>
<td>Tipo di geometria da applicare agli elementi in uscita. Uno di:</td>
</tr>
<tr>
<td>geometria</td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — Centroidi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Nodi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Linee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Multilinee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Poligoni</td>
</tr>
<tr>
<td>Convertito</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convertito</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in uscita - il tipo dipende dai parametri</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** `qgis:convertgeometrytype`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Poligono convesso

Calcola il poligono convesso per ogni elemento in un layer in ingresso.

Vedi l’algoritmo “Minimum bounding geometry” per un calcolo del poligono convesso che copre l’intero layer o sottoinsiemi raggruppati di elementi.
Fig. 24.47: Le linee nere identificano il poligono convesso per ogni elemento del layer

Permette features in-place modification 1

Menu predefinito: Vettore ► Strumenti di Geoprocessing

Vedi anche:

Geometria minima di delimitazione, Poligono concavo (forme alfa)

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Poligono convesso</td>
<td>OUTPUT</td>
<td>[vector: polygon] Predefinito:</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poligono convesso</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale in uscita (poligono convesso)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:convexhull

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id

**Creare un layer dall’estensione**

Crea un nuovo layer vettoriale che contiene un singolo elemento con una geometria corrispondente all’estensione del layer in ingresso.

Può essere usato nei modelli per convertire un’estensione in formato letterale (xmin, xmax, ymin, ymax) in un layer che può essere usato per altri algoritmi che richiedono dati in ingresso basati sul layer.

**Vedi anche:**

* Creare un layer da un punto

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione (xmin, xmax, ymin, ymax)</td>
<td>INPUT</td>
<td>[estensione]</td>
<td>Estensione in ingresso</td>
</tr>
<tr>
<td>Estensione</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary</td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td>layer]</td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

La codifica del file può anche essere cambiata qui.
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale in uscita (estensione)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:extenttolayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Creare un layer da un punto**

Crea un nuovo layer vettoriale che contiene un singolo elemento con una geometria corrispondente ad un parametro punto. Può essere usato nei modelli per convertire un punto in un layer puntuale per algoritmi che richiedono un dato in ingresso basato su layer.

**Vedi anche:**

*Creare un layer dall’estensione*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Predefinito: [Create temporary layer] Specifica il layer in uscita. Uno di: • Crea Layer Temporaneo (TEMPORARY_OUTPUT) • Salva su File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer vettoriale punto in uscita che contiene il punto in ingresso.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:pointtolayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Creare buffer a cuneo**

Crea buffer a forma di cuneo dai punti in ingresso.

![Buffer a cuneo](image)

Fig. 24.48: Buffer a cuneo

Il risultato finale di questo algoritmo sono geometrie CurvePolygon, ma queste possono essere automaticamente segmentate in Poligoni a seconda del formato in uscita.

**Vedi anche:**

*Buffer, Larghezza buffer variabile (per valore di M), Buffer arrotondati*
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale di punti in ingresso</td>
</tr>
<tr>
<td>Azimut (gradi da Nord)</td>
<td>AZIMUTH</td>
<td>[number ]</td>
<td>Angolo (in gradi) come valore medio del cuneo</td>
</tr>
<tr>
<td>Larghezza del cuneo (in gradi)</td>
<td>WIDTH</td>
<td>[number ]</td>
<td>Larghezza (in gradi) del buffer. Il cuneo si estenderà fino alla metà della larghezza angolare su entrambi i lati della direzione dell’azimut.</td>
</tr>
<tr>
<td>Raggio esterno</td>
<td>OUTER_RADIUS</td>
<td>[number ]</td>
<td>La dimensione esterna (lunghezza) del cuneo: la dimensione è intesa dal punto di origine al margine della forma del cuneo.</td>
</tr>
<tr>
<td>Raggio interno Opzionale</td>
<td>INNER_RADIUS</td>
<td>[number ]</td>
<td>Valore del raggio interno. Se 0 il cuneo inizierà dal punto di origine.</td>
</tr>
<tr>
<td>Buffer</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

Fig. 24.49: Valori di azimut e larghezza del cuneo buffer
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale in uscita (cuneo buffer)</td>
</tr>
</tbody>
</table>

**Codice Python**

ID Algoritmo: native:wedgebuffers

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Triangolazione di Delaunay**

Crea un vettore poligonale con la triangolazione Delaunay in corrispondenza al layer punto in ingresso.

![Triangolazione di Delaunay su punti](image)

**Menu predefinito:** Vettore ► Strumenti di Geometria
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale di punti in ingresso</td>
</tr>
<tr>
<td>Triangolazione di Delaunay</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Create temporary layer]</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangolazione di Delaunay</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale in uscita (triangolazione Delaunay)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:delaunaytriangulation

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Eliminare i buchi**

Prende un vettore poligonale e rimuove i buchi nei poligoni. Crea un nuovo layer vettoriale in cui i poligoni con buchi sono stati sostituiti da poligoni con solo il loro anello esterno. Gli attributi non vengono modificati.

Un parametro opzionale di area minima permette di rimuovere solo i buchi che sono più piccoli di una soglia di area specificata. Lasciando questo parametro a 0.0 si ottiene la rimozione di tutti i buchi.
Permette features in-place modification 1

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: polygon]</td>
<td>Layer vettoriale poligonale in ingresso</td>
</tr>
<tr>
<td><strong>Rimuovere i buchi con area inferiore a Opzionale</strong></td>
<td>MIN_AREA</td>
<td>[number ] Predefinito: 0.0</td>
<td>Solo i buchi con un’area inferiore a questa soglia saranno eliminati. Con un valore di 0.0, tutti i buchi saranno cancellati.</td>
</tr>
<tr>
<td><strong>Pulito</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulito</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (ripulito)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `native:deleteholes`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Addensare in base al numero**

Prende un layer poligonale o lineare e ne genera uno nuovo in cui le geometrie hanno un numero di vertici maggiore di quello originale.

Se le geometrie hanno valori Z o M presenti, questi saranno interpolati linearmente ai vertici aggiunti.

Il numero di nuovi vertici da aggiungere ad ogni segmento è specificato come parametro in ingresso.

![Image](https://via.placeholder.com/150)

**Fig. 24.52:** I punti rossi mostrano i vertici prima e dopo l'addensamento

- Permette features in-place modification 1
- **Menu predefinito:** Vettore ➤ Strumenti di Geometria

**Vedi anche:**

*Addensare in base all’intervallo*
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Vertici da aggiungere</td>
<td>VERTICES</td>
<td>[number] Predefinito: 1</td>
<td>Numero di vertici da aggiungere per ogni segmento</td>
</tr>
<tr>
<td>Addensato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addensato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (addensato)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:densifygeometries

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Addensare in base all’intervallo**

Prende un layer poligonale o lineare e ne genera uno nuovo in cui le geometrie hanno un numero di vertici maggiore di quello originale.

Le geometrie sono addensate aggiungendo regolarmente dei vertici extra all’interno di ogni segmento in modo che la distanza massima tra due vertici qualsiasi non superi la distanza specificata.

Se le geometrie hanno valori Z o M presenti, questi saranno interpolati linearmente ai vertici aggiunti.

**Esempio**

Specificando una distanza di 3, il segmento [0 0] -> [10 0] verrebbe convertito in [0 0] -> [2.5 0] -> [5 0] -> [7.5 0] -> [10 0], poiché sono richiesti 3 vertici extra sul segmento e la spaziatura di questi a incrementi di 2.5 permette di distanziarli uniformemente sul segmento.
Permette features in-place modification 1

Vedi anche:

*Addensare in base al numero*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Intervallo tra i vertici da aggiungere</td>
<td>INTERVAL</td>
<td>[number ] Predefinito: 1.0</td>
<td>Distanza massima tra due vertici consecutivi</td>
</tr>
</tbody>
</table>
| Addensato                     | OUTPUT       | [same as input] Predefinito: [Create temporary layer] | Specificare il vettore in uscita. Uno di:
  • Crea Layer Temporaneo (TEMPORARY_OUTPUT)
  • Salva su File...
  • Salva come Geopackage...
  • Salva su Tabella PostGIS...
  La codifica del file può anche essere cambiata qui. |
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addensato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (addensato)</td>
</tr>
</tbody>
</table>

**Codice Python**

ID Algoritmo: native:densifygeometriesgivenaninterval

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Dissolvere**

Prende un layer vettoriale e combina i suoi elementi in nuovi elementi. Uno o più attributi possono essere specificati per dissolvere le caratteristiche appartenenti alla stessa classe (avendo lo stesso valore per gli attributi specificati), in alternativa tutte gli elementi possono essere dissolti in un singolo elemento.

Tutte le geometrie in uscita saranno convertite in multi geometrie. Nel caso in cui il layer in ingresso sia un layer poligonale, i confini comuni dei poligoni adiacenti che vengono dissolti verranno cancellati.

La tabella degli attributi risultante avrà gli stessi campi del layer in ingresso. I valori nei campi del layer in uscita sono quelli del primo elemento in ingresso che viene elaborato.

![Fig. 24.54: Dissolvere il vettore poligonale su un attributo comune](image)

**Menu predefinito:** Vettore ➤ Strumenti di Geoprocessing

Vedi anche:

*Raggruppa geometrie, Riassimile geometrie*
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td><strong>Dissolvere campo(i)</strong></td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td><strong>Dissolvere campo(i)</strong>:&lt;br&gt;Predefinito: []&lt;br&gt;Gli elementi che hanno lo stesso valore per i campi selezionati vengono sostituiti con uno solo e le loro geometrie vengono unite. Se non viene fornito alcun campo, allora tutte gli elementi vengono dissolti, risultando in un unico elemento (multiparte).</td>
</tr>
<tr>
<td>Dissolto</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il vettore in uscita. Uno di:&lt;br&gt;• Crea Layer Temporaneo (TEMPORARY_OUTPUT)&lt;br&gt;• Salva su File…&lt;br&gt;• Salva come Geopackage…&lt;br&gt;• Salva su Tabella PostGIS…&lt;br&gt;La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolto</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita con le geometrie dissolte</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:dissolve

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Trama (imposta il valore Z dal raster)**

Utilizza valori campionati da una banda all'interno di un layer raster per impostare il valore Z per ogni vertice sovrapposto nella geometria dell’elemento. I valori raster possono opzionalmente essere scalati di una quantità preimpostata.

Se i valori Z esistono già nel layer, saranno sovrascritti con il nuovo valore. Se non esistono valori Z, la geometria sarà aggiornata per includere la dimensione Z.

**Vedi anche:**

*Ricava il valore M dal raster, Impostare valori Z*
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Layer raster</td>
<td>RASTER</td>
<td>[raster]</td>
<td>Layer raster layer con valori Z</td>
</tr>
<tr>
<td>Numero banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>La banda raster da cui prendere i valori Z</td>
</tr>
<tr>
<td>Valore per nodata o vertici non intersecanti</td>
<td>NODATA</td>
<td>[number ]</td>
<td>Valore da usare nel caso in cui il vertice non intersechi (in un pixel valido) il raster</td>
</tr>
<tr>
<td>Fattore di scala</td>
<td>SCALE</td>
<td>[number ]</td>
<td>Valore di scala: i valori della banda sono moltiplicati per questo valore.</td>
</tr>
<tr>
<td>Aggiornato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale in uscita (con i valori Z del layer raster). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggiornato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita con i valori Z del layer raster</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:setzfromraster

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Eliminare valori M/Z**

Rimuove i valori M (misura) o Z (altitudine) dalle geometrie in ingresso.

Vedi anche:

*Impostare valore M, Impostare valori Z*
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso con valori M o Z</td>
</tr>
<tr>
<td>Eliminare valori M</td>
<td>DROP_M_VALUES</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Eliminare valori Z</td>
<td>DROP_Z_VALUES</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Z/M Dropped</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z/M Dropped</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (identico al layer in ingresso, tranne per il fatto che le dimensioni M o Z sono state rimosse dalle geometrie).</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:dropmzvalues

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione.

Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Eliminate poligoni selezionati**

Combina i poligoni selezionati del layer in ingresso con alcuni poligoni adiacenti cancellando il loro confine comune. L’id algoritmo può essere quello con l’area più grande o più piccola o quello che condivide il confine comune più grande con il poligono da eliminare.

Eliminate è normalmente usato per sbarazzarsi dei poligoni sliver, cioè dei piccoli poligoni che sono il risultato di processi di intersezione di poligoni dove i confini degli elementi in ingresso sono simili ma non identici.

**Menu predefinito:** Vettore ➤ Strumenti di Geoprocessing

**Vedi anche:**

Correggere geometrie
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: polygon]</td>
<td>Layer vettoriale poligonale in ingresso</td>
</tr>
<tr>
<td>Fusione delle selezione al poligono più vicino</td>
<td>MODE</td>
<td>[enumeration]</td>
<td>Scegli il parametro da utilizzare per ottenere eliminazioni tra i poligoni selezionati:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: None</td>
<td>• 0 — Area più grande</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Area più piccola</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Confine comune più grande</td>
</tr>
<tr>
<td>Eliminati</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

#### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminati</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale poligonale in uscita.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** `qgis:eliminateselectedpolygons`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Esplosere linee

Prende un layer lineare e ne crea uno nuovo in cui ogni layer lineare è sostituito da un insieme di linee che rappresentano i segmenti della linea originale.

Ogni linea nel layer risultante contiene solo un punto iniziale e uno finale, senza vertici intermedi tra loro.
Permette features in-place modification 1

Vedi anche:
*Suddividere, Sottostringa lineare*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Esploso</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary</td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td>layer]</td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esploso</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il layer vettoriale lineare in uscita con gli elementi che rappresentano ogni segmento del layer in ingresso.</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** native:explodelines

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'"id algoritmo" viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Prolungare linee**

Prolunga la geometria lineare di una quantità specificata all'inizio e alla fine della linea.

Le linee sono prolungate usando il posizionamento del primo e dell'ultimo segmento della linea.

Fig. 24.56: I trattini rossi rappresentano l'estensione iniziale e finale del layer originale

Permette features in-place modification 1

Vedi anche:

*Sottostringa lineare*
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Distanza iniziale</td>
<td>START_DISTANCE</td>
<td>[number]</td>
<td>Distanza con cui prolungare il primo segmento della linea (punto di partenza)</td>
</tr>
<tr>
<td>Distanza finale</td>
<td>END_DISTANCE</td>
<td>[number]</td>
<td>Distanza con cui prolungare l’ultimo segmento della linea (punto finale)</td>
</tr>
<tr>
<td>Prolungato</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolungato</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il layer vettoriale lineare in uscita (prolungato).</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:extendlines

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Estrarre valori M**

Estrae i valori M dalle geometrie negli attributi degli elementi.

Per impostazione predefinita viene estratto solo il valore M dal primo vertice di ogni elemento, tuttavia l’algoritmo può opzionalmente calcolare statistiche su tutti i valori M della geometria, compresi somma, media, minimo e massimo.

Vedi anche:

*Estrarre valori Z, Impostare valore M, Eliminare valori M/Z*
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Dati di sintesi da calcolare</td>
<td>SUMMARIES</td>
<td>[enumeration]</td>
<td>Predefinito: [0] Statistiche sui valori M di una geometria. Uno o più di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Primo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Ultimo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Conteggio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Somma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Media</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Median</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Deviazione Standard (pop)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — Minimo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — Massimo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — Intervallo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — Minoranza</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — Maggioranza</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — Categorie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — Q1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — Q3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — IQR scarto interquartile</td>
</tr>
<tr>
<td>Prefisso colonna in uscita</td>
<td>COLUMN_PREFIX</td>
<td>[string]</td>
<td>Predefinito: “m_” Il prefisso per la colonna (M) in uscita</td>
</tr>
<tr>
<td>Estratti</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratti</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (con valori M)</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo**: native:extractmvalues

```python
import processing
def process():
 processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
**Estrazione vertici specifici**

Prende un layer vettoriale e genera un layer punto con punti che rappresentano specifici vertici nelle geometrie in ingresso.

Per esempio, questo algoritmo può essere usato per estrarre il primo o l'ultimo vertice della geometria. Gli attributi associati ad ogni punto sono gli stessi associati all'elemento a cui il vertice appartiene.

Il parametro degli indici dei vertici accetta una stringa separata da virgole che specifica gli indici dei vertici da estrarre. Il primo vertice corrisponde a un indice 0, il secondo vertice ha un indice 1, ecc. Gli indici negativi possono essere utilizzati per trovare i vertici alla fine della geometria, ad esempio, un indice di -1 corrisponde all'ultimo vertice, -2 corrisponde al penultimo vertice, ecc.

Ai vertici vengono aggiunti campi aggiuntivi che indicano la posizione specifica del vertice (ad esempio, 0, -1, ecc.), l'indice del vertice originale, la parte del vertice e il suo indice all'interno della parte (così come il suo anello per i poligoni), la distanza lungo la geometria originale e l'angolo della bisettrice del vertice per la geometria originale.

**Vedi anche:**

*Estrazione vertici, Filtrare i vertici per il valore M, Filtrare i vertici per valore Z*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Vertici</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertici</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer vettoriale in uscita (punto) contenente i vertici specificati dalle geometrie del layer in ingresso.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:extractspecificvertices

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L' *id algoritmo* viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Estrazione vertici

Prende un layer vettoriale e genera un layer punto con punti che rappresentano i vertici nelle geometrie in ingresso. Gli attributi associati ad ogni punto sono gli stessi associati all’elemento a cui appartiene il vertice.

Ai vertici vengono aggiunti campi aggiuntivi che indicano l’indice del vertice (a partire da 0), la parte dell’elemento e il suo indice all’interno della parte (così come il suo anello per i poligoni), la distanza lungo la geometria originale e l’angolo della bisettrice del vertice per la geometria originale.

![Fig. 24.57: Vertici estratti per il vettore lineare e poligonare](image)

**Menu predefinito:** Vettore ► Strumenti di Geometria

**Vedi anche:**

*Estrazione vertici specifici, Filtrare i vertici per il valore M, Filtrare i vertici per valore Z*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
</tbody>
</table>
| Vertici   | OUTPUT           | [vector: point] Predefinito: [Create temporary layer] | Specificare il vettore in uscita. Uno di:  
• Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
• Salva su File…  
• Salva come Geopackage…  
• Salva su Tabella PostGIS…  
La codifica del file può anche essere cambiata qui. |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertici</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer vettoriale in uscita (punto) che contiene i vertici delle geometrie del layer in ingresso.</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** native:extractvertices

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Estrarre valori Z

Estrae i valori Z dalle geometrie in attributi dell’elemento.

Per impostazione predefinita viene estratto solo il valore Z dal primo vertice di ogni elemento, tuttavia l’algoritmo può opzionalmente calcolare statistiche su tutti i valori Z della geometria, compresi somma, media, minimo e massimo.

Vedi anche:

Estrarre valori M, Impostare valori Z, Eliminare valori M/Z

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Dati di sintesi da calcolare</td>
<td>SUMMARIES</td>
<td>[enumeration]</td>
<td>Statistiche sui valori Z di una geometria. Uno o più di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [0]</td>
<td>• 0 — Primo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Ultimo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Conteggio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Somma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Media</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Mediana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Deviazione Standard (pop)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — Minimo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — Massimo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — Intervalle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — Minoranza</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — Maggioranza</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — Categorie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — Q1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — Q3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — IQR scarto interquartile</td>
</tr>
<tr>
<td>Prefisso colonna in uscita</td>
<td>COLUMN_PREFIX</td>
<td>[string]</td>
<td>Il prefisso per la colonna in uscita (Z) Specifica il layer in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “z_”</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td>Estratti</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td></td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratti</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (con valori Z)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:extractzvalues

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Filtrare i vertici per il valore M**

Filtra i vertici in base al loro valore M, restituendo geometrie con solo punti di vertice che hanno un valore M maggiore o uguale al valore minimo specificato e/o minore o uguale al valore massimo.

Se il valore minimo non è specificato allora viene testato solo il valore massimo, e allo stesso modo se il valore massimo non è specificato allora viene testato solo il valore minimo.

![Fig. 24.58: La linea rossa mostra la linea nera con solo i vertici il cui valore M è <=10.](image)

**Nota:** A seconda degli attributi della geometria in ingresso e dei filtri utilizzati, le geometrie risultanti generate da questo algoritmo potrebbero non essere più valide.

**Vedi anche:**

Filtrare i vertici per valore Z, Estrazione vertici, Estrazione vertici specifici
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso da cui rimuovere i vertici</td>
</tr>
<tr>
<td><strong>Minimo</strong></td>
<td>MIN</td>
<td>[number]</td>
<td>Minimo dei valori M ammessi</td>
</tr>
<tr>
<td><strong>Massimo</strong></td>
<td>MAX</td>
<td>[number]</td>
<td>Massimo dei valori M ammessi</td>
</tr>
<tr>
<td><strong>Filtrati</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Filtrati</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita di elementi con solo i vertici filtrati.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** `native:filterverticesbym`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Filtrare i vertici per valore Z

Filtrare i vertici in base al loro valore Z, restituendo geometrie con solo i punti dei vertici che hanno un valore Z maggiore o uguale al valore minimo specificato e/o minore o uguale al valore massimo.

Se il valore minimo non è specificato allora viene testato solo il valore massimo, e allo stesso modo se il valore massimo non è specificato allora viene testato solo il valore minimo.

![Fig. 24.59: La linea rossa raffigura la linea nera con solo i vertici il cui valore Z è \(<=10\).](image)

Fig. 24.59: La linea rossa raffigura la linea nera con solo i vertici il cui valore Z è \(<=10\).
Nota: A seconda degli attributi della geometria in ingresso e dei filtri utilizzati, le geometrie risultanti create da questo algoritmo potrebbero non essere più valide. Potrebbe essere necessario eseguire l'algoritmo Correggere geometrie per assicurare la loro validità.

Vedi anche:
Filtrare i vertici per il valore M, Estrazione vertici, Estrazione vertici specifici

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso da cui rimuovere i vertici</td>
</tr>
<tr>
<td>Minimo</td>
<td>MIN</td>
<td>[number ] Predefinito: Not set</td>
<td>Minimo dei valori Z ammessi</td>
</tr>
<tr>
<td>Massimo</td>
<td>MAX</td>
<td>[number ] Predefinito: Not set</td>
<td>Massimo dei valori Z ammessi</td>
</tr>
<tr>
<td>Filtrati</td>
<td>OUTPUT</td>
<td>[same as input] Predefinito: [Create temporary layer]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtrati</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita di elementi con solo i vertici filtrati.</td>
</tr>
</tbody>
</table>

**Codice Python**

ID Algoritmo: native:filterverticesbyz

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Correggere geometrie

Tenta di ricreare una rappresentazione valida di una data geometria non valida senza perdere nessuno dei vertici in ingresso. Le geometrie già valide vengono restituite senza ulteriori interventi. Restituisce sempre layer multi-geometria.

Nota: I valori M saranno eliminati dal risultato.

Permette features in-place modification 1

Vedi anche:

Controllo validità

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Geometrie validate</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrie validate</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita con geometrie validate.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: native:fixgeometries

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dictionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Forzare la regola della mano destra

Costringe le geometrie dei poligoni a rispettare la Right-Hand-Rule, in cui l’area che è delimitata da un poligono è a destra del confine. In particolare, l’anello esterno è orientato in senso orario e qualsiasi anello interno in senso antiorario.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: polygon]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Riorentato</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riorentato</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale in uscita con le geometrie riorientate.</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** native:forcerhr

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Linea geodetica divisa all’antimeridiano

Suddivide una linea in più segmenti geodetici, ogni volta che la linea attraversa l’antimeridiano (±180 gradi di longitudine).

La suddivisione all’antimeridiano aiuta la visualizzazione delle linee in alcune proiezioni. La geometria restituita sarà sempre una geometria a parti multiple.

Ogni volta che i segmenti di linea nella geometria in ingresso attraversano l’antimeridiano, saranno divisi in due segmenti, con la latitudine del punto di rottura determinata utilizzando una linea geodetica che collega i punti su entrambi i lati di questo segmento. L’impostazione corrente dell’ellissoide del progetto sarà usata per calcolare questo punto di rottura.

Se la geometria di input contiene valori M o Z, questi saranno interpolati linearmente per i nuovi vertici creati all’antimeridiano.
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Suddiviso</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specifica il layer vettoriale della linea in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suddiviso</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il layer vettoriale della linea in uscita suddiviso sull’antimeridiano.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:antimeridiansplit

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione.
Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Geometria da espressione**

Aggiorna le geometrie esistenti (o crea nuove geometrie) degli elementi in ingresso utilizzando un’espressione QGIS. Questo permette complesse modifiche della geometria che possono utilizzare tutta la flessibilità del motore di espressione di QGIS per manipolare e creare geometrie per gli elementi in uscita.

Per un aiuto sulle funzioni di espressione di QGIS, vedi l’aiuto incorporato disponibile nel *expression builder*.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.93 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di geometria in uscita</td>
<td>OUTPUT_GEOMETRY</td>
<td>[enumeration]</td>
<td>La geometria in uscita dipende fortemente dall'espressione: per esempio, se si crea un buffer il tipo di geometria deve essere poligono. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Poligono</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 1 — Linea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Punto</td>
</tr>
<tr>
<td>La geometria in uscita ha valori z</td>
<td>WITH_Z</td>
<td>[boolean]</td>
<td>Scegli se la geometria in uscita deve includere la dimensione Z</td>
</tr>
<tr>
<td>La geometria in uscita ha valori m</td>
<td>WITH_M</td>
<td>[boolean]</td>
<td>Scegli se la geometria in uscita deve includere la dimensione M</td>
</tr>
<tr>
<td>Espressione geometria</td>
<td>EXPRESSION</td>
<td>[expression]</td>
<td>Aggiungi l'espressione geometria che vuoi usare. Puoi usare il pulsante per aprire la finestra di dialogo delle espressioni. La finestra di dialogo elenca tutte le espressioni pertinenti, insieme al loro aiuto e guida.</td>
</tr>
<tr>
<td>Geometria modificata</td>
<td>OUTPUT</td>
<td>[vector:any]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometria modificata</td>
<td>OUTPUT</td>
<td>[vector:any]</td>
<td>Livello vettoriale in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:geometrybyexpression

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'**id algoritmo** viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi **Usare gli algoritmi di Processing dalla console dei comandi** per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
**Interpolare punto su linea**

Crea una geometria punto interpolata ad una distanza impostata lungo geometrie lineari o curve.

I valori Z e M sono interpolati linearmente sulla base dei valori esistenti.

Se si incontra una geometria multi parte, solo la prima parte viene considerata nel calcolo della sottostringa.

Se la distanza specificata è maggiore della lunghezza dell'elemento in ingresso, l'elemento risultante avrà una geometria nulla.

![Fig. 24.60: Punto interpolato a 500m dall'inizio della linea](image)

**Vedi anche:**

*Punti lungo la geometria*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Distanza</td>
<td>DISTANCE</td>
<td>[number] Predefinito: 0.0</td>
<td>Distanza dall'inizio della linea</td>
</tr>
<tr>
<td>Punti di interpolazione</td>
<td>OUTPUT</td>
<td>[vector: point] Predefinito: [Create temporary layer]</td>
<td>Specificare il vettore in uscita. Uno di: • Crea Layer Temporaneo (TEMPORARY_OUTPUT) • Salva su File • Salva come Geopackage • Salva su Tabella PostGIS... La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti di interpolazione</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer vettoriale punto in uscita con gli elementi ad una distanza impostata lungo la linea o il confine del poligono</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo**: native:interpolatepoint

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Conservare N parti più grandi**

Prende un layer con poligoni o multipoligoni e restituisce un nuovo layer in cui vengono mantenuti solo gli $n$ poligoni più grandi di ogni elemento multipoligono. Se una elemento ha $n$ o meno parti, l’elemento sarà semplicemente copiato.

![Image](image.png)

Fig. 24.61: In senso orario da sinistra in alto: originale multi parte, una, due e tre parti più grandi conservate
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poligoni</td>
<td>INPUT</td>
<td>[vector: polygon]</td>
<td>Layer vettoriale poligonale in ingresso</td>
</tr>
<tr>
<td>Parti da conservare</td>
<td>PARTS</td>
<td>[number]</td>
<td>Numero di parti da conservare. Se 1, solo la parte più grande dell'elemento sarà conservata.</td>
</tr>
<tr>
<td>Parti</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specifica il layer vettoriale poligonale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parti</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale poligonale in uscita con le N parti più grandi di ogni elemento</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:keepnbiggestparts

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'**id algoritmo** viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Sottostringa lineare**

Restituisce la porzione di una linea (o curva) che cade tra le distanze iniziale e finale specificate (misurate dall'inizio della linea).

I valori Z e M sono interpolati linearmente sulla base dei valori esistenti.

Se si incontra una geometria multi parte, solo la prima parte viene considerata nel calcolo della sottostringa.
Fig. 24.62: Linea sottostringa con distanza iniziale impostata a 0 metri e distanza finale a 250 metri.

Permette features in-place modification 1

Vedi anche:

_Prolungare linee_

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Layer in ingresso</em></td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td><strong>Distanza iniziale</strong></td>
<td>START_DISTANCE</td>
<td>[number]</td>
<td>Distanza lungo la linea in ingresso dal punto di partenza dell’elemento in uscita</td>
</tr>
<tr>
<td><strong>Distanza finale</strong></td>
<td>END_DISTANCE</td>
<td>[number]</td>
<td>Distanza lungo la linea in ingresso al punto finale della linea in uscita</td>
</tr>
<tr>
<td><strong>Substringa</strong></td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specifica il layer vettoriale della linea in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Substringa</strong></td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il layer vettoriale lineare in uscita.</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: native: linesubstring

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Da linee a poligoni

Genera un vettore poligonale usando come anelli poligonali le linee di un vettore lineare in ingresso.

La tabella degli attributi del layer in uscita è la stessa di quella del layer in entrata.

Menu predefinito: Vettore ► Strumenti di Geometria

Vedi anche:

Da poligoni a linee, Poligonizzare, Convertire il tipo di geometria

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Poligoni</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specifica il layer vettoriale poligonale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poligoni</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale poligonale in uscita.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis: linestopolygons

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Fondere linee

Unisce tutte le parti connesse delle geometrie MultiLineString in singole geometrie LineString.

Se alcune parti delle geometrie MultiLineString in ingresso non sono connesse, la geometria risultante sarà una MultiLineString contenente tutte le linee che potrebbero essere unite e tutte le parti di linea non connesse.

✓ Permette features in-place modification 1

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Fusione</td>
<td>OUTPUT</td>
<td>[vector: line] Predefinito:</td>
<td>Specifica il layer vettoriale della linea in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusione</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il layer vettoriale linea in uscita (fuso).</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:mergelines

```
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Geometria minima di delimitazione**

Crea geometrie che racchiuscono gli elementi di un layer in ingresso. Gli elementi possono essere raggruppati da un campo. Il layer in uscita conterrà quindi un elemento per valore di gruppo con una geometria (MBB) che copre le geometrie degli elementi con valore corrispondente.

Sono supportati i seguenti tipi di geometrie di delimitazione:

- perimetro di delimitazione (inviluppo)
- rettangolo orientato
- cerchio
- poligono convesso
Fig. 24.63: In senso orario dall’alto a sinistra: inviluppo, rettangolo orientato, cerchio, poligono convesso

Vedi anche:

*Cerchio minimo circoscritto*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Campo Opzionale</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Gli elementi possono essere raggruppati in base a un campo. Se impostato, questo fa sì che il layer in uscita contenga un elemento per ogni valore raggruppato con una geometria minima che copre solo gli elementi con valori corrispondenti.</td>
</tr>
</tbody>
</table>
| Tipo di geometria | TYPE          | [enumeration] Predefinito: 0 | Tipi di geometria di delimitazione. Uno di:  
  • 0 — Inviluppo (Perimetro di delimitazione)  
  • 1 — Rettangolo Minimo Orientato  
  • 2 — Cerchio minimo circoscritto  
  • 3 — Poligono Convesso |
Tabella 24.95 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometria delimitante</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specifica il layer vettoriale poligonale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

Codice Python

**ID Algoritmo:** qgis:minimumboundinggeometry

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’**id algoritmo** viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Cerchio minimo circoscritto**

Calcola i cerchi minimi che delimitano gli elementi nel layer in ingresso.
Permette features in-place modification 1

Vedi anche:

*Geometria minima di delimitazione*
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Numero di segmenti nei cerchi</td>
<td>SEGMENTS</td>
<td>[number] Predefinito: 72</td>
<td>Il numero di segmenti usati per approssimare un cerchio. Minimo 8, massimo 100000.</td>
</tr>
</tbody>
</table>
| Cerchio minimo circoscritto | OUTPUT     | [vector: polygon] Predefinito: [Create temporary layer] | Specifica il layer vettoriale poligonale in uscita. Uno di:  
  • Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
  • Salva su File…  
  • Salva come Geopackage…  
  • Salva su Tabella PostGIS…  
  La codifica del file può anche essere cambiata qui. |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerchio minimo circoscritto</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale poligonale in uscita.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:minimumenclosingcircle

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dicionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi **Usare gli algoritmi di Processing dalla console dei comandi** per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Buffer a più anelli (distanza costante)**

Calcola il buffer multi-anello (donut) per gli elementi del layer in ingresso, utilizzando una distanza e un numero di anelli fissi o dinamici.

![Image of buffer multiple rings](image)

Fig. 24.65: Buffer a più anelli per un layer linea, punto e poligono
Permette features in-place modification

Vedi anche:

Buffer, Distanza buffer variabile, Rettangoli, ellissi, rombi, Buffer su un solo lato

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector:any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Numero di anelli</td>
<td>RINGS</td>
<td>[number ]</td>
<td>Il numero di anelli. Può essere un valore unico (stesso numero di anelli per tutte gli elementi) o può essere preso dai dati degli elementi (il numero di anelli dipende dai valori degli elementi).</td>
</tr>
<tr>
<td>Distanza tra gli anelli</td>
<td>DISTANCE</td>
<td>[number ]</td>
<td>Distanza tra gli anelli. Può essere un valore unico (stessa distanza per tutti gli elementi) o può essere preso dai dati degli elementi (la distanza dipende dai valori degli elementi).</td>
</tr>
<tr>
<td>Buffer multi-anello (distanza costante)</td>
<td>OUTPUT</td>
<td>[vector:polygon]</td>
<td>Specifica il layer vettoriale poligonale in uscita. Uno di: • Crea Layer Temporaneo (TEMPORARY_OUTPUT) • Salva su File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer multi-anello (distanza costante)</td>
<td>OUTPUT</td>
<td>[vector:polygon]</td>
<td>Il layer vettoriale poligonale in uscita.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** native:multiringconstantbuffer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione.
Il dictionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Da multi parte a parti singole

Divide elementi multiparte nel layer in ingresso in elementi a parti singole.
Gli attributi del layer in uscita sono gli stessi di quelli originali, ma divisi in elementi singoli.

Fig. 24.66: A sinistra il layer multiparte di origine e a destra il risultato in uscita a parte singola

Permette features in-place modification 1

Menu predefinito: Vettore ➤ Strumenti di Geometria

Vedi anche:
Riassemblare geometrie, Passare a multi parte

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Parti singole</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale poligonale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabela PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parti singole</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: native:multiparttosingleparts

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algorithm* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

24.1. Fornitore di algoritmo QGIS
Linee di offset

Sposta le linee ad una distanza specificata. Le distanze positive spostano le linee a sinistra, mentre le distanze negative le spostano a destra.

![Fig. 24.67: In blu il layer di origine, in rosso quello di offset](image)

Permette features in-place modification 1

Vedi anche:

*Serie di linee di offset (parallele), Traslare*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Distanza</td>
<td>DISTANCE</td>
<td>[number]</td>
<td>Distanza di offset. Puoi usare il pulsante Sovriscrittura definita dai dati sulla destra per scegliere un campo da cui verrà calcolato il raggio. In questo modo puoi avere un raggio diverso per ogni elemento (vedi <em>Distanza buffer variabile</em>).</td>
</tr>
<tr>
<td>Segmenti</td>
<td>SEGMENTS</td>
<td>[number]</td>
<td>Controlla il numero di segmenti di linea da usare per approssimare un quarto di cerchio quando si creano offset arrotondati.</td>
</tr>
<tr>
<td>Stile unione</td>
<td>JOIN_STYLE</td>
<td>[enumeration]</td>
<td>Specifica se devono essere utilizzati stile di unione di tipo arrotondato, seghettato o smussato quando si esegue l'offset degli angoli in una linea. Le opzioni sono:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — Arrotondato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Seghettato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Smussato</td>
</tr>
<tr>
<td>Limite a taglio obliquo</td>
<td>MITER_LIMIT</td>
<td>[number]</td>
<td>Controlla la distanza massima dalla curva di offset da usare quando si crea una giunzione obliqua (applicabile solo agli stili di giunzione con taglio obliquo). Minimo: 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 2.0</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.97 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specificare il layer in uscita (offset). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Create</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>temporary layer]</td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Vettore lineare in uscita (offset)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:offsetline

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'**id algoritmo** viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione.

Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Perimetro di delimitazione minimo orientato**

Calcola la superficie minima del rettangolo ruotato per ogni elemento nel layer in ingresso.
Permette features in-place modification 1

Vedi anche:

*Geometria minima di delimitazione*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Perimetri di delimitazione</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specifica il layer vettoriale poligonale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporane (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimetri di delimitazione</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale poligonale in uscita.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo**: native:orientedminimumboundingbox

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

** Ortogonalizzazione**

Tenta di ortogonalizzare le geometrie del layer linea o poligono in ingresso. Questo processo sposta i vertici delle geometrie per cercare di rendere ogni angolo della geometria un angolo retto o una linea retta.

![Fig. 24.69: In blu il layer di origine e in rosso il risultato ortogonalizzato](image)

Permette features in-place modification 1
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Tolleranza massima dell’angolo (gradi)</td>
<td>ANGLE_TOLERANCE</td>
<td>[number]</td>
<td>Predefinito: 15 Specifica la massima deviazione da un angolo retto o da una linea retta che un vertice può avere per essere aggiustato. Tolleranze più piccole significano che solo i vertici che sono già più vicini all’angolo retto saranno aggiustati, e tolleranze più grandi significano che anche i vertici che si discostano di più dall’angolo retto saranno aggiustati.</td>
</tr>
<tr>
<td>Numero massimo di iterazioni per l’algoritmo</td>
<td>MAX_ITERATIONS</td>
<td>[number]</td>
<td>Predefinito: 1000 Impostando un numero maggiore come numero massimo di iterazioni, si otterrà una geometria piu ortogonale al costo di un tempo di processing maggiore.</td>
</tr>
<tr>
<td>Ortogonalizzato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Predefinito: [Create temporary layer] Specifica il layer vettoriale poligonale in uscita. Uno di: • Crea Layer Temporaneo (TEMPORARY_OUTPUT) • Salva su File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortogonalizzato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il vettore poligon in uscita con angoli aggiustati.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:orthogonalize

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
**Punto su Superficie**

Per ogni elemento del layer in ingresso, restituisce un punto che sicuramente giace sulla superficie della geometria dell’elemento.

Permette features in-place modification 1

**Vedi anche:**

*Centroidi*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Creare un punto sulla superficie per ogni parte</td>
<td>ANGLE_TOLERANCE</td>
<td>[boolean ]</td>
<td>Se spuntato, verrà creato un punto per ogni parte della geometria.</td>
</tr>
<tr>
<td>Punto</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Predefinito: [Create temporary layer]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specifica il layer vettoriale punto in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

**Codice Python**

**ID Algoritmo:** native:pointonsurface

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Punti lungo la geometria

Crea punti a intervalli regolari lungo geometrie lineari o poligonalì. I punti creati avranno nuovi attributi aggiunti per la distanza lungo la geometria e l’angolo della linea nel punto.

Può essere specificato un offset opzionale di inizio e fine, che controlla quanto lontano dall’inizio e dalla fine della geometria i punti dovrebbero essere creati.

Fig. 24.70: Punti generati lungo il vettore lineare di origine

Vedi anche:
**Interpolare punto su linea**

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Distanza</td>
<td>DISTANCE</td>
<td>[number ]</td>
<td>Distanza tra due punti consecutivi lungo la linea</td>
</tr>
<tr>
<td>Inizio offset</td>
<td>START_OFFSET</td>
<td>[number ]</td>
<td>Predefinito: 0.0, Distanza dall'inizio della linea in ingresso, che rappresenta la posizione del primo punto.</td>
</tr>
<tr>
<td>Fine offset</td>
<td>END_OFFSET</td>
<td>[number ]</td>
<td>Predefinito: 0.0, Distanza dalla fine della linea in ingresso, che rappresenta la posizione oltre la quale non deve essere creata alcun punto.</td>
</tr>
<tr>
<td>Punti di interpolazione</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Predefinito: [Create temporary layer], Specificare il vettore in uscita. Uno di:</td>
</tr>
</tbody>
</table>

- Crea Layer Temporaneo (TEMPORARY_OUTPUT)
- Salva su File...
- Salva come Geopackage...
- Salva su Tabella PostGIS...

La codifica del file può anche essere cambiata qui.

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti di interpolazione</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale punto con elementi posizionate lungo le linee o i confini dei poligoni del layer in ingresso.</td>
</tr>
</tbody>
</table>

**Codice Python**

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L' *id algoritmo* viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Spostamento punti

Data una distanza di prossimità, identifica gli elementi puntuali vicini e le distribuisce radialmente su un cerchio il cui centro rappresenta il loro baricentro. Un comodo strumento per sparpagliare gli elementi sovrapposti.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale di punti in ingresso</td>
</tr>
<tr>
<td>Distanza spostamento</td>
<td>DISTANCE</td>
<td>[number]</td>
<td>Predefinito: 1.0 Raggio del cerchio su cui sono posizionati gli elementi vicini</td>
</tr>
<tr>
<td>Distribuzione orizzontale per il caso di due punti</td>
<td>HORIZONTAL</td>
<td>[boolean]</td>
<td>Predefinito: False Quando solo due punti sono identificati come vicini, li allinea orizzontalmente sul cerchio invece che verticalmente.</td>
</tr>
<tr>
<td>Spostato</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Predefinito: [Create temporary layer] Specificare il vettore in uscita. Uno di: • Crea Layer Temporaneo (TEMPORARY_OUTPUT) • Salva su File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spostato</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale punto in uscita</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:pointsdisplacement

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Polo di inaccessibilità

Calcola il polo di inaccessibilità per un vettore poligonale, che è il punto interno più distante dal confine della superficie.

Questo algoritmo utilizza l’algoritmo “polylabel” (Vladimir Agafonkin, 2016), che è un approccio iterativo che garantisce di trovare il vero polo di inaccessibilità entro una tolleranza specificata. Una tolleranza più precisa (valore più basso) richiede più iterazioni e richiederà più tempo per il calcolo.

La distanza dal polo calcolato al confine del poligono sarà memorizzata come un nuovo attributo nel layer in uscita.

Fig. 24.71: Polo di inaccessibilità

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: polygon]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Tolleranza</td>
<td>TOLERANCE</td>
<td>[number]</td>
<td>Predefinito: 1.0</td>
</tr>
<tr>
<td>Punto</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Specifica il layer vettoriale poligonale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer vettoriale punto in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

_ID Algoritmo_: `native:poleofinaccessibility`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Poligonizzare**

Crea un vettore poligonale i cui confini degli elementi sono generati da un vettore lineare di elementi chiusi.

![Fig. 24.72: I poligoni gialli generati dalle linee chiuse](image)

**Nota:** Il vettore lineare deve avere forme chiuse per essere trasformato in un poligono.

**Vedi anche:**

Da poligoni a linee, Da linee a poligoni, Convertire il tipo di geometria
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Mantenere la struttura della tabella del vettore lineare</td>
<td>KEEP_FIELDS</td>
<td>[boolean]</td>
<td>Controllo per mantenere i campi (solo la struttura della tabella, non i valori) del layer in ingresso.</td>
</tr>
<tr>
<td>Poligoni da linee</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specifica il layer vettoriale poligonale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poligoni da linee</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettore poligono da linee in uscita</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** native: polygonize

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Da poligoni a linee

Prende un vettore poligonale e crea un vettore lineare, con linee che rappresentano i confini dei poligoni nel layer in ingresso.

La tabella degli attributi del layer in uscita è la stessa di quella del layer in entrata.

Fig. 24.73: Linee nere come risultato dell’algoritmo
Menu predefinito: Vettore ➤ Strumenti di Geometria

Vedi anche:

Da linee a poligoni, Poligonizzare, Convertire il tipo di geometria

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: polygon]</td>
<td>Layer vettoriale poligonale in ingresso</td>
</tr>
<tr>
<td>Linee</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Predefinito: [Create temporary layer]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specifica il layer vettoriale della linea in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linee</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il layer vettoriale linea da poligoni in uscita</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: native:polygonstolines

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Proiettare punti (cartesiano)

Proietta le geometrie punto da una distanza e un orientamento specificati (azimut).

Permette features in-place modification 1

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale di punti in ingresso</td>
</tr>
<tr>
<td>Cuscinetto (gradi da nord)</td>
<td>BEARING</td>
<td>[number]</td>
<td>Predefinito: 0.0 Angolo in senso orario partendo da Nord, in unità di grado (°)</td>
</tr>
<tr>
<td>Distanza</td>
<td>DISTANCE</td>
<td>[number]</td>
<td>Predefinito: 1.0 Distanza di offset dalle geometrie, in unità layer</td>
</tr>
</tbody>
</table>

continues on next page
### Proiettare

**Nome:** OUTPUT  
**Tipo:** [vector: point]  
**Descrizione:** Specifica il layer vettoriale punto in uscita. Uno di:
- Crea Layer Temporaneo (TEMPORARY_OUTPUT)
- Salva su File…
- Salva come Geopackage…
- Salva su Tabella PostGIS…

La codifica del file può anche essere cambiata qui.

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proiettare</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer vettoriale punto in uscita (proiettato)</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** native:projectpointcartesian

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. 
Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Passare a multi parte

Prende un layer vettoriale con geometrie a parti singole e ne genera uno nuovo in cui tutte le geometrie sono multi parte.

Gli elementi in ingresso che sono già elementi multi parte rimarranno inviariati.

Questo algoritmo può essere usato per forzare le geometrie a tipi multi parte per essere compatibili con i fornitori di dati che richiedono elementi multi parte.

- Permette features in-place modification 1

**Vedi anche:**

Raggruppa geometrie, Riassemblare geometrie
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Multi parte</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale multiparte in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi parte</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale multiparte in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native: promotetomulti

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Rettangoli, ellissi, rombi**

Crea un’area buffer a forma di rettangolo, ellisse o rombo per ogni elemento del layer punto in ingresso

I parametri di forma possono essere fusi per tutti gli elementi o dinamici usando un campo o un’espressione.

Fig. 24.74: Diverse forme di buffer con parametri dinamici
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale di punti in ingresso</td>
</tr>
<tr>
<td>Forma Buffer</td>
<td>SHAPE</td>
<td>[enumeration]</td>
<td>La forma da usare. Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Rettangoli</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Ellissi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Rombi</td>
</tr>
<tr>
<td>Larghezza</td>
<td>WIDTH</td>
<td>[number ]</td>
<td>Larghezza della forma del buffer</td>
</tr>
<tr>
<td>Altezza</td>
<td>HEIGHT</td>
<td>[number ]</td>
<td>Altezza della forma del buffer</td>
</tr>
<tr>
<td>Rotazione</td>
<td>ROTATION</td>
<td>[number ]</td>
<td>Rotazione della forma del buffer</td>
</tr>
<tr>
<td>Numero di segmenti</td>
<td>SEGMENTS</td>
<td>[number ]</td>
<td>Numero di segmenti per un cerchio completo (forma Ellissi)</td>
</tr>
<tr>
<td>Output</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale in uscita (con le forme del buffer)</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: native:rectanglesovalsdiamonds

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Rimuovere i vertici duplicati

Rimuove i vertici duplicati dagli elementi, ovunque la rimozione dei vertici non dia luogo a una geometria incongrua.

Il parametro tolerance specifica la tolleranza per le coordinate quando si determina se i vertici sono da considerare identici.

Per impostazione predefinita, i valori Z non sono considerati quando si individuano i vertici duplicati. Ad esempio, due vertici con la stessa coordinata X e Y ma valori Z diversi saranno comunque considerati duplicati e uno verrà rimosso. Se il parametro *Usa valore Z* è true, allora anche i valori Z vengono testati e i vertici con la stessa X e Y ma Z diversi verranno mantenuti.

Nota: I vertici duplicati non vengono testati tra le diverse parti di una geometria multi parte, ad esempio una geometria a più punti con punti sovrapposti non verrà modificata da questo metodo.

Permette features in-place modification 1

Vedi anche:
* Estrazione vertici, Estrazione vertici specifici, Eliminare le geometrie duplicate*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Tolleranza</td>
<td>TOLERANCE</td>
<td>[number (\leq)] Predefinito: 0.000001</td>
<td>I vertici più vicini della distanza specificata sono considerati duplicati</td>
</tr>
<tr>
<td>Usa valore Z</td>
<td>USE_Z_VALUE</td>
<td>[boolean (\leq)] Predefinito: False</td>
<td>Se il parametro <em>Usa valore Z</em> è vero, allora anche i valori Z sono testati e i vertici con la stessa X e Y ma Z diversi saranno mantenuti.</td>
</tr>
</tbody>
</table>
| Pulito        | OUTPUT            | [same as input] Predefinito: [Create temporary layer] | Specificare il vettore in uscita. Uno di:  
• Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
• Salva su File…  
• Salva come Geopackage…  
• Salva su Tabella PostGIS…  
La codifica del file può anche essere cambiata qui. |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulito</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (senza vertici duplicati)</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** native:removeduplicatevertices

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Rimuove geometrie nulle

Rimuove tutti gli elementi che non hanno una geometria di layer vettoriale. Tutte gli altri elementi saranno copiati invariati.

Gli elementi con geometrie nulle possono essere salvati in un layer separato.

Se Rimuovere anche geometrie vuote è selezionato, l’algoritmo rimuove gli elementi le cui geometrie non hanno coordinate, cioè le geometrie che sono vuote. In tal caso, anche il risultato null rifletterà questa opzione, contenendo sia le geometrie nulle che quelle vuote.

Vedi anche:

*Eliminare le geometrie duplicate*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso (con geometrie non NULL)</td>
</tr>
<tr>
<td>Rimuovi anche le geometrie vuote</td>
<td>REMOVE_EMPTY</td>
<td>[boolean]</td>
<td>Specificare il layer vettoriale in uscita per le geometrie non-NULL (e non-empty). Uno di:</td>
</tr>
<tr>
<td>Geometrie non nulle</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Predefinito: [Create temporary layer]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specificare il layer vettoriale in uscita per le geometrie NULL (e vuote). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Non dà risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td>Geometrie Null</td>
<td>NULL_OUTPUT</td>
<td>[same as input]</td>
<td>Predefinito: [Skip output]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specificare il layer vettoriale in uscita per le geometrie NULL (e vuote). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Non dà risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
</tbody>
</table>

La codifica del file può anche essere cambiata qui.
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrie Null</td>
<td>NULL_OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita (per NULL e, se scelto, geometrie vuote)</td>
</tr>
<tr>
<td>Geometrie non nulle</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (senza geometrie NULL e, se scelto, senza geometrie vuote)</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: native:removenu llgeometries

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’'id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Invertire la direzione della linea

Inverte la direzione di un vettore lineare.

![Fig. 24.75: Prima e dopo l'inversione di direzione](image)

Permette features in-place modification 1
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Invertite</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specifica il layer vettoriale della linea in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertite</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il layer vettoriale lineare in uscita (con linee invertite)</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** native:reverselinedirection

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’**id algoritmo** viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Rotazione

Ruota le geometrie dell’angolo specificato in senso orario. La rotazione avviene intorno al centroide di ogni elemento, o opzionalmente intorno ad un unico punto preimpostato.

![Permette features in-place modification](#)

**Vedi anche:**

*Trasla, Scambiare le coordinate X e Y*

24.1. Fornitore di algoritmo QGIS
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Rotazione (gradi in senso orario)</td>
<td>ANGLE</td>
<td>[number ]</td>
<td>Angolo di rotazione in gradi</td>
</tr>
<tr>
<td>Punto di ancoraggio della rotazione (x, y)</td>
<td>ANCHOR</td>
<td>[point]</td>
<td>Coordinate X,Y del punto attorno al quale ruotare gli elementi. Se non è impostato, la rotazione avviene intorno al centroide di ogni elemento.</td>
</tr>
<tr>
<td>Ruotato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale in uscita (con geometrie ruotate). Uno di: • Crea Layer Temporaneo (TEMPORARY_OUTPUT) • Salva su File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruotato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita con geometrie ruotate</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:rotatefeatures

```
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Segmentare per angolo massimo**

Segmenta una geometria convertendo sezioni curve in sezioni lineari.

La segmentazione viene eseguita specificando il massimo angolo di curvatura consentito tra i vertici sulla geometria raddrizzata (ad esempio l’angolo dell’arco creato dal centro dell’arco originale ai vertici consecutivi in uscita sulla geometria linearizzata). Le geometrie non curve saranno mantenute senza modifiche.

Vedi anche:

*Segmentare per distanza massima, Semplificazione, Smussare*
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Angolo massimo tra i vertici (gradi)</td>
<td>ANGLE</td>
<td>[number ≥ ] Predefinito: 5.0</td>
<td>Massimo angolo di curvatura consentito tra i vertici della geometria raddrizzata</td>
</tr>
</tbody>
</table>
| Segmentato                         | OUTPUT| [same as input] Predefinito: [Create temporary layer] | Specificare il layer vettoriale in uscita (con geometrie segmentate). Uno di:  
  • Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
  • Salva su File…  
  • Salva come Geopackage…  
  • Salva su Tabella PostGIS…  
  La codifica del file può anche essere cambiata qui. |

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segmentato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita con le geometrie segmentate</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo**: native:segmentizebymaxangle

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il `dizionario dei parametri` fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Segmentare per distanza massima

Segmenta una geometria convertendo sezioni curve in sezioni lineari.

La segmentazione viene eseguita specificando la massima distanza di offset consentita tra la curva originale e la rappresentazione segmentata. Le geometrie non curve saranno mantenute senza modifiche.

Vedi anche:  
*Segmentare per angolo massimo, Semplificazione, Smussare*
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Massima distanza di offset</td>
<td>DISTANCE</td>
<td>[number ]</td>
<td>Massima distanza di offset consentita tra la curva originale e la rappresentazione segmentata, in unità layer.</td>
</tr>
<tr>
<td>Segmentato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale in uscita (con geometrie segmentate). Uno di:</td>
</tr>
</tbody>
</table>

- Crea Layer Temporaneo (TEMPORARY_OUTPUT)
- Salva su File…
- Salva come Geopackage…
- Salva su Tabella PostGIS…

La codifica del file può anche essere cambiata qui.

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segmentato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita con le geometrie segmentate</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo**: native:segmentizebymaxdistance

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Impostare valore M

Imposta il valore M per le geometrie in un layer.

Se i valori M esistono già nel layer, saranno sovrascritti con il nuovo valore. Se non esistono valori M, la geometria sarà aggiornata per includere valori M e il valore specificato sarà usato come valore M iniziale per tutte le geometrie.

**Suggerimento**: Usa il pulsante per controllare il valore M aggiunto: i risultati sono disponibili nella finestra di dialogo Identifica risultati.

### Vedi anche:

*Ricava il valore M dal raster, Impostare valori Z, Eliminare valori M/Z*
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Valore M</td>
<td>M_VALUE</td>
<td>[number]</td>
<td>Valore M da assegnare agli elementi geometrici</td>
</tr>
<tr>
<td>Aggiunto M</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggiunto M</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (con valori M assegnati alle geometrie)</td>
</tr>
</tbody>
</table>

Codice Python

*ID Algoritmo: native:setValue

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Ricava il valore M dal raster

Utilizza valori campionati da una banda all’interno di un layer raster per impostare il valore M per ogni vertice sovrapposto nella geometria dell’elemento. I valori raster possono opzionalmente essere scalati di una quantità preimposta.

Se i valori M esistono già nel layer, saranno sovrascritti con il nuovo valore. Se non esistono valori M, la geometria sarà aggiornata per includere i valori M.

Vedi anche:

*Trama (imposta il valore Z dal raster), Impostare valore M*
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Layer raster</td>
<td>RASTER</td>
<td>[raster]</td>
<td>Layer raster con valori M</td>
</tr>
<tr>
<td>Numero banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>La banda raster da cui sono presi i valori M</td>
</tr>
<tr>
<td>Valore per nodata o vertici non intersecanti</td>
<td>NODATA</td>
<td>[number]</td>
<td>Valore da usare nel caso in cui il vertice non intersechi (in un pixel valido) il raster</td>
</tr>
<tr>
<td>Fattore di scala</td>
<td>SCALE</td>
<td>[number]</td>
<td>Valore di scala: i valori della banda sono moltiplicati per questo valore.</td>
</tr>
<tr>
<td>Aggiornato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale in uscita (con i valori M aggiunti).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: [Create temporary layer]</td>
</tr>
</tbody>
</table>

#### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggiornato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (con i valori M aggiunti)</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** native:setmfromraster

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Impostare valori Z

Imposta il valore Z per le geometrie in un layer.

Se i valori Z esistono già nel layer, saranno sovrascritti con il nuovo valore. Se non esistono valori Z, la geometria sarà aggiornata per includere valori Z e il valore specificato sarà usato come valore Z iniziale per tutte le geometrie.

**Suggerimento:** Usa il pulsante [Identifica elementi] per controllare il valore Z aggiunto: i risultati sono disponibili nella finestra di dialogo *Identifica risultati*.

**Vedi anche:**

Trama (imposta il valore Z dal raster), Impostare valore M, Eliminare valori M/Z
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Valore Z</td>
<td>Z_VALUE</td>
<td>[number  ]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td><strong>Aggiunto Z</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Predefinito:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Aggiunto Z**

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Aggiunto Z</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer del vettore in uscita (con i valori Z assegnati)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native: setzvalue

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Semplificazione

Semplifica le geometrie di un vettore lineare o poligonale. Crea un nuovo layer con gli stessi elementi del layer in ingresso, ma con geometrie contenenti un numero inferiore di vertici.

Fig. 24.76: In senso orario dall’alto a sinistra: layer di origine e aumento delle tolleranze di semplificazione

Permette features in-place modification 1

Menu predefinito: Vettore ➜ Strumenti di Geometria

Vedi anche:
Smuttare, Addensare in base al numero, Addensare in base all’intervallo

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Metodo di semplificazione</td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Metodo di semplificazione. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — Distanza (Douglas-Peucker)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Aggancio al reticolo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Area (Visvalingam)</td>
</tr>
<tr>
<td>Tolleranza</td>
<td>TOLERANCE</td>
<td>[number ]</td>
<td>Soglia di tolleranza (in unità del layer): se la distanza tra due nodi è</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 1.0</td>
<td>inferiore al valore di tolleranza, il segmento sarà semplificato e i</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vertici saranno rimossi.</td>
</tr>
<tr>
<td>Semplificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale (semplificato) in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semplificato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer vettoriale in uscita (semplificato)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:simplifygeometries

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Buffer su un solo lato

Calcola un buffer sulle linee per una distanza specificata su un solo lato della linea.

Il buffer genera sempre un vettore poligonale.

Fig. 24.77: Buffer laterale sinistro rispetto a quello destro sullo stesso layer del vettore lineare

Vedi anche:

Buffer

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Distanza</td>
<td>DISTANCE</td>
<td>[number]</td>
<td>Distanza Buffer</td>
</tr>
<tr>
<td>Lato</td>
<td>SIDE</td>
<td>[enumeration]</td>
<td>Su quale lato creare il buffer. Uno dei due:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 – Sinistra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 – Destra</td>
</tr>
<tr>
<td>Segments</td>
<td>SEGMENTS</td>
<td>[number]</td>
<td>Controlla il numero di segmenti di linea da usare per approssimare un quarto di cerchio quando si creano offset arrotondati.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 8</td>
<td></td>
</tr>
<tr>
<td>Stile unione</td>
<td>JOIN_STYLE</td>
<td>[enumeration]</td>
<td>Specifica se devono essere utilizzati stile di unione di tipo arrotondato, seghettato o smussato quando si esegue l’offset degli angoli in una linea. Le opzioni sono:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Arrotondato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Seghettato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Smussato</td>
</tr>
<tr>
<td>Limite a taglio obliquo</td>
<td>MITER_LIMIT</td>
<td>[number]</td>
<td>Controlla la distanza massima dalla curva di offset da usare quando si crea una giunzione ad angolo (applicabile solo agli stili di giunzione ad angolo). Minimo: 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 2.0</td>
<td></td>
</tr>
</tbody>
</table>
Tabella 24.107 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il layer in uscita (buffer). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Vettore poligonale in uscita (buffer)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:singlesidedbuffer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Smussare**

Smussa le geometrie in un vettore lineare o poligonale aggiungendo più **vertici e angoli** agli elementi geometrici. Il parametro iterations detta quante iterazioni di smussamento saranno applicate ad ogni geometria. Un numero maggiore di iterazioni produce geometrie più lisce al costo di un numero maggiore di nodi nelle geometrie.

![Fig. 24.78: L’aumento del numero di iterazioni causa geometrie più lisce](image)

Il parametro offset controlla quanto «strettamente» le geometrie smussate seguono le geometrie originali. Valori più piccoli si traducono in un adattamento più stretto, e valori più grandi creeranno un adattamento meno stretto.

24.1. Fornitore di algoritmo QGIS
Fig. 24.79: Blu: il layer in ingresso. L’offset 0,25 genera la linea rossa, mentre l’offset 0,50 genera la linea verde.

Il parametro dell’angolo massimo può essere usato per prevenire lo smussamento dei nodi con grandi angoli. Qualsiasi nodo dove l'angolo dei segmenti da entrambi i lati è più grande di questo non sarà smussato. Per esempio, impostando l'angolo massimo a 90 gradi o inferiore si preservano gli angoli retti nella geometria.

Permette features in-place modification 1

Vedi anche:

Semplificazione, Addensare in base al numero, Addensare in base all’intervallo
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line,</td>
<td>Layer vettoriale di linee o poligoni in ingresso</td>
</tr>
<tr>
<td>Iterazioni</td>
<td>ITERATIONS</td>
<td>polygon]</td>
<td>Aumentando il numero di iterazioni si ottengono geometrie più lisce (e più vertici).</td>
</tr>
<tr>
<td>Offset</td>
<td>OFFSET</td>
<td>[number ]</td>
<td>Aumentando i valori si spostano le linee/confini smussati più lontano dalle linee/confini in ingresso.</td>
</tr>
<tr>
<td>Angolo massimo al nodo da smussare</td>
<td>MAX_ANGLE</td>
<td>[number ]</td>
<td>Al di sotto di questo valore ogni nodo sarà smussato</td>
</tr>
<tr>
<td>Smussato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer in uscita (smussato). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smussato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita (smussato)</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** native:smoothgeometry

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Aggancia geometrie al vettore

Aggancia le geometrie in un vettore con quelle con quelle di un altro o con quelle all’interno dello stesso vettore.

La correzione è fatta sulla base di una distanza di tolleranza, e i vertici saranno inseriti o rimossi come richiesto per far sì che le geometrie corrispondano a quelle di riferimento.

Vedi anche:

*Aggancia punti alla griglia*
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td><strong>Layer di riferimento</strong></td>
<td>REFERENCE_LAYER</td>
<td>[vector: any]</td>
<td>Layer vettoriale al quale agganciarsi</td>
</tr>
<tr>
<td><strong>Tolleranza</strong></td>
<td>TOLERANCE</td>
<td>[number]</td>
<td>Predefinito: 10.0. Controlla quanto i vertici in ingresso devono essere vicini alle geometrie del layer di riferimento prima di essere agganciati.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.109 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comportamento</td>
<td>BEHAVIOR</td>
<td>[enumeration]</td>
<td>L’aggancio può essere fatto su un nodo esistente o su un segmento (il suo punto più vicino al vertice da spostare). Opzioni di aggancio disponibili:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Preferenza per allineamento di nodi, inserisci vertici dove richiesti Preferire l’aggancio ai nodi, anche quando un segmento può essere più vicino di un nodo. Verranno inseriti nuovi nodi per far sì che le geometrie si susseguano esattamente quando sono all’interno della tolleranza consentita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Preferisci punto più vicino, inserisci vertici addizionali dove richiesti Aggancia al punto più vicino, indipendentemente dal fatto che sia un nodo o un segmento. Verranno inseriti nuovi nodi per far sì che le geometrie si susseguano esattamente quando sono all’interno della tolleranza consentita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Preferisci nodi allineati, non aggiungere nodi di fine Preferire agganciare ai nodi, anche quando un segmento può essere più vicino di un nodo. Non verranno inseriti nuovi nodi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Preferisci punto più vicino, non aggiungere nodi di fine Aggancia al punto più vicino, indipendentemente dal fatto che sia un nodo o un segmento. Non verranno inseriti nuovi nodi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Sposta solo i punti finali, preferisci allineare i nodi Aggancia solo i punti di inizio e fine delle linee (anche gli elementi punto saranno agganciati, gli elementi dei poligoni non saranno modificati), preferisce agganciare ai nodi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Sposta solo i punti finali, preferisci il punto più vicino Aggancia solo i punti di inizio e fine delle linee (anche gli elementi punto saranno agganciati, gli elementi dei poligoni non saranno modificati), aggancia al punto più vicino</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Aggancia i punti finali solo a punti finali Aggancia solo i punti di inizio e fine delle linee ad altri punti di inizio e fine delle linee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — Aggancia ai nodi di ancoraggio (solo singolo vettore)</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.109 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometria agganciata</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer in uscita (snapped). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometria agganciata</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layervettoriale in uscita (agganciato)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native: snapgeometries

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'"id algoritmo" viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Aggancia punti alla griglia**

Modifica le coordinate delle geometrie in un vettore, così che tutti i punti o vertici siano agganciati al più vicino punto di una griglia.

Se una geometria agganciata non può essere calcolata (o è totalmente collassata) la geometria dell'elemento sarà eliminata.

L'aggancio può essere eseguito sugli assi X, Y, Z o M. Una spaziatura del reticolo di 0 per qualsiasi asse disabiliterà l'aggancio per quell’asse.

**Nota:** Agganciare al reticolo può generare una geometria non valida in alcuni casi particolari.

✔ Permette features in-place modification 1

**Vedi anche:**

*Aggancia geometrie al vettore*
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Spaziatura X del reticolo</td>
<td>HSPACING</td>
<td>[number ] Predefinito: 1.0</td>
<td>Spaziatura del reticolo sull'asse X</td>
</tr>
<tr>
<td>Spaziatura Y del reticolo</td>
<td>VSPACING</td>
<td>[number ] Predefinito: 1.0</td>
<td>Spaziatura del reticolo sull'asse Y</td>
</tr>
<tr>
<td>Spaziatura Z del reticolo</td>
<td>ZSPACING</td>
<td>[number ] Predefinito: 0.0</td>
<td>Spaziatura del reticolo sull'asse Z</td>
</tr>
<tr>
<td>Spaziatura M del reticolo</td>
<td>MSPACING</td>
<td>[number ] Predefinito: 0.0</td>
<td>Spaziatura del reticolo sull'asse M</td>
</tr>
<tr>
<td>Agganciato</td>
<td>OUTPUT</td>
<td>[same as input] Predefinito: [Create temporary layer]</td>
<td>Specificare il layer in uscita (snapped). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agganciato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita (agganciato)</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** native:snappointstogrid

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'"id algoritmo" viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Dividere linee per lunghezza massima

Prende un layer linea (o curva) e divide ogni elemento in più parti, dove ogni parte ha una lunghezza massima specificata. I valori Z e M all'inizio e alla fine delle nuove sottostringhe di linea sono interpolati linearmente dai valori esistenti.
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Il layer vettoriale della linea in ingresso</td>
</tr>
<tr>
<td>Lunghezza massima della linea</td>
<td>LENGTH</td>
<td>[number ] Predefinito: 10.0</td>
<td>La lunghezza massima di una linea in uscita.</td>
</tr>
<tr>
<td>Suddiviso</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specifica il layer vettoriale della linea in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suddiviso</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il nuovo layer del vettore linea - la lunghezza degli elementi geometrici è inferiore o uguale alla lunghezza specificata nel parametro LENGTH.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** native:splitlinesbylength

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Suddividere

Suddivide la geometria. La geometria restituita sarà una collezione contenente parti suddivise della geometria originale, dove nessuna parte ha più del numero massimo di nodi specificato.

Questo è utile per dividere una geometria complessa in parti meno complesse, più facilmente indichizzabili spazialmente e più veloci per eseguire operazioni spaziali. Le geometrie curve saranno segmentate prima della suddivisione.
Fig. 24.80: A sinistra il layer in ingresso, il valore massimo dei nodi al centro è 100 e il valore massimo a destra è 200.

Nota: La suddivisione di una geometria può generare parti di geometria che possono non essere valide e possono contenere autointersezioni.

Permette features in-place modification 1

Vedi anche:
Explodere linee, Sottostringa lineare

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer vettore in ingresso</td>
</tr>
<tr>
<td>Massimo numero di nodi nelle partì</td>
<td>MAX_NODES</td>
<td>[number ]</td>
<td>Numero massimo di vertici che ogni nuova parte della geometria può avere. meno subparts per valori più alti.</td>
</tr>
</tbody>
</table>
| Suddiviso                      | OUTPUT     | [same as input]             | Specifica il layer vettoriale in uscita (suddiviso). Uno di:  
  • Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
  • Salva su File…  
  • Salva come Geopackage…  
  • Salva su Tabella PostGIS…  
  La codifica del file può anche essere cambiata qui. |

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suddiviso</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettore in uscita</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: native:subdivide

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'`id algoritmo` viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il `dizionario dei parametri` fornisce i nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

Scambiare le coordinate X e Y

 cambia i valori della coordinata X e Y nelle geometrie in ingresso.

può essere usato per correggere le geometrie che hanno accidentalmente i loro valori di latitudine e longitudine invertiti.

Permette features in-place modification 1

Vedi anche:
Transla, Rotazione

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer vettore in ingresso</td>
</tr>
<tr>
<td>Scambiato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il vettore in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo ([Create temporary layer])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scambiato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita (scambiato)</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: native:swapxy

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'`id algoritmo` viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il `dizionario dei parametri` fornisce i nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
**Buffer arrotondati**

Crea un buffer arrotondato lungo le geometrie lineari, utilizzando uno specificato diametro iniziale e finale per il buffer.

**Vedi anche:**

*Larghezza buffer variabile (per valore di M), Buffer, Creare buffer a cuneo*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Larghezza iniziale</td>
<td>START_WIDTH</td>
<td>[number ]</td>
<td>Rappresenta il raggio del buffer applicato al punto iniziale dell'elemento lineare.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0.0</td>
<td></td>
</tr>
<tr>
<td>Larghezza finale</td>
<td>END_WIDTH</td>
<td>[number ]</td>
<td>Rappresenta il raggio del buffer applicato al punto finale dell'elemento lineare.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0.0</td>
<td></td>
</tr>
<tr>
<td>Segmenti</td>
<td>SEGMENTS</td>
<td>[number ]</td>
<td>Controlla il numero di segmenti di linea da usare per approssimare un quarto di cerchio quando si creano offset arrotondati.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 16</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 24.81: Esempio di buffer arrotondato
Tabella 24.111 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufferizzato</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il layer in uscita (buffer). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufferizzato</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Vettore poligonale in uscita (buffer)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:taperedbuffer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Mosaicatura**

Tassella un vettore poligonale, dividendo le geometrie in triangoli.

Il risultato consiste in geometrie multipoligonali per ogni elemento in ingresso, con ogni multi poligono costituito da poligoni triangolari.

Fig. 24.82: Poligono tassellato (destra)

Permette features in-place modification 1
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: polygon]</td>
<td>Layer vettoriale poligonale in ingresso</td>
</tr>
<tr>
<td>Tassellato</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specifica il layer in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tassellato</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Layer multipoligonoZ in uscita</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** 3d:tessellate

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### Transetto

Crea transetti sui vertici per (multi)linee.

Un transetto è una linea orientata da un angolo (predefinito: perpendicolare) ad una polilinea in ingresso (ai vertici).

Il campo(i) dell'elemento(i) sono restituiti nel transetto con questi nuovi campi:

- **TR_FID**: ID dell'elemento originale
- **TR_ID**: ID del transetto. Ogni transetto ha un ID univoco
- **TR_SEGMENT**: ID del segmento della linea
- **TR_ANGLE**: Angolo in gradi dalla linea originale al vertice
- **TR_LENGTH**: Lunghezza totale del transetto
- **TR_ORIENT**: Lato del transetto (solamente a sinistra o a destra della linea, o entrambi i lati)
Fig. 24.83: La linea rossa tratteggiata rappresenta il transetto del vettore lineare in ingresso.

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Lunghezza del transetto</td>
<td>LENGTH</td>
<td>[number ]</td>
<td>Lunghezza in unità di mappa del transetto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 5.0</td>
<td></td>
</tr>
<tr>
<td>Angolo in gradi dalla linea originale ai vertici</td>
<td>ANGLE</td>
<td>[number ]</td>
<td>Cambiare l'angolo del transetto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 90.0</td>
<td></td>
</tr>
<tr>
<td>Lato per creare il transetto</td>
<td>SIDE</td>
<td>[enumeration]</td>
<td>Scegli il lato del transetto. Le opzioni disponibili sono:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Sinistro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Destro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Entrambi</td>
</tr>
<tr>
<td>Transetto</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specifica il vettore lineare in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transetto</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Vettore lineare in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:transect

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’“id algoritmo” viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione.
Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Trasla**

Sposta le geometrie di un layer, con uno spostamento di offset X e Y prestabilito.
Anche i valori Z e M presenti nella geometria possono essere traslati.

![Image](image-url)

**Fig. 24.84:** Le linee tratteggiate rappresentano la geometria traslata del layer in ingresso

Permette features in-place modification 1

**Vedi anche:**

Array di elementi traslati, Linee di offset, Rotazione, Scambiare le coordinate X e Y

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td>Distanza di offset (asse-x)</td>
<td>DELTA_X</td>
<td>[number ] Predefinito: 0.0</td>
<td>Spostamento da applicare sull’asse X</td>
</tr>
<tr>
<td>Distanza di offset (asse-y)</td>
<td>DELTA_Y</td>
<td>[number ] Predefinito: 0.0</td>
<td>Spostamento da applicare sull’asse Y</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.113 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distanza di offset (asse-z)</td>
<td>DELTA_Z</td>
<td>[number ] Predefinito: 0.0</td>
<td>Spostamento da applicare sull’asse Z</td>
</tr>
<tr>
<td>Distanza di Offset (valori m)</td>
<td>DELTA_M</td>
<td>[number ] Predefinito: 0.0</td>
<td>Spostamento da applicare sull’asse M</td>
</tr>
</tbody>
</table>

**Traslato**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Traslato  | OUTPUT    | [same as input] Predefinito: [Create temporary layer] | Specificare il vettore in uscita. Uno di:  
- Crea Layer Temporaneo (TEMPORARY_OUTPUT)  
- Salva su File…  
- Salva come Geopackage…  
- Salva su Tabella PostGIS…  
La codifica del file può anche essere cambiata qui. |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traslato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettore in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

*ID Algoritmo*: `native:translategeometry`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Distanza buffer variabile**

Calcolare un’area buffer per tutti gli elementi in un layer in ingresso.

La dimensione del buffer per un dato elemento è definita da un attributo, quindi permette a elementi diversi di avere differenti dimensioni del buffer.

**Nota:** Questo algoritmo è disponibile solo dal *Graphical modeler*.

Vedi anche:

*Buffer*
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Vettore in ingresso</td>
</tr>
<tr>
<td><strong>Campo distanza</strong></td>
<td>DISTANCE</td>
<td>[tablefield: numeric]</td>
<td>Attributo per il raggio di distanza del buffer</td>
</tr>
<tr>
<td><strong>Segmenti</strong></td>
<td>SEGMENTS</td>
<td>[number]</td>
<td>Controlla il numero di segmenti di linea da usare per approssimare un quarto di cerchio quando si creano offset arrotondati.</td>
</tr>
<tr>
<td><strong>Dissolvere il risultato</strong></td>
<td>DISSOLVE</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td><strong>Stile testata terminale</strong></td>
<td>END_CAP_STYLE</td>
<td>[enumeration]</td>
<td>Predefinito: 5</td>
</tr>
<tr>
<td><strong>Stile unione</strong></td>
<td>JOIN_STYLE</td>
<td>[enumeration]</td>
<td>Specificar se le giunzioni arrotondate, inclinate o smussate devono essere usate quando si compensano gli angoli in una linea.</td>
</tr>
<tr>
<td><strong>Limite a taglio obliquo</strong></td>
<td>MITER_LIMIT</td>
<td>[number]</td>
<td>Predefinito: 2.0</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
Codice Python

**ID Algoritmo:** qgis:variabledistancebuffer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

**Larghezza buffer variabile (per valore di M)**

Crea buffer di larghezza variabile lungo le linee, usando il valore M delle geometrie delle linee come diametro del buffer ad ogni vertice.

![Buffer variabile](image)

Fig. 24.87: Esempio buffer variabile

Vedi anche:

*Buffer arrotondati, Buffer, Impostare valore M*
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale lineare in ingresso</td>
</tr>
<tr>
<td>Segmenti</td>
<td>SEGMNTS</td>
<td>[vector: polygon]</td>
<td>Numero dei segmenti buffer per quarto di cerchio. Può essere un valore unico (stesso valore per tutte gli elementi), o può essere preso dai dati degli elementi (il valore può dipendere dagli attributi degli elementi).</td>
</tr>
<tr>
<td>Bufferizzato</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specificare il layer in uscita (buffer). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufferizzato</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Buffer vettore poligonale variabile</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** native:bufferbym

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione.
Il dicionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
Poligoni di Voronoi

Prende un layer punto e genera un vettore poligonale contenente i poligoni di Voronoi (conosciuti anche come poligoni di Thiessen) corrispondenti a quei punti in ingresso.

Ogni posizione all'interno di un poligono di Voronoi è più vicino al punto associato che a qualsiasi altro punto.

Fig. 24.88: Poligoni di Voronoi

Menu predefinito: Vettore ➤ Strumenti di Geometria
**QGIS Desktop 3.16 User Guide**

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale di punti in ingresso</td>
</tr>
<tr>
<td><strong>Regione buffer (%% dell'estensione)</strong></td>
<td>BUFFER</td>
<td>[number]</td>
<td>Predefinito: 0.0. L'estensione del layer in uscita sarà così tanto più grande dell'estensione del layer in ingresso</td>
</tr>
<tr>
<td><strong>Poligoni di Voronoi</strong></td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Predefinito: [Create temporary layer] Specificare il layer in uscita (con i poligoni di Voronoi). Uno di: • Crea Layer Temporaneo (TEMPORARY_OUTPUT) • Salva su File… • Salva come Geopackage… • Salva su Tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Poligoni di Voronoi</strong></td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Poligoni di Voronoi del layer vettoriale puntuale in ingresso</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:voronoipolygons

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di elaborazione.
Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.1.17 Sovrapposizione di vettori

#### Clip (Ritaglio)

Ritaglia un layer vettoriale usando un layer poligonale.

Solo le parti degli elementi nel layer in ingresso che cadono all’interno dei poligoni del layer di sovrapposizione saranno aggiunti al layer risultante.

**Avvertimento:** Modifiche agli elementi

Gli attributi degli elementi risultano non modificati, anche se le proprietà come l’area o la lunghezza degli elementi saranno modificate dall’operazione di ritaglio. Se tali proprietà sono memorizzate come attributi, tali attributi dovranno essere aggiornati manualmente.

Questo algoritmo utilizza indici spaziali sui dati forniti, elabora le geometrie e applica un’operazione di ritaglio se la geometria non è interamente contenuta dalla geometria della maschera.
Fig. 24.89: Operazione di ritaglio tra un layer in ingresso a due elementi e un layer di sovrapposizione a un solo elemento (sinistra) - per chiarezza gli elementi risultanti sono spostati (destra)

Permette *features in-place modification*

**Menu predefinito:** Vettore ► Strumenti di Geoprocessing

**Vedi anche:**

Intersezione, Differenza

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer contenente gli elementi da ritagliare</td>
</tr>
<tr>
<td>Layer di sovrapposizione</td>
<td>OVERLAY</td>
<td>[vector: polygon]</td>
<td>Layer che contiene gli elementi per il ritaglio</td>
</tr>
</tbody>
</table>
| Ritagliati                 | OUTPUT        | [same as input] Predefinito: [Create temporary layer] | Specifica il layer che deve contenere gli elementi del layer in ingresso che si trovano all’interno del layer di sovrapposizione (ritaglio). Uno di:  
  • Crea Layer Temporaneo  
  • Salva come File…  
  • Salva come Geopackage…  
  • Salva nella tabella PostGIS……  
  La codifica del file può anche essere cambiata qui. |

**Etichette:**
- INPUT
- OVERLAY
- OUTPUT

**Tipo:**
- [vector: any]
- [vector: polygon]
- [same as input]
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritagliati</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer che contiene gli elementi del layer in ingresso ritagliato dal layer di overlay.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:clip

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dicionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Differenza**

Estraee gli elementi dal layer in ingresso che non rientrano nei confini del layer di sovrapposizione.

Gli elementi del layer in ingresso che si sovrappongono parzialmente agli elementi(o) del layer di sovrapposizione vengono ritagliati lungo il confine di tali elementi(o) e solo le porzioni al di fuori degli elementi del layer di sovrapposizione vengono mantenute.

Gli attributi non vengono modificati (vedi warning).

![Diagram of difference operation](image)

Fig. 24.90: Operazione di differenza tra un layer in ingresso a due elementi e un layer di sovrapposizione a un solo elemento (sinistra) - per chiarezza gli elementi risultanti sono spostati (destra)

Permette features in-place modification

Menu predefinito: Vettore ➤ Strumenti di Geoprocessing
Vedi anche:

*Differenza simmetrica, Clip (Ritaglio)*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di sovrapposizione</td>
<td>OVERLAY</td>
<td>[vector: any]</td>
<td>Layer contenente le geometrie che saranno sottratte dalle geometrie del layer in ingresso. Ci si aspetta che abbia almeno le dimensioni (punto: 0D, linea: 1D, poligono: 2D, volume: 3D) delle geometrie del layer in ingresso.</td>
</tr>
</tbody>
</table>
| Differenza            | OUTPUT   | [same as input] | Predefinito: [Create temporary layer]
Indica il layer che deve contenere gli elementi (o parti di essi) del layer in ingresso che non sono all'interno del layer di sovrapposizione. Uno di:
- Crea Layer Temporaneo
- Salva come File…
- Salva come Geopackage…
- Salva nella tabella PostGIS…
La codifica del file può anche essere cambiata qui. |

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differenza</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer che contiene elementi (o parti di) del layer in ingresso che non si sovrappongono al layer di sovrapposizione.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** qgis:difference

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
**Estrarre/ritagliare per estensione**

Crea un nuovo layer vettoriale che contiene solo gli elementi che ricadono in un’estensione specificata.

Qualsiasi elemento che interseca l’estensione sarà incluso.

**Vedi anche:**

*Clip (Ritaglio)*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estensione (xmin, xmax, ymin, ymax)</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Estensione per il ritaglio.</td>
</tr>
<tr>
<td>Ritagliare elementi all’estensione</td>
<td>CLIP</td>
<td>[boolean]</td>
<td>Se selezionato, le geometrie in uscita saranno automaticamente convertite in multi geometrie per assicurare tipi di uscita uniformi. Inoltre le geometrie saranno ritagliate nella misura scelta invece di prendere l’intera geometria come geometria in uscita.</td>
</tr>
<tr>
<td>Estratti</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Indica il layer che deve contenere gli elementi del layer in ingresso che si trovano all’interno dell’estensione del ritaglio. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva nella tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratti</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer che contiene gli elementi ritagliati.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:extractbyextent

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Intersezione

Estrae le porzioni di elementi dal layer in ingresso che si sovrappongono agli elementi nel layer di sovrapposizione. Agli elementi nel layer di intersezione sono assegnati gli attributi degli elementi che si sovrappongono da entrambi i layer in ingresso e in sovrapposizione.

Gli attributi non vengono modificati (vedi warning).

![Diagram of Intersection Operation]

Fig. 24.91: L’operazione di intersezione: Un layer in ingresso con due elementi e un layer di sovrapposizione con un solo elemento (sinistra) - gli elementi risultanti sono spostati per chiarezza (destra)

**Menu predefinito:** Vettore ▸ Strumenti di Geoprocessing

**Vedi anche:**

*Clip (Ritaglio), Differenza*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di sovrapposizione</td>
<td>OVERLAY</td>
<td>[vector: any]</td>
<td>Layer contenente gli elementi da verificare per la sovrapposizione. Ci si aspetta che la geometria dei suoi elementi abbia almeno altrettante dimensioni (punto: 0D, linea: 1D, poligono: 2D, volume: 3D) come quella del layer in ingresso.</td>
</tr>
<tr>
<td>Campi in ingresso da mantenere</td>
<td>INPUT_FIELDS</td>
<td>[tablefield: any] [list]</td>
<td>Predefinito: None</td>
</tr>
<tr>
<td>(lasciare vuoto per mantenere tutti i campi)</td>
<td>Opzionale</td>
<td>Predefinito: None</td>
<td></td>
</tr>
</tbody>
</table>
### Tabella 24.115 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Campi di sovrapposizione da mantenere (lasciare vuoto per mantenere tutti i campi) Opzionale | OVERLAY_FIELDS        | [tablefield: any] [list]  
Predefinito: None | Campo(i) del layer di sovrapposizione da mantenere nel risultato. Se non viene scelto alcun campo, vengono presi tutti i campi. |
| Prefisso dei campi in sovrapposizione Opzionale | OVERLAY_FIELDS_PREFIX | [string]              | Prefisso da aggiungere ai nomi dei campi del layer di intersezione per evitare coincidenze di nomi con i campi del layer in ingresso.         |
| Intersezione | OUTPUT                     | [same as input]  
Predefinito:[Create temporary layer] | Indica il layer che deve contenere gli elementi (le parti di) del layer in ingresso che si sovrappongono a uno o più elementi del layer di sovrapposizione. Uno di:  
• Crea Layer Temporaneo  
• Salva come File…  
• Salva come Geopackage…  
• Salva nella tabella PostGIS……       
La codifica del file può anche essere cambiata qui. | Intersezione | OUTPUT                     | [same as input] | Layer contenente (parti di) elementi del layer in ingresso che si sovrappongono al layer di sovrapposizione. |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersezione</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer contenente (parti di) elementi del layer in ingresso che si sovrappongono al layer di sovrapposizione.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:intersection

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Intersezione di linee

Crea elementi puntuali dove le linee dei due layer si intersecano.

Menu predefinito: Vettore ➤ Strumenti di Analisi

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Vettore lineare in ingresso.</td>
</tr>
<tr>
<td>Layer intersezione</td>
<td>INTERSECT</td>
<td>[vector: line]</td>
<td>Layer da adoperare per trovare le intersezioni di linee.</td>
</tr>
<tr>
<td>Campi in ingresso da mantenere (lasciare vuoto per mantenere tutti i campi) Opzionale</td>
<td>INPUT_FIELDS</td>
<td>[tablefield: any]</td>
<td>Campo(i) del layer in ingresso da mantenere nel risultato. Se non viene scelto alcun campo, vengono presi tutti i campi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[list]</td>
<td>Predefinito: None</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.117 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campi intersezione da mantenere</td>
<td>INTERSECT_FIELDS</td>
<td>[tablefield: any]</td>
<td>campo(i) del layer intersezione da mantenere nel risultato. Se non viene scelto nessun campo, vengono presi tutti i campi.</td>
</tr>
<tr>
<td>(lasciare vuoto per mantenere tutti i campi)</td>
<td></td>
<td>[list]</td>
<td>Predefinito: None</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefisso dei campi intersezione</td>
<td>OVERLAY_FIELDS_PREFIX</td>
<td>[string]</td>
<td>Prefisso da aggiungere ai nomi dei campi del layer di intersezione per evitare coincidenze di nomi con i campi del layer in ingresso.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersezione</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Specifica il layer che deve contenere i punti di intersezione delle linee dai layer in ingresso e di sovrapposizione. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Crea Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva nella tabella PostGIS……</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersezioni</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Vettore puntuale con le intersezioni.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:lineintersections

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Ritagliare con linee**

Divide le linee o i poligoni in un layer usando le linee in un altro layer per definire i punti di divisione. Le intersezioni tra le geometrie in entrambi i layer sono considerate come punti di divisione.

Il risultato conterrà multi geometrie per gli elementi ritagliati.
Fig. 24.93: Ritagliare linee

Permette features in-place modification

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line, polygon]</td>
<td>Layer contenente le linee o i poligoni da ritagliare.</td>
</tr>
<tr>
<td>Layer ritagliato</td>
<td>LINES</td>
<td>[vector: line]</td>
<td>Vettore lineare le cui linee sono usate per definire i punti di ritaglio.</td>
</tr>
</tbody>
</table>
| Ritaglio         | OUTPUT   | [same as input]          | Indica il layer che deve contenere gli elementi di linea/poligono ritagliati (nel caso in cui siano intersecati da una linea nel layer ritagliato) dal layer in ingresso. Uno di:  
• Crea Layer Temporaneo  
• Salva come File…  
• Salva come Geopackage…  
• Salva nella tabella PostGIS…  
La codifica del file può anche essere cambiata qui. |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritaglio</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita con linee o poligoni ritagliati dal layer in ingresso.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:splitwithlines

```python
import processing
processing.run(“algorithm_id”, {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
**Differenza simmetrica**

Crea un layer contenente elementi da entrambi i layer ini ingresso e di sovrapposizione, ma con le aree di sovrapposizione tra i due layer rimosse.

La tabella degli attributi del layer della differenza simmetrica contiene attributi e campi di entrambi i layer in input e di sovrapposizione.

Gli attributi non vengono modificati (vedi *warning*).

---

**Fig. 24.94**: Operazione di differenza simmetrica tra un layer in ingresso a due elementi e un layer di sovrapposizione a un solo elemento (sinistra) - gli elementi risultanti sono spostati per chiarezza (destra)

**Menu predefinito**: Vettore ➤ Strumenti di Geoprocessing

**Vedi anche**:  
* Differenza,  
* Clip (Ritaglio),  
* Intersezione
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefisso dei campi in sovrapposizione</td>
<td>OVERLAY_FIELDS_PREFIX</td>
<td>[string]</td>
<td>Prefisso da aggiungere ai nomi dei campi del layer di overlay per evitare coincidenze di nome con i campi del layer in ingresso.</td>
</tr>
<tr>
<td>Differenza simmetrica</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Indica il layer che deve contenere (le parti di) elementi dei layer in ingresso e di sovrapposizione che non si sovrappongono agli elementi dell’altro layer. Uno di: Crea Layer Temporaneo, Salva come File… Salva come Geopackage… Salva nella tabella PostGIS… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differenza simmetrica</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Strato che contiene (parti di) elementi di ogni layer che non si sovrappongono all’altro layer.</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** qgis:symmetricaldifference

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dicionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Unione

Verifica le sovrapposizioni tra gli elementi all’interno del layer in ingresso e crea elementi separati per le parti sovrapposte e non sovrapposte. L’area di sovrapposizione creerà tanti elementi sovrapposti identici quanti sono gli elementi che partecipano a quella sovrapposizione.
Fig. 24.95: Operazione di unione con un solo layer in ingresso di tre elementi sovrapposti (sinistra) - gli elementi risultanti sono spostati per chiarezza (destra)

Può anche essere usato un layer di sovrapposizione, nel qual caso gli elementi di ogni layer sono ritagliati alla loro sovrapposizione con elementi dell’altro, creando un layer contenente tutte le porzioni di entrambi i layer in ingresso e di sovrapposizione. La tabella degli attributi del layer di unione è riempita con i valori degli attributi del rispettivo layer originale per gli elementi che non si sovrappongono, e con i valori degli attributi di entrambi i layer per gli elementi che si sovrappongono.

Fig. 24.96: Operazione di unione tra un layer in ingresso a due elementi e un layer di sovrapposizione a un solo elemento (sinistra) - gli elementi risultanti sono spostati per chiarezza (destra)

Nota: Per l’algoritmo `union(A, B)`, se ci sono sovrapposizioni tra le geometrie del layer A o tra le geometrie del
layer B, queste non vengono risolte: è necessario fare \( \text{union(union(A,B))} \) per risolvere tutte le sovrapposizioni, cioè eseguire un singolo layer \( \text{union(X)} \) sul risultato prodotto \( X=\text{union(A,B)} \).

**Menu predefinito:** Vettore ➤ Strumenti di Geoprocessing

**Vedi anche:**

*Clip (Ritaglio), Differenza, Intersezione*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso da suddividere in tutte le intersezioni.</td>
</tr>
<tr>
<td><strong>Layer di sovrapposizione</strong></td>
<td>OVERLAY</td>
<td>[vector: any]</td>
<td>Layer che sarà unito al primo. Preferibilmente il tipo di geometria dovrebbe essere lo stesso del layer in ingresso.</td>
</tr>
<tr>
<td><strong>Prefisso dei campi in sovrapposizione</strong></td>
<td>OVERLAY_FIELDS_PREFIX</td>
<td>[string]</td>
<td>Prefisso da aggiungere ai nomi dei campi del layer di overlay per evitare coincidenze di nome con i campi del layer in ingresso.</td>
</tr>
</tbody>
</table>
| **Unione**          | OUTPUT   | [same as input] | Indica il layer che deve contenere gli elementi (ritagliati e duplicati) dal layer in ingresso e dal layer di sovrapposizione. Uno di:
|                    |          |               | • Crea Layer Temporaneo                                                                                                                      |
|                    |          |               | • Salva come File…                                                                                                                            |
|                    |          |               | • Salva come Geopackage…                                                                                                                     |
|                    |          |               | • Salva nella tabella PostGIS…                                                                                                                 |
|                    |          |               | La codifica del file può anche essere cambiata qui.                                                                                           |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Unione</strong></td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer che contiene tutte le parti sovrapposte e non sovrapposte del(i) layer processato.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:union

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing.
Il dizionario dei parametri fornisce i Nomini i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
24.1.18 Selezionare del vettore

Estrazione per attributo

Crea due layer vettoriali da un layer in ingresso: uno conterrà solo gli elementi corrispondenti, mentre il secondo conterrà tutti gli elementi non corrispondenti.

Il criterio per aggiungere elementi al layer risultante è basato sui valori di un attributo del layer in ingresso.

Vedi anche:

Selezionare per attributo

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selezionare per attributo</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Campo di filtraggio sul layer</td>
</tr>
<tr>
<td>Operatore</td>
<td>OPERATOR</td>
<td>[enumeration]</td>
<td>Sono disponibili molti operatori di vario tipo:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — ≠</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — &gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — &gt;=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — &lt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — &lt;=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — inizia con</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — contiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — è vuoto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — non è vuoto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — non contiene</td>
</tr>
<tr>
<td>Valore Opzionale</td>
<td>VALUE</td>
<td>[string]</td>
<td>Valore da calcolare</td>
</tr>
<tr>
<td>Estratti (attributo)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Indicare il layer vettoriale in uscita per gli elementi che corrispondono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Create Temporary Layer]</td>
<td>Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td>Estratti (non-corrispondenti)</td>
<td>FAIL_OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale in uscita per gli elementi che non corrispondono. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Skip output]</td>
<td>• Tralasciare il risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratti (attributo)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con elementi corrispondenti al layer in ingresso</td>
</tr>
<tr>
<td>Estratti (non-corrispondenti)</td>
<td>FAIL_OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con elementi che non corrispondono al layer in ingresso</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:extractbyattribute

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Estrazione tramite espressione**

Crea due layer vettoriali da un layer in ingresso: uno conterrà solo gli elementi corrispondenti, mentre il secondo conterrà tutti gli elementi non corrispondenti.

Il criterio per aggiungere elementi al layer risultante è basato su un’espressione QGIS. Per maggiori informazioni sulle espressioni vedi *Espressioni*.

**Vedi anche:**

*Selezionare tramite l’espressione*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso</td>
</tr>
<tr>
<td>Espressione</td>
<td>EXPRESSION</td>
<td>[expression]</td>
<td>Espressione per filtrare il layer vettoriale</td>
</tr>
<tr>
<td>Elementi coincidenti</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Indicare il layer vettoriale in uscita per gli elementi che corrispondono. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Non-coincidenti</td>
<td>FAIL_OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale in uscita per gli elementi che non corrispondono. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tralasciare il risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea layer temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementi coincidenti</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con elementi corrispondenti al layer in ingresso.</td>
</tr>
<tr>
<td>Non-coincidenti</td>
<td>FAIL_OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con elementi che non corrispondono al layer in ingresso.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:extractbyexpression`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’`id algoritmo` viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il `dizionario dei parametri` fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

**Estrazione per posizione**

Crea un nuovo layer vettoriale che contiene solo gli elementi coincidenti con un layer in ingresso.

Il criterio per aggiungere elementi al layer risultante è basato sulla relazione spaziale tra ogni elemento e gli elementi in un altro layer.

![Diagramma](#)  

**Fig. 24.97:** In questo esempio, l’insieme di dati da cui vogliamo selezionare (il *layer vettoriale sorgente*) è costituito dai cerchi verdi, il rettangolo arancione è l’insieme di dati con cui viene confrontato (il *layer vettoriale intersezione*).

I predicat geometri disponibili sono:
**Interseca** Verifica se una geometria ne interseca un’altra. Restituisce 1 (vero) se le geometrie si intersecano spazialmente (condividono qualsiasi porzione di spazio - si sovrappongono o si toccano) e 0 se non lo fanno. Nell’immagine sopra, questo selezionerà i cerchi 1, 2 e 3.

**Contiene** Restituisce 1 (vero) se e solo se nessun punto di b giace nell’esterno di a, e almeno un punto dell’interno di b giace nell’interno di a. Nell’immagine, nessun cerchio è selezionato, ma il rettangolo lo sarebbe se lo si selezionasse al contrario, poiché contiene completamente un cerchio. Questo è il contrario di sono dentro.

**Disgiunto** Restituisce 1 (vero) se le geometrie non condividono alcuna porzione di spazio (nessuna sovrapposizione, non si toccano). Viene selezionato solo il cerchio 4.

**Uguale** Restituisce 1 (vero) se e solo se le geometrie sono esattamente uguali. Nessun cerchio sarà selezionato.

**Tocca** Verifica se una geometria tocca un’altra. Restituisce 1 (vero) se le geometrie hanno almeno un punto in comune, ma i loro interni non si intersecano. Viene selezionato solo il cerchio 3.

**Sovrapposizione** Verifica se una geometria si sovrappone ad un’altra. Restituisce 1 (vero) se le geometrie condividono lo spazio, sono della stessa dimensione, ma non sono completamente contenute l’una dall’altra. Viene selezionato solo il cerchio 2.

**Sono all’interno** Verifica se una geometria è all’interno di un’altra. Restituisce 1 (vero) se la geometria a è completamente dentro la geometria b. Viene selezionato solo il cerchio 1.

**Attraversa** Restituisce 1 (vero) se le geometrie fornite hanno alcuni, ma non tutti, i punti interni in comune e l’incrocio effettivo è di una dimensione inferiore rispetto alla più grande geometria fornita. Per esempio, una linea che attraversa un poligono si incrocia come una linea (selezionato). Due linee che si incrociano si incrociano come un punto (selezionato). Due poligoni che si incrociano come un poligono (non selezionato).

**Vedi anche:**

*Selezione per posizione*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrarre elementi da</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso</td>
</tr>
<tr>
<td>Dove gli elementi (predicato geometrico)</td>
<td>PREDICATE</td>
<td>[enumeration] [list] Predefinito: [0]</td>
<td>Condizione spaziale per la selezione. Uno o più di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — interseca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — contiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — disgiunto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — uguale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — tocca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — sovrapposizione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — sono dentro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — attraversa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Se viene scelta più di una condizione, almeno una di esse (operazione OR) deve essere soddisfatta perché un elemento sia estratto.</td>
</tr>
<tr>
<td>Per confronto con gli elementi da</td>
<td>INTERSECT</td>
<td>[vector: any]</td>
<td>Layer vettoriale di intersezione</td>
</tr>
</tbody>
</table>
Tabella 24.119 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratto (posizione)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Indica il layer vettoriale in uscita per gli elementi che hanno la(e) relazione spaziale scelta con uno o più elementi nel layer di confronto. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Create temporary layer]</td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratto (posizione)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con elementi del layer in ingresso che hanno la(e) relazione spaziale scelta con uno o più elementi del layer di confronto.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:extractbylocation

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’“id algoritmo” viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

**Estrazione casuale**

Prende un layer vettoriale e ne genera uno nuovo che contiene solo un sottoinsieme degli elementi del layer in ingresso. Il sottoinsieme è definito in modo casuale, in base agli ID degli elementi, utilizzando una percentuale o un valore di conteggio per definire il numero totale di elementi nel sottoinsieme.

**Vedi anche:**

*Selezione casuale*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liayer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale originario da cui selezionare gli elementi</td>
</tr>
<tr>
<td>Metodo</td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Metodi di selezione casuale. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — Numero di elementi selezionati</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Percentuale di elementi selezionati</td>
</tr>
</tbody>
</table>

continues on next page
### Tabella 24.120 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero/percentuale di elementi selezionati</td>
<td>NUMBER</td>
<td>[number]</td>
<td>Predefinito: 10</td>
</tr>
<tr>
<td>Estratti (casuale)</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Predefinito: [Create temporary layer]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratti (casuale)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale contenente elementi selezionati in modo casuale dal layer in ingresso.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo**: qgis:randomextract

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

### Estrazione casuale all’interno di sottoinsiemi

Prende un layer vettoriale e ne genera uno nuovo che contiene solo un sottoinsieme degli elementi del layer in ingresso. Il sottoinsieme è definito in modo casuale, in base agli ID degli elementi, usando una percentuale o un valore di conteggio per definire il numero totale di elementi nel sottoinsieme. Il valore di percentuale/conteggio non è applicato all’intero strato, ma ad ogni categoria. Le categorie sono definite in base a un dato attributo.

**Vedi anche:**

*Selezione casuale all’interno di sottoinsiemi*
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale da cui selezionare gli elementi</td>
</tr>
<tr>
<td>ID campo</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Categoria del layer vettoriale sorgente da cui selezionare gli elementi</td>
</tr>
<tr>
<td>Metodo</td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Metodo di selezione casuale. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Numero di elementi selezionati</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Percentuale di elementi selezionati</td>
</tr>
<tr>
<td>Numero/percentuale di</td>
<td>NUMBER</td>
<td>[number]</td>
<td>Numero o percentuale di elementi da selezionare</td>
</tr>
<tr>
<td>elementi selezionati</td>
<td></td>
<td>Predefinito: 10</td>
<td></td>
</tr>
<tr>
<td>Estratto (in modo casuale)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita per gli elementi selezionati in modo casuale. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary layer]</td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratto (in modo casuale)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale contenente elementi selezionati in modo casuale dal layer in ingresso.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:randomextractwithinsubsets

```
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Selezione casuale

Prende un layer vettoriale e seleziona un sottoinsieme dei suoi elementi. Nessun nuovo layer viene generato da questo algoritmo.

Il sottoinsieme è definito in modo casuale, in base agli ID degli elementi, utilizzando una percentuale o un valore di conteggio per definire il numero totale di elementi nel sottoinsieme.

**Menu predefinito:** Vettore ➤ Strumenti di Ricerca

**Vedi anche:**

Estrazione casuale

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale per la selezione</td>
</tr>
<tr>
<td><strong>Metodo</strong></td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Metodo di selezione casuale. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Numero di elementi selezionati</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Percentuale di elementi selezionati</td>
</tr>
<tr>
<td><strong>Numero/percentuale di elementi selezionati</strong></td>
<td>NUMBER</td>
<td>[number]</td>
<td>Numero o percentuale di elementi da selezionare</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: 10</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[same as input]</td>
<td>Il layer in ingresso con gli elementi selezionati</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** qgis:randomselection

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.
Selezione casuale all’interno di sottoinsiemi

Prende un layer vettoriale e seleziona un sottoinsieme dei suoi elementi. Nessun nuovo layer viene generato da questo algoritmo.

Il sottoinsieme è definito in modo casuale, in base agli ID degli elementi, utilizzando una percentuale o un valore di conteggio per definire il numero totale di elementi nel sottoinsieme.

Il valore di percentuale/conteggio non è applicato all’intero layer, ma ad ogni categoria.

Le categorie sono definite secondo un dato attributo, che è anche specificato come parametro in ingresso per l'algoritmo.

Non si creano nuovi risultati.

**Menu predefinito:** Vettore ▶ Strumenti di Ricerca

**Vedi anche:**

Estrazione casuale all’interno di sottoinsiemi

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>layer vettoriale in cui selezionare gli elementi</td>
</tr>
<tr>
<td>ID campo</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Categoria del layer in ingresso da cui selezionare gli elementi</td>
</tr>
<tr>
<td>Metodo</td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Metodo di selezione casuale. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — Numero di elementi selezionati</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Percentuale di elementi selezionati</td>
</tr>
<tr>
<td>Numero/percentuale di</td>
<td>NUMBER</td>
<td>[number]</td>
<td>Numero o percentuale di elementi da selezionare</td>
</tr>
<tr>
<td>elementi selezionati</td>
<td></td>
<td>Predefinito: 10</td>
<td></td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[same as input]</td>
<td>Il layer in ingresso con gli elementi selezionati</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:randomselectionwithinsubsets`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.
Selezione per attributo

Crea una selezione in un layer vettoriale.
Il criterio di selezione degli elementi è basato sui valori di un attributo del layer in ingresso.

Vedi anche:
*Estrazione per attributo*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>layer vettoriale in cui selezionare gli elementi</td>
</tr>
<tr>
<td>Selezionare per attributo</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Campo di filtraggio sul layer</td>
</tr>
<tr>
<td>Operatore</td>
<td>OPERATOR</td>
<td>[enumeration]</td>
<td>Predefinito: 0 Sono disponibili molti operatori di vario tipo:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — ≠</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — &gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — &gt;=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — &lt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — &lt;==</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — inizia con</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — contiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — è vuoto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — non è vuoto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — non contiene</td>
</tr>
<tr>
<td>Valore Opzionale</td>
<td>VALUE</td>
<td>[string]</td>
<td>Valore da calcolare</td>
</tr>
<tr>
<td>Modifica la selezione corrente per</td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Predefinito: 0 Come dovrebbe essere gestita la selezione dell'algoritmo. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — creando una nuova selezione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — aggiungendo alla selezione corrente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — eliminando dalla selezione corrente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — selezionando all'interno della selezione corrente</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[same as input]</td>
<td>Il layer in ingresso con gli elementi selezionati</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** qgis:selectbyattribute

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dicionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Selezionare tramite l’espressione**

Crea una selezione in un layer vettoriale.

Il criterio di selezione degli elementi è basato su un’espressione QGIS. Per maggiori informazioni sulle espressioni vedi Espressioni.

Vedi anche:

* Estrazione tramite espressione*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso</td>
</tr>
<tr>
<td>Espressione</td>
<td>EXPRESSION</td>
<td>[expression]</td>
<td>Espressione per filtrare il layer in ingresso</td>
</tr>
<tr>
<td>Modifica la selezione corrente per</td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Come dovrebbe essere gestita la selezione dell’algoritmo. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — creando una nuova selezione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — aggiungendo alla selezione corrente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — eliminando dalla selezione corrente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — selezionando all’interno della selezione corrente</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[same as input]</td>
<td>Il layer in ingresso con gli elementi selezionati</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** qgis:selectbyexpression

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

### Seleziona per posizione

Crea una selezione in un layer vettoriale.

Il criterio di selezione degli elementi è basato sulla relazione spaziale tra ogni elemento e gli elementi in un altro layer.

![Diagramma di selezione](image)

**Fig. 24.98**: In questo esempio, l’insieme di dati da cui vogliamo selezionare (il layer vettoriale sorgente) è costituito dai cerchi verdi, il rettangolo arancione è l’insieme di dati con cui viene confrontato (il layer vettoriale intersezione).

I predicati geometrici disponibili sono:

**Interseca** Verifica se una geometria ne interseca un’altra. Restituisce 1 (vero) se le geometrie si intersecano spazialmente (condividono qualsiasi porzione di spazio - si sovrappongono o si toccano) e 0 se non lo fanno. Nell’immagine sopra, questo selezionerà i cerchi 1, 2 e 3.

**Contiene** Restituisce 1 (vero) se e solo se nessun punto di b giace nell’esterno di a, e almeno un punto dell’interno di b giace nell’interno di a. Nell’immagine, nessun cerchio è selezionato, ma il rettangolo lo sarebbe se lo si selezionasse al contrario, poiché contiene completamente un cerchio. Questo è il contrario di sono dentro.

**Disgiunto** Restituisce 1 (vero) se le geometrie non condividono alcuna porzione di spazio (nessuna sovrapposizione, non si toccano). Viene selezionato solo il cerchio 4.

**Uguale** Restituisce 1 (vero) se e solo se le geometrie sono esattamente uguali. Nessun cerchio sarà selezionato.
**Tocca** Verifica se una geometria tocca un’altra. Restituisce 1 (vero) se le geometrie hanno almeno un punto in comune, ma i loro interni non si intersecano. Viene selezionato solo il cerchio 3.

**Sovrapposizione** Verifica se una geometria si sovrappone ad un’altra. Restituisce 1 (vero) se le geometrie condividono lo spazio, sono della stessa dimensione, ma non sono completamente contenute l’una dall’altra. Viene selezionato solo il cerchio 2.

**Sono all’interno** Verifica se una geometria è all’interno di un’altra. Restituisce 1 (vero) se la geometria a è completamente dentro la geometria b. Viene selezionato solo il cerchio 1.

**Attraversa** Restituisce 1 (vero) se le geometrie fornite hanno alcuni, ma non tutti, i punti interni in comune e l’incrocio effettivo è di una dimensione inferiore rispetto alla più grande geometria fornita. Per esempio, una linea che attraversa un poligono si incrocia come una linea (selezionato). Due linee che si incrociano si incrociano come un punto (selezionato). Due poligoni che si incrociano come un poligono (non selezionato).

**Menu predefinito:** Vettore ► Strumenti di Ricerca

**Vedi anche:**

*Estrazione per posizione*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selezionare gli elementi da INPUT</td>
<td>[vector:any]</td>
<td>Layer vettoriale in ingresso</td>
<td></td>
</tr>
<tr>
<td>Dove gli elementi (predicato geometrico) PREDICATE</td>
<td>[enumeration] [list]</td>
<td>Predefinito: [0]</td>
<td>Condizione spaziale per la selezione. Uno o più di:</td>
</tr>
</tbody>
</table>
|                                  |            |                | • 0 — interseca  
|                                  |            |                | • 1 — contiene  
|                                  |            |                | • 2 — disgiunto  
|                                  |            |                | • 3 — uguale  
|                                  |            |                | • 4 — tocca  
|                                  |            |                | • 5 — sovrapposizione  
|                                  |            |                | • 6 — sono dentro  
|                                  |            |                | • 7 — attraversa  
|                                  |            |                | Se viene scelta più di una condizione, almeno una di esse (operazione OR) deve essere soddisfatta perché un elemento sia estratto. |
| Per confronto con gli elementi da INTERSECT | [vector:any] | Layer vettoriale di intersezione                                        |
| Modifica la selezione corrente per METHOD | [enumeration] | Predefinito: 0 | Come dovrebbe essere gestita la selezione dell’algoritmo. Uno di: |
|                                  |            |                | • 0 — creando una nuova selezione  
|                                  |            |                | • 1 — aggiungendo alla selezione corrente  
|                                  |            |                | • 2 — selezionando all’interno della selezione corrente  
|                                  |            |                | • 3 — eliminando dalla selezione corrente  

24.1. Fornitore di algoritmo QGIS
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[same as input]</td>
<td>Il layer in ingresso con gli elementi selezionati</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `qgis:selectbylocation`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**24.1.19 Tabella vettore**

**Aggiungere campo autincrescente**

Aggiunge un nuovo campo di numero intero a un layer vettoriale, con un valore sequenziale per ogni elemento.

Questo campo può essere usato come un ID univoco per gli elementi nel layer. Il nuovo attributo non viene aggiunto al layer in ingresso, ma viene invece generato un nuovo layer.

Il valore iniziale di partenza per la serie incrementale può essere specificato. Opzionalmente, la serie incrementale può essere basata su campi di raggruppamento e può anche essere specificato un ordine di ordinamento per gli elementi.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer dei vettori in ingresso.</td>
</tr>
<tr>
<td>Nome Campo</td>
<td>FIELD_NAME</td>
<td>[string]</td>
<td>Nome del campo con valori autoincrementali</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: &quot;AUTO&quot;</td>
<td></td>
</tr>
<tr>
<td>Valori di partenza</td>
<td>START</td>
<td>[number]</td>
<td>Scegli il numero iniziale per il conteggio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>incrementale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raggruppa i valori per Opzionale</td>
<td>GROUP_FIELDS</td>
<td>[tablefield: any]</td>
<td>Selezione campo(i) di raggruppamento: invece di un unico conteggio per l'intero layer, viene elaborato un conteggio separato per ogni valore restituito dalla combinazione di questi campi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[list]</td>
<td></td>
</tr>
<tr>
<td>Espressione di ordinamento</td>
<td>SORT_EXPRESSION</td>
<td>[expression]</td>
<td>Usa un’espressione per ordinare gli elementi nel layer globalmente o, se impostato, in base ai campi del gruppo.</td>
</tr>
<tr>
<td>Ordinamento ascendente</td>
<td>SORT_ASCENDING</td>
<td>[boolean]</td>
<td>Quando è impostata una espressione di ordinamento, usa questa opzione per controllare l’ordine in cui vengono assegnati i valori agli elementi.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.124 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordina i nulli come primi</td>
<td>SORT_NULLS_FIRST</td>
<td>[boolean]</td>
<td>Quando è impostata un'espressione sort, usa questa opzione per impostare se i valori Null sono contati per primi o per ultimi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORDER</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita con il campo auto incremento. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[same as input]</td>
<td>• Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su Tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crescente</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con campo auto incrementale</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: qgis:addautoincrementalfield

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori del parametro. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Aggiungi un campo alla tabella degli attributi

Aggiunge un nuovo campo ad un layer vettoriale.

Il nome e le caratteristiche dell'attributo vengono definiti come parametri.

Il nuovo attributo non viene aggiunto al layer in ingresso, ma viene invece generato un nuovo layer.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer in ingresso</td>
</tr>
<tr>
<td>Nome Campo</td>
<td>FIELD_NAME</td>
<td>[string]</td>
<td>Nome del nuovo campo</td>
</tr>
<tr>
<td>Tipo campo</td>
<td>FIELD_TYPE</td>
<td>[enumeration]</td>
<td>Tipo del nuovo campo. Puoi scegliere tra:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Integer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Float</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — String</td>
</tr>
<tr>
<td>Lunghezza Campo</td>
<td>FIELD_LENGTH</td>
<td>[number]</td>
<td>Lunghezza del campo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: 10</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.125 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precisione Campo</td>
<td>FIELD_PRECISION</td>
<td>[number]</td>
<td>Precisione del campo. Utile con il tipo di campo Float (numero reale).</td>
</tr>
<tr>
<td>Aggiunto</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Crea layer temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggiunto</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con nuovo campo aggiunto</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:addfieldtoattributestable

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori del parametro. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Aggiungere un campo indice con valore univoco**

Prende un layer vettoriale e un attributo e aggiunge un nuovo campo numerico.

I valori in questo campo corrispondono ai valori dell’attributo specificato, quindi gli elementi con lo stesso valore per l’attributo avranno lo stesso valore nel nuovo campo numerico.

Questo crea un equivalente numerico dell’attributo specificato, che definisce le stesse classi.

Il nuovo attributo non viene aggiunto al layer in ingresso, ma viene invece generato un nuovo layer.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer in ingresso.</td>
</tr>
<tr>
<td>Campo Classe</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Elementi che hanno lo stesso valore per questo campo avranno lo stesso indice.</td>
</tr>
<tr>
<td>Nome campo in uscita</td>
<td>FIELD_NAME</td>
<td>[string]</td>
<td>Nome del nuovo campo che contiene gli indici.</td>
</tr>
</tbody>
</table>

continues on next page
### Tabella 24.126 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer con campo indice</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale con il campo numerico che contiene gli indici. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Predefinito: [Create temporary layer]]</td>
<td>- Tralasciare risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Creare Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Contenuto Classe</td>
<td>SUMMARY_OUTPUT</td>
<td>[table]</td>
<td>Specificare la tabella per contenere il contenuto del campo classe mappato sul valore univoco corrispondente. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Tralasciare risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Creare Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva su tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer con campo indice</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con il campo numerico contenente gli indici.</td>
</tr>
<tr>
<td>Contenuto Classe</td>
<td>SUMMARY_OUTPUT</td>
<td>[table]</td>
<td>Tabella con il contenuto del campo classe mappato sul valore univoco corrispondente.</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:adduniquevalueindexfield

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il diccionario dei parametri fornisce i Nomi e i valori del parametro. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Aggiungere campi X/Y al layer**

Aggiunge campi X e Y (o latitudine/longitudine) ad un layer di punti. I campi X/Y possono essere calcolati in un SR diverso da quello del layer (ad esempio creando campi di latitudine/longitudine per un layer in un SR proiettato).
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Il layer in ingresso.</td>
</tr>
<tr>
<td>Sistemi di Coordinate</td>
<td>SR</td>
<td>[crs]</td>
<td>Predefinito: «EPSG:4326» Sistema di riferimento delle coordinate da usare per i campi x e y generati.</td>
</tr>
<tr>
<td>Prefisso Campo Opzionale</td>
<td>PREFIX</td>
<td>[string]</td>
<td>Prefisso da aggiungere ai nomi dei nuovi campi per evitare collisioni di nomi con i campi nel layer in ingresso.</td>
</tr>
<tr>
<td>Campi aggiunti</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Predefinito: • Creare Layer Temporaneo&lt;br&gt;• Salva come File…&lt;br&gt;• Salva come Geopackage…&lt;br&gt;• Salva su Tabella PostGIS…&lt;br&gt;La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campi aggiunti</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer in uscita - identico al layer in ingresso ma con due nuovi campi doppi, $x$ e $y$.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** qgis:addxyfieldstolayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dicionario dei parametri fornisce i Nomi e i valori del parametro. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Calcolatore Campi avanzata in Python

Aggiunge un nuovo attributo ad un layer vettoriale, con valori risultanti dall'applicazione di un'espressione ad ogni elemento.

L'espressione è definita come una funzione Python.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Nome del campo risultato</td>
<td>FIELD_NAME</td>
<td>[string]</td>
<td>Nome del nuovo campo</td>
</tr>
<tr>
<td>Tipo campo</td>
<td>FIELD_TYPE</td>
<td>[enumeration]</td>
<td>Tipo del nuovo campo. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — Integer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “NewField”</td>
<td>• 1 — Float</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — String</td>
</tr>
<tr>
<td>Lunghezza Campo</td>
<td>FIELD_LENGTH</td>
<td>[number]</td>
<td>Lunghezza del campo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 10</td>
<td></td>
</tr>
<tr>
<td>Precisione Campo</td>
<td>FIELD_PRECISION</td>
<td>[number]</td>
<td>Precisione del campo. Utile con il tipo di campo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 3</td>
<td>campo Float (numero reale).</td>
</tr>
<tr>
<td>Espressione globale Opzionale</td>
<td>GLOBAL</td>
<td>[string]</td>
<td>Il codice nella sezione dell'espressione globale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sarà eseguito solo una volta prima che il</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>calcolatore inizi a iterare su tutti gli</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>elementi del layer in ingresso. Pertanto,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>questo è il posto giusto per importare i</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>moduli necessari o per calcolare le variabili</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>che saranno utilizzate nei calcoli successivi.</td>
</tr>
<tr>
<td>Formula</td>
<td>FORMULA</td>
<td>[string]</td>
<td>La formula Python da valutare. Esempio:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per calcolare l'area di un layer poligonale in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ingresso puoi aggiungere:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>value = $geom.area()</td>
</tr>
<tr>
<td>Calcolato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale con il nuovo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>campo calcolato. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Create temporary</td>
<td>• Creare Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>layer]</td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcolato</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con il nuovo campo calcolato</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:advancedpythonfieldcalculator

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori del parametro. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Eliminare campo(i)**

Prende un layer vettoriale e ne genera uno nuovo che ha gli stessi elementi ma senza le colonne selezionate.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso da cui eliminare il campo(i)</td>
</tr>
<tr>
<td>Campo da eliminare</td>
<td>COLUMN</td>
<td>[tablefield: any] [list]</td>
<td>Il campo(i) da eliminare</td>
</tr>
<tr>
<td>Campi residui</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer vettoriale in uscita con i campi rimanenti. Uno di:</td>
</tr>
</tbody>
</table>

- Creare Layer Temporaneo
- Salva come File…
- Salva come Geopackage…
- Salva su tabella PostGIS……

La codifica del file può anche essere cambiata qui.

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campi residui</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale con i campi rimanenti</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** qgis:deletecolumn

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dicionario dei parametri fornisce i Nomi e i valori del parametro. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Aggiungere Campo HStore**

Crea una copia del layer in ingresso e aggiunge un nuovo campo per ogni chiave univoca nel campo HStore.

L’elenco dei campi da aggiungere è un elenco opzionale separato da virgole. Se questa lista è specificata, solo questi campi vengono aggiunti e il campo HStore viene aggiornato. Per impostazione predefinita, vengono aggiunte tutte le chiavi univoche.

Il PostgreSQL HStore è un semplice archivio chiave-valore usato in PostgreSQL e OGR (quando si legge un file OSM con il campo other_tags).

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Campo HStore</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Il campo(i) da eliminare</td>
</tr>
<tr>
<td>Esploso</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer vettoriale in uscita. Uno di:</td>
</tr>
</tbody>
</table>
|                        |               | Predefinito: [Create temporary layer] | • Creare Layer Temporaneo
|                        |               |                             | • Salva come File...
|                        |               |                             | • Salva come Geopackage...
|                        |               |                             | • Salva su tabella PostGIS....... La codifica del file può anche essere cambiata qui. |

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esploso</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale in uscita</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** qgis:explodehstorefield

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori del parametro. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

### Estrarre campo binario

Estrae contenuti da un campo binario, salvandoli in file separati. I nomi dei file possono essere generati usando valori presi da un attributo nella tabella degli attributi di origine o basati su un’espressione più complessa.

#### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector:any]</td>
<td>Layer vettoriale in ingresso che contiene i dati binari</td>
</tr>
<tr>
<td>Campo binario</td>
<td>FIELD</td>
<td>[tablefield:any]</td>
<td>Campo contenente i dati binari</td>
</tr>
<tr>
<td>Nome file</td>
<td>FILENAME</td>
<td>[expression]</td>
<td>Campo o testo basato su espressione per nominare ogni file in uscita</td>
</tr>
<tr>
<td>Cartella di destinazione</td>
<td>FOLDER</td>
<td>[folder] Predefinito:</td>
<td>Cartella in cui memorizzare i file in uscita. Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Save to a temporary folder]</td>
<td>• Salva in una Cartella Temporanea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva in una Cartella...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

#### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartella</td>
<td>FOLDER</td>
<td>[folder]</td>
<td>La cartella che contiene i file in uscita.</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** qgis:extractbinary

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori del parametro. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Filtro elemento

Filtra gli elementi dal layer in ingresso e li reindirizza ad uno o più risultati. Se non si conoscono nomi degli attributi che sono comuni a tutti i possibili layer in ingresso, il filtraggio è possibile solo sulla geometria dell’elemento e sui meccanismi di record generali, come $id e uuid.

Nota: Questo algoritmo è disponibile solo nel Graphical modeler.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer in ingresso.</td>
</tr>
<tr>
<td>Risultati e filtri (one or more)</td>
<td>OUTPUT_&lt;name of the filter&gt;</td>
<td>[same as input]</td>
<td>I layer in uscita con filtri (tanti quanti sono i filtri).</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output (one or more)</td>
<td>native:filter_&lt;name of filter&gt;</td>
<td>[same as input]</td>
<td>I layer in uscita con elementi filtrati (tanti quanti sono i filtri).</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** qgis:featurefilter

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nom.e i valori del parametro. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Calcolatore Campi

Apri il Calcolatore Campi (vedi Espressioni). Puoi usare tutte le espressioni e funzioni supportate.

Viene creato un nuovo layer con il risultato dell’espressione.

Il Calcolatore Campi è molto utile se usato in Il modellatore grafico.
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer su cui effettuare il calcolo</td>
</tr>
<tr>
<td><strong>Nome campo in uscita</strong></td>
<td>FIELD_NAME</td>
<td>[string]</td>
<td>Il nome del campo per i risultati</td>
</tr>
<tr>
<td><strong>Tipo campo in uscita</strong></td>
<td>FIELD_TYPE</td>
<td>[enumeration]</td>
<td>Il tipo campo in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — Reale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Intero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — String</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Data</td>
</tr>
<tr>
<td><strong>Larghezza del campo in uscita</strong></td>
<td>FIELD_LENGTH</td>
<td>[number]</td>
<td>La lunghezza del campo risultato (minimo 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 10</td>
<td></td>
</tr>
<tr>
<td><strong>Precisione Campo</strong></td>
<td>FIELD_PRECISION</td>
<td>[number]</td>
<td>La precisione del campo risultato (minimo 0, massimo 15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 3</td>
<td></td>
</tr>
<tr>
<td><strong>Creare nuovo campo</strong></td>
<td>NEW_FIELD</td>
<td>[boolean]</td>
<td>Se il campo del risultato deve essere un nuovo campo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: True</td>
<td></td>
</tr>
<tr>
<td><strong>Formula</strong></td>
<td>FORMULA</td>
<td>[expression]</td>
<td>La formula da usare per calcolare il risultato</td>
</tr>
<tr>
<td><strong>File in uscita</strong></td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Specifica del layer in uscita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td></td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcolato</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Layer in uscita con i valori dei campi calcolati</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:fieldcalculator

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando passi il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori del parametro. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Rielaborare campi**

Permette di modificare la struttura della tabella degli attributi di un layer vettoriale.

I campi possono essere modificati nel loro tipo e nome, usando una mappatura dei campi.

Il layer originale non viene modificato. Viene generato un nuovo layer, che contiene una tabella degli attributi modificata, secondo la mappatura dei campi fornita.

Rielaborare i campi di un layer ti permette di:

- Cambia nome e tipo campo
- Aggiungere e rimuovere campi
• Campi riordinati
• Creare nuovi campi basati su espressioni
• Carica l’elenco dei campi da un altro layer

Fig. 24.99: Finestra di dialogo per i campi rielaborati

continues on next page
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer da modificare</td>
</tr>
</tbody>
</table>
| Mappatura campi         | FIELDS_MAPPING        | [list]                | Elenco dei campi in uscita con le loro definizioni. La tabella incorporata elenca tutti i campi del layer di origine e permette di modificarli:  
  - Clicca su per creare un nuovo campo.  
  - Clicca su per rimuovere un campo.  
  - Usa e per cambiare l'ordine dei campi selezionati.  
  - Fai clic su per ripristinare la visualizzazione predefinita.  
  Per ognuno dei campi che vuoi riutilizzare, devi compilare le seguenti opzioni:  
    - **Espressione sorgente (expression)** [expression]  
      Campo o espressione del vettore in ingresso.  
    - **Nome campo (name)** [string] Nome del campo nel layer in uscita. Per default viene mantenuto il nome del campo in ingresso.  
    - **Tipo (type)** [enumeration] Tipo dati del campo in uscita. Uno di:  
      - Date (14)  
      - DateTime (16)  
      - Double (6)  
      - Integer (2)  
      - Integer64 (4)  
      - String (10)  
      - Boolean (1)  
    - **Lunghezza (length)** [number] Lunghezza del campo in uscita.  
    - **Precisione (precision)** [number] Precisione del campo in uscita.  
| Rielaborato             | OUTPUT                | [vector: any]         | Specifica del layer in uscita. Uno di:  
  - Creare Layer Temporaneo  
  - Salva come File…  
  - Salva come Geopackage…  
  - Salva su tabella PostGIS……  
  La codifica del file può anche essere cambiata qui. |
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rielaborato</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Layer in uscita con campi rielaborati</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo**: qgis:refactorfields

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori del parametro. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Rinominare campo vettoriale**

Rinomina un campo esistente da un layer vettoriale.

Il layer originale non viene modificato. Viene generato un nuovo layer in cui la tabella degli attributi contiene il campo rinominato.

**Vedi anche:**

*Rielaborare campi*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer vettoriale in ingresso</td>
</tr>
<tr>
<td><strong>Campo da rinominare</strong></td>
<td>FIELD</td>
<td>[string]</td>
<td>Il campo da modificare</td>
</tr>
<tr>
<td><strong>Nuovo nome del campo</strong></td>
<td>NEW_NAME</td>
<td>[string]</td>
<td>Il nuovo nome del campo</td>
</tr>
</tbody>
</table>
| **Rinominato**   | OUTPUT   | [vector: same as input] | Specifica del layer in uscita. Uno di:  
|                  |          |               | • Creare Layer Temporaneo                                         
|                  |          |               | • Salva come File…                                                
|                  |          |               | • Salva come Geopackage…                                          
|                  |          |               | • Salva su tabella PostGIS…                                      
|                  |          |               | La codifica del file può anche essere cambiata qui.              |
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinominato</td>
<td>OUTPUT</td>
<td>[vector: same as input]</td>
<td>Layer in uscita con il campo rinominato</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** qgis:renametablefield

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori del parametro. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Da testo a float**

Modifica il tipo di un dato attributo in un layer vettoriale, convertendo un attributo testuale contenente stringhe numeriche in un attributo numerico (ad esempio “1” in 1.0).

L’algoritmo crea un nuovo layer vettoriale, quindi quello di origine non viene modificato.

Se la conversione non è possibile, la colonna selezionata avrà valori NULL.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer dei vettori in ingresso.</td>
</tr>
<tr>
<td>Attributo testuale da convertire in float</td>
<td>FIELD</td>
<td>[tablefield: string]</td>
<td>Il campo stringa per il layer in ingresso che deve essere convertito in un campo float.</td>
</tr>
<tr>
<td>Da stringa a numerico reale</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specificare il layer in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default: [Create Temporary Layer]</td>
<td>• Creare Layer Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come Geopackage…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva su tabella PostGIS…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Da stringa a numerico reale</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Layer vettoriale di uscita con il campo stringa convertito in un campo float</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo**: qgis:tofloat

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'"id algoritmo" viene visualizzato quando passi il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il *diccionario dei parametri* fornisce i Nomi e i valori del parametro. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

## 24.2 Algoritmi GDAL

**GDAL** (Geospatial Data Abstraction Library) è una libreria di trasformazione per formati di dati geospaziali raster e vettoriali. Gli algoritmi nel Processing Framework sono derivati dai programmi GDAL raster e GDAL vector.

### 24.2.1 Analisi raster

**Esposizione**


Questo algoritmo è derivato dalla utility GDAL DEM.

**Menu predefinito**: **Raster ➤ Analisi**

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster di elevazione in ingresso</td>
</tr>
<tr>
<td>Numero banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Il numero della banda da usare come elevazione</td>
</tr>
<tr>
<td>Restituire l'angolo trigonometrico</td>
<td>TRIG_ANGLE</td>
<td>[boolean]</td>
<td>Attivando l'angolo trigonometrico si hanno diversi risultati: 0° (Est), 90° (Nord), 180° (Ovest), 270° (Sud).</td>
</tr>
<tr>
<td>invece dell'azimut</td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td>Restituisce 0 per vuoto invece di -</td>
<td>ZERO_FLAT</td>
<td>[boolean]</td>
<td>Attivando questa opzione si inserisce un valore 0 per il valore -9999 sulle aree vuote.</td>
</tr>
<tr>
<td>9999</td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td>Configurare i bordi</td>
<td>COMPUTE_EDGES</td>
<td>[boolean]</td>
<td>Genera bordi dal raster di elevazione</td>
</tr>
<tr>
<td>invece di quella di Horn</td>
<td>ZEVENBERGEN</td>
<td>Predefinito: False</td>
<td>Attiva la formula Zevenbergen&amp;Thorne per paesaggi lisci</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.133 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| **Opzioni addizionali di creazione** | OPTIONS    | [string]   | Predefinito: “”  
Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file…). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (|).

| **Parametri addizionali della linea di comando** | EXTRA      | [string]   | Predefinito: None  
Aggiungere opzioni extra della linea di comando GDAL.

| **Esposizione** | OUTPUT     | [raster]   | Predefinito: [Save to temporary file]  
Layer raster in uscita. Uno di:
• Salva come File Temporaneo
• Salva come File…
La codifica del file può anche essere cambiata qui.

### In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Esposizione</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita con valori degli angoli in gradi</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** gdal:aspect

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

### Colore del rilievo

Genera una mappa di rilievo a colori da qualsiasi raster di elevazione supportato da GDAL. I rilievi a colori possono essere usati in particolare per rappresentare le quote. L’algoritmo produce un raster a 4 bande con valori calcolati dalla quota e un file di configurazione del colore basato sul testo. Per impostazione predefinita, i colori tra i valori di elevazione dati sono sfumati uniformemente e il risultato è un bel raster di elevazione colorato.

Questo algoritmo è derivato dalla utility GDAL DEM.
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer di ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster di elevazione in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Il numero della banda da usare come elevazione</td>
</tr>
<tr>
<td>Configurare bordi</td>
<td>COMPUTE_EDGES</td>
<td>[boolean]</td>
<td>Genera bordi dal raster di elevazione</td>
</tr>
<tr>
<td>File di configurazione dei colori</td>
<td>COLOR_TABLE</td>
<td>[file]</td>
<td>Un file di configurazione del colore basato sul testo</td>
</tr>
<tr>
<td>Modalità di abbinamento</td>
<td>MATCH_MODE</td>
<td>[enumeration]</td>
<td>Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 2</td>
<td>• 0 — Usa una stretta corrispondenza dei colori</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Usa i quadrupli RGBA più vicini</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Usa colori sfumati</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “”</td>
<td></td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni extra della linea di comando GDAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: None</td>
<td></td>
</tr>
<tr>
<td>Colore del rilievo</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colore del rilievo</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Un raster in uscita a 4 bande</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:colorrelief

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing.
Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Riempire nodata

Riempie le regioni raster senza valori di dati per interpolazione dai bordi. I valori per le regioni senza dati sono calcolati dai valori dei pixel circostanti usando la ponderazione della distanza inversa. Dopo l'interpolazione ha luogo una lisciatura dei risultati. L'input può essere qualsiasi layer raster supportato da GDAL. Questo algoritmo è generalmente adatto per interpolare regioni mancanti di raster che variano in modo abbastanza continuo (come i modelli di elevazione per esempio). È anche adatto a riempire piccoli buchi e spaccature in immagini che variano in modo più irregolare (come le aerofotografie). Non è generalmente così valido per interpolare un raster da dati puntuali sparsi.

Questo algoritmo è derivato da GDAL fillnodata utility.

Menu predefinito: Raster ➤ Analisi

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>La banda su cui operare. I valori di nodata devono essere rappresentati dal valore 0.</td>
</tr>
<tr>
<td>Distanza massima (in pixel) per cercare i valori da interpolare</td>
<td>DISTANCE</td>
<td>[number]</td>
<td>Il numero di pixel da cercare in tutte le direzioni per trovare valori da cui interpolare</td>
</tr>
<tr>
<td>Numero di iterazioni di affinamento da eseguire dopo l'interpolazione</td>
<td>ITERATIONS</td>
<td>[number]</td>
<td>Il numero di passaggi del filtro 3x3 da eseguire (0 o più volte) per affinare i risultati dell'interpolazione.</td>
</tr>
<tr>
<td>Non usare la maschera di validità predefinita per la banda in ingresso</td>
<td>NO_MASK</td>
<td>[boolean]</td>
<td>Attiva la maschera di validità definita dall'utente.</td>
</tr>
<tr>
<td>Maschera di validità</td>
<td>MASK_LAYER</td>
<td>[raster]</td>
<td>Un layer raster che definisce le aree da riempire.</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni extra della linea di comando GDAL.</td>
</tr>
<tr>
<td>Riempito</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica del layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riempito</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo**: gdal:fillnodata

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Grid (Data metrics)**

Calcola alcune metriche sui dati usando la finestra specificata e la geometria della griglia in uscita.

Questo algoritmo è derivato da GDAL grid utility.

**Menu predefinito**: Raster ➤ Analisi

**Vedi anche**: GDAL grid tutorial

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore di punti</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale puntuale in ingresso</td>
</tr>
</tbody>
</table>
Tabella 24.136 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Metrica sui dati da usare         | METRIC        | [enumeration] Predefinito: 0 | Uno di:  
  • 0 — Minimo, valore minimo trovato nell'ellisse di ricerca del nodo della griglia  
  • 1 — Massimo, valore massimo trovato nell'ellisse di ricerca del nodo della griglia  
  • 2 — Range, una differenza tra i valori minimi e massimi trovati nell'ellisse di ricerca del nodo della griglia  
  • 3 — Conteggio, un numero di punti trovati nell'ellisse di ricerca del nodo della griglia  
  • 4 — Distanza media, una distanza media tra il nodo della griglia (centro dell'ellisse di ricerca) e tutti i punti trovati nell'ellisse di ricerca del nodo della griglia  
  • 5 — Distanza media tra i punti, una distanza media tra i punti trovati nell'ellisse di ricerca del nodo della griglia. La distanza tra ogni coppia di punti all'interno dell'ellisse viene calcolata e la media di tutte le distanze viene impostata come valore del nodo della griglia |
| Il primo raggio dell'ellisse di ricerca | RADIUS_1   | [number] Predefinito: 0.0 | Il primo raggio (asse X se l'angolo di rotazione è 0) dell'ellisse di ricerca | |
| Il secondo raggio dell'ellisse di ricerca | RADIUS_2   | [number] Predefinito: 0.0 | Il secondo raggio (asse Y se l'angolo di rotazione è 0) dell'ellisse di ricerca |
| Angolo di rotazione dell'ellisse di ricerca in gradi (in senso antiorario) | ANGLE     | [number] Predefinito: 0.0 | Angolo di rotazione dell'ellisse in gradi. Ellisse ruotata in senso antiorario. |
| Numero minimo di punti da utilizzare | MIN_POINTS | [number] Predefinito: 0.0 | Numero minimo di punti per la media. Se si trova un numero inferiore di punti, il nodo della griglia è considerato vuoto e verrà riempito con il codice NODATA. |
| Nodata                             | NODATA       | [number] Predefinito: 0.0 | Nessuna codifica per riempire i punti vuoti |
| Valore Z dal campo Opzionale       | Z_FIELD      | [tablefield: numeric]     | Campo per l'interpolazione |
| Opzioni addizionali di creazione Opzionale | OPTIONS | [string] Predefinito: “” | Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (|). |

continues on next page
Tabella 24.136 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametri addizionali della</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni extra della linea di comando GDAL</td>
</tr>
<tr>
<td>linea di comando Opzionale</td>
<td></td>
<td>Predefinito: None</td>
<td></td>
</tr>
<tr>
<td>Tipo di dati in uscita</td>
<td>DATA_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 5</td>
<td>Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Int16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — UInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — UInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Int32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Float64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — CInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — CInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — CFloat32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — CFloat64</td>
</tr>
<tr>
<td>Interpolato (dati metrici)</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica il layer raster in uscita con i valori interpolati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolato (dati metrici)</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita con valori interpolati</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:griddatametrics

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
**Griglia (IDW con ricerca del vicino più vicino)**

Calcola la distanza inversa di una griglia Ponderata combinata al metodo del vicino più vicino. Ideale quando è richiesto un numero massimo di punti dati da utilizzare.

Questo algoritmo è derivato da GDAL grid utility.

**Vedi anche:**
GDAL grid tutorial

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vettore di punti</td>
<td>INPUT [vector: point]</td>
<td>Layer vettoriale puntuale in ingresso</td>
</tr>
<tr>
<td></td>
<td>Peso ponderato</td>
<td>POWER [number]</td>
<td>Predefinito: 2.0 Peso ponderato</td>
</tr>
<tr>
<td></td>
<td>Smussatura</td>
<td>SMOOTHING [number]</td>
<td>Predefinito: 0.0 Parametro di smussatura</td>
</tr>
<tr>
<td></td>
<td>Il raggio del</td>
<td>RADIUS [number]</td>
<td>Predefinito: 1.0 Il raggio del cerchio di ricerca</td>
</tr>
<tr>
<td></td>
<td>cerchio di ricerca</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numero massimo</td>
<td>MAX_POINTS [number]</td>
<td>Predefinito: 12 Non cercare altri punti oltre a questo numero.</td>
</tr>
<tr>
<td></td>
<td>di punti da</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>utilizzare</td>
<td>MIN_POINTS [number]</td>
<td>Predefinito: 0 Numero minimo di punti per la media. Se si trova un numero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>inferiore di punti, il nodo della griglia è considerato vuoto e verrà</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>riempito con il codice NODATA.</td>
</tr>
<tr>
<td></td>
<td>Nodata</td>
<td>NODEATA [number]</td>
<td>Predefinito: 0.0 Nessuna codifica per riempire i punti vuoti</td>
</tr>
<tr>
<td></td>
<td>Valore Z dal</td>
<td>Z_FIELD [tablefield: numeric]</td>
<td>Campo per l’interpolazione</td>
</tr>
<tr>
<td></td>
<td>campo Opzionale</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opzioni addizionali</td>
<td>OPTIONS [string]</td>
<td>Predefinito: ”” Opzioni addizionali di creazione che controllano il</td>
</tr>
<tr>
<td></td>
<td>di creazione</td>
<td></td>
<td>raster da creare (colori, dimensione del blocco, compressione del file...).</td>
</tr>
<tr>
<td></td>
<td>Opzionale</td>
<td></td>
<td>Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>driver options section). For Batch Process: separate multiple options</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>with a pipe character (</td>
</tr>
<tr>
<td></td>
<td>Parametri</td>
<td>EXTRA [string]</td>
<td>Predefinito: None Aggiungere opzioni extra della linea di comando GDAL</td>
</tr>
<tr>
<td></td>
<td>addizionali della linea di comando</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.137 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| **Tipo di dati in uscita** | DATA_TYPE | [enumeration] | Predefinito: 5 | Definisce il tipo dati del file raster in uscita. Opzioni:  
- 0 — Byte  
- 1 — Int16  
- 2 — UInt16  
- 3 — UInt32  
- 4 — Int32  
- 5 — Float32  
- 6 — Float64  
- 7 — CInt16  
- 8 — CInt32  
- 9 — CFloat32  
- 10 — CFloat64 |
| **Interpolato (IDW con ricerca NN)** | OUTPUT | [raster] | Predefinito: [Save to temporary file] | Specifica il layer raster in uscita con i valori interpolati. Uno di:  
- Salva come File Temporaneo  
- Salva come File…  
La codifica del file può anche essere cambiata qui. |

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interpolato (IDW con ricerca NN)</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita con valori interpolati</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `gdal:gridinversedistancenearestneighbor`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Griglia (distanza inversa da una potenza)**

Il metodo della distanza inversa da una potenza è un interpolatore medio ponderato.

Dovresti fornire gli array in ingresso con i valori dei dati sparsi, comprese le coordinate di ogni punto e la geometria della griglia in uscita. La funzione calcolerà il valore interpolato per la posizione data nella griglia in uscita.

Questo algoritmo è derivato da GDAL grid utility.

**Menu predefinito:** *Raster ➤ Analisi* 

Vedi anche:

GDAL grid tutorial
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore di punti</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale puntuale in ingresso</td>
</tr>
<tr>
<td>Peso ponderato</td>
<td>POWER</td>
<td>[number]</td>
<td>Peso ponderato</td>
</tr>
<tr>
<td>Smussatura</td>
<td>SMOOTHING</td>
<td>[number]</td>
<td>Parametro di smussatura</td>
</tr>
<tr>
<td>Il primo raggio dell’ellisse di ricerca</td>
<td>RADIUS_1</td>
<td>[number]</td>
<td>Il primo raggio (asse X se l’angolo di rotazione è 0) dell’ellisse di ricerca</td>
</tr>
<tr>
<td>Il secondo raggio dell’ellisse di ricerca</td>
<td>RADIUS_2</td>
<td>[number]</td>
<td>Il secondo raggio (asse Y se l’angolo di rotazione è 0) dell’ellisse di ricerca</td>
</tr>
<tr>
<td>Numero massimo di punti da utilizzare</td>
<td>MAX_POINTS</td>
<td>[number]</td>
<td>Non cercare altri punti oltre a questo numero.</td>
</tr>
<tr>
<td>Numero minimo di punti da utilizzare</td>
<td>MIN_POINTS</td>
<td>[number]</td>
<td>Numero minimo di punti per la media. Se si trova un numero inferiore di punti, il nodo della griglia è considerato vuoto e verrà riempito con il codice NODATA.</td>
</tr>
<tr>
<td>Nodata</td>
<td>NODATA</td>
<td>[number]</td>
<td>Nessuna codifica per riempire i punti vuoti</td>
</tr>
<tr>
<td>Valore Z del campo</td>
<td>Z_FIELD</td>
<td>[tablefield: numeric]</td>
<td>Campo per l’interpolazione</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file…). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni extra della linea di comando GDAL.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.138 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tipo di dati in uscita</strong></td>
<td><strong>DATA_TYPE</strong></td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 5</td>
<td>• 0 — Byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Int16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — UInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — UInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Int32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Float64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — CInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — CInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — CFloat32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — CFloat64</td>
</tr>
<tr>
<td><strong>Interpolati (IDW)</strong></td>
<td><strong>OUTPUT</strong></td>
<td>[raster]</td>
<td>Specifica il layer raster in uscita con i valori interpolati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interpolati (IDW)</strong></td>
<td><strong>OUTPUT</strong></td>
<td>[raster]</td>
<td>Raster in uscita con valori interpolati</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `gdal:gridinversedistance`

```python
code
import processing
code
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Grid (Linear)**

Il metodo Linear effettua un’interpolazione lineare calcolando una triangolazione Delaunay della nuvola di punti, trovando in quale triangolo della triangolazione si trova il punto, e facendo un’interpolazione lineare dalle sue coordinate baricentriche all’interno del triangolo. Se il punto non è in nessun triangolo, a seconda del raggio, l’algoritmo userà il valore del punto più vicino o il valore NODATA.

Questo algoritmo è derivato da GDAL grid utility.
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore di punti</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale puntuale in ingresso</td>
</tr>
<tr>
<td>Distanza di ricerca</td>
<td>RADIUS</td>
<td>[number] Predefinito: -1.0</td>
<td>Nel caso in cui il punto da interpolare non rientri in un triangolo della triangolazione di Delaunay, usa questa distanza massima per cercare un vicino più vicino, o altrimenti usa nodata. Se impostato a -1, la distanza di ricerca è infinita. Se impostato a 0, non viene utilizzato alcun valore.</td>
</tr>
<tr>
<td>Nodata</td>
<td>NODATA</td>
<td>[number] Predefinito: 0.0</td>
<td>Nessuna codifica per riempire i punti vuoti</td>
</tr>
<tr>
<td>Valore Z dal campo Opzionale</td>
<td>Z_FIELD</td>
<td>[tablefield: numeric]</td>
<td>Campo per l’interpolazione</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione Opzionale</td>
<td>OPTIONS</td>
<td>[string] Predefinito: “”</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando Opzionale</td>
<td>EXTRA</td>
<td>[string] Predefinito: None</td>
<td>Aggiungere opzioni extra della linea di comando GDAL</td>
</tr>
<tr>
<td>Tipo di dati in uscita</td>
<td>DATA_TYPE</td>
<td>[enumeration] Predefinito: 5</td>
<td>Definisce il tipo dati del file raster in uscita. Opzioni: * 0 — Byte * 1 — Int16 * 2 — UInt16 * 3 — UInt32 * 4 — Int32 * 5 — Float32 * 6 — Float64 * 7 — CInt16 * 8 — CInt32 * 9 — CFloat32 * 10 — CFloat64</td>
</tr>
<tr>
<td>Interpolati (Linear)</td>
<td>OUTPUT</td>
<td>[raster] Predefinito: [Save to temporary file]</td>
<td>Specifica il layer raster in uscita con i valori interpolati. Uno di: * Salva come File Temporaneo * Salva come File... La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolati (Linear)</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita con valori interpolati</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** gdal:gridlinear

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Grid (Moving average)**

La media mobile è un semplice algoritmo di media sui dati. Utilizza una finestra mobile di forma ellittica per cercare i valori e fa la media di tutti i punti all’interno della finestra. L’ellisse di ricerca può essere ruotata di un angolo specificato, il centro dell’ellisse si trova nel nodo della griglia. Anche il numero minimo di punti su cui fare la media può essere impostato, se non ci sono abbastanza punti nella finestra, il nodo della griglia è considerato vuoto e sarà riempito con il valore NODATA specificato.

Questo algoritmo è derivato da GDAL grid utility.

**Menu predefinito:** Raster ➤ Analisi

**Vedi anche:**
GDAL grid tutorial

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore di punti</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale puntuale in ingresso</td>
</tr>
<tr>
<td>Il primo raggio dell’ellisse di ricerca</td>
<td>RADIUS_1</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td>Il secondo raggio dell’ellisse di ricerca</td>
<td>RADIUS_2</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td>Angolo di rotazione dell’ellisse di ricerca in gradi (in senso antiorario)</td>
<td>ANGLE</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td>Numero minimo di punti da utilizzare</td>
<td>MIN_POINTS</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td>Nodata</td>
<td>NODATA</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.140 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interpolato (media mobile)</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specificare il layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td><strong>Interpolato (media mobile)</strong></td>
<td>EXTRA</td>
<td>[string]</td>
<td>Specifica il tipo dati del file raster in uscita.</td>
</tr>
<tr>
<td><strong>Interpolato (media mobile)</strong></td>
<td>EXTRA</td>
<td>[string]</td>
<td>Predefinito: None</td>
</tr>
</tbody>
</table>
**Grid (Nearest neighbor: Vicino più vicino)**

Il metodo Nearest Neighbor non esegue alcuna interpolazione o lisciatura, prende solo il valore del punto più vicino trovato nell'ellisse di ricerca dei nodi della griglia e lo restituisce come risultato. Se non vengono trovati punti, viene restituito il valore NODATA specificato.

Questo algoritmo è derivato da GDAL grid utility.

**Menu predefinito:** Raster ➤ Analisi

**Vedi anche:**
GDAL grid tutorial

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore di punti</td>
<td>INPUT</td>
<td>[vector: point]</td>
<td>Layer vettoriale puntuale in ingresso</td>
</tr>
<tr>
<td>Il primo raggio dell'ellisse di ricerca</td>
<td>RADIUS_1</td>
<td>[number]</td>
<td>Predefinito: 0.0 Il primo raggio (asse X se l'angolo di rotazione è 0) dell'ellisse di ricerca</td>
</tr>
<tr>
<td>Il secondo raggio dell'ellisse di ricerca</td>
<td>RADIUS_2</td>
<td>[number]</td>
<td>Predefinito: 0.0 Il secondo raggio (asse Y se l'angolo di rotazione è 0) dell'ellisse di ricerca</td>
</tr>
<tr>
<td>Angolo di rotazione dell'ellisse di ricerca in gradi (in senso antiorario)</td>
<td>ANGLE</td>
<td>[number]</td>
<td>Predefinito: 0.0 Angolo di rotazione dell'ellisse in gradi. Ellisse ruotata in senso antiorario</td>
</tr>
<tr>
<td>Nodata</td>
<td>NODATA</td>
<td>[number]</td>
<td>Predefinito: 0.0 Nessuna codifica per riempire i punti vuoti</td>
</tr>
<tr>
<td>Valore Z dal campo Opzionale</td>
<td>Z.FIELD</td>
<td>[tablefield: numeric]</td>
<td>Campo per l'interpolazione</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione Opzionale</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot; Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando Opzionale</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Predefinito: None Aggiungere opzioni extra della linea di comando GDAL</td>
</tr>
</tbody>
</table>
Tabella 24.141 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di dati in uscita</td>
<td>DATA_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo dati del file raster in uscita. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 5</td>
<td>• 0 — Byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Int16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — UInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — UInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Int32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Float64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — CInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — CInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — CFloat32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — CFloat64</td>
</tr>
<tr>
<td>Interpolato (Nearest neighbour)</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica il layer raster in uscita con i valori interpolati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolato (Nearest neighbour)</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita con valori interpolati</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: gdal:gridnearestneighbor

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Ombreggiatura

Genera un raster con un bell’effetto di rilievo ombreggiato. È molto utile per visualizzare il terreno. Puoi opzionalmente specificare l’azimut e l’altitudine della sorgente di luce, un fattore di esagerazione verticale e un fattore di scala per tenere conto delle differenze tra unità verticali e orizzontali.

Questo algoritmo è derivato da GDAL DEM utility.

Menu predefinito: Raster ► Analisi
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster di elevazione in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Banda contenente le informazioni sull'elevazione</td>
</tr>
<tr>
<td>Fattore Z (esagerazione verticale)</td>
<td>Z_FACTOR</td>
<td>[number]</td>
<td>Il fattore esagera l'altezza di elevazione del raster in uscita</td>
</tr>
<tr>
<td>Scala (rapporto tra unità vert. e oriz.)</td>
<td>SCALE</td>
<td>[number]</td>
<td>Il rapporto tra unità verticali e unità orizzontali</td>
</tr>
<tr>
<td>Azimut della luce</td>
<td>AZIMUTH</td>
<td>[number]</td>
<td>Definisce in gradi l'azimut della luce che illumina il raster di elevazione. Se proviene dall'alto del raster il valore è 0, se proviene da est è 90 a.s.o.</td>
</tr>
<tr>
<td>Altezza della luce</td>
<td>ALTITUDE</td>
<td>[number]</td>
<td>Definisce in gradi l'altitudine della luce. 90 se la luce proviene da sopra il raster di elevazione, 0 se è luce radente.</td>
</tr>
<tr>
<td>Configurare i bordi</td>
<td>COMPUTE_EDGES</td>
<td>[boolean]</td>
<td>Genera bordi dal raster di elevazione</td>
</tr>
<tr>
<td><strong>Utilizzare la formula di Zevenbergen&amp;Thorne (invece di quella di Horn)</strong></td>
<td>ZEVENBERGEN</td>
<td>[boolean]</td>
<td>Attiva la formula Zevenbergen&amp;Thorne per paesaggi lisci</td>
</tr>
<tr>
<td>Ombreggiatura combinata</td>
<td>COMBINED</td>
<td>[boolean]</td>
<td></td>
</tr>
<tr>
<td>Ombreggiatura multidirezionale</td>
<td>MULTIDIRECTION</td>
<td>[boolean]</td>
<td></td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni extra della linea di comando GDAL.</td>
</tr>
<tr>
<td>Ombreggiatura</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica il layer raster in uscita con i valori interpolati. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ombreggiatura</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita con valori interpolati</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:hillshade

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Vicino al nero**

Converte i bordi quasi neri/bianchi in neri.

Questo algoritmo scansionerà un’immagine e cercherà di impostare tutti i pixel che sono quasi o esattamente neri, bianchi o uno o più colori personalizzati intorno al bordo su bianco o nero. Questo è spesso usato per «aggiustare» le aerofotografie compresse con perdita in modo che i pixel a colori possano essere trattati come trasparenti quando si fa il mosaico.

Questo algoritmo è derivato da GDAL nearblack utility.

**Menu predefinito:** Raster ➤ Analisi

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster di elevazione in ingresso</td>
</tr>
<tr>
<td>Quanto lontano dal nero (bianco)</td>
<td>NEAR</td>
<td>[number]</td>
<td>Predefinito: 15</td>
</tr>
<tr>
<td>Ricerca di pixel quasi bianchi invece di quasi neri</td>
<td>WHITE</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione Opzionale</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot;</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando Opzionale</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Predefinito: None</td>
</tr>
</tbody>
</table>

Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file…). Per comodità, si può fare affidamento su profili predefiniti (vedi *GDAL driver options section*). For Batch Process: separate multiple options with a pipe character (|).

continues on next page
Tabella 24.143 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi nero</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specificare il layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi nero</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:nearblack

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Prossimità (distanza raster)**

Genera una mappa di prossimità raster che indica la distanza dal centro di ogni pixel al centro del pixel più vicino identificato come pixel di destinazione. I pixel di destinazione sono quelli nel raster sorgente per i quali il valore del pixel raster è nell’insieme dei valori dei pixel di destinazione.

Questo algoritmo è derivato da GDAL proximity utility.

**Menu predefinito:** Raster ➤ Analisi

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster di elevazione in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Banda contenente le informazioni sull’elevazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito:“”</td>
</tr>
<tr>
<td>Unità di distanza</td>
<td>UNITS</td>
<td>[enumeration]</td>
<td>Indica se le distanze generate devono essere in pixel o in coordinate georeferenziate. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Coordinate georeferenziate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Coordinate Pixel</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>La distanza massima da generare</td>
<td>MAX_DISTANCE</td>
<td>[number]</td>
<td>La distanza massima da generare. Il valore di nodata sarà usato per i pixel oltre questa distanza. Se non viene fornito un valore di nodata, la banda in uscita verrà ricercata per il suo valore di nodata. Se la banda in uscita non ha un valore di nodata, allora verrà utilizzato il valore 65535. La distanza viene interpretata secondo il valore della Unità di distanza.</td>
</tr>
<tr>
<td>Valore da applicare a tutti i pixel che sono all’interno della maxdist dei pixel di destinazione</td>
<td>REPLACE</td>
<td>[number]</td>
<td>Specifica un valore da applicare a tutti i pixel che sono più vicini della distanza massima dai pixel di destinazione (compresi i pixel di destinazione) invece di un valore di distanza.</td>
</tr>
<tr>
<td>Valore Nodata da usare per il raster di prossimità di destinazione</td>
<td>NODATA</td>
<td>[number]</td>
<td>Specificare il valore di nodata da usare per il raster in uscita</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file…). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni extra della linea di comando GDAL</td>
</tr>
</tbody>
</table>
| Tipo di dati in uscita                             | DATA_TYPE             | [enumeration]         | Definisce il tipo dati del file raster in uscita. Opzioni:  
  • 0 — Byte  
  • 1 — Int16  
  • 2 — UInt16  
  • 3 — UInt32  
  • 4 — Int32  
  • 5 — Float32  
  • 6 — Float64  
  • 7 — CInt16  
  • 8 — CInt32  
  • 9 — CFloat32  
  • 10 — CFloat64  |
| Mappa di Prossimità                                | OUTPUT                | [raster]              | Specificare il layer raster in uscita. Uno di:  
  • Salva come File Temporaneo  
  • Salva come File…  
  La codifica del file può anche essere cambiata qui.                                                                                                    |
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mappa di Prossimità</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:proximity

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Rugosità**

Genera un raster a banda singola con valori calcolati dall’elevazione. La rugosità è il grado di irregolarità della superficie. È calcolata dalla più grande differenza tra le celle di un pixel centrale e quante circostanti. La determinazione della rugosità gioca un ruolo nell’analisi dei dati di elevazione del terreno, è utile per i calcoli della morfologia dei fiumi, nella climatologia e nella geografia fisica in generale.

Questo algoritmo è derivato dalla utility GDAL DEM.

**Menu predefinito:** *Raster ➤ Analisi*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster di elevazione in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band] Predefinito: 1</td>
<td>Il numero della banda da usare come elevazione</td>
</tr>
<tr>
<td>Configurare bordi</td>
<td>COMPUTE_EDGES [boolean] Predefinito: False</td>
<td>Genera bordi dal raster di elevazione</td>
<td></td>
</tr>
<tr>
<td>Opzioni addizionali di creazione Opzionale</td>
<td>OPTIONS [string] Predefinito: “”</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi <em>GDAL driver options section</em>). For Batch Process: separate multiple options with a pipe character (</td>
<td>).</td>
</tr>
</tbody>
</table>
| Rugosità                   | OUTPUT       | [raster] Predefinito: [Save to temporary file] | Specificare il layer raster in uscita. Uno di:  
  * Salva come File Temporaneo  
  * Salva come File...  
  La codifica del file può anche essere cambiata qui. |
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

Codice Python

ID Algoritmo: gdal:roughness

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Setacciato

Rimuove i poligoni raster più piccoli di una dimensione di soglia fornita (in pixel) e li sostituisce con il valore in pixel del poligono più grande vicino. È utile se hai una grande quantità di piccole aree sulla tua mappa raster.

Questo algoritmo è derivato da GDAL sieve utility.

Menu predefinito: Raster ➤ Analisi

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster di elevazione in ingresso</td>
</tr>
<tr>
<td>Soglia</td>
<td>THRESHOLD</td>
<td>[number]</td>
<td>Solo i poligoni raster più piccoli di questa dimensione saranno rimossi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: 10</td>
</tr>
<tr>
<td>Usa la connessione 8</td>
<td>RIGHT_CONNECTED</td>
<td>[boolean]</td>
<td>Usa otto connessioni invece di quattro connessioni</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Non usare la maschera di validità predefinita per la banda in ingresso</td>
<td>NO_MASK</td>
<td>[boolean]</td>
<td>Maschera di validità da usare al posto di quella predefinita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Maschera di validità Opzionale</td>
<td>MASK_LAYER</td>
<td>[raster]</td>
<td>Maschera di validità da usare al posto di quella predefinita</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando Opzionale</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni extra della linea di comando GDAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: None</td>
</tr>
<tr>
<td>Setacciato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specificare il layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

Predefinito: None
In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setacciato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita.</td>
</tr>
</tbody>
</table>

**Codice Python**

<table>
<thead>
<tr>
<th>ID Algoritmo:</th>
<th>gdal:sieve</th>
</tr>
</thead>
</table>

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing.
Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Pendenza**

Genera una mappa di pendenza da qualsiasi raster di elevazione supportato da GDAL. La pendenza è l’angolo di inclinazione rispetto all’orizzontale. Hai la possibilità di specificare il tipo di valore di pendenza che vuoi: gradi o percentuale di pendenza.
questo algoritmo è derivato dalla utility GDAL DEM.

**Menu predefinito:** Raster ➤ Analisi

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster di elevazione in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Banda contenente le informazioni sull’elevazione</td>
</tr>
<tr>
<td>Rapporto tra unità verticali e orizzontali</td>
<td>SCALE</td>
<td>[number]</td>
<td>Il rapporto tra unità verticali e unità orizzontali</td>
</tr>
<tr>
<td><strong>Pendenza espressa in percentuale (invece di gradi)</strong></td>
<td>AS_PERCENT</td>
<td>[boolean]</td>
<td>Esprimere la pendenza in percentuale invece che in gradi</td>
</tr>
<tr>
<td><strong>Utilizzare la formula di Zevenbergen&amp;Thorne (invece di quella di Horn)</strong></td>
<td>ZEVENBERGEN</td>
<td>[boolean]</td>
<td>Attiva la formula Zevenbergen&amp;Thorne per paesaggi lisci</td>
</tr>
<tr>
<td>Configurare i bordi</td>
<td>COMPUTE_EDGES</td>
<td>[boolean]</td>
<td>Genera bordi dal raster di elevazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.147 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Opzioni aggiuntive di creazione Opzionale | OPTIONS | [string] Predefinito: “” | Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file,…). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (|).
| Parametri aggiuntivi della linea di comando Opzionale | EXTRA | [string] Predefinito: None | Aggiungere opzioni extra della linea di comando GDAL. |
| Pendenza | OUTPUT | [raster] Predefinito: [Save to temporary file] | Specificare il layer raster in uscita. Uno di:  
  - Salva come File Temporaneo  
  - Salva come File…  
  La codifica del file può anche essere cambiata qui. |

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendenza</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:slope

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Indice di rugosità del terreno (TRI)**

Genera un raster a banda singola con valori calcolati dall’elevazione. TRI sta per Terrain Ruggedness Index, che è definito come la differenza media tra un pixel centrale e le celle circostanti.

Questo algoritmo è derivato dalla utility GDAL DEM.

**Menu predefinito:** Raster ➤ Analisi
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster di elevazione in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Il numero della banda da usare come elevazione</td>
</tr>
<tr>
<td>Configurare bordi</td>
<td>COMPUTE_EDGES</td>
<td>[boolean]</td>
<td>Genera bordi dal raster di elevazione</td>
</tr>
</tbody>
</table>
| Opzioni            | OPTIONS               | [string]   | Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file…). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character ( | ). Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file…). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character ( | ).
| Indice di rugosità | OUTPUT                | [raster]   | Specificare il layer raster in uscita. Uno di:  • Salva come File Temporaneo  • Salva come File… La codifica del file può anche essere cambiata qui. |
|                   |                       |            | Specificar el layer raster in uscita. Uno di:  • Salva como File Temporaneo  • Salva como File… La codifica del file puede también cambiarse aquí. |

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

**Codice Python**

**ID Algoritmo:** `gdal:triterrainruggednessindex`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Topographic Position Index (TPI)**

Genera un raster a banda singola con valori calcolati dall’elevazione. TPI sta per Topographic Position Index, che è definito come la differenza tra un pixel centrale e la media delle celle circostanti. Questo algoritmo è derivato dalla utility GDAL DEM.

**Menu predefinito:** Raster ► Analisi
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster di elevazione in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Il numero della banda da usare per i valori di elevazione</td>
</tr>
<tr>
<td>Configurare bordi</td>
<td>COMPUTE_EDGES</td>
<td>[boolean]</td>
<td>Genera bordi dal raster di elevazione</td>
</tr>
<tr>
<td>Opzioni</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
</tbody>
</table>
| Indice di rugosità del terreno | OUTPUT | [raster] | Specificare il layer raster in uscita. Uno di:  
  + Salva come File Temporaneo  
  + Salva come File...  
La codifica del file può anche essere cambiata qui. |

### In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indice di rugosità del terreno</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Raster in uscita.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** `gdal:tpitopographicpositionindex`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

### 24.2.2 Conversione Raster `gdal2xyz`

Converte i dati raster in file formato XYZ ASCII.
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster da convertire</td>
</tr>
<tr>
<td>Numeri Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Predefinito: La prima banda del layer in ingresso Se il raster è multibanda, scegli la banda che vuoi convertire</td>
</tr>
<tr>
<td>In uscita valori</td>
<td>CSV</td>
<td>[boolean]</td>
<td>Predefinito: False Imposta se il file in uscita deve essere di tipo valori separati da virgola (csv).</td>
</tr>
<tr>
<td>separati da virgola</td>
<td>OUTPUT</td>
<td>[file]</td>
<td>Predefinito: [Save to temporary file] Indicazione del file in uscita. Uno di: • Salva come File Temporaneo • Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>XYZ ASCII file</td>
<td>INPUT</td>
<td>[table]</td>
<td>File tabellare contenente i valori esportati dalla banda raster.</td>
</tr>
</tbody>
</table>

**Codice Python**

ID Algoritmo: gdal:gdal2xyz

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Da PCT a RGB**

Converte un’immagine palettagata a 8 bit in una RGB a 24 bit. Converte una banda di pseudocalore dal file in ingresso in un file RGB del formato desiderato.

Questo algoritmo è derivato da GDAL pct2rgb utility.

Menu predefinito: Raster ➤ Conversione

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Immagine raster a 8 bit in ingresso</td>
</tr>
<tr>
<td>Numeri Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Predefinito: La prima banda del layer in ingresso Se il raster è multibanda, scegli la banda che vuoi convertire</td>
</tr>
</tbody>
</table>
### Tabella 24.151 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generare un file RGBA</td>
<td>RGBA</td>
<td>[boolean]</td>
<td>Imposta se il file in uscita deve essere di tipo RGBA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td>Da PCT a RGB</td>
<td>OUTPUT</td>
<td>[file]</td>
<td>Indicazione del file in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Da PCT a RGB</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Immagine raster RGB a 24 bit</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:pcttorgb

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Poligonizzare (da raster a vettore)**

Crea poligoni vettoriali per tutte le regioni collegate da pixel nel raster che condividono un valore di pixel comune. Ogni poligono è creato con un attributo che indica il valore del pixel di quel poligono.

Questo algoritmo è derivato da GDAL polygonize utility.

**Menu predefinito:** Raster ➤ Conversione

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Se il raster è multibanda, scegli la banda che vuoi usare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: La prima banda del layer in ingresso</td>
<td></td>
</tr>
<tr>
<td>Nome del campo da creare</td>
<td>FIELD</td>
<td>[string]</td>
<td>Indica il nome del campo per gli attributi delle regioni collegate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: &quot;DN&quot;</td>
<td></td>
</tr>
<tr>
<td>Utilizzare l’8-connessione</td>
<td>EIGHT_CONNECTED</td>
<td>[boolean]</td>
<td>Se non impostato, le celle raster devono avere un bordo comune per essere considerate connesse (4-connected). Se impostato, anche le celle raster che si toccano sono considerate connesse (8-connected).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.152 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametri</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni GDAL extra tramite la linea di comando</td>
</tr>
<tr>
<td>addizionali della</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linea di comando</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vectorized</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Indicazione del layer vettoriale in uscita (poligono). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[string]</td>
<td>Predefinito: None</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vectorized</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Layer vettoriale in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:polygenize

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Riorganizzare le bande**

Crea un nuovo raster usando la(e) banda selezionata da un dato layer raster. L’algoritmo permette anche di riordinare le bande per il nuovo raster creato.

Questo algoritmo è derivato da GDAL translate utility.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Banda(e) selezionata</td>
<td>BANDS</td>
<td>[raster band] [list]</td>
<td>Elenco ordinato delle bande da usare per creare il nuovo raster</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi <em>GDAL driver options section</em>). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.153 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di dati in uscita</td>
<td>DATA_TYPE</td>
<td>[enumeration]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Definisce il tipo di dati del file raster in uscita. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Usa il tipo di dati del layer in ingresso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Int16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — UInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — UInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Int32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — Float64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — CInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — CInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — CFloat32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — CFloat64</td>
</tr>
</tbody>
</table>

Convertito	OUTPUT	[raster]	Predefinito: Salva su file temporaneo
			Indicazione del raster in uscita. Uno di:
			• Salva come File Temporaneo
			• Salva come File...
			La codifica del file può anche essere cambiata qui.

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convertito</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita con bande riorganizzate.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: gdal:rearrange_bands

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'ID algoritmo viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Da RGB a PCT

Converte un'immagine RGB a 24 bit in una tavolozza a 8 bit. Calcola una tabella pseudo-colore ottimale per l'immagine RGB data usando un algoritmo di taglio mediano su un istogramma RGB sottocampionato. Poi converte l'immagine in un'immagine pseudo-colorata usando la tabella dei colori. Questa conversione utilizza il dithering di Floyd-Steinberg (diffusione degli errori) per massimizzare la qualità visiva dell'immagine in uscita.

Se vuoi classificare una mappa raster e vuoi ridurre il numero di classi, può essere utile prima ricampionare l'immagine con questo algoritmo.

Questo algoritmo è derivato da GDAL rgb2pct utility.

Menu predefinito: Raster ➤ Conversione
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso (RGB)</td>
</tr>
</tbody>
</table>
| Numero di colori | NCOLORS  | [number] | Predefinito: 2  
Il numero di colori che l'immagine risultante conterrà. È possibile un valore tra 2-256. |
| Da RGB a PCT | OUTPUT | [raster] | Predefinito: [Save to temporary file]  
Indicazione del raster in uscita. Uno di:  
• Salva come File Temporaneo  
• Salva come File…  
La codifica del file può anche essere cambiata qui. |

### In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Da RGB a PCT</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita.</td>
</tr>
</tbody>
</table>

### Codice Python

ID Algoritmo: *gdal:rgbtopct*

```python
import processing
target_crs, nodata = processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

### Trasformare (convertire il formato)

Converte i dati raster tra diversi formati.

Questo algoritmo è derivato da [GDAL translate utility](#).

Menu predefinito: *Raster ➤ Conversione*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Sovrascrivere la proiezione del file in uscita</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>Specificare una proiezione per il file in uscita</td>
</tr>
</tbody>
</table>
| Assegnare un valore di nodata specifico alle bande in uscita | NODATA  | [number] | Predefinito: Non impostato  
Definisce il valore da usare per i nodata nel raster in uscita                                       |
Tabella 24.155 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copia tutti i sottoinsiemi di dati di questo file in file in uscita separati.</td>
<td>COPY_SUBDATASETS</td>
<td>[boolean] Predefinito: False</td>
<td>Creare file separati per i sottoinsiemi di dati</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPTIONS</td>
<td>[string] Predefinito: “”</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando</td>
<td>EXTRA</td>
<td>[string] Predefinito: None</td>
<td>Aggiungere opzioni GDAL extra tramite la linea di comando</td>
</tr>
<tr>
<td>Tipo di dati in uscita</td>
<td>DATA_TYPE</td>
<td>[enumeration] Predefinito: 0</td>
<td>Definisce il tipo di dati del file raster in uscita. Opzioni: • 0 — Usa il tipo di dati del layer in ingresso • 1 — Byte • 2 — Int16 • 3 — UInt16 • 4 — UInt32 • 5 — Int32 • 6 — Float32 • 7 — Float64 • 8 — CInt16 • 9 — CInt32 • 10 — CFloat32 • 11 — CFloat64</td>
</tr>
<tr>
<td>Convertito</td>
<td>OUTPUT</td>
<td>[raster] Predefinito: [Save to temporary file]</td>
<td>Specifica del layer raster in uscita (convertito). Uno di: • Salva come File Temporaneo • Salva come File... La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convertito</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita (convertito).</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: gdal:translate

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dicionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

### 24.2.3 Estrazione Raster

Ritagliare raster per estensione

Ritaglia qualsiasi file raster supportato da GDAL in una data estensione.

Questo algoritmo é derivato da GDAL warp utility.

**Menu predefinito:** *Raster ➔ Estrazione*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Il raster in ingresso</td>
</tr>
<tr>
<td>Estensione di ritaglio</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Estensione che dovrebbe essere usata per il raster in uscita. Solo i pixel all’interno del perimetro di delimitazione specificato saranno inclusi nel risultato.</td>
</tr>
<tr>
<td>Assegnare un valore nodata specificato alle bande in uscita</td>
<td>NODATA</td>
<td>[number]</td>
<td>Predefinito: None. Definisce un valore che dovrebbe essere inserito per i valori nodata nel raster in uscita</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPZIONI</td>
<td>[string]</td>
<td>Predefinito: “”. Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file…). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.156 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di dati in uscita</td>
<td>DATA_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il formato del file raster in uscita.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Usa il tipo di dati del layer in ingresso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Int16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — UInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — UInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Int32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — Float64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — CInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — CInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — CFloat32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — CFloat64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parametri addizionali della linea di comando Opzionale</th>
<th>EXTRA</th>
<th>[string]</th>
<th>Predefinito: None</th>
<th>Aggiungere opzioni GDAL extra della linea di comando</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ritagliato (estensione)</th>
<th>OUTPUT</th>
<th>[raster]</th>
<th>“[Salva in un file temporaneo]”</th>
<th>Indicazione del layer raster in uscita. Uno di:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può essere cambiata anche qui</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritagliato (estensione)</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita ritagliato dall'estensione data</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `gdal:cliprasterbyextent`

```python
import processing
data = processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Ritagliare raster con layer maschera

Ritaglia qualsiasi raster supportato da GDAL con un layer di maschera vettoriale.

Questo algoritmo è derivato da GDAL warp utility.

**Menu predefinito: Raster ➤ Estrazione**

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Il raster in ingresso</td>
</tr>
<tr>
<td>Layer maschera</td>
<td>MASK</td>
<td>[vettore: poligono]</td>
<td>Vettore maschera per il ritaglio del raster</td>
</tr>
<tr>
<td>SR di partenza</td>
<td>SOURCE_CRS</td>
<td>[crs]</td>
<td>Imposta le coordinate da usare per il raster in ingresso</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>Imposta le coordinate da usare per il layer maschera</td>
</tr>
<tr>
<td>Assegnare un valore noda specificato alle bande in uscita</td>
<td>NODATA</td>
<td>[number] Predefinito: None</td>
<td>Definisce un valore che dovrebbe essere inserito per i valori nodata nel raster in uscita</td>
</tr>
<tr>
<td>Creare una banda alfa in uscita</td>
<td>ALPHA_BAND</td>
<td>[boolean] Predefinito: False</td>
<td>Crea una banda alfa per il risultato. La banda alfa include quindi i valori di trasparenza dei pixel.</td>
</tr>
<tr>
<td>Far corrispondere l'estensione del raster ritagliato all'estensione del layer maschera</td>
<td>CROP_TO_CUTLINE</td>
<td>[boolean] Predefinito: True</td>
<td>Applica l'estensione del layer vettoriale al raster in uscita, se selezionato.</td>
</tr>
<tr>
<td>Mantenere la risoluzione del raster in ingresso</td>
<td>KEEP_RESOLUTION</td>
<td>[boolean] Predefinito: False</td>
<td>La risoluzione del raster in uscita non sarà cambiata</td>
</tr>
<tr>
<td>Impostare la risoluzione del raster in uscita</td>
<td>SET_RESOLUTION</td>
<td>[boolean] Predefinito: False</td>
<td>Deve essere specificata la risoluzione in uscita (dimensione cella)</td>
</tr>
<tr>
<td>Risoluzione X per la banda in uscita</td>
<td>X_RESOLUTION</td>
<td>[number] Predefinito: None</td>
<td>La larghezza delle celle nel raster in uscita</td>
</tr>
<tr>
<td>Risoluzione Y per la banda in uscita</td>
<td>Y_RESOLUTION</td>
<td>[number] Predefinito: None</td>
<td>L'altezza delle celle nel raster in uscita</td>
</tr>
<tr>
<td>Utilizzare l'implementazione del processo di warping in multithreading</td>
<td>MULTITHREADING</td>
<td>[boolean] Predefinito: False</td>
<td>Due thread saranno utilizzati per elaborare pezzi di immagine ed eseguire operazioni di input/output simultaneamente. Si noti che il calcolo stesso non è multithreaded.</td>
</tr>
</tbody>
</table>

continues on next page
### Tabella 24.157 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Opzioni addizionali di creazione</strong></td>
<td><strong>OPZIONI</strong></td>
<td>[string]</td>
<td>Predefinito: “”                                                                                               Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file…). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td><strong>Tipo di dati in uscita</strong></td>
<td><strong>DATA_TYPE</strong></td>
<td>[enumeration]</td>
<td>Predefinito: 0                                                                                       Definisce il formato del file raster in uscita. Opzioni: • 0 — Usa il tipo di dati del layer in ingresso • 1 — Byte • 2 — Int16 • 3 — UInt16 • 4 — UInt32 • 5 — Int32 • 6 — Float32 • 7 — Float64 • 8 — CInt16 • 9 — CInt32 • 10 — CFloat32 • 11 — CFloat64</td>
</tr>
</tbody>
</table>

#### Parametri addizionali della linea di comando

**Opzionale**

<table>
<thead>
<tr>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>EXTRA</strong></td>
<td>[string]</td>
<td>Aggiungere opzioni GDAL extra della linea di comando</td>
</tr>
</tbody>
</table>

#### Ritagliato (maschera)

**Opzionale**

<table>
<thead>
<tr>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OUTPUT</strong></td>
<td>[raster]</td>
<td>Predefinito: “[Salva in un file temporaneo]”                                                                                     Indicazione del layer raster in uscita. Uno di: • Salva come File Temporaneo • Salva come File… La codifica del file può essere cambiata anche qui</td>
</tr>
</tbody>
</table>

**In uscita**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ritagliato (maschera)</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita ritagliato da layer vettoriale</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** gdal:cliprasterbymasklayer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Curve di livello**

Estrae le curve di livello da qualsiasi raster di elevazione supportato da GDAL.

Questo algoritmo è derivato da GDAL contour utility.

**Menu predefinito:** *Raster ➤ Estrazione*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Banda raster da cui creare le curve di livello</td>
</tr>
<tr>
<td><strong>Intervallotra le curve di livello</strong></td>
<td>INTERVAL</td>
<td>[number]</td>
<td>Definisce l’intervallo tra le curve di livello nelle unità date del raster di elevazione (valore minimo 0)</td>
</tr>
<tr>
<td>Nome dell’attributo (se non impostato, nessun attributo di elevazione è allegato)</td>
<td>FIELD_NAME</td>
<td>[string]</td>
<td>Fornisce un nome per l’attributo in cui mettere l’elevazione.</td>
</tr>
<tr>
<td>Opzionale</td>
<td>OFFSET</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td><strong>Producere un vettore 3D</strong></td>
<td>CREATE_3D</td>
<td>[boolean]</td>
<td>Forza la produzione di vettori 3D invece che 2D. Include l’elevazione ad ogni vertice.</td>
</tr>
<tr>
<td>Opzionale</td>
<td>IGNORE_NODATA</td>
<td>[boolean]</td>
<td>Ignora tutti i valori nodata nell’insieme dei dati.</td>
</tr>
<tr>
<td>Opzionale</td>
<td>NODATA</td>
<td>[number]</td>
<td>Definisce un valore che dovrebbe essere inserito per i valori nodata nel raster in uscita</td>
</tr>
<tr>
<td><strong>Opzionale</strong></td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni GDAL extra della linea di comando. Fai riferimento alla corrispondente documentazione delle utility GDAL.</td>
</tr>
<tr>
<td><strong>Predefinito</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Valore del pixel in ingresso da considerare come «nodata»</strong></td>
<td>NODATA</td>
<td>[number]</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.158 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve di livello</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Indicazione del layer vettoriale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “[Salva in un file temporaneo]”</td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve di livello</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Layer vettoriale in uscita con le curve di livello</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** gdal:contour

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’`id algoritmo` viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il `dictionario dei parametri` fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Poligoni curve di livello**

 Estrae poligoni di curve di livello da qualsiasi raster di elevazione supportato da GDAL.

Questo algoritmo è derivato da GDAL contour utility.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Raster in ingresso</td>
</tr>
<tr>
<td>Numero Banda</td>
<td>BAND</td>
<td>[raster band]</td>
<td>Predefinito: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Banda raster da cui creare le curve di livello</td>
</tr>
<tr>
<td>Intervallo tra le curve di livello</td>
<td>INTERVAL</td>
<td>[number]</td>
<td>Predefinito: 10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Definisce l'intervallo tra le curve di livello nelle unità date del raster di elevazione (valore minimo 0)</td>
</tr>
<tr>
<td>Offset da zero rispetto al quale considerare gli intervalli Opzionale</td>
<td>OFFSET</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nome dell'attributo per la quota minima del poligono delle curve di livello Opzionale</td>
<td>FIELD_NAME_MIN</td>
<td>[string]</td>
<td>Predefinito: “ELEV_MIN”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fornisce un nome per l'attributo in cui mettere la quota minima del poligono delle curve di livello. Se non viene fornito nessuna quota minima non viene allegato nessun attributo di quota minima.</td>
</tr>
</tbody>
</table>
Tabella 24.159 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome dell’attributo per la quota massima del poligono delle curve di livello</td>
<td>FIELD_NAME_MAX</td>
<td>[string]</td>
<td>Predefinito: “ELEV_MAX”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fornisce un nome per l’attributo in cui mettere la quota massima del poligono delle curve di livello. Se non viene fornito nessuna quota massima non viene allegato nessun attributo di quota massima.</td>
</tr>
<tr>
<td>Produurre un vettore 3D</td>
<td>CREATE_3D</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forza la produzione di vettori 3D invece che 2D. Include l’elevazione ad ogni vertice.</td>
</tr>
<tr>
<td>Considera tutti i valori raster come validi</td>
<td>IGNORE_NODATA</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ignora tutti i valori nodata nell’insieme dei dati.</td>
</tr>
<tr>
<td><strong>Valore del pixel in ingresso da considerare come «nodata»</strong></td>
<td>NODATA</td>
<td>[number]</td>
<td>Predefinito: None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Definisce un valore che dovrebbe essere inserito per i valori nodata nel raster in uscita</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Predefinito: None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aggiungere opzioni GDAL extra della linea di comando. Fai riferimento alla corrispondente documentazione delle utility GDAL.</td>
</tr>
<tr>
<td>Curve di livello</td>
<td>OUTPUT</td>
<td>[vettore: poligono]</td>
<td>Predefinito: “[Salva in un file temporaneo]”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicazione del layer vettoriale in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve di livello</td>
<td>OUTPUT</td>
<td>[vettore: poligono]</td>
<td>Layer vettoriale in uscita con poligoni di curve di livello</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal_contour_polygon

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di Processing. Il diccionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
24.2.4 Raster miscellanea

Costruire panoramiche (piramidi)

Per accelerare il tempo di visualizzazione dei layer raster si possono creare delle panoramiche (piramidi). Le panoramiche sono copie a bassa risoluzione dei dati che QGIS utilizza a seconda del livello di zoom.

Questo algoritmo è derivato da GDAL addo utility.

Menu predefinito: Raster ► Miscellanea

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Livelli panoramicici</td>
<td>LEVELS</td>
<td>[string]</td>
<td>Predefinito: “2 4 8 16” Definisce il numero di livelli di panoramiche</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>calcolati dalla risoluzione originale del layer raster in ingresso. Di</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>default vengono considerati 4 livelli.</td>
</tr>
<tr>
<td>Rimuovere tutte le</td>
<td>CLEAN</td>
<td>[boolean]</td>
<td>Predefinito: False Rimuove le panoramiche esistenti dal raster. Per</td>
</tr>
<tr>
<td>panoramiche esistenti</td>
<td></td>
<td></td>
<td>impostazione predefinita queste non vengono rimosse.</td>
</tr>
<tr>
<td>Metodo di resampling</td>
<td>RESAMPLING</td>
<td>[enumeration]</td>
<td>Predefinito: 0 Calcola le panoramiche con un metodo di resampling definito.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td>I metodi di resampling possibili sono:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 – Vicino più prossimo (nearest)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 – Media (average)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 – Gaussiano (gauss)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 – Convoluzione Cubica (cubic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 – Convoluzione B-Spline (cubicspline)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 – Lanczos Windowed Sinc (lanczos)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 – MP Media (average_mp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 – Media in Mag/Phase Space (average_magphase)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 – Moda (mode)</td>
</tr>
<tr>
<td>Formato panoramiche</td>
<td>FORMAT</td>
<td>[enumeration]</td>
<td>Predefinito: 0 Le panoramiche possono essere memprizazzate internamente o</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td>esternamente come file GTiff o ERDAS Imagine. Per default le panoramiche</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sono memorizzate nel raster in uscita. I metodi di formato possibili sono:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 – Interno (se possibile)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 – Esterno (GTiff .ovr)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 – Esterno (Immagini ERDAS .aux)</td>
</tr>
<tr>
<td>Parametri addizionali della</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Predefinito: None Aggiungere opzioni GDAL extra dalla linea di comando</td>
</tr>
<tr>
<td>linea di comando</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piramidato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piramidato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita con panoramiche</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo**: gdal:overviews

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Costruire raster virtuale**

Costruisce un VRT (Virtual Dataset) che è un mosaico della serie di raster supportati da GDAL. Con un mosaico puoi unire diversi file raster.

Questo algoritmo è derivato da GDAL buildvrt utility.

**Menu predefinito**: Raster ➤ Miscellanea

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[raster] [list]</td>
<td>Layer raster supportati da GDAL.</td>
</tr>
</tbody>
</table>
| **Risoluzione**               | RESOLUTION          | [enumeration] | La risoluzione in uscita del mosaico. Per default verrà scelta la risoluzione media dei file raster. Opzioni:  
  • 0 — Media (average)  
  • 1 — La più alta (highest)  
  • 2 — La più bassa (lowest) |
| **Metti ogni file in ingresso in una banda separata** | SEPARATE | [boolean] | Con "True" si può definire che ogni file raster vada in una banda separata impilata nella banda VRT. |
| **Permetti la differenza di proiezione** | PROJ_DIFFERENCE | [boolean] | Permette che le bande in uscita abbiano diverse proiezioni derivate dalla proiezione dei layer raster in ingresso. |
| **Aggiungi la banda della maschera alfa al VRT quando il raster di origine non ne ha nessuna** | ADD_ALPHA | [boolean] | Aggiunge una banda di maschera alfa al VRT quando il raster di origine non ne ha. |
| **Sovrascrive la proiezione per il file in uscita** | ASSIGN_CRS | [crs] | Sovrascrive la proiezione per il file in uscita. Non viene fatta alcuna riproiezione. |

continues on next page
Tabella 24.161 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Algoritmo di ricampionamento</strong></td>
<td>RESAMPLING</td>
<td>[enumeration]</td>
<td>L'algoritmo di ricampionamento da utilizzare</td>
</tr>
<tr>
<td></td>
<td>Predefinito: 0</td>
<td></td>
<td>Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Vicino più vicino (<em>nearest</em>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Bilineare (<em>bilinear</em>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Convoluzione Cubica (<em>cubic</em>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Convoluzione B-Spline (<em>cubicspline</em>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Lanczos Windowed Sinc (<em>lanczos</em>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Media (<em>average</em>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Moda (<em>mode</em>)</td>
</tr>
<tr>
<td><strong>Valore(i) Nodata per le bande in ingresso (separati da spazio)</strong></td>
<td>SRC_NODATA</td>
<td>[string]</td>
<td>Valore(i) Nodata separato da spazio per la(e) banda in ingresso</td>
</tr>
<tr>
<td></td>
<td>Predefinito: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Parametri addizionali della linea di comando</strong></td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni GDAL extra dalla linea di comando</td>
</tr>
<tr>
<td></td>
<td>Predefinito: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Virtuale</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica del layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Virtuale</strong></td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `gdal:buildvirtualraster`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’“id algoritmo” viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
### gdal2tiles


Questo algoritmo crea anche i metadati necessari per Google Earth (KML SuperOverlay), nel caso in cui la mappa fornita usi la proiezione EPSG:4326.

I file world ESRI e la georeferenziazione incorporata sono utilizzati durante la generazione dei tasselli, ma puoi pubblicare un’immagine anche senza una corretta georeferenziazione.

Questo algoritmo è derivato da GDAL gdal2tiles utility.

#### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster supportato da GDAL.</td>
</tr>
<tr>
<td>Profilo di ritaglio tasselli</td>
<td>PROFILE</td>
<td>[enumeration]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Mercatore (mercator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Geodetico (geodetic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Raster (raster)</td>
</tr>
<tr>
<td>Livelli di zoom di visualizzazione</td>
<td>ZOOM</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot;</td>
</tr>
<tr>
<td>Visualizzatore web da generare</td>
<td>VIEWER</td>
<td>[enumerate]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Tutti (all)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — GoogleMaps (google)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — OpenLayers (openlayers)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Leaflet (leaflet)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Nessuno (none)</td>
</tr>
<tr>
<td>Titolo della mappa</td>
<td>TITLE</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot;</td>
</tr>
<tr>
<td>Copyright della mappa</td>
<td>COPYRIGHT</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot;</td>
</tr>
<tr>
<td>Metodo di ricampionamento</td>
<td>RESAMPLING</td>
<td>[enumeration]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L’algoritmo di ricampionamento da utilizzare</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Media (average)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Vicino più vicino (near)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Bilineare (bilinear)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Cubica (cubic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Spline cubica (cubicspline)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Lanczos Windowed sinc (lanczos)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Antialias (antialias)</td>
</tr>
</tbody>
</table>

continues on next page
### Tabella 24.162 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Il sistema di riferimento spaziale usato per i dati originari in ingresso Opzionale</strong></td>
<td>SOURCE_CRS</td>
<td>[crs]</td>
<td>Predefinito: None</td>
</tr>
<tr>
<td><strong>Valore di trasparenza da assegnare ai dati in ingresso Opzionale</strong></td>
<td>NODATA</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td><strong>Indirizzo URL dove saranno pubblicate i tasselli generati Opzionale</strong></td>
<td>URL</td>
<td>[string]</td>
<td>Predefinito: “”</td>
</tr>
<tr>
<td><strong>Chiave API di Bing Maps (<a href="https://www.bingmapsportal.com/">https://www.bingmapsportal.com/</a>) Opzionale</strong></td>
<td>BING_KEY</td>
<td>[string]</td>
<td>Predefinito: “”</td>
</tr>
<tr>
<td><strong>Generare solo i file mancanti</strong></td>
<td>RESUME</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td><strong>Generare KML per Google Earth</strong></td>
<td>KML</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td><strong>Evitare la generazione automatica di file KML per EPSG:4326</strong></td>
<td>NO_KML</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td><strong>Cartella risultato</strong></td>
<td>OUTPUT</td>
<td>[folder]</td>
<td>Specifica la cartella in uscita per i tasselli.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cartella risultato</strong></td>
<td>OUTPUT</td>
<td>[folder]</td>
<td>La cartella risultato (per tasselli)</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo**: gdal:gdal2tiles

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Fuso**

Unisce file raster in modo semplice. Qui puoi usare una tabella di pseudocalore da un raster in ingresso e definire il tipo di raster in uscita. Tutte le immagini devono essere nello stesso sistema di coordinate.

Questo algoritmo è derivato da GDAL merge utility.

**Menu predefinito**: Raster ★ Miscellanea

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[raster][list]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Prendi la tabella</td>
<td>PCT</td>
<td>[boolean]</td>
<td>Predefinito: False, La tabella di pseudocalore del primo layer sarà usata per la colorazione</td>
</tr>
<tr>
<td>di pseudocalore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dal primo layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metti ogni file in</td>
<td>SEPARATE</td>
<td>[boolean]</td>
<td>Metti ogni file in ingresso in una banda separata</td>
</tr>
<tr>
<td>ingresso in una banda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>separata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo di dati in</td>
<td>DATA_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il formato del file raster in uscita. Opzioni:</td>
</tr>
<tr>
<td>uscita</td>
<td></td>
<td></td>
<td>• 0 — Byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Int16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — UInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — UInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Int32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Float64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — CInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — CInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — CFloat32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — CFloat64</td>
</tr>
<tr>
<td>Valore del pixel</td>
<td>NODATA_INPUT</td>
<td>[number]</td>
<td>Ignora i pixel dei file che vengono uniti con questo valore di pixel</td>
</tr>
<tr>
<td>in ingresso da trattare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>come «nodata»</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assegnare il valore</td>
<td>NODATA_OUTPUT</td>
<td>[number]</td>
<td>Assegna il valore di nodata specificato alle bande in uscita.</td>
</tr>
<tr>
<td>di nodata specificato al</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>risultato. Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.163 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opzioni addizionali di</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da</td>
</tr>
<tr>
<td>creazione</td>
<td></td>
<td></td>
<td>creare (colori, dimensione del blocco, compressione del file…) Per</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td>comodità, si può fare affidamento su profili predefiniti (vedi Opzioni del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>driver GDAL sezione). For Batch Process: separate multiple options with a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pipe character (</td>
</tr>
<tr>
<td>Extra addizionali della linea</td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni GDAL extra dalla linea di comando</td>
</tr>
<tr>
<td>di comando</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuso</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica del layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuso</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** gdal:merge

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Pansharpening**

Esegue un’operazione di pan-sharpening. Può creare un dataset di output «classico» (come GeoTIFF), o un dataset VRT che descrive l’operazione di pan-sharpening.

Vedi GDAL Pansharpen.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insieme di dati spettrali</td>
<td>SPECTRAL</td>
<td>[raster]</td>
<td>Layer raster (spettrale) in ingresso</td>
</tr>
<tr>
<td>Insieme di dati panchromatici</td>
<td>PANCHROMATIC</td>
<td>[raster]</td>
<td>Layer raster in ingresso (pancromatico)</td>
</tr>
</tbody>
</table>
Tabella 24.164 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Algoritmo di ricampionamento | RESAMPLING | [enumeration] Predefinito: 2 | L'algoritmo di ricampionamento da utilizzare. Opzioni:  
- 0 — Vicino più vicino (nearest)  
- 1 — Bilineare (bilinear)  
- 2 — Cubico (cubic)  
- 3 — Spline cubica (cubicspline)  
- 4 — Lanczos Windowed Sinc (lanczos)  
- 5 — Media (average) |
| Opzioni addizionali di creazione | OPTIONS | [string] Predefinito: “” | Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi Opzioni del driver GDAL sezione). For Batch Process: separate multiple options with a pipe character (|). |
| Parametri addizionali della linea di comando | EXTRA | [string] Predefinito: None | Aggiungere opzioni GDAL extra dalla linea di comando |
| Output | OUTPUT | [raster] Predefinito: [Save to temporary file] | Specifica il layer raster in uscita (sharpened). Uno di:  
- Salva come File Temporaneo  
- Salva come File...  
La codifica del file può anche essere cambiata qui. |

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita (sharpened)</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: gdal:pansharp

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

24.2. Algoritmi GDAL
Calcolatore Raster

Calcolatore raster a riga di comando con sintassi numpy. Usa qualsiasi aritmetica di base supportata dagli array di Numpy, come +, -, * e / insieme agli operatori logici, come >. Si noti che tutti i raster in ingresso devono avere le stesse dimensioni, ma non viene eseguito alcun controllo di proiezione.

Vedi la GDAL Raster Calculator utility docs.

Vedi anche:

* Calcolatore raster

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso A</td>
<td>INPUT_A</td>
<td>[raster]</td>
<td>Primo layer raster in ingresso (obbligatorio)</td>
</tr>
<tr>
<td>Numero di banda raster per A</td>
<td>BAND_A</td>
<td>[raster band]</td>
<td>Banda per il layer in ingresso A (obbligatorio)</td>
</tr>
<tr>
<td>Layer in ingresso B (Opzionale)</td>
<td>INPUT_B</td>
<td>[raster]</td>
<td>Secondo layer raster in ingresso</td>
</tr>
<tr>
<td>Numero di banda raster per B</td>
<td>BAND_B</td>
<td>[raster band]</td>
<td>Banda per il layer in ingresso B</td>
</tr>
<tr>
<td>Layer in ingresso C (Opzionale)</td>
<td>INPUT_C</td>
<td>[raster]</td>
<td>Terzo layer raster in ingresso</td>
</tr>
<tr>
<td>Numero di banda raster per C</td>
<td>BAND_C</td>
<td>[raster band]</td>
<td>Banda per il layer in ingresso C</td>
</tr>
<tr>
<td>Layer in ingresso D (Opzionale)</td>
<td>INPUT_D</td>
<td>[raster]</td>
<td>Quarto layer raster in ingresso</td>
</tr>
<tr>
<td>Numero di banda raster per D</td>
<td>BAND_D</td>
<td>[raster band]</td>
<td>Banda per il layer in ingresso D</td>
</tr>
<tr>
<td>Layer in ingresso E (Opzionale)</td>
<td>INPUT_E</td>
<td>[raster]</td>
<td>Quinto layer raster in ingresso</td>
</tr>
<tr>
<td>Numero di banda raster per E</td>
<td>BAND_E</td>
<td>[raster band]</td>
<td>Banda per il layer in ingresso E</td>
</tr>
<tr>
<td>Layer in ingresso F (Opzionale)</td>
<td>INPUT_F</td>
<td>[raster]</td>
<td>Sesto layer raster in ingresso</td>
</tr>
<tr>
<td>Numero di banda raster per F</td>
<td>BAND_F</td>
<td>[raster band]</td>
<td>Banda per il layer in ingresso F</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.165 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Calcolo nella sintassi gdalnumerica usando + o qualsiasi funzione di array numpy (cioè logical_and()) | FORMULA       | [string]           | La formula di calcolo. Esempi:  
  • A*(A>0) — dà come risultato il valore del raster A se il valore di A è maggiore di 0. Se no, dà come risultato 0.  
  • A*(A>0 e A>B) — dà come risultato il valore di A se questo valore è maggiore di 0 e maggiore del valore di B. Se no, dà come risultato 0.  
  • A*logical_or(A<=177, A>=185) — dà come risultato il valore di A se A <= 177 o A >= 185. In caso contrario, dà come risultato 0.  
  • sqrt(A*A+B*B) — dà come risultato la radice quadrata della somma del valore di A al quadrato e il valore di B al quadrato. |
| Imposta il valore di nodata in uscita                         | NO_DATA       | [number]           | Valore da usare per nodata                                                                                                                                                                                  |
| Tipo di raster in uscita                                      | RTYPE         | [enumeration]      | Definisce il formato del file raster in uscita.  
  - 0 — Byte  
  - 1 — Int16  
  - 2 — UInt16  
  - 3 — UInt32  
  - 4 — Int32  
  - 5 — Float32  
  - 6 — Float64                                                                                                                                 |
| Opzioni addizionali di creazione                              | OPTIONS       | [string]           | Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi Opzioni del driver GDAL sezione).  
  For Batch Process: separate multiple options with a pipe character ( | ).                                                                                                                                 |
| Parametri addizionali della linea di comando                  | EXTRA         | [string]           | Aggiungere opzioni GDAL extra dalla linea di comando                                                                                                                                                       |
| Calcolato                                                     | OUTPUT        | [raster]           | Specifica il layer raster in uscita (calcolato). Uno di:  
  • Salva come File Temporaneo  
  • Salva come File…  
  La codifica del file può anche essere cambiata qui.                                                             |
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcolato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita (calcolato)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo**: gdal:rastercalculator

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'id dell'"id algoritmo" viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Informazioni Raster**

Il programma gdalinfo elenca varie informazioni su un insieme di dati raster supportato da GDAL.

Questo algoritmo è derivato da GDAL info utility.

**Menu predefinito**: Raster ➤ Miscellanea

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td><strong>Calcolo forzato dei valori effettivi min/max per ogni banda</strong></td>
<td>MIN_MAX</td>
<td>[boolean]</td>
<td>Forza il calcolo dei valori effettivi min/max per ogni banda nell'insieme dei dati</td>
</tr>
<tr>
<td><strong>Leggere e visualizzare le statistiche dell'immagine (forzare il calcolo se necessario)</strong></td>
<td>STATS</td>
<td>[boolean]</td>
<td>Leggere e visualizzare le statistiche dell'immagine. Forza il calcolo se non ci sono statistiche memorizzate in un'immagine.</td>
</tr>
<tr>
<td><strong>Rimuovi le informazioni GCP</strong></td>
<td>NO_GCP</td>
<td>[boolean]</td>
<td>Rimuove la stampa dell'elenco dei punti di controllo a terra. Può essere utile per set di dati con un'enorme quantità di GCP, come L1B AVHRR o HDF4 MODIS che ne contengono migliaia.</td>
</tr>
<tr>
<td><strong>Rimuovere le informazioni sui metadati</strong></td>
<td>NO_METADATA</td>
<td>[boolean]</td>
<td>Rimuovere le informazioni sui metadati. Alcuni insiemi di dati possono contenere molte stringhe di metadati.</td>
</tr>
<tr>
<td><strong>Parametri addizionali della linea di comando</strong></td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni GDAL extra dalla linea di comando</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.166 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informazioni</td>
<td>OUTPUT</td>
<td>[html]</td>
<td>Specificare il file HTML per il risultato.</td>
</tr>
<tr>
<td>layer</td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td>Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informazioni</td>
<td>OUTPUT</td>
<td>[html]</td>
<td>Il file HTML che contiene informazioni sul layer raster in ingresso</td>
</tr>
<tr>
<td>layer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** gdal:gdalinfo

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomini i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Ricostruire**

Ricostruisce un insieme di tasselli in ingresso. Tutte i tasselli in ingresso devono essere georeferenziati nello stesso sistema di coordinate e avere un numero corrispondente di bande. Opzionalmente vengono generati i livelli della piramide.

Questo algoritmo è derivato da **GDAL Retile utility**.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File in ingresso</td>
<td>INPUT</td>
<td>[raster][list]</td>
<td>I file raster in ingresso</td>
</tr>
<tr>
<td>Larghezza tassello</td>
<td>TILE_SIZE_X</td>
<td>[number]</td>
<td>Larghezza dei tasselli in pixel (minimo 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 256</td>
<td></td>
</tr>
<tr>
<td>Altezza tassello</td>
<td>TILE_SIZE_Y</td>
<td>[number]</td>
<td>Altezza dei tasselli in pixel (minimo 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 256</td>
<td></td>
</tr>
<tr>
<td>Sovrapposizione in pixel</td>
<td>OVERLAP</td>
<td>[number]</td>
<td>Sovrapposizione in pixel tra tasselli consecutivi</td>
</tr>
<tr>
<td>tra tasselli consecutivi</td>
<td></td>
<td>Predefinito: 0</td>
<td></td>
</tr>
<tr>
<td>Numero di livelli di</td>
<td>LEVELS</td>
<td>[number]</td>
<td>Numero di livelli di piramide da costruire</td>
</tr>
<tr>
<td>piramide da costruire</td>
<td></td>
<td>Predefinito: 1</td>
<td>Minimo: 0</td>
</tr>
<tr>
<td>Sistema di riferimento</td>
<td>SOURCE_CRS</td>
<td>[crs]</td>
<td>Sistema di riferimento delle coordinate di origine</td>
</tr>
<tr>
<td>delle coordinate di</td>
<td></td>
<td>Predefinito: None</td>
<td>origine</td>
</tr>
</tbody>
</table>

continues on next page
### Tabella 24.167 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Metodo di ricampionamento</strong></td>
<td>RESAMPLING</td>
<td>[enumeration]</td>
<td>L’algoritmo di ricampionamento da utilizzare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>Opzioni:&lt;br&gt;• 0 — Vicino più vicino (nearest)&lt;br&gt;• 1 — Bilineare (bilinear)&lt;br&gt;• 2 — Cubico (cubic)&lt;br&gt;• 3 — Spline cubica (cubicspline)&lt;br&gt;• 4 — Lanczos Windowed Sinc (lanczos)</td>
</tr>
<tr>
<td><strong>Delimitatore di colonna usato nel file CSV</strong></td>
<td>DELIMITER</td>
<td>[string]</td>
<td>Delimitatore da usare nel file CSV contenente le informazioni di georeferenziazione del(i) tassello</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “;”</td>
<td></td>
</tr>
<tr>
<td><strong>Opzioni addizionali di creazione</strong></td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file…). Per comodità, si può fare affidamento su profili predefiniti (vedi Opzioni del driver GDAL sezione). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td><strong>Parametri addizionali della linea di comando</strong></td>
<td>EXTRA</td>
<td>[string]</td>
<td>Aggiungere opzioni GDAL extra dalla linea di comando</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “”</td>
<td></td>
</tr>
<tr>
<td><strong>Tipo di dati in uscita</strong></td>
<td>DATA_TYPE</td>
<td>[enumeration]</td>
<td>Definisce il formato del file raster in uscita. Opzioni:&lt;br&gt;• 0 — Byte&lt;br&gt;• 1 — Int16&lt;br&gt;• 2 — UInt16&lt;br&gt;• 3 — UInt32&lt;br&gt;• 4 — Int32&lt;br&gt;• 5 — Float32&lt;br&gt;• 6 — Float64&lt;br&gt;• 7 — UInt16&lt;br&gt;• 8 — UInt32&lt;br&gt;• 9 — CFloat32&lt;br&gt;• 10 — CFloat64</td>
</tr>
<tr>
<td><strong>Costruire solo le piramidi</strong></td>
<td>ONLY_PYRAMIDS</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td><strong>Usa una cartella separata per ogni fila di tasselli</strong></td>
<td>DIR_FOR_ROW</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td><strong>Cartella risultato</strong></td>
<td>OUTPUT</td>
<td>[folder]</td>
<td>Specifica la cartella in uscita per i tasselli. Una di:&lt;br&gt;• Salva in una cartella temporanea&lt;br&gt;• Salva nella Cartella…&lt;br&gt;La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.167 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File CSV</td>
<td>OUTPUT_CSV</td>
<td>[file]</td>
<td>Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ignora risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OUTPUT_CSV Il file CSV con le informazioni di georeferenziazione dei tasselli</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartella risultato</td>
<td>OUTPUT</td>
<td>[folder]</td>
<td>La cartella in uscita per i tasselli.</td>
</tr>
<tr>
<td>File CSV</td>
<td>OUTPUT_CSV</td>
<td>[file]</td>
<td>Il file CSV con le informazioni di georeferenziazione dei tasselli.</td>
</tr>
</tbody>
</table>

**Codice Python**

ID Algoritmo: gdal:retile

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

**Indice tassello**

Costruisce un layer vettoriale con un record per ogni file raster in ingresso, un attributo contenente il nome del file e una geometria poligonale che contorna il raster. Questo layer in uscita è adatto all’uso con MapServer come tileindex raster.

Questo algoritmo è derivato da [GDAL Tile Index utility](#).

**Menu predefinito:** Raster ► Miscellanea

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File in ingresso</td>
<td>LAYERS</td>
<td>[raster] [list]</td>
<td>I file raster in ingresso. Possono essere più file.</td>
</tr>
<tr>
<td>Nome del campo per contenere il percorso del file dei raster indicizzati</td>
<td>PATH_FIELD_NAME Opzionale</td>
<td>[string] Predefinito: “location”</td>
<td>Il nome del campo in uscita per contenere il percorso/posizione del file dei raster indicizzati.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.168 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memorizzare il percorso assoluto dei raster indicizzati</td>
<td>ABSOLUTE_PATH</td>
<td>[boolean]</td>
<td>Imposta se il percorso assoluto dei file raster è memorizzato nel file di indice dei tasselli. Per default i nomi dei file raster saranno messi nel file esattamente come sono specificati nel comando.</td>
</tr>
<tr>
<td>Tralascia file con riferimento a proiezioni diverse</td>
<td>PROJ_DIFFERENCE</td>
<td>[boolean]</td>
<td>Verranno inseriti solo i file con la stessa proiezione dei file già inseriti nell’indice dei tasselli. Il default non controlla la proiezione e accetta tutti gli input.</td>
</tr>
<tr>
<td>Trasforma le geometrie al dato SR Opzionale</td>
<td>TARGET_CRS</td>
<td>[crs]</td>
<td>Le geometrie dei file in ingresso saranno trasformate nel sistema di riferimento di coordinate specificato. Default crea poligoni rettangolari semplici nello stesso sistema di riferimento di coordinate dei raster in ingresso.</td>
</tr>
<tr>
<td>Il nome del campo per memorizzare l’SR di ogni tassello Opzionale</td>
<td>CRS_FIELD_NAME</td>
<td>[string]</td>
<td>Il nome del campo per memorizzare l’SR di ogni tassello</td>
</tr>
<tr>
<td>Il formato in cui deve essere scritto il SR di ogni tassello</td>
<td>CRS_FORMAT</td>
<td>[enumeration]</td>
<td>Formato per il SR. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 – Auto (AUTO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 – Well-known text (WKT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 – EPSG (EPSG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 – Proj.4 (PROJ)</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indice Tassello</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il layer vettoriale del poligono con l’indice del tassello.</td>
</tr>
</tbody>
</table>

**Codice Python**

_ID Algoritmo:_ `gdal:tileindex`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id dell’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
24.2.5 Proiezioni Raster

Assegnare una proiezione

Applica un sistema di coordinate a un dataset raster
Questo algoritmo è derivato da GDAL edit utility.

Menu di default: Raster ➤ Proiezioni

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT_LAYER</td>
<td>[raster]</td>
<td>Layer raster in input</td>
</tr>
<tr>
<td>SR desiderato</td>
<td>SR</td>
<td>[sr]</td>
<td>La proiezione (SR) del layer in uscita</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer con proiezione</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Il layer raster in uscita (con le nuove informazioni di proiezione)</td>
</tr>
</tbody>
</table>

Codice Python

Algorithm ID: gdal:assignprojection

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Estrazione proiezione

Estraia la proiezione di un file raster e la scrive in un file world con estensione .wld.
Questo algoritmo è derivato dalla utility GDAL srsinfo.

Menu di default: Raster ➤ Proiezioni

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File in ingresso</td>
<td>INPUT_LAYER</td>
<td>[raster]</td>
<td>Raster in ingresso. Il layer raster deve essere basato su file, poiché l'algoritmo usa il percorso del file raster come posizione del file generato .wld. L'utilizzo di un layer raster non basato su file porterà ad un errore.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>World file</td>
<td>WORLD_FILE</td>
<td>file</td>
<td>File di testo con estensione .wld contenente i parametri di trasformazione per il file raster.</td>
</tr>
<tr>
<td>ESRI Shapefile prj file</td>
<td>PRJ_FILE</td>
<td>file</td>
<td>File di testo con estensione .prj che descrive il SR. Sarà Nessuno se:gui\label: Crea anche file .prj è False.</td>
</tr>
</tbody>
</table>

**Codice Python**

*Algorithm ID:* `gdal:extractprojection`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id *algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Trasformazione (riproiezione)**

Riproietta uno layr raster in un altro Sistema di Riferimento delle coordinate (SR). La risoluzione del file in uscita e il metodo di ricampionamento possono essere scelti.

Questo algoritmo è derivato da GDAL *warp utility*.

**Menu di default:** *Raster ➤ Proiezioni*

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>raster</td>
<td>Layer raster in ingresso da riproiettare</td>
</tr>
<tr>
<td>SR di partenza</td>
<td>SOURCE_CRS</td>
<td>[sr]</td>
<td>Definisce il SR del layer raster in ingresso.</td>
</tr>
<tr>
<td>SR di destinazione</td>
<td>TARGET_CRS</td>
<td>[sr]</td>
<td>Il SR del layer raster in uscita</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Valore mancante per le bande in uscita</strong></td>
<td>NODATA</td>
<td>[number] Predefinito: None</td>
<td>Imposta il valore nodata per le bande in uscita. Se non fornito, i valori di nodata saranno copiati dal dataset di origine.</td>
</tr>
<tr>
<td><strong>Risoluzione del file in uscita in base alle unità georeferenziate di destinazione</strong></td>
<td>TARGET_RESOLUTION</td>
<td>[number] Predefinito: None</td>
<td>Definisce la risoluzione del file in uscita del risultato della riproiezione</td>
</tr>
<tr>
<td><strong>Opzioni addizionali di creazione</strong></td>
<td>OPTIONS</td>
<td>[string] Predefinito: &quot;&quot;</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td><strong>Tipo dati in uscita</strong></td>
<td>DATA_TYPE</td>
<td>[enumeration] Predefinito: 0</td>
<td>Definisce il formato del file raster in uscita. Opzioni: 0 — Usa il tipo di dati del layer in ingresso 1 — Byte 2 — Int16 3 — UInt16 4 — UInt32 5 — Int32 6 — Float32 7 — Float64 8 — CInt16 9 — CInt32 10 — CFloat32 11 — CFloat64</td>
</tr>
<tr>
<td><strong>Estensioni georeferenziate del file in uscita da creare</strong></td>
<td>TARGET_EXTENT</td>
<td>[extent]</td>
<td>Imposta l'estensione georeferenziata del file in uscita da creare (nella SR di destinazione per impostazione predefinita. Nella SR dell'estensione raster di destinazione, se specificata.).</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.169 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR dell’estensione raster di destinazione</td>
<td>TARGET_EXTENT_CRS</td>
<td>[sr]</td>
<td>Specifica il SR in cui interpretare le coordinate date per l’estensione del file in uscita. Questo non deve essere confuso con il SR di destinazione del set di dati in uscita. È invece una comodità, ad esempio quando si conoscono le coordinate di uscita in un SR geodetico long/lat, ma si desidera un risultato in un sistema di coordinate proiettato.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usa l’implementazione warping multithreaded</td>
<td>MULTITHREADING</td>
<td>[booleano]</td>
<td>Due thread saranno utilizzati per elaborare pezzi dell’immagine ed eseguire operazioni di input/output simultaneamente. Si noti che il calcolo di per sé non è multithreaded.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riproiettato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Specifica del layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riproiettato</td>
<td>OUTPUT</td>
<td>[raster]</td>
<td>Layer raster in uscita riproiettato</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** gdal:warpreproject

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
24.2.6 Conversione vettoriale

Converti formato

Converte qualsiasi livello vettoriale supportato OGR in un altro formato supportato.
Questo algoritmo è derivato da ogr2ogr.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Opzioni aggiuntive di creazione</td>
<td>OPZIONI</td>
<td>[stringa]</td>
<td>Opzioni aggiuntive di creazione GDAL.</td>
</tr>
<tr>
<td>Opzionali di creazione Opzionale</td>
<td></td>
<td>Predefinito: »)(nessuna opzione aggiuntiva)</td>
<td></td>
</tr>
<tr>
<td>Convertito</td>
<td>IN USCITA</td>
<td>[lo stesso del livello in ingresso]</td>
<td>Specificare il livello vettoriale in uscita. Uno fra:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per Salva come File, il formato in uscita deve essere specificato. Tutti i</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>formati vettoriali GDAL sono supportati. Per Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>verrà usato il formato vettoriale predefinito di QGIS.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convertito</td>
<td>IN USCITA</td>
<td>[lo stesso del livello in ingresso]</td>
<td>Livello vettoriale in uscita</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** gdal:convertformat

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
**Rasterizzare (sovrascrivere con attributo)**

Sovrascrive un layer raster con i valori di un layer vettoriale. I nuovi valori sono assegnati in base al valore dell’attributo dell’elemento vettoriale sovrapposto.

Questo algoritmo è derivato da GDAL rasterize utility.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Layer raster in ingresso</td>
<td>INPUT_RASTER</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Campo da usare per un valore di</td>
<td>FIELD</td>
<td>[tablefield: numeric]</td>
<td>Definisce il campo attributo da usare dove inserire i valori dei pixel</td>
</tr>
<tr>
<td>burn-in Opzionale</td>
<td>ADD</td>
<td>[boolean]</td>
<td>Se False, ai pixel viene assegnato il valore del campo selezionato. Se True, il valore del campo selezionato viene aggiunto al valore del layer raster in ingresso.</td>
</tr>
<tr>
<td>Aggiungi valori di burn in ai valori raster esistenti</td>
<td>EXTRA</td>
<td>[stringa]</td>
<td>Aggiungere comando GDAL extra con opzioni a riga di comando</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasterizzato</td>
<td>IN USCITA</td>
<td>[raster]</td>
<td>Il layer raster in ingresso sovrascritto</td>
</tr>
</tbody>
</table>

**Codice Python**

*ID Algoritmo:* gdal:rasterize_over

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Rasterizzare (sovrascrivere con un valore fissato)**

Sovrascrive parti di un layer raster con un valore fissato. I pixel da sovrascrivere sono scelti in base al layer vettoriale (sovrapposto) fornito.

Questo algoritmo è derivato da GDAL rasterize utility.
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN_INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Layer raster in ingresso</td>
<td>INPUT_RASTER</td>
<td>[raster]</td>
<td>Layer raster in ingresso</td>
</tr>
<tr>
<td>Un valore fissato da bruciare</td>
<td>BURN</td>
<td>[numero]</td>
<td>Predefinito: 0.0 Il valore da bruciare</td>
</tr>
<tr>
<td>Aggiungi valori di burn in ai valori raster esistenti</td>
<td>ADD</td>
<td>[boolean]</td>
<td>Predefinito: False Se False, ai pixel viene assegnato il valore fissato. Se True, il valore fissato viene aggiunto al valore del layer raster in ingresso.</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando Opzionale</td>
<td>EXTRA</td>
<td>[stringa]</td>
<td>Predefinito: “” Aggiungere comando GDAL extra con opzioni a riga di comando</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasterizzato</td>
<td>IN_USCITA</td>
<td>[raster]</td>
<td>Il layer raster in ingresso sovrascritto</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** `gdal:rasterize_over_fixed_value`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

### Rasterizzare (da vettore a raster)

Converte geometrie vettoriali (punti, linee e poligoni) in un’immagine raster.

Questo algoritmo è derivato da GDAL rasterize utility.

**Menu predefinito:** *Raster ➤ Conversione*

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>IN_INGRESSO</td>
<td>[vettore: qualsiasi]</td>
<td>Livello vettoriale in ingresso</td>
</tr>
<tr>
<td>Campo da usare per un valore di burn-in Opzionale</td>
<td>FIELD</td>
<td>[tablefield: numeric]</td>
<td>Definisce il campo attributo da cui dovrebbero essere scelti gli attributi per i pixel</td>
</tr>
</tbody>
</table>
Tabella 24.172 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un valore fissato da bruciare Opzionale</td>
<td>BURN</td>
<td>[numero]</td>
<td>Un valore fissato da bruciare in una banda per tutti gli elementi.</td>
</tr>
<tr>
<td>Unità per la dimensione del raster in uscita</td>
<td>UNITA</td>
<td>[numero]</td>
<td>Unità da usare per definire la dimensione/risoluzione del raster in uscita. Uno tra:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Pixel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Unità georeferenziata</td>
</tr>
<tr>
<td>Larghezza/risoluzione orizzontale</td>
<td>LARGHEZZA</td>
<td>[numero]</td>
<td>Imposta la larghezza (se l'unità di misura è «Pixel») o la risoluzione orizzontale (se l'unità di misura è «Unità georeferenziata») del raster in uscita. Valore minimo: 0.0.</td>
</tr>
<tr>
<td>Altezza/risoluzione verticale</td>
<td>ALTEZZA</td>
<td>[numero]</td>
<td>Imposta l'altezza (se l'unità di misura è «Pixel») o la risoluzione verticale (se l’unità di misura è «Unità georeferenziata») del raster in uscita.</td>
</tr>
<tr>
<td>Estensione file in uscita</td>
<td>ESTENSIONE</td>
<td>[estensione]</td>
<td>Estensione del layer raster in uscita. Se l'estensione non è specificata, verrà usata l'estensione minima che copre il(i) layer di riferimento selezionato.</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione Opzionale</td>
<td>OPZIONI</td>
<td>[stringa]</td>
<td>Per aggiungere una o più opzioni di creazione che controllano il raster da creare (colori, dimensione del blocco, compressione del file...). Per comodità, si può fare affidamento su profili predefiniti (vedi GDAL driver options section). For Batch Process: separate multiple options with a pipe character (</td>
</tr>
<tr>
<td>Tipo di dati in uscita</td>
<td>DATA_TYPE</td>
<td>[numero]</td>
<td>Definisce il formato del file raster in uscita. Opzioni:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Int16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — UInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — UInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Int32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Float32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Float64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — CInt16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — CInt32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — CFloat32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — CFloat64</td>
</tr>
<tr>
<td>Pre-inizializzare l'immagine in uscita con un valore Opzionale</td>
<td>INIT</td>
<td>[numero]</td>
<td>Pre-inizializza le bande dell'immagine in uscita con questo valore. Non è contrassegnato come valore di nodata nel file in uscita. Lo stesso valore viene usato in tutte le bande.</td>
</tr>
</tbody>
</table>
Tabella 24.172 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertire rasterizzazione</td>
<td>INVERT</td>
<td>[boolean]</td>
<td>Brucia il valore di bruciatura fissato, o il valore di bruciatura associato al primo elemento in tutte le parti dell’immagine non all’interno del poligono fornito.</td>
</tr>
<tr>
<td>Rasterizzato</td>
<td>IN USCITA</td>
<td>[raster]</td>
<td>Indicazione del layer raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File... La codifica del file può essere cambiata anche qui. Per Salva su File. ... il formato in uscita deve essere specificato. Sono supportati tutti i formati raster GDAL. Per il Salva in un File Temporaneo verrà utilizzato il formato raster di default di QGIS.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasterizzato</td>
<td>IN USCITA</td>
<td>[raster]</td>
<td>Livello raster in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:rasterize

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

### 24.2.7 Geoprocessing sui vettori

**Buffer sui vettori**

Crea buffer intorno alle forme di un layer vettoriale.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer vettoriale in ingresso</td>
</tr>
<tr>
<td>Nome della colonna Geometria</td>
<td>GEOMETRY</td>
<td>[string]</td>
<td>Il nome della colonna della geometria del layer in ingresso da usare</td>
</tr>
<tr>
<td>Distanza Buffer</td>
<td>DISTANCE</td>
<td>[number]</td>
<td>Minimo: 0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 10.0</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.173 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolvere per attributo</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Campo da usare per dissolvere</td>
</tr>
<tr>
<td></td>
<td>Opzionale</td>
<td>Predefinito: None</td>
<td></td>
</tr>
<tr>
<td>Risultati della dissolvenza</td>
<td>DISSOLVE</td>
<td>[boolean]</td>
<td>Se impostato, il risultato sarà dissolto. Se nessun campo è impostato per la dissolvenza, tutti i buffer sono dissolti in un solo elemento.</td>
</tr>
<tr>
<td></td>
<td>Opzionale</td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td>Crea un elemento per ogni geometria in ogni tipo di insieme di geometrie nel file di origine</td>
<td>EXPLODE_COLLECTIONS</td>
<td>[boolean]</td>
<td>Specifica il buffer layer in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td>Opzionale</td>
<td>Predefinito: False</td>
<td>- Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td>Opzioni aggiuntive di creazione GDAL.</td>
<td>OPZIONI</td>
<td>[string]</td>
<td>(nessuna opzione aggiuntiva)</td>
</tr>
<tr>
<td>Buffer</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specifica il buffer layer risultato</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td></td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer</td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il buffer layer risultato</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:buffervectors

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Ritagliare vettore in base alla estensione**

Ritaglia qualsiasi file vettoriale supportato da OGR in una data estensione.

Questo algoritmo è derivato dalla utility ogr2ogr di GDAL <https://gdal.org/programs/ogr2ogr.html>_.

---

**QGIS Desktop 3.16 User Guide**

Capitolo 24. Fornitori di processing e algoritmi
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer vettoriale in ingresso</td>
</tr>
<tr>
<td>Ritagliare su estensione</td>
<td>EXTENT</td>
<td>[extent]</td>
<td>Definisce il rettangolo di delimitazione che dovrebbe essere usato per il file vettoriale in uscita. Deve essere definito in coordinate del SR di destinazione.</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPZIONI</td>
<td>[string]</td>
<td>Opzioni aggiuntive di creazione GDAL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: » (nessuna opzione aggiuntiva)</td>
<td></td>
</tr>
<tr>
<td>Ritagliato (estensione)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Specifica il layer in uscita (ritagliato). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Save to temporary file]</td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritagliato (estensione)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer in uscita (ritagliato). Il formato predefinito è »ESRI Shapefile«.</td>
</tr>
</tbody>
</table>

**Codice Python**

*ID Algoritmo*: gdal:clipvectorbyextent

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Ritagliare di un vettore tramite una maschera layer di selezione**

Ritaglia qualsiasi layer vettoriale supportato da OGR tramite un vettore poligonale usato come maschera di di ritaglio. Questo algoritmo è derivato dalla utility ogr2ogr di GDAL <https://gdal.org/programs/ogr2ogr.html>_.
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer vettoriale in ingresso</td>
</tr>
<tr>
<td>Layer maschera di ritaglio</td>
<td>MASK</td>
<td>[vector: polygon]</td>
<td>Layer da utilizzare come estensione di ritaglio per il layer vettoriale in ingresso.</td>
</tr>
<tr>
<td>Opzioni aggiuntive di creazione</td>
<td>OPZIONI</td>
<td>[string]</td>
<td>Opzioni aggiuntive di creazione GDAL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Predefinito: » (nessuna opzione aggiuntiva)</td>
</tr>
<tr>
<td>Ritagliato (maschera di ritaglio)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer in uscita (maschera di ritaglio). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritagliato (maschera di ritaglio)</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer in uscita (ritagliato tramite maschera). Il formato predefinito è «ESRI Shapefile».</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** gdal:clipvectorbypolygon

```python
import processing

processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Dissolvere**

Dissolve (combina) le geometrie che hanno lo stesso valore per un dato attributo / campo. Le geometrie in uscita sono multi parte.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Il layer in ingresso da dissolve</td>
</tr>
<tr>
<td>Campo da utilizzare per dissolve</td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Il campo del layer in ingresso da usare per la dissolvenza</td>
</tr>
</tbody>
</table>
### Tabella 24.174 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome della colonna Geometria</td>
<td>GEOMETRY</td>
<td>[string]</td>
<td>Predefinito: “geometry”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Il nome della colonna della geometria del layer in ingresso da usare per la dissoluzione.</td>
</tr>
<tr>
<td>Crea un elemento per ogni geometria in ogni tipo di insieme di geometrie nel file di origine</td>
<td>EXPLODE_COLLECTION</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Produce un elemento per ogni geometria in qualsiasi tipo di insieme di geometrie nel file di origine.</td>
</tr>
<tr>
<td>Mantenere gli attributi in ingresso.</td>
<td>KEEP_ATTRIBUTES</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mantieni tutti gli attributi del layer in ingresso</td>
</tr>
<tr>
<td>Conta gli elementi dissolti</td>
<td>COUNT_FEATURES</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conta gli elementi dissolti e li include nel layer in uscita.</td>
</tr>
<tr>
<td>Calcolare l’area e il perimetro degli elementi dissolti</td>
<td>COMPUTE_AREA</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calcola l’area e il perimetro degli elementi dissolti e includili nel layer in uscita.</td>
</tr>
<tr>
<td>Calcolare min/max/med/a media in base all’attributo</td>
<td>COMPUTE_STATISTICS</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Attributo numerico su cui calcolare le statistiche</td>
<td>STATISTICS_ATTRIBUTE</td>
<td>[tablefield: numeric]</td>
<td>L’attributo numerico su cui calcolare le statistiche</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione Opzionale</td>
<td>OPZIONI</td>
<td>[string]</td>
<td>Predefinito: » (nessuna opzione aggiuntiva)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Opzioni aggiuntive di creazione GDAL.</td>
</tr>
<tr>
<td>Dissolti</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Predefinito: [Save to temporary file]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specifica il layer in uscita. Uno di: • Salva come File Temporaneo • Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolti</td>
<td>OUTPUT</td>
<td>[same as input]</td>
<td>Il layer della geometria multi parte in uscita (con le geometrie dissolte)</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:dissolve

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Curva di offset

Linee di offset con una distanza specificata. Le distanze positive spostano le linee a sinistra, mentre le distanze negative le spostano a destra.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Il vettore lineare in ingresso</td>
</tr>
<tr>
<td>Nome della colonna Geometria</td>
<td>GEOMETRY</td>
<td>[string]</td>
<td>Il nome della colonna della geometria del layer in ingresso da usare</td>
</tr>
<tr>
<td>Distanza di offset (lato sinistro: positivo, lato destro: negativo)</td>
<td>DISTANCE</td>
<td>[number]</td>
<td>Predefinito: 10.0</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPZIONI</td>
<td>[string]</td>
<td>(nessuna opzione aggiuntiva)</td>
</tr>
<tr>
<td>Curva di offset</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Specifica il vettore lineare in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curva di offset</td>
<td>OUTPUT</td>
<td>[vector: line]</td>
<td>Il layer curvo di offset in uscita</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: gdal:offsetcurve

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i NOMI e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
**Buffer su un solo lato**

Crea un buffer su un lato (destro o sinistro) delle linee in un layer vettoriale lineare.

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer in ingresso</strong></td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Il vettore lineare in ingresso</td>
</tr>
<tr>
<td><strong>Nome della colonna Geometria</strong></td>
<td>GEOMETRY</td>
<td>[string]</td>
<td>Il nome della colonna della geometria del layer in ingresso da usare</td>
</tr>
<tr>
<td><strong>Distanza Buffer</strong></td>
<td>DISTANCE</td>
<td>[number]</td>
<td>Predefinito: 10.0</td>
</tr>
<tr>
<td><strong>Lato Buffer</strong></td>
<td>BUFFER_SIDE</td>
<td>[enumeration]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — Destra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Sinistra</td>
</tr>
<tr>
<td><strong>Dissolvere per attributo</strong></td>
<td>FIELD</td>
<td>[tablefield: any]</td>
<td>Predefinito: None</td>
</tr>
<tr>
<td><strong>Opzionale</strong></td>
<td>DISSOLVE</td>
<td>[boolean]</td>
<td>Se impostato, il risultato sarà dissolto.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Se nessun campo è impostato per la dissolvenza, tutti i buffer sono dissolti in un solo elemento.</td>
</tr>
<tr>
<td><strong>Crea un elemento</strong></td>
<td>EXPLODE_COLLECTION</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td><strong>Opzionale di creazione</strong></td>
<td>OPZIONI</td>
<td>[string]</td>
<td>Opzioni aggiuntive di creazione GDAL.</td>
</tr>
<tr>
<td><strong>Opzionale di creazione</strong></td>
<td></td>
<td></td>
<td>(nessuna opzione aggiuntiva)</td>
</tr>
<tr>
<td><strong>Buffer su un solo lato</strong></td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Specifica il buffer layer in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Buffer su un solo lato</strong></td>
<td>OUTPUT</td>
<td>[vector: polygon]</td>
<td>Il buffer layer risultato</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: gdal:onesidebuffer

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Punti lungo linee**

Genera un punto su ogni linea di un layer vettoriale a una distanza dall’inizio. La distanza è data come frazione della lunghezza della linea.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer in ingresso</td>
<td>INPUT</td>
<td>[vector: line]</td>
<td>Il vettore lineare in ingresso</td>
</tr>
<tr>
<td>Nome della colonna Geometria</td>
<td>GEOMETRY</td>
<td>[string]</td>
<td>Il nome della colonna della geometria del layer in ingresso da usare</td>
</tr>
<tr>
<td>Distanza dall’inizio della linea rappresentata come una frazione della lunghezza della linea</td>
<td>DISTANCE</td>
<td>[number] 0,5 (centro della linea)</td>
<td>Predefinito: 0,5 (centro della linea)</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione Opzionale</td>
<td>OPZIONI</td>
<td>[string] » (nessuna opzione aggiuntiva)</td>
<td>Opzioni aggiuntive di creazione GDAL.</td>
</tr>
<tr>
<td>Punti lungo linee</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Specificare il layer di punti in uscita. Uno di:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In uscita:</th>
<th></th>
<th></th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punti lungo linee</td>
<td>OUTPUT</td>
<td>[vector: point]</td>
<td>Il layer di punti in uscita</td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: gdal:buildvirtualvector

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

24.2.8 Vettore miscellanea

Build virtual vector

Crea un layer vettoriale virtuale che contiene un insieme di layer vettoriali. Il layer vettoriale virtuale in uscita non sarà aperto nel progetto corrente.

Questo algoritmo è particolarmente utile nel caso in cui un altro algoritmo abbia bisogno di più layer ma accetti un solo vrt in cui i layer sono definiti.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonti di dati in ingresso</td>
<td>INPUT</td>
<td>[vector: any] [list]</td>
<td>Seleziona i layer vettoriali che vuoi usare per costruire il vettore virtuale</td>
</tr>
<tr>
<td>Creare un VRT &lt;unito&gt;</td>
<td>UNIONED</td>
<td>[boolean] Predefinito: False</td>
<td>Verificare se vuoi unire tutti i vettori in un unico file vrt.</td>
</tr>
</tbody>
</table>
| Vettore Virtuale | OUTPUT | [same as input] Predefinito: [Save to temporary file] | Specifica il layer in uscita che contiene solo i duplicati. Uno di:  
  * Salva come File Temporaneo  
  * Salva come File…  
  La codifica del file può anche essere cambiata qui. |

Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vettore Virtuale</td>
<td>OUTPUT</td>
<td>[vector: any]</td>
<td>Il vettore virtuale in uscita costituito dalle fonti scelte</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: gdal:pointsalonglines

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Eseguire SQL

Esegue una query semplice o complessa con sintassi SQL sul layer di origine. Il risultato della query sarà aggiunto come un nuovo layer.

Questo algoritmo è derivato da GDAL ogr2ogr utility.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>INPUT</td>
<td>[vector:any]</td>
<td>Layer vettoriale in ingresso supportato da OGR</td>
</tr>
<tr>
<td>Espressione SQL</td>
<td>SQL</td>
<td>[string]</td>
<td>Definisce la query SQL, per esempio SELECT * FROM my_table WHERE name is not null.</td>
</tr>
</tbody>
</table>
| Dialetto SQL               | DIALECT  | [enumeration] | Dialetto SQL da usare. Uno di:  
• 0 — Nessuno  
• 1 — SQL OGR  
• 2 — SQLite |
| Opzioni addizionali di creazione | OPTIONS | [string]   | Opzioni aggiuntive di creazione GDAL.                                       |
|                           |          | Predefinito: » (nessuna opzione aggiuntiva) | |
| Risultato SQL              | OUTPUT   | [vector:any] | Specifica del layer in uscita. Uno di:  
• Salva come File Temporaneo  
• Salva come File...  
La codifica del file può anche essere cambiata qui.  
Per Salva su File, il formato in uscita deve essere specificato. Sono supportati tutti i formati vettoriali GDAL. Per Salva in un file temporaneo verrà utilizzato il formato vettoriale di output predefinito. |

**Outputs**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risultato SQL</td>
<td>OUTPUT</td>
<td>[vector:any]</td>
<td>Layer vettoriale creato dalla query</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** gdal:executesql

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Esportazione in PostgreSQL (connessioni disponibili)

Importa layer vettoriali in un database PostgreSQL sulla base di una connessione disponibile. La connessione deve be defined properly prima. Fai attenzione che le caselle di controllo “Salva Nome Utente” e “Salva Password” siano attivate. Poi puoi usare l’algoritmo.

Questo algoritmo è derivato da GDAL ogr2ogr utility.

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Database (nome connessione)</strong></td>
<td>DATABASE</td>
<td>[string]</td>
<td>Il database PostgreSQL a cui connettersi</td>
</tr>
<tr>
<td><strong>Livello in ingresso</strong></td>
<td>INPUT</td>
<td>[vector:any]</td>
<td>Layer vettoriale supportato da OGR da esportare nel database</td>
</tr>
<tr>
<td><strong>Formato codifica</strong></td>
<td>SHAPE_ENCODING</td>
<td>[string]</td>
<td>Imposta la codifica da applicare ai dati</td>
</tr>
<tr>
<td><strong>Tipo di geometria in uscita</strong></td>
<td>GTYPE</td>
<td>[enumeration]</td>
<td>Definisce il tipo di geometria in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Nessuno</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Geometria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Punto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Linea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Poligono</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Raccolta di geometrie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — Multi punto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — Multi poligono</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — Multi linea</td>
</tr>
<tr>
<td><strong>Assegnare un SR in uscita</strong></td>
<td>A_SRS</td>
<td>[crs]</td>
<td>Definisce il SR in uscita nella tabella del database</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: None</td>
<td></td>
</tr>
<tr>
<td><strong>Riproietta in questo SR in uscita</strong></td>
<td>T_SRS</td>
<td>[crs]</td>
<td>Riproietta/trasforma in questo SR in uscita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: None</td>
<td></td>
</tr>
<tr>
<td><strong>Sovrascrivere SR di origine</strong></td>
<td>S_SRS</td>
<td>[crs]</td>
<td>Sovrascrivere il SR del layer in ingresso</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: None</td>
<td></td>
</tr>
<tr>
<td><strong>schema (nome schema)</strong></td>
<td>SCHEMA</td>
<td>[string]</td>
<td>Definisce lo schema della tabella del database</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “public”</td>
<td></td>
</tr>
<tr>
<td><strong>Tabella in cui esportare (lasciare vuoto per usare il nome del layer)</strong></td>
<td>TABLE</td>
<td>[string]</td>
<td>Definisce un nome per la tabella che sarà importata nel database. Per default il nome della tabella è il nome del file vettoriale in ingresso.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “”</td>
<td></td>
</tr>
<tr>
<td><strong>Chiave Primaria (nuovo campo)</strong></td>
<td>PK</td>
<td>[string]</td>
<td>Definisce quale campo dell’attributo sarà la chiave primaria della tabella del database</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “id”</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page

24.2. Algoritmi GDAL 1211
Tabella 24.179 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiave primaria (campo esistente, usato se l'opzione precedente è lasciata vuota). Opzionale</td>
<td>PRIMARY_KEY</td>
<td>[tablefield: any]</td>
<td>Predefinito: None</td>
</tr>
<tr>
<td>Nome della colonna Geometria Opzionale</td>
<td>GEOCOLUMN</td>
<td>[string]</td>
<td>Predefinito: &quot;geom&quot;</td>
</tr>
<tr>
<td>Dimensioni vettore Opzionale</td>
<td>DIM</td>
<td>[enumeration]</td>
<td>Predefinito: 0 (2D)</td>
</tr>
<tr>
<td>Distanza di tolleranza per la semplificazione Opzionale</td>
<td>SIMPLIFY</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot;</td>
</tr>
<tr>
<td>Distanza massima tra 2 nodi (densità) Opzionale</td>
<td>SEGMENTIZE</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot;</td>
</tr>
<tr>
<td>Seleziona gli elementi in base all'estensione (definita nel SR del layer in ingresso) Opzionale</td>
<td>SPAT</td>
<td>[extent]</td>
<td>Predefinito: None</td>
</tr>
<tr>
<td>Ritagliare il layer in ingresso usando l'estensione (rettangolo) di cui sopra Opzionale</td>
<td>CLIP</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Sovrascrivere tabella esistente Opzionale</td>
<td>OVERWRITE</td>
<td>[boolean]</td>
<td>Predefinito: True</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.179 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accoda alla tabella esistente</td>
<td>APPEND</td>
<td>[boolean]</td>
<td>Se selezionato / True i dati vettoriali saranno aggiunti ad una tabella esistente. I nuovi campi trovati nel layer di input sono ignorati. Per impostazione predefinita verrà creata una nuova tabella.</td>
</tr>
<tr>
<td>Accodare e aggiungere nuovi campi alla tabella esistente</td>
<td>ADDFIELDS</td>
<td>[boolean]</td>
<td>Se attivato i dati vettoriali saranno aggiunti a una tabella esistente, non verrà creata una nuova tabella. I nuovi campi trovati nel layer in ingresso vengono aggiunti alla tabella. Per impostazione predefinita viene creata una nuova tabella.</td>
</tr>
<tr>
<td>Non riutilizzare nomi di colonne/tabelle</td>
<td>LAUNDER</td>
<td>[boolean]</td>
<td>Con questa opzione selezionata puoi impedire il comportamento predefinito (conversione dei nomi delle colonne in minuscolo, rimozione degli spazi e altri caratteri non validi).</td>
</tr>
<tr>
<td>Non creare un Indice Spaziale</td>
<td>INDEX</td>
<td>[boolean]</td>
<td>Impedisce la creazione di un indice spaziale per la tabella in uscita. Per impostazione predefinita, viene aggiunto un indice spaziale.</td>
</tr>
<tr>
<td>Continua dopo un errore, saltando la funzione non riuscita.</td>
<td>SKIPFAILURES</td>
<td>[boolean]</td>
<td></td>
</tr>
<tr>
<td>Converti a Multi parte</td>
<td>PROMOTETOMULTI</td>
<td>[boolean]</td>
<td>Definire la tipologia della geometria degli elementi in multi parte nella tabella in uscita</td>
</tr>
<tr>
<td>Mantenere la larghezza e la precisione degli attributi in ingresso.</td>
<td>PRECISION</td>
<td>[boolean]</td>
<td>Evita di modificare gli attributi delle colonne per conformarsi ai dati in ingresso.</td>
</tr>
<tr>
<td>Opzioni addizionali di creazione</td>
<td>OPTIONS</td>
<td>[string]</td>
<td>Opzioni aggiuntive di creazione GDAL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(nessuna opzione aggiuntiva)</td>
<td></td>
</tr>
</tbody>
</table>

**Outputs**

Questo algoritmo non ha alcun risultato.

**Codice Python**

**ID Algoritmo**: `gdal:importvectorintopostgisdatabaseavailableconnections`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Esportare in PostgreSQL (nuova connessione)

Importa i layer vettoriali all’interno di un database PostGreSQL. Deve essere creata una nuova connessione al database PostGIS.

Questo algoritmo è derivato da GDAL ogr2ogr utility.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale supportato da OGR da esportare nel database</td>
</tr>
<tr>
<td>Formato codifica Opzionale</td>
<td>SHAPE_ENCODING</td>
<td>[string]</td>
<td>Predefinito: “” Imposta la codifica da applicare ai dati</td>
</tr>
<tr>
<td>Tipo di geometria in uscita</td>
<td>GTYPE</td>
<td>[enumeration]</td>
<td>Predefinito: 0 Definisce il tipo di geometria in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — Nessuno</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — Geometria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — Punto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — Linea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — Poligono</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — Raccolta di geometrie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — Multi punto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — Multi poligono</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — Multi linea</td>
</tr>
<tr>
<td>Assegnare un SR in uscita</td>
<td>A_SRS</td>
<td>[crs]</td>
<td>Predefinito: None Definisce il SR in uscita nella tabella del database</td>
</tr>
<tr>
<td>Riproietta in questo SR in uscita</td>
<td>T_SRS</td>
<td>[crs]</td>
<td>Predefinito: None Riproietta/trasforma in questo SR in uscita</td>
</tr>
<tr>
<td>Sovrascrivere SR di origine</td>
<td>S_SRS</td>
<td>[crs]</td>
<td>Predefinito: None Sovrascrive il SR del layer in ingresso</td>
</tr>
<tr>
<td>Host</td>
<td>HOST</td>
<td>[string]</td>
<td>Nome del database host</td>
</tr>
<tr>
<td>Porta</td>
<td>PORT</td>
<td>[string]</td>
<td>Predefinito: “5432” Numero di porta su cui ascolta il server di database PostgresQL</td>
</tr>
<tr>
<td>Nome Utente</td>
<td>USER</td>
<td>[string]</td>
<td>Predefinito: “” Nome utente usato per accedere al database</td>
</tr>
<tr>
<td>Nome Database</td>
<td>DBNAME</td>
<td>[string]</td>
<td>Predefinito: “” Nome del database</td>
</tr>
<tr>
<td>Password</td>
<td>PASSWORD</td>
<td>[string]</td>
<td>Predefinito: “” Password usata con il Nome utente per connettersi al database</td>
</tr>
<tr>
<td>schema (nome schema)</td>
<td>SCHEMA</td>
<td>[string]</td>
<td>Predefinito: “public” Definisce lo schema della tabella del database</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome della tabella, lasciare vuoto per usare il nome in ingresso</td>
<td>TABLE</td>
<td>[string]</td>
<td>Definisce un nome per la tabella che sarà importata nel database. Per default il nome della tabella è il nome del file vettoriale in ingresso.</td>
</tr>
<tr>
<td>Chiave Primaria (nuovo campo)</td>
<td>PK</td>
<td>[string]</td>
<td>Definisce quale campo dell'attributo sarà la chiave primaria della tabella del database</td>
</tr>
<tr>
<td>Chiave primaria (campo esistente, usato se l'opzione precedente è lasciata vuota)</td>
<td>PRIMARY_KEY</td>
<td>[tablefield: any]</td>
<td>Definisce quale campo dell'attributo nel layer esportato sarà la chiave primaria della tabella del database</td>
</tr>
<tr>
<td>Nome della colonna Geometria</td>
<td>GEOCOLUMN</td>
<td>[string]</td>
<td>Definisce in quale campo attributo memorizzare le informazioni sulla geometria</td>
</tr>
<tr>
<td>Dimensioni vettore</td>
<td>DIM</td>
<td>[enumeration]</td>
<td>Definisce se il file vettoriale da importare ha dati 2D o 3D. Uno di:</td>
</tr>
<tr>
<td>Distanza di tolleranza per la semplificazione</td>
<td>SIMPLIFY</td>
<td>[string]</td>
<td>Definisce una tolleranza di distanza per la semplificazione delle geometrie vettoriali da importare. Per default non c'è semplificazione.</td>
</tr>
<tr>
<td>Distanza massima tra 2 nodi (densità)</td>
<td>SEGMENTIZE</td>
<td>[string]</td>
<td>La distanza massima tra due nodi. Utilizzata per creare punti intermedi. Per impostazione predefinita non c'è densificazione.</td>
</tr>
<tr>
<td>Seleziona gli elementi in base all'estensione (definita nel SR del layer in ingresso)</td>
<td>SPAT</td>
<td>[extent]</td>
<td>Puoi selezionare gli elementi di una data estensione che saranno nella tabella in uscita.</td>
</tr>
<tr>
<td>Ritagliare il layer in ingresso usando l'estensione (rettangolo) di cui sopra</td>
<td>CLIP</td>
<td>[boolean]</td>
<td>Il layer in ingresso sarà ritagliato dall'estensione che hai definito prima</td>
</tr>
<tr>
<td>Campi da includere (lasciare vuoto per usare tutti i campi)</td>
<td>FIELDS</td>
<td>[string][list]</td>
<td>Definisce i campi da mantenere del file vettoriale importato. Se nessuno è selezionato, vengono importati tutti i campi.</td>
</tr>
<tr>
<td>Seleziona gli elementi usando un'istruzione SQL «WHERE» (es: column=»value»)</td>
<td>WHERE</td>
<td>[string]</td>
<td>Definisce con un'istruzione SQL «WHERE» quali elementi dovrebbero essere selezionati per la tabella in uscita.</td>
</tr>
<tr>
<td>Etichetta</td>
<td>Nome</td>
<td>Tipo</td>
<td>Descrizione</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Sovrascrivere tabella esistente Opzionale</td>
<td>OVERWRITE</td>
<td>[boolean]</td>
<td>Se c’è una tabella con lo stesso nome nel database, e se questa opzione è impostata a True, la tabella sarà sovrascritta.</td>
</tr>
<tr>
<td>Accoda alla tabella esistente Opzionale</td>
<td>APPEND</td>
<td>[boolean]</td>
<td>Se selezionato / True i dati vettoriali saranno aggiunti ad una tabella esistente. I nuovi campi trovati nel layer di input sono ignorati. Per impostazione predefinita verrà creata una nuova tabella.</td>
</tr>
<tr>
<td>Accodare e aggiungere nuovi campi alla tabella esistente Opzionale</td>
<td>ADDFIELDS</td>
<td>[boolean]</td>
<td>Se attivato i dati vettoriali saranno aggiunti a una tabella esistente, non verrà creata una nuova tabella. I nuovi campi trovati nel layer in ingresso vengono aggiunti alla tabella. Per impostazione predefinita viene creata una nuova tabella.</td>
</tr>
<tr>
<td>Non riutilizzare nomi di colonne/tabelle Opzionale</td>
<td>LAUNDER</td>
<td>[boolean]</td>
<td>Con questa opzione selezionata puoi impedire il comportamento predefinito (conversione dei nomi delle colonne in minuscolo, rimozione degli spazi e altri caratteri non validi).</td>
</tr>
<tr>
<td>Non creare un Indice Spaziale Opzionale</td>
<td>INDEX</td>
<td>[boolean]</td>
<td>Impedisce la creazione di un indice spaziale per la tabella in uscita. Per impostazione predefinita, viene aggiunto un indice spaziale.</td>
</tr>
<tr>
<td>Continua dopo un errore, saltando la funzione non riuscita Opzionale</td>
<td>SKIPFAILURES</td>
<td>[boolean]</td>
<td></td>
</tr>
</tbody>
</table>
Outputs

Questo algoritmo non ha alcun risultato.

Codice Python

**ID Algoritmo:** gdal:importvectorintopostgisdatabasenewconnection

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

Informazione Vettore

Crea un file di informazioni che elenca informazioni su una fonte di dati supportata da OGR. Il risultato sarà mostrato in una finestra “Risultato” e può essere scritto in un file HTML. Le informazioni includono il tipo di geometria, il numero di elementi, l’estensione spaziale, le informazioni sulla proiezione e molte altre.

Questo algoritmo è derivato da GDAL ogrinfo utility.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello in ingresso</td>
<td>INPUT</td>
<td>[vector: any]</td>
<td>Layer vettoriale in ingresso</td>
</tr>
<tr>
<td>Solo risultato</td>
<td>SUMMARY_ONLY</td>
<td>[boolean]</td>
<td>Predefinito: True</td>
</tr>
<tr>
<td>sommario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opzionale</td>
<td>NO_METADATA</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Rimuovere le informazioni sui metadati</td>
<td>NO_METADATA</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informazioni Layer</td>
<td>OUTPUT</td>
<td>[html]</td>
<td>Specificarne il file HTML in uscita che include le informazioni sul file. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Save to temporary file]</td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può essere cambiata anche qui. Se nessun file HTML è definito, il risultato sarà scritto in un file temporaneo</td>
</tr>
</tbody>
</table>
### Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informazioni Layer</td>
<td>OUTPUT</td>
<td>[html]</td>
<td>Il file HTML in uscita che include le informazioni sul file.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** `gdal:ogrinfo`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

### 24.3 Algoritmi LAStools

**LAStools** è una raccolta di strumenti a riga di comando altamente efficienti e multicore per l’elaborazione di dati LiDAR.

#### 24.3.1 blast2dem

**Descrizione**

Trasforma punti (fino a miliardi) tramite triangolazione Delaunay senza soluzione di continuità implementata utilizzando lo streaming in grandi raster di elevazione, intensità o RGB.

Per maggiori informazioni vedi la pagina *blast2dem* e il relativo file in linea *README* file.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Avvia la GUI di LAStools con file in ingresso pre-popolati.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file contiene i punti da rasterizzare in formato LAS/LAZ.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.182 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>filtro (per risultato, classificazione, flag)</td>
<td>FILTER_RETURN_CLASS_FLAGS1</td>
<td>[enumeration]</td>
<td>Predefinito: 0 Indica quali punti usare per costruire il TIN temporaneo che viene poi rasterizzato. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — keep_last</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — keep_first</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — keep_middle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — keep_single</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — drop_single</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — keep_double</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — keep_class 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — keep_class 2 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — keep_class 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — keep_class 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — keep_class 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — keep_class 3 4 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — keep_class 2 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — drop_class 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — drop_withheld</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — drop_synthetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — drop_overlap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — keep_withheld</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 19 — keep_synthetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 — keep_keypoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 21 — keep_overlap</td>
</tr>
<tr>
<td>dimensione del passo/dimensione del pixel</td>
<td>STEP</td>
<td>[number]</td>
<td>Predefinito: 1.0 Specifica la dimensione delle celle della griglia su cui il TIN viene rasterizzato</td>
</tr>
<tr>
<td>Attributo</td>
<td>ATTRIBUTE</td>
<td>[enumeration]</td>
<td>Predefinito: 0 Specifica l’attributo che deve essere rasterizzato. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — elevazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — pendenza</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — intensità</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — rgb</td>
</tr>
<tr>
<td>Prodotto</td>
<td>PRODUCT</td>
<td>[enumeration]</td>
<td>Predefinito: 0 Specifica come l’attributo deve essere trasformato in valori raster. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — valori reali</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — ombreggiato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — grigio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — false</td>
</tr>
<tr>
<td>Usa il perimetro di delimitazione del tassello (dopo la tassellatura con il buffer)</td>
<td>USE_TILE_BB</td>
<td>[booleano]</td>
<td>Predefinito: False Specifica di limitare l’area rasterizzata al perimetro di delimitazione del tassello (significativo solo per i tasselli LAS/LAZ in ingresso che sono stati creati con lastile).</td>
</tr>
<tr>
<td>ulteriore parametro(i) a linea di comando Opzionale</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot; Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all’utente ( avanzato) di LAStools.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.182 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File raster in uscita</td>
<td>OUTPUT_RASTER</td>
<td>[raster]</td>
<td>Specifica dove viene memorizzato il raster in uscita. Usa i raster immagine come TIF, PNG e JPG per i falsi colori, le gradazioni di grigio e le sfumature. Usa i valori raster del tipo TIF, BIL, IMG, ASC, DTM, FLT, XYZ e CSV per i valori reali. Uno di: • Non salvare l’Output • Salva come File Temporaneo • Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File raster in uscita</td>
<td>OUTPUT_RASTER</td>
<td>[raster]</td>
<td>Il raster in uscita</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: lastools:blast2dem

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il dizionario dei parametri fornisce i Nom e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

24.3.2 blast2iso

Descrizione

Trasforma i punti (fino a miliardi) tramite triangolazione Delaunay senza soluzione di continuità implementata utilizzando lo scansione in curve di livello.

Per maggiori informazioni vedi la pagina blast2iso e il relativo file in linea README .

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Avvia la GUI di LAStools con file in ingresso pre-popolati.</td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file contenente i punti da utilizzare per la creazione delle linee di isocontorno.</td>
</tr>
<tr>
<td>Smussare il TIN sottostante</td>
<td>SMOOTH</td>
<td>[number]</td>
<td>Specifica se e con quanti passaggi il TIN temporaneo deve essere smussato</td>
</tr>
</tbody>
</table>

continues on next page
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File del vettore in uscita</td>
<td>OUTPUT_VECTOR</td>
<td>[vector: line]</td>
<td>Il layer vettoriale lineare in uscita con le curve di livello</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `lastools:blast2iso`

```python
import processing
tool = processing QgsTool()
tool.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
### 24.3.3 las2dem

#### Descrizione

Trasforma i punti (fino a 20 milioni) tramite una triangolazione Delaunay temporanea che viene rasterizzata con una dimensione di passo definita dall’utente in un raster di elevazione, intensità o RGB.

Per maggiori informazioni vedi la pagina di las2dem e il suo file README in linea.

#### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Predefinito: False; Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>eseguire nuovo eseguibile a 64 bit</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False;</td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Predefinito: False; Avvia la GUI di LAStools con file in ingresso pre-popolati.</td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file contenente i punti da rasterizzare in formato LAS/LAZ.</td>
</tr>
</tbody>
</table>
| filtro (per ritorno, classificazione, flag) | FILTER_RETURN_CLASS_FLAGS | [enumeration] | Predefinito: 0; Indica quali punti usare per costruire il TIN temporaneo che viene poi rasterizzato. Uno di:
- 0 — —
- 1 — keep_last
- 2 — keep_first
- 3 — keep_middle
- 4 — keep_single
- 5 — drop_single
- 6 — keep_double
- 7 — keep_class 2
- 8 — keep_class 2 8
- 9 — keep_class 8
- 10 — keep_class 6
- 11 — keep_class 9
- 12 — keep_class 3 4 5
- 13 — keep_class 3 4 5
- 14 — keep_class 4
- 15 — keep_class 5
- 16 — keep_class 2 6
- 17 — drop_class 7
- 18 — drop_withheld
- 19 — drop_synthetic
- 20 — drop_overlap
- 21 — keep_withheld
- 22 — keep_synthetic
- 23 — keep_keypoint
- 24 — keep_overlap
| dimensione del passo / dimensione del pixel | STEP               | [number]           | Predefinito: 1.0; Specifica la dimensione delle celle della griglia su cui il TIN viene rasterizzato |

continues on next page
### Tabella 24.184 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Attributo</strong></td>
<td>ATTRIBUTE</td>
<td>[enumeration]</td>
<td>Indica l’attributo per la rasterizzazione. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>- 0 — elevazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 1 — pendenza</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2 — intensità</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 3 — rgb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 4 — edge_longest</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 5 — edge_shortest</td>
</tr>
<tr>
<td><strong>Prodotto</strong></td>
<td>PRODUCT</td>
<td>[enumeration]</td>
<td>Specifica come l’attributo deve essere trasformato in valori raster. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>- 0 — valori reali</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 1 — ombreggiato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2 — grigio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 3 — false</td>
</tr>
<tr>
<td><strong>Usa il perimetro di delimitazione del tassello (dopo la tassellatura con il buffer).</strong></td>
<td>USE_TILE_BB</td>
<td>[booleano]</td>
<td>Specifica di limitare l’area rasterizzata al perimetro di delimitazione del tassello (significativo solo per i tasselli LAS/LAZ in ingresso che sono stati creati con lastile).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: False</td>
<td></td>
</tr>
<tr>
<td><strong>Ulteriore parametro(i) a linea di comando Opzionale</strong></td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all’utente ( avanzato) di LAStools.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: “”</td>
<td></td>
</tr>
<tr>
<td><strong>File raster in uscita</strong></td>
<td>OUTPUT_RASTER</td>
<td>[raster]</td>
<td>Specifica dove viene memorizzato il raster in uscita. Usa i raster immagine come TIF, PNG e JPG per i falsi colori, le gradazioni di grigio e le sfumature. Usa i valori raster del tipo TIF, BIL, IMG, ASC, DTM, FLT, XYZ e CSV per i valori reali. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: [Skip output]</td>
<td>- Non salvare l’Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>File raster in uscita</strong></td>
<td>OUTPUT_RASTER</td>
<td>[raster]</td>
<td>Il raster in uscita</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** lastools:las2dem

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomni e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.4 las2iso

**Descrizione**

Trasforma le nuvole di punti (fino a 20 milioni per file) in linee di isocontorno creando una triangolazione Delaunay temporanea su cui vengono poi tracciati le curve di livello.

Per maggiori informazioni vedi la pagina las2iso e il suo file README in linea.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>eseguire nuovo</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>eseguibile a 64 bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apri GUI di</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>LASTools</td>
<td>GUI</td>
<td></td>
<td>Avvia la GUI di LAStools con file in ingresso pre-popolati.</td>
</tr>
<tr>
<td>File LAS/LAZ in</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>ingresso</td>
<td></td>
<td></td>
<td>Il file contenente i punti da utilizzare per la creazione delle linee di isocontorno.</td>
</tr>
<tr>
<td>Smussare il TIN</td>
<td>SMOOTH</td>
<td>[number]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td>sottostante</td>
<td></td>
<td></td>
<td>Specifica se e con quanti passaggi il TIN temporaneo deve essere smussato.</td>
</tr>
<tr>
<td>estrai isolinee con</td>
<td>ISO_EVERY</td>
<td>[number]</td>
<td>Predefinito: 10.0</td>
</tr>
<tr>
<td>una spaziatura di</td>
<td></td>
<td></td>
<td>Specifica la spaziatura alla quale vengono estratte le linee di isocontorno (intervallo tra le curve di livello).</td>
</tr>
<tr>
<td>cancella isolinee</td>
<td>CLEAN</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td>più corte di (0 =</td>
<td></td>
<td></td>
<td>Omette le curve di livello che sono più corte della lunghezza specificata.</td>
</tr>
<tr>
<td>non cancellare)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>generalizza i</td>
<td>SIMPLIFY_LENGTH</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td>segmenti più corti</td>
<td></td>
<td></td>
<td>Semplificazione rudimentale dei segmenti di linea isocontorno che sono più corti della lunghezza specificata.</td>
</tr>
<tr>
<td>di (0 = non</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>generalizzare)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semplifica le</td>
<td>SIMPLIFY_AREA</td>
<td>[number]</td>
<td>Predefinito: 0.0</td>
</tr>
<tr>
<td>coppia di segmenti</td>
<td></td>
<td></td>
<td>Semplificazione rudimentale dei dossi formati da segmenti di linea consecutivi la cui area è più piccola della dimensione specificata.</td>
</tr>
<tr>
<td>con area inferiore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (0 = non</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>semplificare)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ulteriore</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all'utente ( avanzato) di LAStools.</td>
</tr>
<tr>
<td>parametro(i) a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linea di comando</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.185 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File del vettore in uscita</td>
<td>OUTPUT_VECTOR</td>
<td>[vector: line]</td>
<td>Predefinito: [Skip output] Specifica dove viene memorizzato il vettore in uscita. Usa i file di output SHP o WKT. Se il tuo file LiDAR in ingresso è in coordinate geografiche (long/lat) o ha informazioni di georeferenziazione (ma solo allora) puoi anche creare un file in uscita KML. Uno di: • Non salvare l’Output • Salva come File Temporaneo • Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File del vettore in uscita</td>
<td>OUTPUT_VECTOR</td>
<td>[vector: line]</td>
<td>Il layer vettoriale lineare in uscita con le curve di livello</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** lastools:las2iso

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

24.3.5 las2las_filter

Descrizione

Utilizza las2las per filtrare i punti LiDAR in base a diversi attributi e per scrivere il sottoinsieme di punti rimanenti in un nuovo file LAZ o LAS.

Per maggiori informazioni vedi la pagina di las2las e il suo file README in linea.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Predefinito: False Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>eseguire nuovo eseguibile a 64 bit</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False Avvia la GUI di LASTools con file in ingresso pre-popolati.</td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td></td>
</tr>
<tr>
<td>Etichetta</td>
<td>Nome</td>
<td>Tipo</td>
<td>Descrizione</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>filtro (per ritorno, classificazione, flag)</td>
<td>FILTER_RETURN_CLASS_FLAGS1</td>
<td>[enumeration]</td>
<td>Filtra i punti in base a varie opzioni come ritorno, classificazione o flag. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — keep_last</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — keep_first</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — keep_middle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — keep_single</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — drop_single</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — keep_double</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — keep_class 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — keep_class 2 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — keep_class 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — keep_class 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — keep_class 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — keep_class 3 4 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — keep_class 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — keep_class 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — keep_class 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — keep_class 2 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — drop_class 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — drop_withheld</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 19 — drop_synthetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 — drop_overlap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 21 — keep_withheld</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 22 — keep_synthetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 23 — keep_keypoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 24 — keep_overlap</td>
</tr>
</tbody>
</table>
Tabella 24.186 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>secondo filtro (per ritorno, classificazione, flag)</strong></td>
<td>FILTER_RETURN_CLASS_FLAGS2</td>
<td>[enumeration]</td>
<td>Filtra i punti in base a varie opzioni come ritorno, classificazione o flag. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — keep_last</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — keep_first</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — keep_middle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — keep_single</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — drop_single</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — keep_double</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — keep_class 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — keep_class 2 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — keep_class 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — keep_class 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — keep_class 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — keep_class 3 4 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — keep_class 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — keep_class 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — keep_class 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — keep_class 2 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — drop_class 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — drop_withheld</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 19 — drop_synthetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 — drop_overlap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 21 — keep_withheld</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 22 — keep_synthetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 23 — keep_keypoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 24 — keep_overlap</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>filtro</td>
<td>FILTERCOORDS...</td>
<td>[enumerazione]</td>
<td>Filtra i punti in base a varie altre opzioni (che richiedono un valore come parametro). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — drop_x_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — drop_x_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — drop_y_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — drop_y_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — drop_z_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — drop_z_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — drop_intensity_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — drop_intensity_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — drop_gps_time_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — drop_gps_time_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — drop_scan_angle_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — drop_scan_angle_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — keep_point_source</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — drop_point_source</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — drop_point_source_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — drop_point_source_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — keep_user_data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — drop_user_data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 19 — drop_user_data_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 — drop_user_data_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 21 — keep_every_nth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 22 — keep_random_fraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 23 — thin_with_grid</td>
</tr>
<tr>
<td>valore per il filtro</td>
<td>FILTERCOORDS...</td>
<td>[numero]</td>
<td>Il valore da usare come parametro per il filtro sopra selezionato</td>
</tr>
</tbody>
</table>
### Valore per il secondo filtro (per coordinate, intensità, tempo GPS, …)

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>secondo filtro</td>
<td>FILTER_COORDS_INTENSITY2_ARG</td>
<td>[number]</td>
<td>Predefinito: None Il valore da usare come parametro per il filtro sopra selezionato</td>
</tr>
</tbody>
</table>

### ulteriore parametro(i) a linea di comando Opzionale

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulteriore parametro(i) a linea di comando Opzionale</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot; Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all'utente (avanzato) di LAStools.</td>
</tr>
</tbody>
</table>

### File LAS/LAZ in uscita

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

---

**Tabella 24.186 – continua dalla pagina precedente**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>secondo filtro (per coordinate, intensità, tempo GPS, …)</td>
<td>FILTER_COORDS_INTENSITY2</td>
<td>[enumeration]</td>
<td>Predefinito: 0 Filtra i punti in base a varie altre opzioni (che richiedono un valore come parametro). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — drop_x_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — drop_x_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — drop_y_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — drop_y_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — drop_z_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — drop_z_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — drop_intensity_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — drop_intensity_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — drop_gps_time_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — drop_gps_time_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — drop_scan_angle_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — drop_scan_angle_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — keep_point_source</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — drop_point_source</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — drop_point_source_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — drop_point_source_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — keep_user_data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — drop_user_data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 19 — drop_user_data_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 — drop_user_data_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 21 — keep_every_nth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 22 — keep_random_fraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 23 — thin_with_grid</td>
</tr>
</tbody>
</table>

---

**24.3. Algoritmi LAStools** 1229
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File LAS/LAZ in uscita</td>
<td>OUTPUT_LASLAZ</td>
<td>[file]</td>
<td>Il formato del file LAS/LAZ in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** lastools:las2las_filter

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.6 las2las_project

Trasforma i file LAS/LAZ di una cartella in un altro SR.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>verbale</strong></td>
<td>VERBOSE</td>
<td>[booleano] Predefinito: False</td>
<td>Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>eseguire nuovo eseguibile a 64 bit</td>
<td>CPU64</td>
<td>[booleano] Predefinito: False</td>
<td></td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano] Predefinito: False</td>
<td>Avvia la GUI di LAStools con file in ingresso pre-popolati.</td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>File LAS/LAZ in ingresso</td>
</tr>
<tr>
<td>proiezione sorgente</td>
<td>SOURCE_PROJECT</td>
<td>[enumeration] Predefinito: 0</td>
<td>Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — epsg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — utm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — sp83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — sp27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — longlat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — latlong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — ecef</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>zona utm</td>
<td>SOURCE_UTM</td>
<td>[enumeration]</td>
<td>Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — 1 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — 2 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — 3 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — 4 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — 5 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — 6 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — 7 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — 8 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — 9 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — 10 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — 11 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — 12 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — 13 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — 14 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — 15 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — 16 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — 17 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — 18 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 19 — 19 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 — 20 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 21 — 21 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 22 — 22 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 23 — 23 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 24 — 24 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 25 — 25 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 26 — 26 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 27 — 27 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 28 — 28 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 29 — 29 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 30 — 30 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 31 — 31 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 32 — 32 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 33 — 33 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 34 — 34 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 35 — 35 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 36 — 36 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 37 — 37 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 38 — 38 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 39 — 39 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 40 — 40 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 41 — 41 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 42 — 42 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 43 — 43 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 44 — 44 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 45 — 45 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 46 — 46 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 47 — 47 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 48 — 48 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 49 — 49 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 50 — 50 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 51 — 51 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 52 — 52 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 53 — 53 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 54 — 54 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 55 — 55 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 56 — 56 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 57 — 57 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 58 — 58 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 59 — 59 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 60 — 60 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 61 — 1 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 62 — 2 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 63 — 3 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 64 — 4 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 65 — 5 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 66 — 6 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 67 — 7 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 68 — 8 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 69 — 9 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 70 — 10 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 71 — 11 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 72 — 12 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 73 — 13 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 74 — 14 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 75 — 15 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 76 — 16 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 77 — 17 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 78 — 18 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 79 — 19 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 80 — 20 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 81 — 21 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 82 — 22 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 83 — 23 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 84 — 24 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 85 — 25 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 86 — 26 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 87 — 27 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 88 — 28 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 89 — 29 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 90 — 30 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 91 — 31 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 92 — 32 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 93 — 33 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 94 — 34 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 95 — 35 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 96 — 36 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 97 — 37 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 98 — 38 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 99 — 39 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 100 — 40 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 101 — 41 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 102 — 42 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 103 — 43 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 104 — 44 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 105 — 45 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 106 — 46 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 107 — 47 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 108 — 48 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 109 — 49 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 110 — 50 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 111 — 51 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 112 — 52 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 113 — 53 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 114 — 54 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 115 — 55 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 116 — 56 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 117 — 57 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 118 — 58 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 119 — 59 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 120 — 60 (sud)</td>
</tr>
<tr>
<td>Etichetta</td>
<td>Nome</td>
<td>Tipo</td>
<td>Descrizione</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>codice di riferimento dell'aereo</td>
<td>SOURCE_SP</td>
<td>[enumeration]</td>
<td>Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — AK_10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — AK_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — AK_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — AK_4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — AK_5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — AK_6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — AK_7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — AK_8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — AK_9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — AL_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — AL_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — AR_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — AR_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — AZ_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — AZ_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — AZ_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — CA_I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — CA_II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 19 — CA_III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 — CA_IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 21 — CA_V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 22 — CA_VI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 23 — CA_VII</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 24 — CO_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 25 — CO_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 26 — CO_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 27 — CT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 28 — DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 29 — FL_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 30 — FL_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 31 — FL_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 32 — GA_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 33 — GA_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 34 — HI_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 35 — HI_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 36 — HI_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 37 — HI_4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 38 — HI_5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 39 — IA_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 40 — IA_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 41 — ID_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 42 — ID_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 43 — ID_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 44 — IL_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 45 — IL_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 46 — IN_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 47 — IN_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 48 — KS_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 49 — KS_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 50 — KY_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 51 — KY_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 52 — LA_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 53 — LA_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 54 — MA_I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 55 — MA_M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 56 — MD</td>
</tr>
</tbody>
</table>

1232 Capitolo 24. Fornitori di processing e algoritmi

• 58 — ME_W
• 59 — MI_C
• 60 — MI_N
• 61 — ML_C
• 62 — ML_N
• 63 — MN_C
• 64 — MN_N
• 65 — MO_C
• 66 — MO_E
• 67 — MO_W
• 68 — MS_E
• 69 — MS_W
• 70 — MT_C
• 71 — MT_N
• 72 — MT_S
• 73 — NC
• 74 — ND_N
• 75 — ND_S
• 76 — NE_N
• 77 — NE_S
• 78 — NH
• 79 — NJ
• 80 — NM_C
• 81 — NM_E
• 82 — NM_W
• 83 — NV_C
• 84 — NV_E
• 85 — NV_W
• 86 — NY_C
• 87 — NY_E
• 88 — NY_LI
• 89 — NY_W
• 90 — OH_N
• 91 — OH_S
• 92 — OK_N
• 93 — OK_S
• 94 — OR_N
• 95 — OR_S
• 96 — PA_N
• 97 — PA_S
• 98 — PR
• 99 — RI
• 100 — SC_N
• 101 — SC_S
• 102 — SD_N
• 103 — SD_S
• 104 — St.Croix
• 105 — TN
• 106 — TX_C
• 107 — TX_N
• 108 — TX_NC
• 109 — TX_S
• 110 — TX_SC
• 111 — UT_C
• 112 — UT_N
• 113 — UT_S
• 114 — VA_N
• 115 — VA_S
• 116 — VT
• 117 — WA_N
• 118 — WA_S
• 119 — WI_C
• 120 — WI_N
• 121 — WI_S
• 122 — WV_N
• 123 — WV_S
• 124 — WY_E
• 125 — WY_EC
• 126 — WY_W
• 127 — WY_WC
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>proiezione finale</td>
<td>TARGET_PROJECTION [enumeration]</td>
<td>Predeterminato: 0</td>
<td>Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — epsg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — utm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — sp83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — sp27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — longlat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 —latlong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — ecef</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona utm finale</td>
<td>TARGET_UTM</td>
<td>[enumeration]</td>
<td>Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — 1 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — 2 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — 3 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — 4 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — 5 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — 6 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — 7 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — 8 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — 9 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — 10 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — 11 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — 12 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — 13 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — 14 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — 15 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — 16 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — 17 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — 18 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 19 — 19 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 — 20 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 21 — 21 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 22 — 22 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 23 — 23 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 24 — 24 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 25 — 25 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 26 — 26 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 27 — 27 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 28 — 28 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 29 — 29 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 30 — 30 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 31 — 31 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 32 — 32 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 33 — 33 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 34 — 34 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 35 — 35 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 36 — 36 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 37 — 37 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 38 — 38 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 39 — 39 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 40 — 40 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 41 — 41 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 42 — 42 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 43 — 43 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 44 — 44 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 45 — 45 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 46 — 46 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 47 — 47 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 48 — 48 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 49 — 49 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 50 — 50 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 51 — 51 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 52 — 52 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 53 — 53 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 54 — 54 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 55 — 55 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 56 — 56 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 57 — 57 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 58 — 58 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 59 — 59 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 60 — 60 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 61 — 1 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 62 — 2 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 63 — 3 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 64 — 4 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 65 — 5 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 66 — 6 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 67 — 7 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 68 — 8 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 69 — 9 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 70 — 10 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 71 — 11 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 72 — 12 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 73 — 13 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 74 — 14 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 75 — 15 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 76 — 16 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 77 — 17 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 78 — 18 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 79 — 19 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 80 — 20 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 81 — 21 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 82 — 22 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 83 — 23 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 84 — 24 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 85 — 25 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 86 — 26 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 87 — 27 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 88 — 28 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 89 — 29 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 90 — 30 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 91 — 31 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 92 — 32 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 93 — 33 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 94 — 34 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 95 — 35 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 96 — 36 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 97 — 37 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 98 — 38 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 99 — 39 (sud)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 100 — 40 (sud)</td>
</tr>
<tr>
<td>Etichetta</td>
<td>Nome</td>
<td>Tipo</td>
<td>Descrizione</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>codice di riferimento dell'aereo finale</td>
<td>TARGET_SP</td>
<td>[enumeration] Predefinito: 0</td>
<td>Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — AK_10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — AK_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — AK_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — AK_4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — AK_5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — AK_6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — AK_7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — AK_8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — AK_9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — AL_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — AL_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — AR_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — AR_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — AZ_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — AZ_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — AZ_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — CA_I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — CA_H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 19 — CA_HI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 — CA_IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 21 — CA_V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 22 — CA_VI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 23 — CA_VII</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 24 — CO_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 25 — CO_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 26 — CO_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 27 — CT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 28 — DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 29 — FL_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 30 — FL_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 31 — FL_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 32 — GA_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 33 — GA_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 34 — HI_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 35 — HI_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 36 — HI_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 37 — HI_4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 38 — HI_5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 39 — IA_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 40 — IA_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 41 — ID_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 42 — ID_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 43 — ID_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 44 — IL_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 45 — IL_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 46 — IN_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 47 — IN_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 48 — KS_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 49 — KS_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 50 — KY_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 51 — KY_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 52 — LA_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 53 — LA_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 54 — MA_I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 55 — MA_M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 56 — MD</td>
</tr>
</tbody>
</table>

24.3. Algoritmi LAStools

- 57 — ME_E
- 58 — ME_W
- 59 — MI_C
- 60 — MI_N
- 61 — MI_S
- 62 — MN_C
- 63 — MN_N
- 64 — MN_S
- 65 — MO_C
- 66 — MO_E
- 67 — MO_W
- 68 — MS_E
- 69 — MS_W
- 70 — MT_C
- 71 — MT_N
- 72 — MT_S
- 73 — NC
- 74 — ND_N
- 75 — ND_S
- 76 — NE_N
- 77 — NE_S
- 78 — NH
- 79 — NJ
- 80 — NM_C
- 81 — NM_E
- 82 — NM_W
- 83 — NV_C
- 84 — NV_E
- 85 — NV_W
- 86 — NY_C
- 87 — NY_E
- 88 — NY_LI
- 89 — NY_W
- 90 — OH_N
- 91 — OH_S
- 92 — OK_N
- 93 — OK_S
- 94 — OR_N
- 95 — OR_S
- 96 — PA_N
- 97 — PA_S
- 98 — PR
- 99 — RI
- 100 — SC_N
- 101 — SC_S
- 102 — SD_N
- 103 — SD_S
- 104 — St.Croix
- 105 — TN
- 106 — TX_C
- 107 — TX_N
- 108 — TX_NC
- 109 — TX_S
- 110 — TX_SC
- 111 — UT_C
- 112 — UT_N
- 113 — UT_S
- 114 — VA_N
- 115 — VA_S
- 116 — VT
- 117 — WA_N
- 118 — WA_S
- 119 — WI_C
- 120 — WI_N
- 121 — WI_S
- 122 — WV_N
- 123 — WV_S
- 124 — WY_E
- 125 — WY_EC
- 126 — WY_W
- 127 — WY_WC
Tabella 24.187 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulteriore parametro(i) a linea di comando Opzionale</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all'utente ( avanzato) di LASTools.</td>
</tr>
<tr>
<td>File LAS/LAZ in uscita</td>
<td>OUTPUT_LASLAZ</td>
<td>[folder]</td>
<td>Specifica la cartella per le nuvole di punti in uscita. Uno di: • Non salvare l'Output • Salva in una cartella temporanea • Salva nella cartella… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File LAS/LAZ in uscita</td>
<td>OUTPUT_LASLAZ</td>
<td>[file]</td>
<td>Il formato del file LAS/LAZ in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** lasools:las2las_project

```python
import processing

processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il dicionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.7 las2las_transform

**Descrizione**

Utilizza las2las per filtrare i punti LiDAR in base a diversi attributi e per scrivere il sottoinsieme di punti rimanenti in un nuovo file LAZ o LAS.

Per maggiori informazioni vedi la pagina di las2las e il suo file README in linea.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>eseguire nuovo eseguibile a 64 bit</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False Avvia la GUI di LAStools con file in ingresso pre-popolati.</td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Predefinito: False Avvia la GUI di LAStools con file in ingresso pre-popolati.</td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il primo file contenente i punti da fondere</td>
</tr>
</tbody>
</table>
### Tabella 24.188 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| trasformazione (coordinate)      | TRANSFORM_COORDINATE1             | [enumeration] | Predefinito: 0  
Traslare, scalare o bloccare la coordinata X, Y o Z del valore specificato qui sotto. Uno di:  
- 0 — —  
- 1 — translate_x  
- 2 — translate_y  
- 3 — translate_z  
- 4 — scale_x  
- 5 — scale_y  
- 6 — scale_z  
- 7 — clamp_z_above  
- 8 — clamp_z_below |
| valore per la trasformazione     | TRANSFORM_COORDINATE1_ARG         | [string] | Predefinito: “”  
Il valore che specifica la misura di traslazione, scalatura o bloccaggio fatta dalla trasformazione selezionata sopra. |
| seconda trasformazione (coordinate) | TRANSFORM_COORDINATE2             | [enumeration] | Predefinito: 0  
Traslare, scalare o bloccare la coordinata X, Y o Z del valore specificato qui sotto. Uno di:  
- 0 — —  
- 1 — translate_x  
- 2 — translate_y  
- 3 — translate_z  
- 4 — scale_x  
- 5 — scale_y  
- 6 — scale_z  
- 7 — clamp_z_above  
- 8 — clamp_z_below |
| valore per la seconda trasformazione (coordinate) | TRANSFORM_COORDINATE2_ARG         | [string] | Predefinito: “”  
Il valore che specifica la misura di traslazione, scalatura o bloccaggio fatta dalla trasformazione selezionata sopra. |
| trasformazione (intensità, angoli di scansione, tempi GPS, …) | TRANSFORM_OTHER1                   | [enumeration] | Predefinito: 0  
Traslare, scalare o bloccare la coordinata X, Y o Z del valore specificato qui sotto. Uno di:  
- 0 — —  
- 1 — scale_intensity  
- 2 — translate_intensity  
- 3 — clamp_intensity_above  
- 4 — clamp_intensity_below  
- 5 — scale_scan_angle  
- 6 — translate_scan_angle  
- 7 — translate_gps_time  
- 8 — set_classification  
- 9 — set_user_data  
- 10 — set_point_source  
- 11 — scale_rgb_up  
- 12 — scale_rgb_down  
- 13 — repair_zero_returns |

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>valore per la trasformazione</td>
<td>TRANSFORM_OTHER1_ARG</td>
<td>[string]</td>
<td>Il valore che specifica la misura di ridimensionamento, traslazione, vincolo o impostazione che viene fatta dalla trasformazione sopra selezionata.</td>
</tr>
<tr>
<td>(intensità, angoli di scansione, tempi GPS, ...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seconda trasformazione</td>
<td>TRANSFORM_OTHER2_ARG</td>
<td>[enumeration]</td>
<td>Traslare, scalare o bloccare la coordinata X, Y o Z del valore specificato qui sotto. Uno di:</td>
</tr>
<tr>
<td>(intensità, angoli di scansione, tempi GPS, ...)</td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — scale_intensity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — translate_intensity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — clamp_intensity_above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — clamp_intensity_below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — scale_scan_angle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — translate_scan_angle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — translate_gps_time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — set_classification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — set_user_data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — set_point_source</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — scale_rgb_up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — scale_rgb_down</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — repair_zero_returns</td>
</tr>
<tr>
<td>valore per la seconda trasformazione</td>
<td>TRANSFORM_OTHER2_ARG</td>
<td>[string]</td>
<td>Il valore che specifica la misura di ridimensionamento, traslazione, vincolo o impostazione che viene fatta dalla trasformazione sopra selezionata.</td>
</tr>
<tr>
<td>(intensità, angoli di scansione, tempi GPS, ...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>operazioni (le prime 7 hanno bisogno di un parametro)</td>
<td>OPERATION</td>
<td>[enumeration]</td>
<td>Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — set_point_type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — set_point_size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — set_version_minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — set_version_major</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — start_at_point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — stop_at_point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — remove_vlr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — auto_reoffset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — week_to_adjusted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — adjusted_to_week</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — auto_reoffset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — scale_rgb_up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — scale_rgb_down</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — remove_all_vlrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — remove_extra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — clip_to_bounding_box</td>
</tr>
<tr>
<td>parametro per operazione</td>
<td>OPERATIONARG</td>
<td>[string]</td>
<td>Il valore da usare come parametro per l’operazione sopra selezionata.</td>
</tr>
<tr>
<td>ulteriore parametro(i) a linea di comando</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all’utente ( avanzato) di LAStools.</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabella 24.188 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| File LAS/LAZ in uscita | OUTPUT_LASLAZ | [file]       | Specifica dove viene memorizzata la nuvola di punti in uscita. Usa LAZ per risultato compresso, LAS per risultato non compresso, e TXT per ASCII. Uno di:  
- Non salvare l'Output  
- Salva come File Temporaneo  
- Salva come File…  
La codifica del file può anche essere cambiata qui. |

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File LAS/LAZ in uscita</td>
<td>OUTPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file in uscita (fuso) in formato LAS/LAZ</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** lastools:las2las_transform

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.8 las2txt

#### Descrizione

Trasforma un file LAS/LAZ in un file di testo.

#### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>eseguire nuovo eseguibile a 64 bit</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Predefinito: None</td>
</tr>
<tr>
<td>parse_string</td>
<td>PARSE</td>
<td>[string]</td>
<td>Predefinito: “xyz”</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando Opzionale</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Predefinito: “”</td>
</tr>
</tbody>
</table>

Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all’utente ( avanzato) di LAStools.

continues on next page
### Tabella 24.189 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File ASCII in uscita</td>
<td>OUTPUT_GENERIC</td>
<td>[file]</td>
<td>Specifica il file in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Crea Layer Temporaneo (TEMPORARY_OUTPUT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File ASCII in uscita</td>
<td>OUTPUT GENERIC</td>
<td>[file]</td>
<td>Il file in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** lastools:las2txt

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il _dizionario dei parametri_ fornisce i Nomi e i valori dei parametri. Vedi _Usare gli algoritmi di Processing dalla console dei comandi_ per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.9 lasindex

**Descrizione**

<put algorithm description here>

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>eseguire nuovo eseguibile a 64 bit</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Predefinito: None</td>
</tr>
<tr>
<td>Aggiungi il file *.lax al file *.laz</td>
<td>APPEND_LAX</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>è LiDAR mobile o terrestre (non aereo).</td>
<td>MOBILE_OR_TERRESTRE</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Parametri addizionali della linea di comando Opzionale</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Predefinito: ””</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all’utente (avanzato) di LAStools.</td>
</tr>
</tbody>
</table>
**In uscita:**

L’algoritmo non ha risultato.

**Codice Python**

**ID Algoritmo:** lastools:lasindex

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.10 lasgrid

Griglia un attributo selezionato (ad esempio elevazione, intensità, classificazione, angolo di scansione, …) di una grande nuvola di punti con una dimensione di passo definita dall’utente su raster utilizzando un metodo particolare (ad esempio min, max, media).

Per maggiori informazioni vedi la pagina di lasgrid e il suo file README in linea.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>verbale</strong></td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>eseguire nuovo</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>eseguibile a 64 bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apri GUI di</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>LAStools</td>
<td>GUI</td>
<td></td>
<td>Avvia la GUI di LAStools con file in ingresso pre-popolati</td>
</tr>
<tr>
<td>File LAS/LAZ in</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file contenente i punti da rasterizzare in formato LAS/LAZ</td>
</tr>
<tr>
<td>ingresso</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabella 24.191 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>filtro (per ritorno, classificazione, flag)</td>
<td>FILTER_RETURN_CLASS_FLAGS1</td>
<td>[enumeration]</td>
<td>Specifica il sottoinsieme di punti da utilizzare per il reticolo. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — keep_last</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — keep_first</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — keep_middle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — keep_single</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — drop_single</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — keep_double</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — keep_class 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — keep_class 2 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — keep_class 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — keep_class 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — keep_class 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — keep_class 3 4 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — keep_class 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — keep_class 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — keep_class 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 16 — keep_class 2 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 17 — drop_class 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 18 — drop_withheld</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 19 — drop_synthetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 — drop_overlap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 21 — keep_withheld</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 22 — keep_synthetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 23 — keep_keypoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 24 — keep_overlap</td>
</tr>
<tr>
<td>dimensione del passo / dimensione del pixel</td>
<td>STEP</td>
<td>[number]</td>
<td>Predefinito: 1.0</td>
</tr>
<tr>
<td>Attributo</td>
<td>ATTRIBUTE</td>
<td>[enumeration]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td>Metodo</td>
<td>METHOD</td>
<td>[enumeration]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td>utilizzare il perimetro di delimitazione (dopo aver creato i tasselli con il buffer.)</td>
<td>USE_TILE_BB</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
</tbody>
</table>

continues on next page
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File raster in uscita</td>
<td>OUTPUT_RASTER</td>
<td>[raster]</td>
<td>Il raster in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo**: lastools:lasgrid

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’ *id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare i algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.11 lasinfo

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>eseguire nuovo eseguibile a 64 bit</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>calcolo della densità</td>
<td>COMPUTE_DENSITY</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>rigenerazione del perimetro di delimitazione</td>
<td>REPAIR_BB</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Etichetta</td>
<td>Nome</td>
<td>Tipo</td>
<td>Descrizione</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Riparare contatori</td>
<td>REPAIR_COUNTERS</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Iстogramma</td>
<td>HISTO1</td>
<td>[enumeration]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Primo istogramma. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — z</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — intensità</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — classificazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — scan_angle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — user_data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — point_source</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — gps_time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — attribute0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — attribute1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — attribute2</td>
</tr>
<tr>
<td>dimensione del contenitore</td>
<td>HISTO1_BIN</td>
<td>[number]</td>
<td>Predefinito: 1.0</td>
</tr>
<tr>
<td>Iстogramma</td>
<td>HISTO2</td>
<td>[enumeration]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Secondo istogramma. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — z</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — intensità</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — classificazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — scan_angle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — user_data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 — point_source</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 — gps_time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 10 — X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 11 — Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 12 — Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 13 — attribute0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 14 — attribute1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 15 — attribute2</td>
</tr>
<tr>
<td>dimensione del contenitore</td>
<td>HISTO2_BIN</td>
<td>[number]</td>
<td>Predefinito: 1.0</td>
</tr>
</tbody>
</table>

continues on next page
### Tabella 24.192 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Istogramma</td>
<td>HISTO3</td>
<td>[enumeration]</td>
<td>Terzo istogramma. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito:</td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>• 1 — x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>• 2 — y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>• 3 — z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>• 4 — intensità</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>• 5 — classificazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>• 6 — scan_angle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>• 7 — user_data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>• 8 — point_source</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>• 9 — gps_time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>• 10 — X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>• 11 — Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>• 12 — Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>• 13 — attribute0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>• 14 — attribute1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>• 15 — attribute2</td>
</tr>
<tr>
<td>dimensione del contenitore</td>
<td>HISTO3_BIN</td>
<td>[number]</td>
<td>Predefinito: 1.0</td>
</tr>
<tr>
<td>ulteriore parametro(i) a linea di comando</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot;</td>
</tr>
<tr>
<td>File ASCII in uscita</td>
<td>OUTPUT GENERIC</td>
<td>[file]</td>
<td>Specifica dove viene memorizzato il risultato. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Non salvare l'Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File ASCII in uscita</td>
<td>OUTPUT GENERIC</td>
<td>[file]</td>
<td>Il file con il risultato</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** lastools:lasinfo

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'`id algoritmo` viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di elaborazione. Il `dizionario dei parametri` fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
### 24.3.12 lasmerge

Fondi fino a sette file LAS/LAZ in uno solo.

#### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>eseguire nuovo</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>eseguibile a 64 bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>I file sono linee di volo</td>
<td>FILES_ARE_FLIGHTLINES</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>aplica l'ID di file</td>
<td>APPLY_FILE_SOURCE_ID</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>sorgente</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File LAS/LAZ in</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il primo file contenente i punti da fondere</td>
</tr>
<tr>
<td>ingresso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd file</td>
<td>FILE2</td>
<td>[file]</td>
<td>Il secondo file da fondere</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd file</td>
<td>FILE3</td>
<td>[file]</td>
<td>Il terzo file da fondere</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th file</td>
<td>FILE4</td>
<td>[file]</td>
<td>Il quarto file da fondere</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th file</td>
<td>FILE5</td>
<td>[file]</td>
<td>Il quinto file da fondere</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th file</td>
<td>FILE6</td>
<td>[file]</td>
<td>Il sesto file da fondere</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th file</td>
<td>FILE7</td>
<td>[file]</td>
<td>Il settimo file da fondere</td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ulteriore parametro(i) a</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot;</td>
</tr>
<tr>
<td>linea di comando Opzionale</td>
<td></td>
<td></td>
<td>Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all’utente (avanzato) di LAStools.</td>
</tr>
<tr>
<td>File LAS/LAZ in</td>
<td>OUTPUT_LASLAZ</td>
<td>[file] [Skip output]</td>
<td>Predefinito: [Skip output]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specifica dove viene memorizzata la nuvola di punti in uscita. Usa LAZ per risultato compresso, LAS per risultato non compresso, e TXT per ASCII. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Non salvare l'Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File LAS/LAZ in uscita</td>
<td>OUTPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file in uscita (fuso) in formato LAS/LAZ</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** lastools:lasmerge

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.13 lasprecision

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Avvia la GUI di LAStools con file in ingresso pre-popolati.</td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file della nuvola di punti in ingresso</td>
</tr>
<tr>
<td>ulteriore parametro(i) a linea di comando Opzionale</td>
<td>ADDITIONAL_OPTS</td>
<td>[string]</td>
<td>Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all’utente (avanzato) di LAStools.</td>
</tr>
<tr>
<td>File ASCII in uscita</td>
<td>OUTPUT_GENERIC</td>
<td>[file]</td>
<td>Specifica dove viene memorizzato il file ASCII in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Non salvare l’Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File ASCII in uscita</td>
<td>OUTPUT_GENERIC</td>
<td>[file]</td>
<td>Il file ASCII in uscita</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** lastools:lasprecision

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.14 lasquery

**Descrizione**

<put algorithm description here>

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Predefinito: False. Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file della nuvola di punti in ingresso</td>
</tr>
<tr>
<td>area di interesse</td>
<td>AOI</td>
<td>[extent]</td>
<td>L’estensione</td>
</tr>
<tr>
<td>ulteriore parametro(i) a</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Predefinito: &quot;&quot;. Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all’utente ( avanzato) di LASTools.</td>
</tr>
<tr>
<td>linea di comando Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**In uscita:**

**Codice Python**

**ID Algoritmo:** lastools:lasquery

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.
### 24.3.15 lasvalidate

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file della nuvola di punti in ingresso</td>
</tr>
<tr>
<td>salva il report in &quot;*_LVS.xml&quot;</td>
<td>ONE_REPORT_PER...</td>
<td>[booleano]</td>
<td>Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all'utente (avanzato) di LAStools.</td>
</tr>
<tr>
<td>ulteriore parametro(i) a linea di comando Opzionale</td>
<td>ADDITIONAL_OPT...</td>
<td>[string]</td>
<td>Specifica dove viene memorizzato il file XML in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Non salva l'Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File XML in uscita</td>
<td>OUTPUT_GENERIC</td>
<td>[file]</td>
<td>Il file XML in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** lastools:lasvalidate

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.16 laszip

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>eseguire nuovo eseguibile a 64 bit</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>apri GUI di LAS...</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Avvia la GUI di LAStools con file in ingresso pre-popolati.</td>
</tr>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file da zippare</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.197 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>solo la dimensione del report</td>
<td>REPORT_SIZE</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>creare il file di indicizzazione spaziale (*.lax)</td>
<td>CREATE_LAX</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>Aggiungi il file *.lax al file *.lax</td>
<td>APPEND_LAX</td>
<td>[booleano]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td>ulteriore parametro(i) a linea di comando Opzionale</td>
<td>ADDITIONAL_OPTIONS</td>
<td>[string]</td>
<td>Predefinito: “” Specifica altre opzioni della linea di comando non disponibili tramite questo menu ma noti all'utente (avanzato) di LAStools.</td>
</tr>
<tr>
<td>File LAS/LAZ in uscita</td>
<td>OUTPUT_LASLAZ</td>
<td>[file]</td>
<td>Predefinito: [Skip output] Specifica dove viene memorizzata la nuvola di punti in uscita. Usa LAZ per risultato compresso, LAS per risultato non compresso, e TXT per ASCII. Uno di: • Non salvare l’Output • Salva come File Temporaneo • Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File LAS/LAZ in uscita</td>
<td>OUTPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file in uscita</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: lastools:laszip

```
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’”id algoritmo” viene visualizzato quando passi il mouse sopra l'algoritmo nella finestra degli strumenti di elaborazione. Il dictionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.3.17 txt2las

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbale</td>
<td>VERBOSE</td>
<td>[booleano]</td>
<td>Predefinito: False Genera in uscita più controlli testuale alla console</td>
</tr>
<tr>
<td>eseguire nuovo</td>
<td>CPU64</td>
<td>[booleano]</td>
<td>Predefinito: False Avvia la GUI di LAStools con file in ingresso pre-popolati</td>
</tr>
<tr>
<td>eseguibile a 64 bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apri GUI di LAStools</td>
<td>GUI</td>
<td>[booleano]</td>
<td>Predefinito: False Avvia la GUI di LAStools con file in ingresso pre-popolati</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File LAS/LAZ in ingresso</td>
<td>INPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file da zippare</td>
</tr>
<tr>
<td>analizza linee come</td>
<td>PARSE</td>
<td>[string]</td>
<td>Predefinito: “xyz”</td>
</tr>
<tr>
<td>saltare le prime n linee</td>
<td>SKIP</td>
<td>[number]</td>
<td>Predefinito: 0</td>
</tr>
<tr>
<td>risoluzione delle coordinate x e y</td>
<td>SCALE_FACTOR_XY</td>
<td>[number]</td>
<td>Predefinito: 0.01</td>
</tr>
<tr>
<td>risoluzione della coordinata z</td>
<td>SCALE_FACTOR_Z</td>
<td>[number]</td>
<td>Predefinito: 0.01</td>
</tr>
<tr>
<td>proiezione sorgente</td>
<td>PROJECTION</td>
<td>[enumeration]</td>
<td>Una di:</td>
</tr>
<tr>
<td>codice epsg del sorgente</td>
<td>EPSG_CODE</td>
<td>[number]</td>
<td>• 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 — epsg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 — utm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 — sp83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 — sp27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 — longlat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 6 — latlong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 7 — ecef</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>zona utm</td>
<td>UTM</td>
<td>[enumeration]</td>
<td>Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 — 1 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 — 2 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 — 3 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 — 4 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 — 5 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 — 6 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 — 7 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 — 8 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 — 9 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 — 10 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 — 11 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 — 12 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13 — 13 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 — 14 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 — 15 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16 — 16 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17 — 17 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 — 18 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19 — 19 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 — 20 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21 — 21 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22 — 22 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23 — 23 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 — 24 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 — 25 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26 — 26 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 — 27 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28 — 28 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29 — 29 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 — 30 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31 — 31 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32 — 32 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33 — 33 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34 — 34 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35 — 35 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36 — 36 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37 — 37 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38 — 38 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39 — 39 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 — 40 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41 — 41 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42 — 42 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43 — 43 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44 — 44 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 — 45 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46 — 46 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47 — 47 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48 — 48 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49 — 49 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 — 50 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51 — 51 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52 — 52 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 — 53 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>54 — 54 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55 — 55 (nord)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56 — 56 (nord)</td>
</tr>
</tbody>
</table>

Tabella 24.198 – continua dalla pagina precedente
<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>codice di riferimento dell’aereo</td>
<td>SP</td>
<td>[enumeration]</td>
<td>Una di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predefinito: 0</td>
<td>- 0 — —</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 1 — AK_10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2 — AK_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 3 — AK_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 4 — AK_4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 5 — AK_5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 6 — AK_6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 7 — AK_7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 8 — AK_8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 9 — AK_9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 10 — AL_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 11 — AL_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 12 — AR_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 13 — AR_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 14 — AZ_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 15 — AZ_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 16 — AZ_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 17 — CA_I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 18 — CA_H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 19 — CA_HU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 20 — CA_IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 21 — CA_V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 22 — CA_VI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 23 — CA_VII</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 24 — CO_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 25 — CO_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 26 — CO_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 27 — CT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 28 — DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 29 — FL_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 30 — FL_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 31 — FL_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 32 — GA_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 33 — GA_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 34 — HI_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 35 — HI_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 36 — HI_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 37 — HI_4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 38 — HI_5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 39 — IA_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 40 — IA_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 41 — ID_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 42 — ID_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 43 — ID_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 44 — IL_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 45 — IL_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 46 — IN_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 47 — IN_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 48 — KS_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 49 — KS_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 50 — KY_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 51 — KY_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 52 — LA_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 53 — LA_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 54 — MA_I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 55 — MA_M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 56 — MD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 57 — ME_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 58 — ME_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 59 — MI_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 60 — MI_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 61 — MI_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 62 — MN_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 63 — MN_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 64 — MN_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 65 — MO_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 66 — MO_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 67 — MO_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 68 — MS_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 69 — MS_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 70 — MT_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 71 — MT_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 72 — MT_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 73 — NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 74 — ND_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 75 — ND_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 76 — NE_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 77 — NE_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 78 — NH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 79 — NJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 80 — NM_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 81 — NM_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 82 — NM_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 83 — NV_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 84 — NV_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 85 — NV_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 86 — NY_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 87 — NY_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 88 — NY_LI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 89 — NY_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 90 — OH_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 91 — OH_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 92 — OK_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 93 — OK_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 94 — OR_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 95 — OR_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 96 — PA_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 97 — PA_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 98 — PR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 99 — RI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 100 — SC_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 101 — SC_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 102 — SD_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 103 — SD_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 104 — St.Croix</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 105 — TN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 106 — TX_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 107 — TX_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 108 — TX_NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 109 — TX_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 110 — TX_SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 111 — UT_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 112 — UT_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 113 — UT_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 114 — VA_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 115 — VA_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 116 — VT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 117 — WA_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 118 — WA_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 119 — WI_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 120 — WI_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 121 — WI_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 122 — WV_N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 123 — WV_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 124 — WY_E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 125 — WY_EC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 126 — WY_W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 127 — WY_WC</td>
</tr>
</tbody>
</table>

24.3. Algoritmi LASTools
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>OUTPUT_LASLAZ</td>
<td>[file]</td>
<td>Il file in uscita</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** lastools:txt2las

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando passi il mouse sopra l’algoritmo nella finestra degli strumenti di elaborazione. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di elaborazione dalla console Python.

### 24.4 Fornitore di algoritmi TauDEM

**TauDEM** (Terrain Analysis Using Digital Elevation Models) è un insieme di strumenti sui Modelli di elevazione digitali (DEM) per l’estrazione e l’analisi di informazioni idrologiche dalla topografia rappresentata da un DEM. Si tratta di un software sviluppato dall’Utah State University (USU) per l’analisi idrologica dei modelli digitali di elevazione e la determinazione degli spartiacque.

TauDEM è distribuito come un insieme di programmi eseguibili a riga di comando standalone per Windows e codice sorgente per la compilazione e l’uso su altri sistemi.

**Nota:** Ricorda che Processing contiene solo la descrizione dell’interfaccia, quindi tu devi installare TauDEM 5.0.6 e configurare Processing correttamente.

Documentazione per gli algoritmi di TauDEM basata sulla documentazione ufficiale di TauDEM <http://hydrology.usu.edu/taudem/taudem5/documentation.html>
24.4.1 Analisi di base della rete

**Area di Contribuzione D-Infinity**

Calcola una griglia di uno specifico bacino che è l'area di contribuzione per unità di lunghezza del contorno usando l'approccio D-infinity a direzione di flusso multipla. La direzione di flusso D-infinite è definita come la più ripida pendenza verso il basso su sfaccettature triangolari planari su una griglia centrata sul blocco. Il contributo ad ogni cella della griglia viene preso come la lunghezza della cella della griglia (o quando viene usato un ingresso opzionale per la griglia, dal peso griglia). L'area contribuente di ogni cella della griglia è quindi presa come il suo contributo più il contributo dei vicini a monte che hanno qualche frazione che drena ad essa secondo il modello di flusso D-infinite. Il flusso da ogni cella o drena tutto ad un vicino, se l'angolo cade lungo una direzione cardinale (0, π/2, π, 3π/2) o ordinale (π/4, 3π/4, 5π/4, 7π/4), o è su un angolo che cade tra l'angolo diretto a due vicini adiacenti. In quest'ultimo caso il flusso è proporzionato tra queste due celle vicine in base a quanto l'angolo della direzione del flusso è vicino all'angolo diretto a queste celle. La lunghezza del contorno usata qui è la dimensione della cella della griglia. Le unità risultanti del bacino specifico sono unità di lunghezza uguali a quelle della dimensione della cella della griglia.

![Diagram](image)

Quando la griglia opzionale non viene utilizzata, il risultato viene riportato in termini di area specifica del bacino idrografico, l'area in pendenza per unità di lunghezza della curva di livello, presa qui come il numero di celle per la lunghezza della cella della griglia (area della cella divisa per la lunghezza della cella). Questo presuppone che la lunghezza delle celle della griglia sia la lunghezza effettiva del contorno, nella definizione dell'area specifica del bacino e non distingue alcuna differenza nella lunghezza del contorno dipendente dalla direzione del flusso. Quando si usa la griglia opzionale dei pesi, il risultato viene riportato direttamente come sommatoria dei pesi, senza alcuna correzione in scala.

Se viene utilizzato lo shapefile opzionale del punto di efflusso, solo le celle di esclusivo e le celle a monte (per il modello di flusso D-infinite) di esse sono nel dominio da valutare.

Per impostazione predefinita, lo strumento controlla la contaminazione dei bordi. Questo è definito come la possibilità che un valore di un'area contributiva possa essere sottostimato a causa di celle della griglia al di fuori del dominio che non vengono contate. Questo si verifica quando il drenaggio è verso l'interno dei confini o delle aree con valori di
Elevazione «n data». L'algoritmo lo riconosce e riporta «nessun dato» per l'area contribuente. È comune vedere strisce di valori «no data» che si estendono verso l'interno dai confini lungo i percorsi di flusso che entrano nel dominio da un confine. Questo è l'effetto desiderato e indica che l'area contributiva per queste celle della griglia è sconosciuta a causa della sua dipendenza dal terreno al di fuori del dominio dei dati disponibili. Il controllo della contaminazione dei bordi può essere disattivato nei casi in cui sai che non è un problema o vuoi ignorare questi problemi, se per esempio, il DEM è stato ritagliato lungo il contorno di uno spartiacque.

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direzioni di flusso</td>
<td>DINF_FLOWDIR</td>
<td>[raster]</td>
<td>Una griglia di direzioni di flusso basata sul metodo del flusso D-infinito usando la pendenza più ripida di una sfaccettatura triangolare. La direzione del flusso è determinata come la direzione della pendenza più ripida verso il basso sulle 8 sfaccettature triangolari di una griglia centrata su un blocco 3x3. La direzione del flusso è codificata come un angolo in radianti, in senso antiorario da est come una quantità continua (in virgola mobile) tra 0 e 2π. Il flusso risultante in una griglia è quindi solitamente interpretato come proporzionato tra le due celle vicine che definiscono la sfaccettatura triangolare con la pendenza più ripida verso il basso.</td>
</tr>
<tr>
<td>Uscite</td>
<td>OUTLETS</td>
<td>[vector: point]</td>
<td>Uno shapefile di punti che definisce gli sbocchi di interesse. Se è usato questo file in ingresso, solo le celle a monte di queste celle di uscita sono considerate all'interno del dominio da valutare.</td>
</tr>
<tr>
<td>Peso griglia</td>
<td>WEIGHT_GRID</td>
<td>[raster]</td>
<td>Una griglia che dà il contributo al flusso per ogni cella. Questi contributi (a volte indicati anche come pesi o carichi) sono usati nell'accumulo dell'area contribuente. Se questo file di input non viene utilizzato, il risultato viene riportato in termini di area specifica del bacino (l'area di versante per unità di lunghezza della curva di livello) presa come il numero di celle per la lunghezza della cella della griglia (area della cella divisa per la lunghezza della cella).</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.199 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verifica contaminazione dei bordi</td>
<td>EDGE_CONTAMINATION</td>
<td>boolean</td>
<td>Un flag che indica se lo strumento deve controllare la contaminazione dei bordi. La contaminazione dei bordi è definita come la possibilità che un valore dell'area contributiva possa essere sottostimato a causa del fatto che le celle della griglia al di fuori del dominio non sono state valutate. Questo si verifica quando il drenaggio è verso l'interno dei confini o delle aree con valori NODATA per la quota. L'algoritmo riconosce questo e riporta NODATA per le celle impattate. È comune vedere strisce di valori NODATA che si estendono verso l'interno dai confini lungo i percorsi di flusso che entrano nel dominio da un confine. Questo è l'effetto desiderato e indica che l'area che contribuisce a queste celle della griglia è sconosciuta a causa del fatto che dipende dal terreno al di fuori del dominio dei dati disponibili. Il controllo della contaminazione dei bordi può essere disattivato nei casi in cui sai che questo non è un problema, o vuoi ignorare questi problemi, se per esempio, il DEM è stato tagliato lungo il contorno di un bacino idrografico.</td>
</tr>
<tr>
<td>Bacino di raccolta specifico D-infinity</td>
<td>DINF_CONTRIB_AREA</td>
<td>raster</td>
<td>Indicazione del raster in uscita. Uno di: • Salva come File Temporaneo • Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacino di raccolta specifico D-infinity</td>
<td>DINF_CONTRIB_AREA</td>
<td>raster</td>
<td>Una griglia di area specifica del bacino idrografico che è l'area contributiva per unità di lunghezza delle curve di livello utilizzando l'approccio D-infinity a direzione di flusso multipla. L'area contributiva di ogni cella della griglia è quindi presa come il suo proprio contributo più il contributo dei vicini a monte che hanno qualche frazione che drena ad essa secondo il modello di flusso D-infinity.</td>
</tr>
</tbody>
</table>

ID Algoritmo: taudem:areadinf

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'"id algoritmo" viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Direzioni di flusso D-Infinity

Assegna una direzione di flusso basata sul metodo del flusso D-infinity usando la pendenza più ripida di una sfaccettatura triangolare (Tarboton, 1997, «A New Method for the Determination of Flow Directions and Contributing Areas in Grid Digital Elevation Models», Water Resources Research, 33(2): 309-319). La direzione del flusso è definita come la più ripida pendenza verso il basso su sfaccettature triangolari planari su una griglia centrata a blocchi. La direzione del flusso è codificata come un angolo in radianti in senso antiorario da est come una quantità continua (in virgola mobile) tra 0 e $2\pi$. L’angolo di direzione del flusso è determinato come la direzione della più ripida pendenza verso il basso sulle otto sfaccettature triangolari formate in una finestra di 3 x 3 celle della griglia centrata sulla cella della griglia di interesse. Il flusso risultante in una griglia è quindi solitamente interpretato come proporzionato tra le due celle vicine che definiscono la sfaccettatura triangolare con la pendenza più ripida verso il basso.

Una rappresentazione centrata sul blocco è usata con ogni valore di elevazione preso per rappresentare l’elevazione del centro della cella della griglia corrispondente. Otto sfaccettature triangolari planari sono formate tra ogni cella della griglia e i suoi otto vicini. Ognuno di questi ha un vettore di pendenza che quando viene disegnato verso l’esterno dal centro può essere ad un angolo che si trova all’interno o all’esterno della gamma di angoli di 45 gradi ($\pi/4$ radianti) della sfaccettatura nel punto centrale. Se l’angolo del vettore di pendenza è all’interno dell’angolo della sfaccettatura, rappresenta la direzione più ripida del flusso su quella sfaccettatura. Se l’angolo del vettore pendenza è fuori da una sfaccettatura, la direzione del flusso più ripida associata a quella sfaccettatura è presa lungo il bordo più ripido. La pendenza e la direzione del flusso associate alla cella della griglia sono prese come la grandezza e la direzione del vettore più ripido verso il basso da tutte le otto sfaccettature. La pendenza è misurata come caduta/distanza, ad esempio tan dell’angolo di pendenza.

Nel caso in cui nessun vettore di pendenza sia positivo (downslope), la direzione del flusso è impostata utilizzando il metodo di Garbrecht e Martz (1997) per la determinazione del flusso attraverso aree piane. Questo fa sì che le aree pianeggianti drenino lontano dall’alto e verso il basso. La griglia del percorso del flusso per imporre il drenaggio lungo i corsi d’acqua esistenti è un input opzionale e, se usato, ha la precedenza sulle quote per l’impostazione delle direzioni del flusso.

Un arco di sfere concentriche con centro in cella 123 è usato per rappresentare la lunghezza del flusso dalla cella destra.
L'algoritmo della direzione di flusso D-infinito può essere applicato a un DEM che non ha avuto i suoi buchi riempiti, ma risulterà poi in valori «no data» per la direzione di flusso D-infinito e la pendenza associata al punto più basso del buco.

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevazione piena di fosse</td>
<td>PIT_FILLED</td>
<td>[raster]</td>
<td>Una griglia di valori di elevazione. Questo è di solito l'output dello strumento «Pit Remove », nel qual caso si tratta di quote con buche rimosse. Le buche sono aree a bassa quota nei modelli digitali di elevazione (DEM) che sono completamente circondate da terreno più alto. Sono generalmente considerati artefatti del processo di digitalizzazione che interferiscono con l'elaborazione del flusso attraverso i DEM. Quindi vengono rimossi aumentando la loro elevazione fino al punto in cui si allontanano dal dominio. Questo passo non è essenziale se hai ragione di credere che le buche nel tuo DEM siano reali. Se alcune buche esistono realmente e quindi non dovrebbero essere rimosse, mentre allo stesso tempo si ritiene che altre siano artefatti che devono essere rimossi, le buche reali dovrebbero avere valori di elevazione NODATA inseriti nel loro punto più basso. I valori NODATA servono a definire i bordi del dominio nel campo del flusso, e le elevazioni sono sollevate solo dove il flusso è fuori da un bordo, quindi un valore NODATA interno impedirà la rimozione di una buca, se necessario.</td>
</tr>
</tbody>
</table>
| Direzioni di flusso D-infinity | DINF_FLOWDIR     | [raster] | Indicazione del raster della direzione del flusso in uscita. Uno di:  
  • Salva come File Temporaneo  
  • Salva come File…  
  La codifica del file può anche essere cambiata qui. |
| Pendenza D-infinity           | DINF_SLOPE        | [raster] | Indicazione del raster della pendenza in uscita. Uno di:  
  • Salva come File Temporaneo  
  • Salva come File…  
  La codifica del file può anche essere cambiata qui. |
### Direzioni di flusso D-infinity

**Etichetta:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direzioni di flusso D-infinity</td>
<td>DINF_FLOWDIR</td>
<td>[raster]</td>
<td>Una griglia di direzioni di flusso basata sul metodo del flusso D-infinito usando la pendenza più ripida di una sfaccettatura triangolare. La direzione del flusso è determinata come la direzione della pendenza più ripida verso il basso sulle 8 sfaccettature triangolari di una griglia centrata su un blocco 3x3. La direzione del flusso è codificata come un angolo in radianti, in senso antiorario da est come una quantità continua (in virgola mobile) tra 0 e 2π. Il flusso risultante in una griglia è quindi solitamente interpretato come proporzionato tra le due celle vicine che definiscono la sfaccettatura triangolare con la pendenza più ripida verso il basso.</td>
</tr>
</tbody>
</table>

**Pendenza D-infinity**

<table>
<thead>
<tr>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

**ID Algoritmo:** `taudem:dinfflowdir`

```python
import processing
class.run("algorithm_id", {parameter_dictionary})
```

L’id del algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dicionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**D8 Area di contribuzione**

Calcola una griglia di aree contribuenti usando il modello di flusso D8 a direzione singola. Il contributo di ogni cella della griglia è preso come uno (o quando si usa la griglia opzionale dei pesi, il valore della griglia dei pesi). L’area contributiva per ogni cella della griglia è considerata come il proprio contributo più il contributo dei vicini a monte che drenano in essa secondo il modello di flusso D8.

Se viene utilizzato lo shapefile opzionale del punto di uscita, solo le celle di uscita e le celle a monte (dal modello di flusso D8) di esse sono nel dominio da valutare.

Per impostazione predefinita, lo strumento controlla la contaminazione dei bordi. Questo è definito come la possibilità che un valore di un’area contributiva possa essere sottostimato a causa di celle della griglia al di fuori del dominio che non vengono contate. Questo si verifica quando il drenaggio è verso l’interno dei confini o delle aree con valori di elevazione «senza dati». L’algoritmo lo riconosce e riporta «no data» per l’area contribuente. È comune vedere strisce di valori «no data» che si estendono verso l’interno dai confini lungo i percorsi di flusso che entrano nel dominio da un confine. Questo è l’effetto desiderato e indica che l’area contributiva per queste celle della griglia è sconosciuta a
causa della sua dipendenza dal terreno al di fuori del dominio dei dati disponibili. Il controllo della contaminazione dei bordi può essere disattivato nei casi in cui sai che questo non è un problema o vuoi ignorare questi problemi, se per esempio, il DEM è stato ritagliato lungo il contorno di uno spartiacque.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8 direzioni di flusso</td>
<td>D8_FLOWDIR</td>
<td>[raster]</td>
<td>Una griglia di direzioni di flusso D8 che sono definite, per ogni cella, come la direzione di uno dei suoi otto vicini adiacenti o diagonali con la pendenza più ripida verso il basso. Questa griglia può essere ottenuta come risultato dello strumento «D8 Flow Directions «.</td>
</tr>
<tr>
<td>Uscite Opzionale</td>
<td>OUTLETS</td>
<td>[vector: point]</td>
<td>Uno shapefile di punti che definisce gli sbocchi di interesse. Se è usato questo file in ingresso, solo le celle a monte di queste celle di uscita sono considerate all’interno del dominio da valutare.</td>
</tr>
<tr>
<td>Peso griglia Opzionale</td>
<td>WEIGHT_GRID</td>
<td>[raster]</td>
<td>Una griglia che dà il contributo al flusso per ogni cella. Questi contributi (a volte indicati anche come pesi o carichi) sono usati nell’accumulo dell’area contribuente. Se questo file in ingresso non viene utilizzato, il contributo al flusso sarà assunto come uno per ogni cella della griglia.</td>
</tr>
<tr>
<td>Verifica contaminazione bordi</td>
<td>EDGE_CONTAMINATION</td>
<td>[boolean]</td>
<td>Un flag che indica se lo strumento deve controllare la contaminazione dei bordi. La contaminazione dei bordi è definita come la possibilità che un valore dell’area contributiva possa essere sottostimato a causa del fatto che le celle della griglia al di fuori del dominio non sono state valutate. Questo si verifica quando il drenaggio è verso l’interno dei confini o delle aree con valori NODATA per la quota. L’algoritmo riconosce questo e riporta NODATA per le celle impattate. È comune vedere strisce di valori NODATA che si estendono verso l’interno dai confini lungo i percorsi di flusso che entrano nel dominio da un confine. Questo è l’effetto desiderato e indica che l’area che contribuisce a queste celle della griglia è sconosciuta a causa del fatto che dipende dal terreno al di fuori del dominio dei dati disponibili. Il controllo della contaminazione dei bordi può essere disattivato nei casi in cui sai che questo non è un problema, o vuoi ignorare questi problemi, se per esempio, il DEM è stato tagliato lungo il contorno di un bacino idrografico.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.202 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>D8 bacino di utenza specifico</strong></td>
<td>D8_CONTRIB_AREA [raster]</td>
<td>Predeterminato: [Save to temporary file]</td>
<td>Indicazione del raster in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

**In uscita:**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>D8 bacino di utenza specifico</strong></td>
<td>D8_CONTRIB_AREA [raster]</td>
<td></td>
<td>Una griglia di valori di area contribuente calcolata come il contributo proprio della cella più il contributo dei vicini a monte che drenano in essa secondo il modello di flusso D8.</td>
</tr>
</tbody>
</table>

**ID Algoritmo:** taudem:aread8

```python
import processing
cpyrocessing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**D8 Direzioni di flusso**

Crea 2 griglie. La prima contiene la direzione del flusso da ogni cella della griglia a uno dei suoi vicini adiacenti o diagonali, calcolata usando la direzione della discesa più ripida. La seconda contiene la pendenza, valutata nella direzione della discesa più ripida, ed è riportata come caduta/distanza, cioè tan dell’angolo. La direzione del flusso è riportata come NODATA per ogni cella della griglia adiacente al bordo del dominio DEM, o adiacente a un valore NODATA nel DEM. Nelle aree pianeggianti, le direzioni del flusso sono assegnate lontano dal terreno più alto e verso il terreno più basso usando il metodo di Garbrecht e Martz (1997). L’algoritmo di direzione del flusso D8 può essere applicato a un DEM che non ha avuto i suoi buchi riempiti, ma risulterà in valori NODATA per la direzione del flusso e la pendenza nel punto più basso di ogni buco.

**D8 Codifica della direzione del flusso:**

- 1 — Est
- 2 — Nord Est
- 3 — Nord
- 4 — Nord Ovest
- 5 — Ovest
- 6 — Sud Ovest
- 7 — Sud
- 8 — Sud Est

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevazione piena di fosse</td>
<td>PIT_FILLED</td>
<td>[raster]</td>
<td>Una griglia di valori di elevazione. Questo è di solito l’output dello strumento «Pit Remove », nel qual caso si tratta di quote con buche rimosse. Le buche sono aree a bassa quota nei modelli digitali di elevazione (DEM) che sono completamente circondate da terreno più alto. Sono generalmente considerati artefatti del processo di digitalizzazione che interferiscono con l’elaborazione del flusso attraverso i DEM. Quindi vengono rimosse aumentando la loro elevazione fino al punto in cui si allontanano dal dominio. Questo passo non è essenziale se hai ragione di credere che le buche nel tuo DEM siano reali. Se alcune buche esistono realmente e quindi non dovrebbero essere rimosse, mentre allo stesso tempo si ritiene che altre siano artefatti che devono essere rimosse, le buche reali dovrebbero avere valori di elevazione NODATA inseriti nel loro punto più basso. I valori NODATA servono a definire i bordi del dominio nel campo del flusso, e le elevazioni sono sollevate solo dove il flusso è fuori da un bordo, quindi un valore NODATA interno impedirà la rimozione di una buca, se necessario.</td>
</tr>
<tr>
<td>D8 direzioni di flusso</td>
<td>D8_FLOWDIR</td>
<td>[raster]</td>
<td>Indicazione del raster della direzione del flusso in uscita. Uno di: • Salva come File Temporaneo • Salva come File… La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

continues on next page
Tabella 24.203 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8 pendenza</td>
<td>D8_SLOPE</td>
<td>[raster]</td>
<td>Indicazione del raster della pendenza in uscita. Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
</tbody>
</table>

### In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8 direzioni di flusso</td>
<td>D8_FLOWDIR</td>
<td>[raster]</td>
<td>Una griglia di direzioni di flusso D8 che sono definite, per ogni cella,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>come la direzione di uno delle sue otto cella adiacenti o in diagonale con</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>la pendenza più ripida verso il basso.</td>
</tr>
<tr>
<td>D8 pendenza</td>
<td>D8_SLOPE</td>
<td>[raster]</td>
<td>Una griglia che dà la pendenza nella direzione del flusso D8. Questo è</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>misurato come caduta/distanza.</td>
</tr>
</tbody>
</table>

**ID Algoritmo:** `taudem:d8flowdir`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id_algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Griglia della rete**

Crea 3 griglie che contengono per ogni cella della griglia 1) il percorso più lungo, 2) il percorso totale, e 3) il numero d’ordine di Strahler. Questi valori sono derivati dalla rete definita dal modello di flusso D8.

La lunghezza più lunga del percorso a monte è la lunghezza del percorso del flusso dalla cella più lontana che drena in ogni cella. La lunghezza totale del percorso a monte è la lunghezza dell’intera rete a griglia a monte di ogni cella della griglia. Le lunghezze sono misurate tra i centri delle celle tenendo conto delle dimensioni delle celle e del fatto che la direzione sia adiacente o diagonale.


Quando sono inseriti in ingresso la griglia maschera opzionale e il valore di soglia, la funzione viene valutata solo considerando le celle della griglia che si trovano nel dominio con un valore della griglia della maschera maggiore o uguale al valore di soglia. Le celle della griglia di origine (prima ordine) sono prese come quelle che non hanno altre celle della griglia dall’interno del dominio che drenano in esse, e solo quando due di questi percorsi di flusso si uniscono viene propagato l’ordine secondo le regole di ordinamento. Le lunghezze sono anche valutate solo contando i percorsi all’interno del dominio maggiori o uguali alla soglia.

Se viene utilizzato lo shapefile opzionale del punto di uscita, solo le celle di uscita e le celle a monte (dal modello di flusso D8) di esse sono nel dominio da valutare.
---

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8 direzioni di flusso</td>
<td>D8_FLOWDIR</td>
<td>[raster]</td>
<td>Una griglia di direzioni di flusso D8 che sono definite, per ogni cella, come la direzione di uno dei suoi otto vicini adiacenti o diagonali con la pendenza più ripida verso il basso. Questa griglia può essere ottenuta come risultato dello strumento «D8 Flow Directions».</td>
</tr>
<tr>
<td>Griglia maschera</td>
<td>MASK_GRID</td>
<td>[raster]</td>
<td>Una griglia che viene utilizzata per determinare il dominio da analizzare. Se il valore della griglia della maschera &gt;= soglia della maschera (vedi sotto), allora la cella sarà inclusa nel dominio. Mentre questo strumento non ha un flag di contaminazione dei bordi, se l'analisi della contaminazione dei bordi è necessaria, allora una griglia di maschera da una funzione come «D8 Contributing Area» che supporta la contaminazione dei bordi può essere utilizzata per ottenere lo stesso risultato.</td>
</tr>
<tr>
<td>Maschera soglia</td>
<td>THRESHOLD</td>
<td>[number]</td>
<td>Questo parametro in ingresso è usato nel calcolo valore della griglia della maschera &gt;= soglia della maschera per determinare se la cella della griglia è nel dominio da analizzare.</td>
</tr>
<tr>
<td>Uscite</td>
<td>OUTLETS</td>
<td>[vector: point]</td>
<td>Uno shapefile di punti che definisce gli sbocchi di interesse. Se è usato questo file in ingresso, solo le celle a monte di queste celle di uscita sono considerate all'interno del dominio da valutare.</td>
</tr>
</tbody>
</table>
| Lunghezza di pendenza più lunga             | LONGEST_PATH          | [raster]         | Indicazione del raster in uscita con le lunghezze totali di pendenza. Uno di:  

- Salva come File Temporaneo  
- Salva come File…  

La codifica del file può anche essere cambiata qui. |
| Lunghezza totale pendenza                  | TOTAL_PATH            | [raster]         | Indicazione del raster in uscita con le lunghezze di pendenza. Uno di:  

- Salva come File Temporaneo  
- Salva come File…  

La codifica del file può anche essere cambiata qui. |
| Ordine rete Strahler                       | STRAHLER_ORDER        | [raster]         | Indicazione del raster in uscita con l'ordine della rete di Strahler. Uno di:  

- Salva come File Temporaneo  
- Salva come File…  

La codifica del file può anche essere cambiata qui. |

---

24.4. Fornitore di algoritmi TauDEM

1265
In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunghezza di pendenza più lunga</td>
<td>LONGEST_PATH</td>
<td>[raster]</td>
<td>Una griglia che fornisce la lunghezza del più lungo percorso di flusso D8 a monte che termina in ogni cella della griglia. Le lunghezze sono misurate tra i centri delle celle tenendo conto delle dimensioni delle celle e del fatto che la direzione sia adiacente o diagonale.</td>
</tr>
<tr>
<td>Lunghezza totale pendenza</td>
<td>TOTAL_PATH</td>
<td>[raster]</td>
<td>La lunghezza totale del percorso in pendenza è la lunghezza dell'intera rete della griglia di flusso D8 a monte di ogni cella della griglia. Le lunghezze sono misurate tra i centri delle celle tenendo conto delle dimensioni della cella e del fatto che la direzione sia adiacente o diagonale.</td>
</tr>
</tbody>
</table>

**ID Algoritmo:** taudem:gridnet

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Rimuovere buca

Identifica tutte le buche nel DEM e alza la loro quota al livello del punto di versamento più basso intorno al loro bordo. Le buche sono aree a bassa quota nei modelli digitali di elevazione (DEM) che sono completamente circondate da terreno più alto. Sono generalmente considerati artefatti che interferiscono con il percorso del flusso attraverso i DEM, quindi vengono rimossi alzando la loro elevazione fino al punto in cui drenano dal bordo del dominio. Il punto di versamento è il punto più basso sul confine dello «spartiacque» che drena alla fossa. Questo passo non è essenziale se avete ragione di credere che le fosse nel vostro DEM siano reali. Se alcune buche esistono davvero e quindi non dovrebbero essere rimosse, mentre allo stesso tempo si ritiene che altre siano artefatti che devono essere rimossi, le buche reali dovrebbero avere valori di elevazione NODATA inseriti nel loro punto più basso. I valori NODATA servono a definire i bordi nel dominio, e le elevazioni sono sollevate solo dove il flusso è fuori da un bordo, quindi un valore NODATA interno impedirà la rimozione di una buca, se necessario.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevazione</td>
<td>ELEVATION</td>
<td>[raster]</td>
<td>Una griglia del modello di elevazione digitale (DEM) per servire come input di base per l'analisi geomorfologica e la delineazione dei flussi.</td>
</tr>
<tr>
<td>Maschera di depressione</td>
<td>DEPRESSION_MASK</td>
<td>[raster]</td>
<td></td>
</tr>
<tr>
<td>Opzionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Considera i vicini solo a 4 vie</td>
<td>FOUR_NEIGHBOURS</td>
<td>[boolean]</td>
<td>Predefinito: False</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevazione buca rimossa</td>
<td>PIT_FILLED</td>
<td>[raster]</td>
<td>Indicazione del raster in uscita (buche riempite). Uno di:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File Temporaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Salva come File…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La codifica del file può anche essere cambiata qui.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In uscita:

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevazione buca rimossa</td>
<td>PIT_FILLED</td>
<td>[raster]</td>
<td>Una griglia di valori di elevazione con buche rimosse in modo che il flusso sia instradato fuori dal dominio.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ID Algoritmo: taudem:pit.remove

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
24.4.2 Analisi specializzata della griglia

D8 Distanza dai corsi d'acqua

Calcola la distanza orizzontale dal corso d'acqua per ogni cella della griglia, spostandosi verso il basso secondo il modello di flusso D8, fino a quando si incontra una cella della griglia del corso d'acqua.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8 Griglia di direzione del flusso</td>
<td>[raster]</td>
<td></td>
<td>Questo raster in ingresso è una griglia di direzioni di flusso che sono codificate usando il metodo D8 dove tutto il flusso da una cella va ad una singola cella vicina nella direzione della discesa più ripida. Questa griglia può essere ottenuta come risultato dello strumento «D8 Flow Directions ».</td>
</tr>
<tr>
<td>Griglia raster del flusso</td>
<td>[raster]</td>
<td></td>
<td>Una griglia che rappresenta i flussi. Tale griglia può essere creata da diversi strumenti degli strumenti «Stream Network Analysis ». Tuttavia, gli strumenti «Stream Network Analysis » creano solo griglie con un valore di 0 per nessun flusso, o 1 per celle di flusso. Questo strumento può anche accettare griglie con valori maggiori di 1, che possono essere usati insieme al parametro Soglia per determinare la posizione dei flussi. Questo permette di usare le griglie Contributing Area per definire i flussi oltre alle normali griglie Stream Raster. Questa griglia si aspetta valori interi (long integer) e qualsiasi valore non intero sarà troncato a un intero prima di essere valutato.</td>
</tr>
<tr>
<td>Soglia</td>
<td>[number]</td>
<td></td>
<td>Questo valore agisce come soglia sulla Stream Raster Grid per determinare la posizione dei flussi. Le celle con un valore Stream Raster Grid maggiore o uguale al valore di Soglia sono interpretate come flussi.</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risultato distanza dai flussi</td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà la distanza orizzontale lungo il percorso del flusso come definito dalla griglia delle direzioni del flusso D8 ai flussi nella Stream Raster Grid.</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** `taudem:d8hdisttostrm`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**D-Infinity tracciamento valanga**

Identifica l’area interessata da una valanga e la lunghezza del percorso del flusso per ogni cella in quell’area interessata. Tutte le celle a valle di ogni cella dell’area sorgente, fino al punto in cui la pendenza dalla sorgente all’area colpita è inferiore ad un angolo di soglia chiamato Angolo Alfa, possono essere nell’area colpita. Questo strumento usa il metodo di direzione del flusso multiplo D-infinito per determinare la direzione del flusso. Questo probabilmente causerà la dispersione di quantità molto piccole di flusso in alcune celle a valle che potrebbero sovrastimare l’area interessata, quindi una proporzione di soglia può essere impostata per evitare questa dispersione in eccesso. La lunghezza del percorso del flusso è la distanza dalla cella in questione alla cella sorgente che ha l’angolo più alto.

Tutti i punti a valle dell’area della sorgente sono potenzialmente nell’area colpita, ma non oltre un punto in cui la pendenza dalla sorgente all’area colpita è inferiore a un angolo di soglia chiamato Angolo Alfa.

<table>
<thead>
<tr>
<th>Elevations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 10 10 10 10 10 10</td>
</tr>
<tr>
<td>10 9 9 9 9 9 10</td>
</tr>
<tr>
<td>10 9 8 7 8.98 10</td>
</tr>
<tr>
<td>10 9 9 8 8.98 10</td>
</tr>
<tr>
<td>10 9 8 7 8.97 10</td>
</tr>
<tr>
<td>10 10 10 10 8.96 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Straight-line distance from highest point of source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5</td>
</tr>
<tr>
<td>1.414214 2.236068 3.162278 4.123106 5.099026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drop in elevation from highest point in source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>1 1 1 1 1 0</td>
</tr>
<tr>
<td>0 1 3 3.01 0</td>
</tr>
<tr>
<td>0 1 2 3.02 0</td>
</tr>
<tr>
<td>0 1 2 3.03 0</td>
</tr>
<tr>
<td>0 0 0 3.04 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The slope angle from the highest point in the source to each cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>19 13 9 7 0</td>
</tr>
<tr>
<td>13 19 23 19 0</td>
</tr>
<tr>
<td>9 8 13 17 0</td>
</tr>
<tr>
<td>7 13 17 15 0</td>
</tr>
<tr>
<td>0 0 0 0 13 0</td>
</tr>
</tbody>
</table>
La pendenza deve essere misurata usando la distanza in linea retta dal punto di origine al punto di valutazione.

Per me ha più senso fisico che l’angolo sia misurato lungo il percorso del flusso. Tuttavia è ugualmente facile codificare angoli di linea retta come angoli lungo il percorso del flusso, quindi sarà fornita un’opzione che permette la commutazione. Il modo più pratico per valutare il runout della valanga è quello di tenere traccia del punto sorgente con l’angolo maggiore rispetto ad ogni punto. Poi l’approccio ricorsivo dell’algebra del flusso in salita esaminerà una cella della griglia e tutti i suoi vicini in salita che fluiscono verso di essa. Le informazioni dai vicini a monte saranno usate per calcolare l’angolo alla cella della griglia in questione e mantENERLA nella zona di deflusso se l’angolo supera l’angolo alfa. Questa procedura presuppone che l’angolo massimo in una cella della griglia sarà dall’insieme di celle che hanno angoli massimi verso i vicini in entrata. Questo sarà sempre vero se l’angolo è calcolato lungo un percorso di flusso, ma posso concepire casi in cui i percorsi di flusso si ripiegano su se stessi dove questo non sarebbe il caso per gli angoli in linea retta.

Il campo di direzione del flusso multiplo D-infinity assegna il flusso da ogni cella della griglia a più vicini downslope usando proporzioni ($P_i$) che variano tra 0 e 1 e sommano a 1 per tutti i flussi in uscita da una cella della griglia. Può essere desiderabile specificare una soglia $T$ che questa proporzione deve superare prima che una cella della griglia sia contata come fluente verso una cella della griglia a valle, per esempio $P_i > T (=0.2$ diciamo) per evitare la dispersione in celle della griglia che ricevono un flusso molto piccolo. $T$ sarà specificato come input dell’utente. Se tutte le celle della griglia a monte devono essere usate, $T$ può essere inserito come 0.

I siti sorgente delle valanghe devono essere inseriti come una piccola griglia intera (suffisso del nome *ass, ad esempio demass) composta da valori positivi dove le valanghe possono essere innescate e valori 0 altrove.

Vengono emesse le seguenti griglie:

- $rz$ — Un indicatore della zona di runout con valore 0 per indicare che questa cella della griglia non si trova nella zona di runout e valore $> 0$ per indicare che questa cella della griglia si trova nella zona di runout. Poiché potrebbero esserci informazioni nell’angolo rispetto al sito di origine associato, a questa variabile verrà assegnato l’angolo al sito di origine (in gradi)

- $dm$ — Lungo la distanza del flusso dal sito sorgente che ha l’angolo più alto rispetto al punto in questione
## Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Infinity Flow Direction Grid</td>
<td></td>
<td>[raster]</td>
<td>Una griglia che fornisce la direzione del flusso con il metodo D-infinito. La direzione del flusso è misurata in radianti, in senso antiorario da est. Questo può essere creato dallo strumento <em>D-Infinity Flow Directions</em>.</td>
</tr>
<tr>
<td>Griglia di elevazione buche riempite</td>
<td></td>
<td>[raster]</td>
<td>Questo input è una griglia di valori di elevazione. Come regola generale, si consiglia di utilizzare una griglia di valori di elevazione a cui sono state rimosse le fosse per questo input. I pozzi sono generalmente considerati artefatti che interferiscono con l’analisi del flusso che li attraversa. Questa griglia può essere ottenuta come output dello strumento <em>Rimuovi fossa</em>, nel qual caso contiene i valori di elevazione in cui le fosse sono state riempite fino al punto in cui si scaricano.</td>
</tr>
<tr>
<td>Griglia sito origine valanga</td>
<td></td>
<td>[raster]</td>
<td>Si tratta di una griglia di aree di origine delle valanghe di neve che vengono comunemente identificate manualmente utilizzando un mix di esperienza e interpretazione visiva delle mappe. I siti di origine delle valanghe devono essere inseriti come una breve griglia intera (suffisso del nome <em>ass. e.g. demass</em>) composta da valori positivi in cui possono essere innescate valanghe e 0 valori altrove.</td>
</tr>
<tr>
<td>Proporzione di soglia</td>
<td></td>
<td>[number] Predefinito: 0.2</td>
<td>Questo valore è una proporzione di soglia utilizzata per limitare la dispersione del flusso causata dall’utilizzo del metodo di direzione del flusso multiplo D-infinito per determinare la direzione del flusso. Il metodo di direzione del flusso multiplo D-infinito spesso causa la dispersione di quantità molto piccole di flusso in alcune celle di pendenza verso il basso che potrebbero sovrastimare l’area interessata, quindi è possibile impostare una proporzione di soglia per evitare questa dispersione eccessiva.</td>
</tr>
<tr>
<td>Soglia angolo alfa</td>
<td></td>
<td>[number] Predefinito: 18</td>
<td>Questo valore è l’angolo di soglia, chiamato angolo alfa, utilizzato per determinare quale delle celle in discesa dalle celle di origine si trova nell’area interessata. Solo le celle in discesa da ciascuna cella dell’area di origine, fino al punto in cui la pendenza dalla sorgente all’area interessata è inferiore a un angolo di soglia, si trovano nell’area interessata.</td>
</tr>
<tr>
<td>Misurare distanza lungo il percorso del flusso</td>
<td></td>
<td>[boolean] Predefinito: True</td>
<td>Questa opzione seleziona il metodo utilizzato per misurare la distanza utilizzata per calcolare l’angolo di inclinazione. Se l’opzione è True, misurarla lungo il percorso del flusso, dove l’opzione False fa sì che la pendenza venga misurata lungo la distanza in linea retta dalla cella di origine alla cella di valutazione.</td>
</tr>
</tbody>
</table>

24.4. Fornitore di algoritmi TauDEM
### Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia della zona di fuga</td>
<td>[raster]</td>
<td></td>
<td>Questa griglia Identifica la zona di fuga della valanga (area interessata) utilizzando un indicatore della zona di fuga con valore 0 per indicare che questa cella della griglia non si trova nella zona di fuga e valore &gt; 0 per indicare che questa cella della griglia si trova nella zona di fuga. Poiché potrebbero esserci informazioni nell’angolo rispetto al sito di origine associato, a questa variabile verrà assegnato l’angolo al sito di origine (in gradi).</td>
</tr>
<tr>
<td>Path Distance Grid</td>
<td>[raster]</td>
<td></td>
<td>Questa è una griglia della distanza del flusso dal sito di origine che ha l’angolo più alto rispetto a ciascuna cella.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** `taudem:dinfavalanche`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomini e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

### D-Infinity Concentration Accumulation limitata

Questa funzione si applica alla situazione in cui una fornitura illimitata di una sostanza viene caricata in flusso ad una concentrazione o soglia di solubilità Csol su una regione indicata da una griglia di indicatori (dg). È una griglia della concentrazione di una sostanza in ogni posizione nel dominio, dove l’apporto di sostanza da un’area di approvvigionamento viene caricato nel flusso ad una concentrazione o soglia di solubilità. Il flusso viene dapprima calcolato come un’area contribuente ponderata D-infinito di una griglia di peso effettivo di deflusso in ingresso (precipitazione teoricamente in eccesso). La concentrazione della sostanza sull’area di approvvigionamento (griglia di indicatori) è alla soglia di concentrazione. Quando la sostanza si sposta verso il basso con il campo di flusso D-infinito, è soggetta a decadimento di primo ordine nel passaggio da cellula a cellula, nonché alla diluizione dovuta a cambiamenti nel flusso. La griglia del moltiplicatore di decadimento fornisce la riduzione frazionaria (primo ordine) della quantità nello spostamento dalla cella della griglia x alla successiva cella discendente. Se viene utilizzato lo shapefile outlet, lo strumento valuta solo la parte del dominio che contribuisce al flusso alle posizioni fornite dallo shapefile. Ciò è utile per tracciare un contaminante o un composto da un’area con una fornitura illimitata di quel composto che viene caricato in un flusso a una soglia di concentrazione o solubilità su una zona e il flusso dalla zona può essere soggetto a decadimento o attenuazione.

La griglia dell’indicatore (dg) viene utilizzata per delimitare l’area dell’approvvigionamento della sostanza utilizzando la funzione dell’indicatore (0, 1) i(x). A[*] denota l’operatore di accumulo ponderato valutato utilizzando la funzione D-Infinity Contributing Area. La griglia del peso effettivo di deflusso fornisce l’apporto al flusso (ad es. le precipitazioni in eccesso se si tratta di un flusso terrestre) indicato come w (x). Il discarico specifico è quindi dato da:

\[
Q(x) = A[w(x)]
\]

Questo accumulo ponderato \(Q(x)\) viene emesso come Griglia di scarico specifica per il flusso terrestre. Oltre l’area di alimentazione della sostanza, la concentrazione è alla soglia (la soglia è un limite di saturazione o solubilità). Se \(i(x) = 1\), allora
C(x) = Csol, and L(x) = Csol Q(x),

dove \( L(x) \) denota il carico trasportato dal flusso. Nelle posizioni rimanenti, il carico è determinato dall’accumulo di carico e la concentrazione dalla diluizione:

\[
L(x) = L(i, j) = \sum_{k \text{ contributing neighbors}} p_k d(i_k, j_k) L(i_k, j_k)
\]

\[
C(x) = L(x)/Q(x)
\]

Ecco \( d(x) = d(i, j) \) un moltiplicatore di decadimento che fornisce la riduzione frazionaria (primo ordine) della massa nel passaggio dalla cella della griglia \( x \) alla successiva cella discendente. Se i tempi di viaggio (o residenza) \( t(x) \) associati al flusso tra le celle sono disponibili \( d(x) \) possono essere valutati come \( \exp(-k \cdot t(x)) \) dove \( k \) è un parametro di decadimento del primo ordine. L’output della griglia di concentrazione è \( C(x) \). Se viene utilizzato lo shapefile outlet, lo strumento valuta solo la parte del dominio che contribuisce al flusso alle posizioni fornite dallo shapefile.
Utile per tenere traccia di un contaminante rilasciato o partizionato per fluire a una concentrazione di soglia fissa.
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Infinity Flow Direction Grid</td>
<td>[raster]</td>
<td>Una griglia che fornisce la direzione del flusso con il metodo D-infinito. La direzione del flusso è misurata in radianti, in senso antiorario da est. Questa griglia può essere creata con la funzione &quot;D**»D-Infinity Flow Directions**&quot;.</td>
<td></td>
</tr>
<tr>
<td>Griglia indicatore perturbazione</td>
<td>[raster]</td>
<td>Una griglia che indica la zona di origine dell’area di approvvigionamento della sostanza e deve essere 1 all'interno della zona e 0 o NODATA sul resto del dominio.</td>
<td></td>
</tr>
<tr>
<td>Griglia moltiplicatore decadimento</td>
<td>[raster]</td>
<td>Una griglia che fornisce il fattore per il quale il flusso in uscita da ciascuna cella della griglia viene moltiplicato prima dell’accumulo sulle celle della griglia discendente. Questo può essere usato per simulare il movimento di una sostanza attenuante o in decomposizione. Se i tempi di viaggio (o residenza) ( t(x) ) associati al flusso tra le celle sono disponibili ( c(x) ) possono essere valutati come ( \exp(-k \cdot t(x)) ) dove ( k ) è un parametro di decadimento del primo ordine.</td>
<td></td>
</tr>
<tr>
<td>Griglia pesata deflusso efficace</td>
<td>[raster]</td>
<td>Una griglia che fornisce la quantità di input (deflusso teoricamente efficace o precipitazione in eccesso) da utilizzare nella valutazione dell’area contribuente ponderata D-infinito dello scarico specifico del flusso terrestre.</td>
<td></td>
</tr>
<tr>
<td>Soglia di concentrazione</td>
<td>[number]</td>
<td>Predefinito: 1.0</td>
<td>La soglia di concentrazione o solubilità. Nella zona di approvvigionamento della sostanza, la concentrazione è a questa soglia.</td>
</tr>
<tr>
<td>Verificare contaminazione bordi</td>
<td>[boolean]</td>
<td>Predefinito: True</td>
<td>Questa opzione determina se lo strumento deve controllare la contaminazione dei bordi. La contaminazione del bordo è definita come la possibilità che un valore possa essere sottostimato a causa del fatto che le celle della griglia al di fuori del dominio non vengono considerate nella determinazione dell’area contribuente.</td>
</tr>
</tbody>
</table>

### Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia concentrazione</td>
<td>[raster]</td>
<td>Una griglia che fornisce la concentrazione risultante del composto di interesse nel flusso.</td>
<td></td>
</tr>
</tbody>
</table>
Codice Python

ID Algoritmo: taudem:dinfconclimaccum

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Accumulo in decadimento D-Infinito

Lo strumento D-Infinity Decaying Accumulation crea una griglia della quantità accumulata in ogni posizione nel dominio in cui la quantità si accumula con il campo di flusso D-infinito, ma è soggetta a decadimento del primo ordine nel passaggio da cella a cella. Per impostazione predefinita, il contributo quantitativo di ciascuna cella della griglia è la lunghezza della cella per fornire un accumulo per unità di larghezza, ma può essere espresso opzionalmente con una griglia di peso. La griglia del moltiplicatore di decadimento fornisce la riduzione frazionale (primo ordine) della quantità accumulata dalla cella della griglia x alla cella di pendenza successiva.

Un operatore di accumulo decaduto $DA[.]$ prende come input un campo di carico di massa $m(x)$ espresso in ogni posizione della griglia poiché $m(i, j)$ si presume che si muova con il campo di flusso ma è soggetto a decadimento del primo ordine nel passaggio da cella a cella. L’output è la massa accumulata in ogni posizione $DA(x)$. L’accumulo di $m$ ad ogni cella della griglia può essere valutato numericamente.

$$DA[m(x)] = DA(i, j) = m(i, j) \Delta^2 + \sum_{k \text{ contributing neighbors}} p_k d(i_k, j_k) DA(i_k, j_k)$$

Ecco $d(x) = d(i, j)$ un moltiplicatore di decadimento che fornisce la riduzione frazionale (primo ordine) della massa nel passaggio dalla cella della griglia x alla successiva cella discendente. Se i tempi di viaggio (o residenza) $\tau(x)$ associati al flusso tra le celle sono disponibili $\tau(x)$ possono essere valutati come $\exp(-k \tau(x))$ dove $k$ è un parametro di decadimento del primo ordine. La griglia del peso viene utilizzata per rappresentare il carico di massa $m(x)$. Se non specificato viene preso come 1. Se si usa lo shapefile outlet la funzione viene valutata solo su quella parte del dominio che contribuisce flusso alle locazioni date dallo shapefile.
Utile per tracciare contaminanti o composti soggetti a decadimento o attenuazione.
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Infinity Flow Direction Grid</td>
<td>[raster]</td>
<td></td>
<td>Una griglia che fornisce la direzione del flusso con il metodo D-infinito. La direzione del flusso è misurata in radianti, in senso antiorario da est. Questa griglia può essere creata con la funzione &quot;D**.D-Infinity Flow Directions**.</td>
</tr>
<tr>
<td>Griglia moltiplicatore decadimento</td>
<td>[raster]</td>
<td></td>
<td>Una griglia che fornisce il fattore per il quale il flusso in uscita da ciascuna cella della griglia viene moltiplicato prima dell'accumulo sulle celle della griglia discendente. Questo può essere usato per simulare il movimento di una sostanza attenuante.</td>
</tr>
<tr>
<td>Griglia pesata Opzionale</td>
<td>[raster]</td>
<td></td>
<td>Una griglia che fornisce i pesi (carichi) da utilizzare nell'accumulo. Se questa griglia opzionale non è specificata, i pesi sono presi come un accumulo pari a dimensione lineare per la larghezza delle celle della griglia.</td>
</tr>
<tr>
<td>Shapfile sbocchi Opzionale</td>
<td>[vector: point]</td>
<td></td>
<td>Questo input opzionale è uno shapfile di punti che definisce gli sbocchi di interesse. Se viene utilizzato questo file, lo strumento valuterà solo l'area a monte di questi punti vendita.</td>
</tr>
<tr>
<td>Verificare contaminazione bordi</td>
<td>[boolean] Predefinito: True</td>
<td></td>
<td>Questa opzione determina se lo strumento deve controllare la contaminazione dei bordi. La contaminazione del bordo è definita come la possibilità che un valore possa essere sottostimato a causa del fatto che le celle della griglia al di fuori del dominio non vengono considerate nella determinazione dell'area contribuente.</td>
</tr>
</tbody>
</table>

### Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia decadimento bacino idrografico</td>
<td>[raster]</td>
<td></td>
<td>Lo strumento D-Infinity Decaying Accumulation crea una griglia della quantità accumulata in ogni posizione nel dominio in cui la quantità si accumula con il campo di flusso D-infinito, ma è soggetta a decadimento del primo ordine nel passaggio da cella a cella.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** `taudem:dinfdecayaccum`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.
Distanza a valle secondo il modello D-Infinito

Calcola la distanza a valle di un corso d’acqua usando il modello di flusso D-infinity. Il modello di flusso D-infinity è un modello a direzione di flusso multipla, perché il deflusso da ogni cella della griglia è proporzionato tra un massimo di 2 celle della griglia a valle. Come tale, la distanza da ogni cella della griglia a un flusso non è definita in modo univoco. Il flusso che ha origine in una particolare cella della griglia può entrare nel flusso in un certo numero di celle diverse. Il metodo statistico può essere selezionato come il più lungo, il più breve o la media ponderata della distanza del percorso del flusso al flusso. Anche uno dei diversi modi di misurare la distanza può essere selezionato: il percorso totale della linea retta (Pitagora), la componente orizzontale del percorso della linea retta, la componente verticale del percorso della linea retta, o il percorso totale del flusso superficiale.
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Infinity Flow Direction Grid</td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà la direzione del flusso con il metodo D-infinity. La direzione del flusso è misurata in radianti, in senso antiorario da est. Questo può essere creato dallo strumento «D-Infinity Flow Directions».</td>
</tr>
<tr>
<td>Griglia di elevazione buche riempite</td>
<td>[raster]</td>
<td></td>
<td>Questo input è una griglia di valori di elevazione. Come regola generale, si consiglia di utilizzare una griglia di valori di elevazione a cui sono state rimosse le fosse per questo input. I pozzi sono generalmente considerati artefatti che interferiscono con l’analisi del flusso che li attraversa. Questa griglia può essere ottenuta come output dello strumento <em>Rimuovi fossa</em>, nel qual caso contiene i valori di elevazione in cui le fosse sono state riempite fino al punto in cui si scaricano.</td>
</tr>
<tr>
<td>Griglia raster del flusso</td>
<td>[raster]</td>
<td></td>
<td>Una griglia che indica i flussi, usando un valore della cella della griglia di 1 sui flussi e 0 fuori dai flussi. Questo è solitamente il risultato di uno degli strumenti del set di strumenti «Stream Network Analysis».</td>
</tr>
<tr>
<td>Griglia percorso pesato</td>
<td>[raster]</td>
<td>Opzionale</td>
<td>Una griglia che dà i pesi (carichi) da usare nel calcolo della distanza. Questo potrebbe essere usato per esempio quando deve essere calcolata solo la distanza di flusso attraverso un buffer. Il peso è quindi 1 nel buffer e 0 al di fuori di esso. In alternativa il peso può riflettere una sorta di funzione di costo per il percorso sulla superficie.</td>
</tr>
</tbody>
</table>
| Metodo Statistico                   | [enumeration]                                  |         | Metodo statistico usato per calcolare la distanza verso il basso della corrente. Nel modello di flusso D-Infinity, il deflusso da ogni cella della griglia è proporzionato tra due celle della griglia a valle. Pertanto, la distanza da qualsiasi cella di griglia a un flusso non è definita in modo univoco. Il flusso che ha origine in una particolare cella della griglia può entrare nel flusso in un certo numero di celle. La distanza dal flusso può essere definita come la più lunga (massima), la più breve (minima) o la media ponderata della distanza dal flusso. Opzioni:  
  • 0 — Minimo  
  • 1 — Massimo  
  • 2 — Media |
| Metodo Distanza                     | [enumeration]                                  | Predefinito: 1 | Metodo di distanza usato per calcolare la distanza fino al corso d’acqua. Uno dei diversi modi di misurare la distanza può essere selezionato: il percorso totale della linea retta (Pitagora), la componente orizzontale del percorso della linea retta (orizzontale), la componente verticale del percorso della linea retta (verticale), o il percorso totale del flusso superficiale (superficie). Opzioni:  
  • 0 — Pitagora  
  • 1 — Orizzontale  
  • 2 — Verticale  
  • 3 — Superficie |
| Verificare contaminazione bordi    | [boolean]                                      | Predefinito: True | Un flag che determina se lo strumento deve controllare la possibilità che un valore possa essere sottostimato a causa di celle della griglia al di fuori del dominio che non vengono contate. Nel contesto di Distance Down, questo flag può essere utilizzato per calcolare la distanza dal flusso di celle che sono al di fuori delle celle di flusso. |

1280 Capitolo 24. Fornitori di processing e algoritmi
## Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Infinity caduta verso la griglia del flusso</td>
<td>[raster]</td>
<td>Griglia contenente la distanza dal corso d'acqua calcolata utilizzando il modello di flusso D-infinity e i metodi statistici e di percorso scelti.</td>
<td></td>
</tr>
</tbody>
</table>

## Codice Python

Id Algoritmo: `taudem:dinfdistdown`

```python
import processing
processing.run("algorithm_id", \{parameter_dictionary\})
```

L'`id algoritmo` viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il `dizionario dei parametri` fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

## Distanza D-Infinity a monte

Questo strumento calcola la distanza da ogni cella della griglia fino alle celle di cresta lungo le direzioni inverse del flusso D-infinity. Le celle di cresta sono definite come celle di griglia che non hanno alcun contributo dalle celle di griglia più a monte. Data la convergenza di più percorsi di flusso in ogni cella della griglia, ogni data cella della griglia può avere più celle di cresta a monte. Ci sono tre metodi statistici che questo strumento può utilizzare: distanza massima, distanza minima e media del flusso atteso su questi percorsi di flusso. Una variante di quanto sopra è quella di considerare solo le celle della griglia che contribuiscono al flusso con una proporzione maggiore di una soglia specificata dall’utente (t) per essere considerate come upslope di ogni data cella della griglia. Impostando t=0.5 si otterrebbe un solo percorso di flusso da qualsiasi cella della griglia e si otterrebbe un risultato equivalente a un modello di flusso D8, piuttosto che un modello di flusso D-infinito, dove il flusso è proporzionato tra due celle della griglia in discesa. Infine ci sono diversi percorsi opzionali che possono essere misurati: il percorso totale della linea retta (Pitagora), la componente orizzontale del percorso della linea retta, la componente verticale del percorso della linea retta, o il percorso totale del flusso superficiale.
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Infinity Flow Direction Grid</td>
<td>[raster]</td>
<td>Una griglia che dà la direzione del flusso con il metodo D-infinity. La direzione del flusso è misurata in radianti, in senso antiorario da est. Questo può essere creato dallo strumento “D-Infinity Flow Directions”.</td>
<td></td>
</tr>
<tr>
<td>Griglia di elevazione buche riempite</td>
<td>[raster]</td>
<td>Questo input è una griglia di valori di elevazione. Come regola generale, si consiglia di utilizzare una griglia di valori di elevazione a cui sono state rimossi le fosse per questo input. I pozzi sono generalmente considerati artefatti che interferiscono con l’analisi del flusso che li attraversa. Questa griglia può essere ottenuta come output dello strumento <em>Rimuovi fossa</em>, nel qual caso contiene i valori di elevazione in cui le fosse sono state riempite fino al punto in cui si scaricano.</td>
<td></td>
</tr>
<tr>
<td>Griglia di pendenza</td>
<td>[raster]</td>
<td>Questo input è una griglia di valori di pendenza. Questo è misurato come caduta/distanza ed è più spesso ottenuto come output dello strumento “D-Infinity Flow Directions”.</td>
<td></td>
</tr>
<tr>
<td>Metodo Statistico</td>
<td>[enumeration]</td>
<td>Metodo statistico usato per calcolare la distanza verso il basso della corrente. Nel modello di flusso D-Infinity, il deflusso da ogni cella della griglia è proporzionato tra due celle della griglia a valle. Pertanto, la distanza da qualsiasi cella di griglia a un flusso non è definita in modo univoco. Il flusso che ha origine in una particolare cella della griglia può entrare nel flusso in un certo numero di celle. La distanza dal flusso può essere definita come la più lunga (massima), la più breve (minima) o la media ponderata della distanza dal flusso. Opzioni:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predefinito: 2</td>
<td>• 0 — Minimo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 — Massimo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2 — Media</td>
<td></td>
</tr>
<tr>
<td>Metodo Distanza</td>
<td>[enumeration]</td>
<td>Metodo di distanza usato per calcolare la distanza fino al corso d’acqua. Uno dei diversi modi di misurare la distanza può essere selezionato: il percorso totale della linea retta (Pitagora), la componente orizzontale del percorso della linea retta (orizzontale), la componente verticale del percorso della linea retta (verticale), o il percorso totale del flusso superficiale (superficie). Opzioni:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predefinito: 1</td>
<td>• 0 — Pitagora</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 — Orizzontale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2 — Verticale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3 — Superficie</td>
<td></td>
</tr>
<tr>
<td>Proporzione di soglia</td>
<td>[number]</td>
<td>Il parametro della soglia di proporzione dove solo le celle della griglia che contribuiscono al flusso con una proporzione maggiore di questa soglia specificata dall’utente (t) sono considerate a monte di qualsiasi cella della griglia. Impostando t=0,5 si otterrebbe un solo percorso di flusso da qualsiasi cella della griglia e si otterrebbe un risultato equivalente a un modello di flusso D8, piuttosto che un modello di flusso D-Infinity, dove il flusso è proporzionato tra due celle della griglia in discesa.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predefinito: 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verificare contaminazione bordi</td>
<td>[boolean]</td>
<td>Un flag che determina se lo strumento deve verificare la contaminazione dei bordi. Questo è definito come la possibilità che un valore possa essere sottostimato a causa di celle della griglia al di fuori del dominio che non vengono contate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predefinito: True</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distanza D-Infinity a monte</td>
<td>[raster]</td>
<td>Griglia contenente le distanze fino alla cresta calcolate utilizzando il modello di flusso D-Infinity e i metodi statistici e di percorso scelti.</td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** `taudem:dinfdistup`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'"id algoritmo" viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

Accumulazione inversa D-Infinity

Questo funziona in modo simile alla valutazione dell'area contributiva ponderata, eccetto che l'accumulo avviene propagando i carichi di peso verso l'alto lungo l'inverso delle direzioni di flusso per accumulare la quantità di carico pesato verso il basso da ogni cella della griglia. La funzione riporta anche il valore massimo del carico pesato a valle di ogni cella della griglia nella griglia Maximum Downslope.

Reverse accumulation of field weights indicated in red

Questa funzione è progettata per valutare e mappare il pericolo dovuto alle attività che possono avere un effetto a valle. L'esempio è quello delle attività di gestione del terreno che aumentano il ruscellamento. Il ruscellamento è a volte un fattore scatenante di frane o colate di detriti, quindi la griglia dei pesi qui potrebbe essere presa come una mappa di stabilità del terreno. Quindi l'accumulo inverso fornisce una misura della quantità di terreno instabile a valle.
di ogni cella della griglia, come un indicatore del pericolo di attività che possono aumentare il deflusso, anche se non ci può essere alcun potenziale di impatto locale.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Infinity Flow Direction Grid</td>
<td>[raster]</td>
<td>Una griglia che dà la direzione del flusso con il metodo D-infinity. La direzione del flusso è misurata in radianti, in senso antiorario da est. Questo può essere creato dallo strumento «D-Infinity Flow Directions».</td>
<td></td>
</tr>
<tr>
<td>Griglia pesata</td>
<td>[raster]</td>
<td>Una griglia che dà i pesi (carichi) da usare nell'accumulazione.</td>
<td></td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumulazione inversa D-Infinity</td>
<td>[raster]</td>
<td>La griglia che dà il risultato della funzione «Accumulazione Inversa». Questo funziona in modo simile alla valutazione dell'area di contribuzione ponderata, eccetto che l'accumulo avviene propagando i carichi di peso verso l'alto lungo l'inverso delle direzioni di flusso per accumulare la quantità di carico verso il basso da ogni cella della griglia.</td>
<td></td>
</tr>
<tr>
<td>Griglia di massima pendenza</td>
<td>[raster]</td>
<td>La griglia che dà il massimo del peso di carico della griglia a valle di ogni cella della griglia.</td>
<td></td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo**: `taudem:dinfrevaccum`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'“id algoritmo” viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**D-Infinity Accumolo trasporto limitato - 2**

Questa funzione è progettata per calcolare il trasporto e la deposizione di una sostanza (per esempio sedimenti) che può essere limitata sia dall’offerta che dalla capacità di campo di flusso di trasportarla. Questa funzione accumula il flusso di una sostanza (ad esempio il trasporto di sedimenti) soggetto alla regola che il trasporto fuori da ogni cella della griglia è il minimo tra l’offerta e la capacità di trasporto, $T_{cap}$. L’offerta totale in una cella della griglia è calcolata come la somma del trasporto in entrata dalle celle della griglia a monte, $T_{in}$, più il contributo dell’offerta locale, $E$ (per esempio l’erosione). Questa funzione produce anche la deposizione, $D'$, calcolata come apporto totale meno il trasporto effettivo.
\[ T_{\text{out}} = \min(E + \sum T_{\text{in}}, T_{\text{cap}}) \]

\[ D = E + \sum T_{\text{in}} - T_{\text{out}} \]

Qui \( E \) è l'alimentazione. \( T_{\text{out}} \) ad ogni cella della griglia diventa \( T_{\text{in}} \) per le celle della griglia in discesa ed è riportato come accumulo limitato al trasporto (\( t_{\text{la}} \)). \( D \) è la deposizione (\( t_{\text{dep}} \)). La funzione fornisce l'opzione di valutare la concentrazione di un composto (contaminante) aderito alla sostanza trasportata. Questo viene valutato come segue:

\[ L_{\text{in}} = \sum T_{\text{in}} C_{\text{in}} \]

Dove \( L_{\text{in}} \) è il carico totale di composti in entrata e \( C_{\text{in}} \) e \( T_{\text{in}} \) si riferiscono alla concentrazione e al trasporto che entrano da ogni cella della griglia a monte.

\[ T_{\text{out}} < \sum T_{\text{in}} \]

If

\[ L_{\text{out}} = L_{\text{in}} \left( \frac{T_{\text{out}}}{\sum T_{\text{in}}} \right) \]

else

\[ L_{\text{out}} = L_{\text{in}} + C_{s} \left( T_{\text{out}} - \sum T_{\text{in}} \right) \]

dove \( C_{s} \) è la concentrazione fornita localmente e la differenza nel secondo termine a destra rappresenta la fornitura aggiuntiva dalla cella di griglia locale. Allora,

\[ C_{\text{out}} = L_{\text{out}} / T_{\text{out}} \]

\( C_{\text{out}} \) ad ogni cella della griglia composta è il risultato di questa funzione della griglia di concentrazione.
Se viene usato lo shapefile degli sbocchi, lo strumento valuta solo quella parte del dominio che contribuisce al flusso nelle posizioni date dallo shapefile.

L’accumulo di trasporto limitato è utile per modellare l’erosione e la consegna del sedimento, compresa la dipendenza spaziale del rapporto di consegna del sedimento e del contaminante che aderisce al sedimento.

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>D-Infinity Flow Direction Grid</strong></td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà la direzione del flusso con il metodo D-infinity. La direzione del flusso è misurata in radianti, in senso antiorario da est. Questo può essere creato dallo strumento «D-Infinity Flow Directions».</td>
</tr>
<tr>
<td><strong>Griglia di alimentazione</strong></td>
<td>[raster]</td>
<td></td>
<td>Una griglia che fornisce la fornitura (carico) di materiale a una funzione di accumulazione di limitata al trasporto. Nell'applicazione all'erosione, questa griglia darebbe il distacco dell'erosione, o il sedimento fornito in ogni cella della griglia.</td>
</tr>
<tr>
<td><strong>Griglia di capacità di trasporto</strong></td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà la capacità di trasporto in ogni cella della griglia per la funzione di accumulo di trasporto limitato. Nell'applicazione all'erosione, questa griglia darebbe la capacità di trasporto del flusso in transito.</td>
</tr>
<tr>
<td><strong>Griglia di concentrazione in ingresso</strong></td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà la concentrazione di un composto di interesse nella alimentazione alla funzione di accumulazione limitata al trasporto. Nell'applicazione all'erosione, questa griglia darebbe la concentrazione di fosforo che aderisce al sedimento eroso.</td>
</tr>
<tr>
<td><strong>Shapefile sbocchi Opzionale</strong></td>
<td>[vector: point]</td>
<td></td>
<td>Questo input opzionale è uno shapefile di punti che definisce gli sbocchi di interesse. Se viene utilizzato questo file, lo strumento valuterà solo l'area a monte di questi punti vendita.</td>
</tr>
<tr>
<td><strong>Verificare contaminazione bordi</strong></td>
<td>[boolean]</td>
<td>Predefinito: True</td>
<td>Questa opzione determina se lo strumento deve verificare la contaminazione dei bordi. La contaminazione dei bordi è definita come la possibilità che un valore possa essere sottostimato a causa di celle della griglia al di fuori del dominio che non vengono considerate nel determinare il risultato.</td>
</tr>
</tbody>
</table>
### Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia Accumulo trasporto limitato</td>
<td>[raster]</td>
<td></td>
<td>Questa griglia è l’accumulo ponderato della fornitura accumulata rispettando le limitazioni della capacità di trasporto e riporta il tasso di trasporto calcolato accumulando il flusso di sostanze soggetto alla regola che il trasporto in uscita da qualsiasi cella della griglia è il minimo della fornitura totale (fornitura locale più trasporto in entrata) a quella cella della griglia e la capacità di trasporto.</td>
</tr>
<tr>
<td>Griglia di deposizione</td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà la deposizione risultante dall’accumulazione di trasporto limitato. Questo è il residuo del trasporto in ogni cella della griglia meno la capacità di trasporto in uscita dalla cella della griglia. La griglia di deposizione è calcolata come il trasporto in entrata + l’approvvigionamento locale - il trasporto in uscita.</td>
</tr>
<tr>
<td>Griglia di concentrazione in uscita</td>
<td>[raster]</td>
<td></td>
<td>Se viene data una concentrazione in ingresso nella griglia di alimentazione, allora questa griglia è anche in uscita e dà la concentrazione calcolata di un composto (contaminante) aderito o legato alla sostanza trasportata (ad esempio sedimento).</td>
</tr>
</tbody>
</table>

#### Codice Python

**ID Algoritmo:** unknown

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi [*Usare gli algoritmi di Processing dalla console dei comandi*](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

#### D-Infinity Accumulo trasporto limitato

Questa funzione è progettata per calcolare il trasporto e la deposizione di una sostanza (per esempio sedimenti) che può essere limitata sia dall’offerta che dalla capacità del campo di flusso di trasportarla. Questa funzione accumula il flusso di una sostanza (ad esempio il trasporto di sedimenti) soggetto alla regola che il trasporto fuori da ogni cella della griglia è il minimo tra l’offerta e la capacità di trasporto, $T_{cap}$. L’offerta totale in una cella della griglia è calcolata come la somma del trasporto in entrata dalle celle della griglia a monte, $T_{in}$, più il contributo dell’offerta locale, $E$ (per esempio l’erosione). Questa funzione produce anche la deposizione, $D$, calcolata come apporto totale meno il trasporto effettivo.

\[
T_{out} = \min(E + \sum T_{in}, T_{cap})
\]

\[
D = E + \sum T_{in} - T_{out}
\]
Qui è l’alimentazione. Tout ad ogni cella della griglia diventa Tin per le celle della griglia in discesa ed è riportato come accumulo limitato al trasporto (tla). D’è la deposizione (tdep). La funzione fornisce l’opzione di valutare la concentrazione di un composto (contaminante) aderito alla sostanza trasportata. Questo viene valutato come segue:

\[ L_{in} = \sum T_{in} C_{in} \]

Dove \( L_{in} \) è il carico totale di composti in entrata e \( C_{in} \) e Tin si riferiscono alla concentrazione e al trasporto che entrano da ogni cella della griglia a monte.

\[ T_{out} < \sum T_{in} \]

If

\[ L_{out} = L_{in} \left( T_{out} / \sum T_{in} \right) \]

else

\[ L_{out} = L_{in} + C_{s} \left( T_{out} - \sum T_{in} \right) \]

dove \( C_{s} \) è la concentrazione fornita localmente e la differenza nel secondo termine a destra rappresenta la fornitura aggiuntiva dalla cella di griglia locale. Allora,

\[ C_{out} = L_{out} / T_{out} \]

\( C_{out} \) ad ogni cella della griglia composta è il risultato di questa funzione della griglia di concentrazione.

Se viene usato lo shapefile degli sbocchi, lo strumento valuta solo quella parte del dominio che contribuisce al flusso nelle posizioni date dallo shapefile.

L’accumulo di trasporto limitato è utile per modellare l’erosione e la consegna del sedimento, compresa la dipendenza spaziale del rapporto di consegna del sedimento e del contaminante che aderisce al sedimento.
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>D-Infinity Flow Direction Grid</strong></td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà la direzione del flusso con il metodo D-infinity. La direzione del flusso è misurata in radianti, in senso antiorario da est. Questo può essere creato dallo strumento «D-Infinity Flow Directions».</td>
</tr>
<tr>
<td><strong>Griglia di alimentazione</strong></td>
<td>[raster]</td>
<td></td>
<td>Una griglia che fornisce la fornitura (carico) di materiale a una funzione di accumulazione di limitata al trasporto. Nell'applicazione all'erosione, questa griglia darebbe il distacco dell'erosione, o il sedimento fornito in ogni cella della griglia.</td>
</tr>
<tr>
<td><strong>Griglia di capacità di trasporto</strong></td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà la capacità di trasporto in ogni cella della griglia per la funzione di accumulo di trasporto limitato. Nell'applicazione all'erosione, questa griglia darebbe la capacità di trasporto del flusso in transito.</td>
</tr>
<tr>
<td><strong>Shapefile sbocchi</strong></td>
<td>[vector: point]</td>
<td></td>
<td>Questo input opzionale è uno shapefile di punti che definisce gli sbocchi di interesse. Se viene utilizzato questo file, lo strumento valuterà solo l'area a monte di questi punti vendita.</td>
</tr>
<tr>
<td><strong>Verificare contaminazione bordi</strong></td>
<td>[boolean]</td>
<td></td>
<td>Questa opzione determina se lo strumento deve verificare la contaminazione dei bordi. La contaminazione dei bordi è definita come la possibilità che un valore possa essere sottostimato a causa di celle della griglia al di fuori del dominio che non vengono considerate nel determinare il risultato.</td>
</tr>
</tbody>
</table>

### Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Griglia Accumulo trasporto limitato</strong></td>
<td>[raster]</td>
<td></td>
<td>Questa griglia è l’accumulo ponderato della fornitura accumulata rispettando le limitazioni della capacità di trasporto e riporta il tasso di trasporto calcolato accumulando il flusso di sostanze soggetto alla regola che il trasporto in uscita da qualsiasi cella della griglia è il minimo della fornitura totale (fornitura locale più trasporto in entrata) a quella cella della griglia e la capacità di trasporto.</td>
</tr>
<tr>
<td><strong>Griglia di deposizione</strong></td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà la deposizione risultante dall'accumulazione limitata dal trasporto. Questo è il residuo del trasporto in ogni cella della griglia meno la capacità di trasporto in uscita dalla cella della griglia. La griglia di deposizione è calcolata come il trasporto in entrata + l’approvvigionamento locale - il trasporto in uscita.</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo**: `taudem:dintranslimaccum`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**D-Infinity dipendenza dalla pendenza**

Lo strumento D-Infinity Upslope Dependence quantifica la quantità che ogni cella di griglia nel dominio contribuisce ad un insieme di celle di griglia di destinazione. Le direzioni di flusso D-Infinity proporzionano il flusso da ogni cella di griglia tra più celle di griglia in discesa. Seguendo questo campo di flusso verso il basso, viene definita la quantità di flusso proveniente da ogni cella della griglia che raggiunge la zona di destinazione. L’influenza a monte è valutata usando una ricorsione a valle, esaminando le celle della griglia a valle di ogni cella della griglia, in modo che la mappa prodotta identifichi l’area a monte dove il flusso attraverso la zona di destinazione ha origine, o l’area da cui dipende, per il suo flusso.

Le figure seguenti illustrano la quantità che ogni punto sorgente nel dominio $x$ (blu) contribuisce al punto o zona di destinazione $y$ (rosso). Se la funzione dell’area di contributo ponderata dell’indicatore è indicata come $I(y; x)$ che dà il contributo ponderato usando un valore unitario (1) da specifiche celle della griglia $y$` alle celle della griglia $x$, allora la dipendenza dall’alto è: $D(x; y) = I(y; x)$.

![Diagramma della dipendenza dalla pendenza](image)

Questo è utile per esempio per tracciare da dove può provenire il flusso o una sostanza o un contaminante legato al flusso che entra in un’area di destinazione.
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Infinity Flow Direction Grid</td>
<td>[raster]</td>
<td>Una griglia che dà la direzione del flusso con il metodo D-Infinity dove l’angolo di direzione del flusso è determinato come la direzione della pendenza più rapida verso il basso sulle otto sfaccettature triangolari formate in una finestra di celle della griglia 3x3 centrata sulla cella della griglia di interesse. Questa griglia può essere prodotta usando lo strumento «D-Infinity Flow Direction ».</td>
<td></td>
</tr>
<tr>
<td>Griglia di destinazione</td>
<td>[raster]</td>
<td>Una griglia che codifica la zona di destinazione che può ricevere il flusso da monte. Questa griglia deve essere 1 all'interno della zona y e 0 nel resto del dominio.</td>
<td></td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risultato Griglia di dipendenza dalla pendenza</td>
<td>[raster]</td>
<td>Una griglia che quantifica la quantità che ogni punto sorgente nel dominio contribuisce alla zona definita dalla griglia di destinazione.</td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** `taudem:dinfupdependence`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’**id algoritmo** viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

Pendenza media verso il basso

Questo strumento calcola la pendenza in una direzione D8 verso il basso come media su una distanza selezionata dall'utente. La distanza dovrebbe essere specificata in unità orizzontali della mappa.
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8 Griglia di direzione del flusso</td>
<td></td>
<td>[raster]</td>
<td>Questo raster in ingresso è una griglia di direzioni di flusso che sono codificate usando il metodo D8 dove tutto il flusso da una cella va ad una singola cella vicina nella direzione della discesa più ripida. Questa griglia può essere ottenuta come risultato dello strumento «D8 Flow Directions».</td>
</tr>
<tr>
<td>Griglia di elevazione buche riempite</td>
<td></td>
<td>[raster]</td>
<td>Questo input è una griglia di valori di elevazione. Come regola generale, si consiglia di utilizzare una griglia di valori di elevazione a cui sono state rimosse le fosse per questo input. I pozzi sono generalmente considerati artefatti che interferiscono con l’analisi del flusso che li attraversa. Questa griglia può essere ottenuta come output dello strumento <em>Rimuovi fossa</em>, nel qual caso contiene i valori di elevazione in cui le fosse sono state riempite fino al punto in cui si scaricano.</td>
</tr>
<tr>
<td>Distanza di discesa</td>
<td></td>
<td>[number] Predefinito: 50</td>
<td>Parametro in ingresso della distanza di discesa su cui calcolare la pendenza (in unità orizzontali della mappa).</td>
</tr>
</tbody>
</table>

### Outputs

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia di pendenza media verso il basso</td>
<td></td>
<td>[raster]</td>
<td>Questo risultato è una griglia di pendii calcolati nella direzione di discesa D8, mediata sulla distanza selezionata.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** taudem:slopeavedown

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'**id algoritmo** viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

### Rapporto pendenza/area

Calcola il rapporto tra la pendenza e l'area specifica del bacino (area contributiva). Questo è algebricamente correlato al più comune indice di bagnatura ln(a/tan beta), ma l'area contributiva è nel denominatore per evitare errori di divisione per 0 quando la pendenza è 0.
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia di pendenza</td>
<td>[raster]</td>
<td></td>
<td>Una griglia di pendenza. Questa griglia può essere generata usando sia lo strumento «D8 Flow Directions « che lo strumento «D-Infinity Flow Directions «.</td>
</tr>
<tr>
<td>Griglia specifica del bacino di utenza</td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà il valore dell'area contributiva per ogni cella presa come suo proprio contributo più il contributo dei vicini a monte che drenano in essa. L'area contributiva è contata in termini di numero di celle della griglia (o somma dei pesi). Questa griglia può essere generata usando lo strumento «D8 Contributing Area « o lo strumento «D-Infinity Contributing Area «.</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendenza divisa per la griglia rapporto area</td>
<td>[raster]</td>
<td></td>
<td>Una griglia del rapporto tra la pendenza e l'area specifica del bacino (area contributiva). Questo è algebricamente correlato al più comune $\ln\left(\frac{a}{\tan\beta}\right)$ indice di bagnatura, ma l'area contributiva è nel denominatore per evitare errori di divisione per 0 quando la pendenza è 0.</td>
</tr>
</tbody>
</table>

**Codice Python**

ID Algoritmo: `taudem:slopearearatio`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli strumenti di Processing. Il dizionario dei parametri fornisce i nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Indice di bagnabilità topografica**

Calcola l'indice di bagnabilità topografica (TWI).
**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pendenza</strong></td>
<td></td>
<td>[raster]</td>
<td>Una griglia di pendenza. Questa griglia può essere generata usando sia lo strumento «D8 Flow Directions « che lo strumento «D-Infinity Flow Directions «.</td>
</tr>
<tr>
<td><strong>Bacino d'utenza specifico</strong></td>
<td></td>
<td>[raster]</td>
<td>Una griglia che dà il valore dell'area contributiva per ogni cella presa come suo proprio contributo più il contributo dei vicini a monte che drenano in essa. L'area contributiva è contata in termini di numero di celle della griglia (o somma dei pesi). Questa griglia può essere generata usando lo strumento «D8 Contributing Area « o lo strumento «D-Infinity Contributing Area «.</td>
</tr>
</tbody>
</table>

**Outputs**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Indice di bagnabilità</strong></td>
<td></td>
<td>[raster]</td>
<td>Una griglia dell'indice di bagnabilità (TWI).</td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `taudem:twi`

```
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’*id algoritmo* viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli strumenti di Processing. Il *dizionario dei parametri* fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

### 24.4.3 Analisi Rete di Flusso

**Collegare in basso**

Per ogni zona in un raster inserito (per esempio HUC convertito in griglia) identifica il punto con la più grande AreaD8. Questo viene preso come punto di uscita. Viene creato un file OGR. Usando le direzioni del flusso, ogni sbocco viene spostato verso il basso di un numero specificato di celle della griglia che è controllabile dall’utente (il valore predefinito è 1). L’ID della posizione in cui il punto viene spostato è preso come iddown. Vengono creati due file OGR, uno con i punti iniziali e uno con i punti spostati. Entrambi contengono id, iddown e AreaD8.
### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>D8 direzioni di flusso</strong></td>
<td>[raster]</td>
<td></td>
<td>Una griglia di direzioni di flusso che sono codificate usando il metodo D8 dove tutto il flusso da una cella va a una singola cella vicina nella direzione della discesa più ripida.</td>
</tr>
<tr>
<td><strong>Area di contribuzione D8</strong></td>
<td>[raster]</td>
<td></td>
<td>Una griglia che dà il valore dell’area contributiva in termini di numero di celle della griglia (o la somma dei pesi) per ogni cella presa come proprio contributo più il contributo dei vicini a monte che drenano in essa usando l’algoritmo D8. Questo è di solito il risultato dello strumento «D8 Contributing Area «.</td>
</tr>
<tr>
<td><strong>Bacino idrografico</strong></td>
<td>[raster]</td>
<td></td>
<td>Griglia di bacino idrografico definita dalla funzione di bacino idrografico di gage o streamreachwatershed. Anche altri bacini idrografici raster (per esempio HUC) possono essere usati come griglia di bacino idrografico.</td>
</tr>
<tr>
<td><strong>Le celle della griglia si spostano a valle</strong></td>
<td>[number]</td>
<td></td>
<td>Numero di celle della griglia spostate a valle in base alle direzioni del flusso.</td>
</tr>
</tbody>
</table>

### Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sbocchi</strong></td>
<td>[vector: point]</td>
<td></td>
<td>Un file OGR puntuale in cui ogni punto è creato dalla griglia del bacino idrografico che ha la più grande area contribuente per ogni zona.</td>
</tr>
<tr>
<td><strong>Sbocchi spostati</strong></td>
<td>[vector: point]</td>
<td></td>
<td>Un file OGR puntuale che definisce le uscite che interessano, dove ogni uscita è spostata verso il basso di un numero specificato di celle della griglia utilizzando le direzioni del flusso.</td>
</tr>
</tbody>
</table>

### Codice Python

**ID Algoritmo:** taudem:connectdown

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
D8 Valore estremo di pendenza

Valuta il valore estremo (massimo o minimo) della pendenza da una griglia in ingresso basata sul modello di flusso D8. Questo è inteso inizialmente per l'uso nella generazione di raster di flusso per identificare una soglia del prodotto pendenza per area che risulta in una rete di flusso ottimale (secondo l'analisi delle pendenze).

Se viene utilizzato lo shapefile del punto di uscita opzionale, solo le celle di uscita e le celle ascendenti (secondo il modello di flusso D8) di esse sono nel dominio da valutare.

Per impostazione predefinita, lo strumento verifica la contaminazione dei bordi. Questa è definita come la possibilità che un risultato possa essere sottostimato a causa del mancato conteggio delle celle della griglia al di fuori del dominio. Ciò si verifica quando il drenaggio è verso l'interno dai confini o dalle aree con valori «no data» per l'elevazione. L'algoritmo lo riconosce e riporta «no data» per il risultato per queste celle della griglia. È comune vedere strisce di valori «no data» che si estendono verso l'interno dai confini lungo i percorsi di flusso che entrano nel dominio in corrispondenza di un confine. Questo è l'effetto desiderato e indica che il risultato per queste celle della griglia è sconosciuto poiché dipende dal terreno al di fuori del dominio dei dati disponibili. Il controllo della contaminazione dei bordi può essere disattivato nei casi in cui si sa che questo non è un problema o si desidera ignorare questi problemi, se, ad esempio, il DEM è stato ritagliato lungo un contorno di bacino idrografico.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia delle direzioni di flusso D8</td>
<td>[raster]</td>
<td>Una griglia di direzioni di flusso D8 che sono definite, per ogni cella, come la direzione di quella delle sue otto vicine adiacenti o diagonaliali con la pendenza discendente più ripida. Questa griglia può essere ottenuta come risultato dello strumento «D8 Flow Directions» .</td>
<td></td>
</tr>
<tr>
<td>Griglia dei valori di pendenza</td>
<td>[raster]</td>
<td>Questa è la griglia di valori di cui viene selezionato il valore massimo o minimo di pendenza. I valori più comunemente usati sono il prodotto della pendenza per l'area necessario quando si generano i raster dei corsi d'acqua secondo l'analisi delle pendenze.</td>
<td></td>
</tr>
<tr>
<td>Shapefile sbocchi Opzionale</td>
<td>[vector: point]</td>
<td>Uno shapefile puntuale che definisce gli sbocchi di interesse. Se viene usato in ingresso questo file, solo l'area a monte di questi sbocchi sarà valutata dallo strumento.</td>
<td></td>
</tr>
<tr>
<td>Verificare la contaminazione al margine</td>
<td>[boolean]</td>
<td>Predefinito: True</td>
<td>Un flag che indica se lo strumento deve verificare la contaminazione del margine.</td>
</tr>
<tr>
<td>Usa il valore di pendenza massima</td>
<td>[boolean]</td>
<td>Predefinito: True</td>
<td>Un flag per indicare se deve essere calcolato il valore massimo o minimo della pendenza.</td>
</tr>
</tbody>
</table>

Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia dei valori di pendenza estrema</td>
<td>[raster]</td>
<td>Una griglia dei valori massimi/minimi di pendenza.</td>
<td></td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** `taudem:d8flowpathextremeup`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Bacino idrografico di Gage**

Calcola la griglia dei bacini idrografici di Gage. Ogni cella della griglia è etichettata con l’identificatore (dalla colonna id) del misuratore a cui scarica direttamente senza passare attraverso altri misuratori.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un metodo D-infinito direzioni di flusso</td>
<td>DINF_FLOWDIR</td>
<td>[raster]</td>
<td>Una griglia di direzioni del flusso basata sul metodo del flusso D-infinito</td>
</tr>
<tr>
<td>Griglia delle direzioni di flusso D8</td>
<td>[raster]</td>
<td></td>
<td>Una griglia di direzioni di flusso D8 che sono definite, per ogni cella, come la direzione di quella delle sue otto vicine adiacenti o diagonali con la pendenza discendente più ripida. Questa griglia può essere ottenuta come risultato dello strumento «D8 Flow Directions».</td>
</tr>
<tr>
<td>Gages Shapefile</td>
<td>[vector: point]</td>
<td></td>
<td>Uno shapefile di punti che definisce gli indicatori a cui verranno delineati i bacini idrografici. Questo shapefile dovrebbe avere un id colonna. Le celle della griglia che si scaricano direttamente in ogni punto in questo shapefile verranno etichettate con questo ID.</td>
</tr>
</tbody>
</table>

**Risultati**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>File di identificazione a valle</td>
<td>[file]</td>
<td></td>
<td>File di testo che offre connettività in discesa al bacino idrografico</td>
</tr>
</tbody>
</table>
Codice Python

**ID Algoritmo:** `taudem:gagewatershed`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'`id algoritmo` viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli Strumenti di Processing. 
Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.

### Lunghezza Area Sorgente del corso d'acqua

Crea una griglia di indicatori (1, 0) che valuta $A >= (M)(L_y)$ basata sulla lunghezza del percorso di risalita, sugli input della griglia dell'area contributiva D8 e sui parametri $M$ e $y$. Questa griglia indica le probabili celle della griglia della sorgente del flusso. Questo è un metodo sperimentale con base teorica nella legge di Hack che afferma che per i flussi $L \sim A^{0.6}$. Tuttavia per le colline con flusso parallelo $L \sim A^1$. Quindi una transizione da pendii a corsi d'acqua può essere rappresentata da $L \sim A^{0.8}$ suggerendo di identificare le celle della griglia come celle di flusso se $A > M (L^{1/0.8})$.

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| **Lunghezza Griglia** | [raster]                       |         | Una griglia della lunghezza massima della pendenza ascendente per ogni cella. Questo è calcolato come la lunghezza del percorso del flusso dalla cella più lontana che drena ad ogni cella. La lunghezza è misurata tra i centri delle celle tenendo conto della dimensione delle celle e se la direzione è adiacente o diagonale. È questa lunghezza ($L$) che è usata nella formula, $A > (M)(L_y)$, per determinare quali celle sono considerate celle di flusso. Questa griglia può essere ottenuta come risultato dallo strumento «Grid Network».
| **Griglia dell'area contribuente** | [raster]                       |         | Una griglia di valori dell'area contribuente per ogni cella calcolata utilizzando l'algoritmo D8. L'area contribuente per una cella è la somma del suo contributo più il contributo di tutti i vicini a monte che drenano verso di essa, misurato come numero di celle. Questa griglia è tipicamente ottenuta come risultato dello strumento «D8 Contributing Area». è l'area contributiva ($A$) che viene confrontata nella formula $A > (M)(L_y)$ per determinare il passaggio a un flusso.
| **Soglia**        | [number]                       | Predefinito: 0.03 | Il parametro soglia del moltiplicatore ($M$) che è usato nella formula: $A > (M)(L_y)$, per identificare l'inizio dei flussi.
| **Esponente**     | [number]                       | Predefinito: 1.3  | Il parametro esponente ($y$) che è usato nella formula: $A > (M)(L_y)$, per identificare l'inizio dei flussi. Nei sistemi di ramificazione, la legge di Hack suggerisce che $L = 1/M \cdot A(1/y)$ con $1/y = 0.6$ (o 0.56) ($y$ circa 1.7). Nei sistemi a flusso parallelo $L$ è proporzionale a $A$ ($y$ circa 1). Questo metodo cerca di identificare la transizione tra questi due paradigmi usando un esponente $y$ da qualche parte nel mezzo ($y$ circa 1,3). |
Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia di origine del flusso</td>
<td>[raster]</td>
<td></td>
<td>Una griglia di indicatori (1,0) che valuta $A \geq (M)(L^y)$, basata sulla lunghezza massima del percorso di risalita, sugli input della griglia dell’area contributiva D8 e sui parametri $M$ e $y$. Questa griglia indica le probabili celle della griglia della sorgente del flusso.</td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: taudem:lengtharea

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i Nomini e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Sposta i punti di uscita sui corsi d’acqua

Sposta i punti di uscita che non sono allineati con una cella di flusso da una griglia raster di flusso, verso il basso lungo la direzione del flusso D8 finché non viene incontrata una cella raster di flusso, viene esaminato il numero «max_dist» di celle della griglia o il percorso del flusso esce dal dominio (cioè si incontra un valore “nessun dato” per la direzione del flusso D8). Il file di output è un nuovo shapefile di outlet in cui ogni punto è stato spostato in modo che coincida con la griglia raster del flusso, se possibile. Un campo “distMoved” viene aggiunto al nuovo shapefile delle prese per indicare le modifiche apportate a ciascun punto. I punti che si trovano già su una cella di flusso non vengono spostati e al loro campo «distMoved» viene assegnato un valore 0. I punti che inizialmente non si trovano su una cella di flusso vengono spostati facendoli scorrere verso il basso lungo la direzione del flusso D8 finché non si verifica una delle seguenti condizioni: a) Viene rilevata una cella di griglia raster stream prima di attraversare il numero «max_dist» di celle della griglia. In tal caso, il punto viene spostato e al campo “distMoved” viene assegnato un valore che indica di quanto delle celle della griglia è stato spostato il punto. b) Viene attraversato più del «numero_max» di celle della griglia, oppure c) l’attraversamento finisce per uscire dal dominio (ovvero, viene rilevato un valore di direzione del flusso D8 «nessun dato»). In tal caso, il punto non viene spostato e al campo “distMoved” viene assegnato un valore di -1. il punto non viene spostato e al campo “distMoved” viene assegnato il valore -1.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8 Griglia Direzione Flusso</td>
<td>[raster]</td>
<td></td>
<td>Una griglia di direzioni di flusso D8 che sono definite, per ogni cella, come la direzione di quella delle sue otto vicine adiacenti o diagonalì con la pendenza discendente più ripida. Questa griglia può essere ottenuta come risultato dello strumento «D8 Flow Directions» .</td>
</tr>
<tr>
<td>Flusso griglia raster</td>
<td>[raster]</td>
<td></td>
<td>Questo risultato è una griglia di indicatori (1, 0) che indica la posizione dei flussi, con un valore di 1 per ogni cella del flusso e 0 per il resto delle cella. Questo file è prodotto da diversi strumenti nel pacchetto di strumenti «Stream Network Analysis » .</td>
</tr>
</tbody>
</table>

continues on next page
Shapefile sbocchi | [vector: point] | Uno shapefile puntuale che definisce punti di interesse o sbocchi che idealmente dovrebbero essere situati su un corso d'acqua, ma potrebbero non essere esattamente sul corso d'acqua a causa del fatto che le posizioni dei punti dello shapefile potrebbero non essere state accuratamente registrate rispetto alla griglia raster del corso d'acqua.

Numero massimo di celle della griglia da attraversare | [number] | Predefinito: 50 | Questo parametro in ingresso è il numero massimo di celle della griglia di cui verranno spostati i punti nello shapefile in ingresso prima di essere salvati nello shapefile risultato degli sbocchi.

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| Shapefile degli sbocchi in uscita | [vector: point] | Uno shapefile di punti che definisce i punti di interesse o gli sbocchi. Questo file ha un punto in esso per ogni punto nello shapefile degli sbocchi in ingresso. Se il punto originale si trovava su un corso d'acqua, allora il punto non è stato spostato. Se il punto originale non era su un corso d'acqua, il punto è stato spostato verso il basso secondo la direzione del flusso D8 fino a raggiungere un corso d'acqua o la distanza massima. Questo file ha un ulteriore campo «dist_moved» aggiunto ad esso che è il numero di celle in cui il punto è stato spostato. Questo campo è 0 se la cella era originariamente su un corso d'acqua, -1 se non è stata spostata perché non c'era un corso d'acqua entro la distanza massima, o qualsiasi valore positivo se è stata spostata.

Codice Python

**ID Algoritmo:** `taudem:moveoutletstostreams`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L'**id algoritmo** viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli Strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomel i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Peucker Douglas**

Crea una griglia di indicatori (1, 0) di celle di griglia orientate verso l'alto secondo l'algoritmo di Peucker e Douglas.

Con questo strumento, il DEM viene prima smussato da un kernel con pesi al centro, ai lati e alle diagonali. Il metodo Peucker e Douglas (1975) (spiegato anche in Band, 1986), viene quindi utilizzato per identificare le celle della griglia orientate verso l'alto. Questa tecnica contrassegna l'intera griglia, quindi esamina in un unico passaggio ogni quadrante di 4 celle della griglia e rimuove il flag più alto. Le restanti celle contrassegnate sono considerate «orientate verso l'alto» e, se visualizzate, assomigliano a una rete di canali. Questa rete proto-canal ne manca di connettività e richiede un affinamento, questioni che sono state discusse in dettaglio da Band (1986).
Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso di smussatura centrale</td>
<td>[number]</td>
<td>Predefinito: 0.4</td>
<td>Il parametro del peso centrale utilizzato da un kernel per smussare il DEM prima che lo strumento identifiichi le celle della griglia orientate verso l'alto</td>
</tr>
<tr>
<td>Peso di smussatura laterale</td>
<td>[number]</td>
<td>Predefinito: 0.1</td>
<td>Il parametro del peso laterale utilizzato da un kernel per smussare il DEM prima che lo strumento identifiichi le celle della griglia orientate verso l'alto</td>
</tr>
<tr>
<td>Peso di smussatura diagonale</td>
<td>[number]</td>
<td>Predefinito: 0.05</td>
<td>Il parametro del peso diagonale utilizzato da un kernel per smussare il DEM prima che lo strumento identifiichi le celle della griglia orientate verso l'alto</td>
</tr>
</tbody>
</table>

Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia di origine del flusso</td>
<td>[raster]</td>
<td></td>
<td>Una griglia di indicatori (1, 0) di celle della griglia orientate verso l'alto secondo l'algoritmo di Peuker e Douglas e, se visualizzata, assomiglia a una rete di canali. Questa rete proto-canalé generalmente manca di connettività e richiede un aaffinamento, questioni che sono state discusse in dettaglio da Band (1986).</td>
</tr>
</tbody>
</table>

Codice Python

**ID Algoritmo:** taudem:peukerdouglas

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i Nom i e i valori dei parametri. Vedi [Usare gli algoritmi di Processing dalla console dei comandi](#) per dettagli su come eseguire algoritmi di processing dalla console Python.
Flusso Peuker Douglas

Combina le funzionalità degli strumenti «Peuker Douglas», «D8 Contributing Area», «Stream Drop Analysis» e «Stream Definition by Threshold» per generare una griglia di indicatori di flusso (1,0) in cui si trovano i flussi utilizzando un metodo DEM basato sull'orientamento. Con questo metodo, il DEM viene prima smussato da un kernel con pesi al centro, ai lati e alle diagonali. Il metodo Peuker e Douglas (1975) (spiegato anche in Band, 1986), viene quindi utilizzato per identificare le celle della griglia orientate verso l'alto. Questa tecnica contrassegna l'intera griglia, quindi esamina in un unico passaggio ogni quadrante di 4 celle della griglia e rimuove il flag più alto. Le restanti celle contrassegnate sono considerate «orientate verso l'alto» e, se visualizzate, assomigliano a una rete di canali. Questa rete proto-canale a volte manca di connettività e/o richiede un affinamento, questioni che sono state discusse in dettaglio da Band (1986). L'affinamento e il collegamento di queste celle della griglia si ottiene qui calcolando l'area contribuente D8 utilizzando solo queste celle orientate verso l'alto. Una soglia di accumulo sul numero di queste celle viene quindi utilizzata per mappare la rete di canali in cui tale soglia è facoltativamente impostata dall'utente o determinata tramite analisi di caduta.


### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flusso origine</td>
<td>[raster]</td>
<td></td>
<td>Una griglia di indicatori (1, 0) di celle della griglia orientate verso l'alto secondo l'algoritmo di Peuker e Douglas e, se visualizzata, assomiglia a una rete di canali. Questa rete proto-canale generalmente manca di connettività e richiede un aaffinamento, questioni che sono state discusse in dettaglio da Band (1986).</td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo**: `taudem:peukerdouglasstreamdef`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

**Combinazione di aree in pendenza**

Crea una griglia di valori di slope-area = \((S_m) (A_n)\) basata su input di pendenza e di griglia di bacino specifico, e parametri \(m\) e \(n\). Questo strumento è inteso per l’uso come parte del metodo di definizione dei raster di flusso di slope-area.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia pendenza</td>
<td>[raster]</td>
<td>Questo input è una griglia di valori di pendenza. Questa griglia può essere ottenuta dallo strumento »D-Infinity Flow Directions«.</td>
<td></td>
</tr>
<tr>
<td>Griglia dell’area contribuente</td>
<td>[raster]</td>
<td>Una griglia che fornisce il bacino specifico per ogni cella presa come proprio contributo (lunghezza della cella della griglia o somma dei pesi) più il contributoPROPozionale dei vicini a monte che drenano in essa. Questa griglia è tipicamente ottenuta dallo strumento »D-Infinity Contributing Area«.</td>
<td></td>
</tr>
<tr>
<td>Esponente di pendenza</td>
<td>[number]</td>
<td>Predefinito: 2</td>
<td>Il parametro esponente della pendenza ((m)) che sarà usato nella formula: ((S_m) (A_n)), che è usato per creare la griglia della superficie di pendenza.</td>
</tr>
<tr>
<td>Esponente di pendenza</td>
<td>[number]</td>
<td>Predefinito: 1</td>
<td>Il parametro esponente dell’area ((n)) che sarà usato nella formula: ((S_m) (A_n)), che è usato per creare la griglia area-pendenza.</td>
</tr>
</tbody>
</table>

**Risultati**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia area pendenza</td>
<td>[raster]</td>
<td>Una griglia di valori di area di pendenza = ((S_m) (A_n)) calcolata dalla griglia di pendenza, dalla griglia di area di bacino specifica, dal parametro esponente di pendenza (m) e dal parametro esponente di area (n).</td>
<td></td>
</tr>
</tbody>
</table>
**Codice Python**

**ID Algoritmo:** `taudem:slopearea`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi *Usare gli algoritmi di Processing dalla console dei comandi* per dettagli su come eseguire algoritmi di processing dalla console Python.

**Definizione di flusso di area di pendenza**

Crea una griglia di valori di slope-area \( (S_m)(A_n) \) basata su input di pendenza e di griglia di bacino specifico, e parametri \( m \) e \( n \). Questo strumento è inteso per l’uso come parte del metodo di definizione dei raster di flusso di slope-area.

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8 direzioni di flusso</td>
<td>[raster]</td>
<td></td>
<td>Una griglia che fornisce il bacino specifico per ogni cella presa come proprio contributo (lunghezza della cella della griglia o somma dei pesi) più il contributo proporzionale dei vicini a monte che drenano in essa. Questa griglia è tipicamente ottenuta dallo strumento «D-Infinity Contributing Area«.</td>
</tr>
<tr>
<td>Area di contribuzione D-infinity</td>
<td>[raster]</td>
<td></td>
<td>Questo input è una griglia di valori di pendenza. Questa griglia può essere ottenuta dallo strumento «D-Infinity Flow Directions«.</td>
</tr>
<tr>
<td>Pendenza</td>
<td>[raster]</td>
<td></td>
<td>Questo input è una griglia di valori di pendenza. Questa griglia può essere ottenuta dallo strumento «D-Infinity Flow Directions«.</td>
</tr>
<tr>
<td>Maschera griglia</td>
<td>[raster]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbocchi</td>
<td>[vector: point]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griglia con fosse riempite per l’analisi delle perdite</td>
<td>[raster]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area contributiva D8 per l’analisi delle perdite</td>
<td>[raster]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esponente di pendenza</td>
<td>[number]</td>
<td>Predefinito: 2</td>
<td>Il parametro esponente della pendenza ( m ) che sarà usato nella formula: ( (S_m)(A_n) ), che è usato per creare la griglia della superficie di pendenza.</td>
</tr>
<tr>
<td>Esponente di area</td>
<td>[number]</td>
<td>Predefinito: 1</td>
<td>Il parametro esponente dell’area ( n ) che sarà usato nella formula: ( (S_m)(A_n) ), che è usato per creare la griglia area-pendenza.</td>
</tr>
<tr>
<td>Soglia di accumulo</td>
<td>[number]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>soglia minima</td>
<td>[number]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soglia massima</td>
<td>[number]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numero di soglie di perdita</td>
<td>[number]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabella 24.221 – continua dalla pagina precedente

<table>
<thead>
<tr>
<th>Tipo di livello di soglia</th>
<th>Opzioni:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predefinito: 0</td>
<td></td>
</tr>
<tr>
<td>• 0 — Logaritmico</td>
<td></td>
</tr>
<tr>
<td>• 1 — Lineare</td>
<td></td>
</tr>
</tbody>
</table>

| Verificare la contaminazione al margine | [boolean] |
| Selezionare la soglia in base all’analisi delle perdite. | [boolean] |

Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flusso raster</td>
<td></td>
<td>[raster]</td>
<td>Una griglia di valori di area di pendenza ( = (S_m) \times (A_n) ) calcolata dalla griglia di pendenza, dalla griglia di area di bacino specifica, dal parametro esponente di pendenza ( m ) e dal parametro esponente di area ( n ).</td>
</tr>
<tr>
<td>Area in pendenza</td>
<td></td>
<td>[raster]</td>
<td></td>
</tr>
<tr>
<td>Massima pendenza</td>
<td></td>
<td>[raster]</td>
<td></td>
</tr>
<tr>
<td>Analisi perdite</td>
<td></td>
<td>[file]</td>
<td></td>
</tr>
</tbody>
</table>

Codice Python

ID Algoritmo: `taudem:slopeareastreamdef`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’`id algoritmo` viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il `dizionario dei parametri` fornisce i Nomini e i valori dei parametri. Vedi `Usare gli algoritmi di Processing dalla console dei comandi` per dettagli su come eseguire algoritmi di processing dalla console Python.

Definizione del flusso in base alla soglia

Opera su qualsiasi griglia e produce una griglia di indicatori \((1, 0)\) che identifica le celle con valori in ingresso \( >= \) il valore di soglia. L’uso standard è quello di usare una griglia di area sorgente accumulata come griglia in ingresso per generare una griglia raster di flusso come uscita. Se si usa la griglia opzionale della maschera di input, essa limita il dominio che viene valutato alle celle con valori di maschera \( >= 0 \). Quando si usa una griglia di area contributiva D-infinity (\( *sca \)) come griglia della maschera, essa funziona come una maschera di contenimento dei bordi. La logica della soglia è:
src = ((ssa >= thresh) & (mask >= s0)) ? 1:0

**Parametri**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia del flusso accumulato di origine</td>
<td>[raster]</td>
<td>Questa griglia accumula nominalmente qualche caratteristica o combinazione di caratteristiche del bacino idrografico. L'esatta caratteristica (o caratteristiche) varia a seconda dell'algoritmo raster della rete dei corsi d'acqua utilizzato. Questa griglia deve avere la proprietà che i valori delle celle della griglia aumentino in modo monotono verso il basso lungo le direzioni del flusso D8, in modo che la rete dei flussi risultante sia continua. Mentre questa griglia è spesso proveniente da un accumulo, anche altre fonti come una funzione di massima pendenza possono produrre una griglia adatta.</td>
<td></td>
</tr>
<tr>
<td>Soglia</td>
<td>[number]</td>
<td>Predefinito: 100</td>
<td>Questo parametro viene confrontato con il valore nella griglia Accumulated Stream Source (<em>ssa</em>) per determinare se la cella deve essere considerata una cella di flusso. I flussi sono identificati come celle della griglia per le quali il valore ssa è &gt; = questa soglia.</td>
</tr>
<tr>
<td>Maschera griglia Opzionale</td>
<td>[raster]</td>
<td>Questo input opzionale è una griglia che viene utilizzata per mascherare il dominio di interesse e l'output viene fornito solo quando questa griglia è &gt; = 0. Un uso comune di questo input è quello di utilizzare una griglia D-Infinity contributing area come maschera in modo che la rete di flusso delineata sia limitata alle aree in cui D-infinity contributing area è disponibile, replicando la funzionalità di una maschera di contenimento dei bordi.</td>
<td></td>
</tr>
</tbody>
</table>

**Risultati**

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flusso griglia raster</td>
<td>[raster]</td>
<td>Questa è una griglia di indicatori (1, 0) che indica la posizione dei flussi, con un valore di 1 per ciascuna delle celle dei flussi e 0 per il resto delle celle.</td>
<td></td>
</tr>
</tbody>
</table>

**Codice Python**

**ID Algoritmo:** `taudem:threshold`

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Definizione del flusso con analisi delle perdite

Combina la funzione dello strumento «Stream Drop Analysis» e dello strumento «Stream Definition by Threshold». Applica una serie di soglie (determinate dai parametri di input) alla griglia accumulata di input della sorgente del flusso (ssa) e produce i risultati nella tabella delle statistiche di caduta del flusso (drp.txt). Poi emette una griglia raster del flusso, che è una griglia di indicatori (1,0) di celle di flusso. Le celle di flusso sono definite come quelle celle in cui il valore accumulato della sorgente di flusso è >= la soglia ottimale determinata dalle statistiche di caduta del flusso. C'è un'opzione per includere un input di maschera per replicare la funzionalità di utilizzo del file *sca come maschera di contenimento dei bordi. La logica della soglia dovrebbe essere: src = ((ssa >= thresh) & (mask >=0)) ? 1:0

Parametri

Risultati

Codice Python

**ID Algoritmo:** taudem:streamdefdropanalysis

```python
import processing
processing.run("algorithm_id", {parameter_dictionary})
```

L’"id algoritmo" viene visualizzato quando si passa il mouse sull'algoritmo nella finestra degli Strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomie i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.

Analisi delle perdite di flusso

Applica una serie di soglie (determinate in base ai parametri di input) alla griglia accumulata di input della sorgente del flusso (*ssa) e restituisce i risultati nel file *drp.txt la tabella delle statistiche di caduta del flusso. Questa funzione è progettata per aiutare nella determinazione di una soglia geomorfologicamente obiettiva da usare per delineare i flussi. Drop Analysis cerca di selezionare automaticamente la giusta soglia valutando una rete di flussi per una serie di soglie e esaminando la proprietà di caduta costante dei flussi di Strahler risultanti. Fondamentalmente si pone la domanda: La caduta media del flusso per i flussi di primo ordine è statisticamente diversa dalla caduta media del flusso per i flussi di ordine superiore, usando un test T. Lo stream drop è la differenza di elevazione dall'inizio alla fine di un flusso definito come la sequenza di collegamenti dello stesso ordine del flusso. Se il T-test mostra una differenza significativa, allora la rete di flussi non obbedisce a questa «legge», quindi è necessario scegliere una soglia più grande. La soglia più piccola per la quale il T-test non mostra una differenza significativa dà la rete dei corsi d'acqua a più alta risoluzione che obbedisce alla «legge» della caduta costante dei corsi d'acqua dalla geomorfologia, ed è la soglia scelta per la mappatura «oggettiva» o automatica dei corsi d'acqua dal DEM. Questa funzione può essere usata nello sviluppo di raster di reti di corsi d'acqua; dove le caratteristiche esatte del bacino idrografico che sono state accumulate nella griglia di origine dei flussi variano in base al metodo usato per determinare il raster della rete di corsi d'acqua.

### Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>D8 Griglia dall'area contribuente</strong></td>
<td>[raster]</td>
<td>Una griglia di valori di area contributiva per ogni cella che sono stati calcolati usando l'algoritmo D8. L'area contributiva per una cella è la somma del suo contributo più il contributo di tutti i vicini a monte che drenano verso di essa, misurata come numero di celle o la somma dei carichi ponderali. Questa griglia può essere ottenuta come risultato dello strumento <strong>D8 Contributing Area</strong>. Questa griglia è usata nella valutazione della densità di drenaggio riportata nella tabella delle cadute di flusso.</td>
<td></td>
</tr>
<tr>
<td><strong>D8 Direzione Flusso</strong></td>
<td>[raster]</td>
<td>Una griglia di direzioni di flusso D8 che sono definite, per ogni cella, come la direzione di quella delle sue otto vicine adiacenti o diagonali con la pendenza discendente più ripida. Questa griglia può essere ottenuta come risultato dello strumento <strong>D8 Flow Directions</strong>.</td>
<td></td>
</tr>
<tr>
<td><strong>Griglia di elevazione con fosse riempite</strong></td>
<td>[raster]</td>
<td>Una griglia di valori di elevazione. Questo è di solito il risultato dello strumento <strong>Rimuovi fossa</strong>, nel qual caso si tratta di elevazioni con fosse rimosse.</td>
<td></td>
</tr>
<tr>
<td><strong>Griglia del flusso accumulato di origine</strong></td>
<td>[raster]</td>
<td>Questo reticolo deve crescere in modo monotono lungo le direzioni di flusso a valle D8. Si confronta con una serie di soglie per determinare l'inizio dei flussi. Viene spesso generato accumulando qualche caratteristica o combinazione di caratteristiche del bacino idrografico con lo strumento <strong>D8 Contributing Area</strong>, o usando l'opzione massima dello strumento <strong>D8 Flow Path Extreme</strong>. Il metodo esatto varia a seconda dell'algoritmo utilizzato.</td>
<td></td>
</tr>
<tr>
<td><strong>Shapefile sbocchi</strong></td>
<td>[vector: point]</td>
<td>Uno shapefile di punti che definisce le bocche a monte delle quali viene eseguita l'analis dell'area delle cadute.</td>
<td></td>
</tr>
<tr>
<td><strong>Soglia minima</strong></td>
<td>[number]</td>
<td>Predefinito: 5 Questo parametro è il limite più basso dell'intervallo cercato per i possibili valori di soglia usando l'analisi delle cadute. Questa tecnica cerca la soglia più piccola nell'intervallo in cui il valore assoluto della statistica t è inferiore a 2. Per la teoria che sta dietro l'analisi delle cadute si veda Tarboton et al. (1991, 1992), Tarboton e Ames (2001).</td>
<td></td>
</tr>
</tbody>
</table>
QGIS Desktop 3.16 User Guide

Numero di Valori
di Soglia

Spaziatura per i
Valori di Soglia

Tabella 24.225 – continua dalla pagina precedente
[number]
Il parametro è il numero di misure in cui dividere
Predeﬁnito:
l’intervallo di ricerca quando si cercano possibili valori
10
di soglia usando l’analisi delle cadute. Questa tecnica
cerca la soglia più piccola nell’intervallo in cui il valore
assoluto della statistica t è inferiore a 2. Per la teoria
dietro l’analisi delle cadute si veda Tarboton et al.
[enumeration] Questo parametro indica se la spaziatura logaritmica o
Predeﬁnito: 0 lineare deve essere usata quando si cercano possibili
valori di soglia usando l’analisi delle cadute.
Opzioni:
• 0 — Logaritmico
• 1 — Lineare

Risultati

Etichetta
D-Inﬁnity caduta
alla griglia del
ﬂusso

Nome

Tipo
[ﬁle]

Descrizione
Questo è un ﬁle di testo delimitato da virgole con la
seguente riga di intestazione:
Threshold,DrainDen,NoFirstOrd,
,→NoHighOrd,MeanDFirstOrd,MeanDHighOrd,
,→StdDevFirstOrd,StdDevHighOrd,T

Il ﬁle contiene quindi una riga di dati per ogni valore di
soglia esaminato, e poi una riga riassuntiva che indica
il valore di soglia ottimale. Questa tecnica cerca la
soglia più piccola nell’intervallo in cui il valore assoluto
della t-statistica è inferiore a 2. Per la teoria alla base
dell’analisi delle cadute, si veda Tarboton et al. (1991,

Codice Python
ID Algoritmo: taudem:dropanalysis
import processing
processing.run("algorithm_id", {parameter_dictionary})

L” id algoritmo viene visualizzato quando si passa il mouse sull’algoritmo nella ﬁnestra degli Strumenti di Processing.
Il dizionario dei parametri fornisce i Nomi e i valori dei parametri. Vedi Usare gli algoritmi di Processing dalla console
dei comandi per dettagli su come eseguire algoritmi di processing dalla console Python.
Vedi anche
• Broscoe, A. J., (1959), «Quantitative analysis of longitudinal stream proﬁles of small watersheds», Oﬃce of
Naval Research, Project NR 389-042, Technical Report No. 18, Department of Geology, Columbia University,
New York.
• Tarboton, D. G., R. L. Bras and I. Rodriguez-Iturbe, (1991), «On the Extraction of Channel Networks from
Geomorphology, 5(1/2): 59-76.

24.4. Fornitore di algoritmi TauDEM

1309


QGIS Desktop 3.16 User Guide


Portata del flusso e bacino idrografico

Questo strumento produce una rete vettoriale e uno shapefile dalla griglia raster del flusso. La griglia della direzione del flusso è usata per collegare i percorsi del flusso lungo il raster del flusso. L'ordine di Strahler di ogni segmento di flusso viene calcolato. Il subwatershed che drena ad ogni segmento di flusso (reach) è anche delineato ed etichettato con il valore identificativo che corrisponde all'attributo WSNO (numero di spartiacque) nello Shapefile Stream Reach.

Questo strumento ordina la rete dei flussi secondo il sistema di ordinamento di Strahler. I corsi d’acqua che non hanno altri corsi d’acqua che drenano in essi sono di ordine 1. Quando due corsi d’acqua di ordine diverso si uniscono, l'ordine del corso d'acqua a valle è l'ordine del corso d’acqua in entrata più alto. Quando due corsi d’acqua di ordine uguale si uniscono, l'ordine del corso d'acqua a valle viene aumentato di 1. Quando si uniscono più di due corsi d'acqua, l'ordine del corso d'acqua a valle viene calcolato come il massimo dell'ordine del più alto corso d'acqua in entrata o il secondo più alto corso d'acqua in entrata + 1. Questo generalizza la definizione comune ai casi in cui più di due portate si uniscono in un punto. La connettività topologica della rete è memorizzata nel file Stream Network Tree, e le coordinate e gli attributi di ogni cella della griglia lungo la rete sono memorizzati nel file Network Coordinates.

La griglia raster del flusso viene utilizzata come origine per la rete del flusso e la griglia della direzione del flusso viene utilizzata per tracciare le connessioni all'interno della rete del flusso. Le elevazioni e l'area contributiva sono usate per determinare gli attributi di elevazione e di area contributiva nel file di coordinate della rete. I punti nello shapefile degli sbocchi sono usati per dividere logicamente i flussi per facilitare la rappresentazione dei bacini idrografici a monte ed alla valle dei punti di monitoraggio. Il programma usa il campo attributo «id» nello shapefile degli outlet come identificatore nel file dell'albero della rete. Questo strumento traduce poi la rappresentazione della rete vettoriale del file di testo nei file Network Tree e Coordinates in uno shapefile. Vengono valutati anche altri attributi. Il programma ha un’opzione per delineare un singolo bacino idrografico rappresentando l'intera area che drena alla rete dei flussi come un singolo valore nella griglia del bacino in uscita.

Parametri

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griglia di elevazione con fosse riempite</td>
<td>[raster]</td>
<td>Una griglia di valori di elevazione. Questo è di solito il risultato dello strumento «Rimuovi fossa», nel qual caso si tratta di elevazioni con fosse rimosse.</td>
<td></td>
</tr>
<tr>
<td>D8 Griglia Direzione Flusso</td>
<td>[raster]</td>
<td>Una griglia di direzioni di flusso D8 che sono definite, per ogni cella, come la direzione di quella delle sue otto vicine adiacenti o diagonali con la pendenza discendente più ripida. Questa griglia può essere ottenuta come risultato dello strumento «D8 Flow Directions».</td>
<td></td>
</tr>
<tr>
<td>D8 Area di drenaggio</td>
<td>[raster]</td>
<td>Una griglia che fornisce il valore dell'area contributiva in termini di numero di celle della griglia (o la somma dei pesi) per ogni cella presa come proprio contributo più il contributo dei vicini a monte che drenano in essa usando l'algoritmo D8. Questo è di solito l'output dello strumento «D8 Contributing Area» ed è usato per determinare l'attributo contribution area nel file Network Coordinates.</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
Una griglia di indicatori che indica i flussi, utilizzando un valore della cella della griglia di 1 sui flussi e 0 fuori dai flussi. Molti degli strumenti «Stream Network Analysis» producono questo tipo di griglia. La Stream Raster Grid è usata come fonte per la rete dei flussi.

**Shapefile punti di uscita come Nodi della rete**

Una griglia puntuale che definisce i punti di interesse. Se questo file viene utilizzato, lo strumento definirà solo la rete dei flussi a monte di questi punti di uscita. Inoltre, i punti nello Shapefile Outlets sono usati per dividere logicamente i flussi per facilitare la rappresentazione dei bacini idrici a monte e a valle dei punti di monitoraggio. Questo strumento RICHIEDE che ci sia un campo di attributo intero «id» nello Shapefile Outlets, perché i valori «id» sono usati come identificatori nel file Network Tree.

**Delimitare singolo bacino idrografico.**

Questa opzione fa sì che lo strumento determini un singolo bacino idrografico rappresentando l’intera area che drena alla rete dei flussi come un singolo valore nella griglia del bacino di uscita. Altrimenti viene delineato un bacino separato per ogni portata del torrente. Il default è False (bacino separato).

### Risultati

<table>
<thead>
<tr>
<th>Etichetta</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Griglia del bacino idrico</strong></td>
<td>[raster]</td>
<td></td>
<td>Questa griglia di output ha identificato ogni bacino idrografico con un numero ID unico, o nel caso in cui l’opzione delimitazione del singolo bacino idrografico sia stata selezionata, l’intera area che drena alla rete dei flussi è identificata con un singolo ID.</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Stream Reach Shapefile</th>
<th>Questo output è uno shapefile polilinea che fornisce i collegamenti in una rete di flusso. Le colonne nella tabella degli attributi sono:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINKNO — Numero di collegamento. Un numero univoco associato a ciascun collegamento (segmento di canale tra le giunzioni). Questo è arbitrario e varierà a seconda del numero di processi utilizzati</td>
<td></td>
</tr>
<tr>
<td>DSLINKNO — Numero del collegamento a valle. -1 indica che non esiste</td>
<td></td>
</tr>
<tr>
<td>USLINKNO1 — Numero del primo collegamento a monte. (-1 indica nessun collegamento a monte, cioè per un collegamento sorgente)</td>
<td></td>
</tr>
<tr>
<td>USLINKNO2 — Numero del secondo collegamento a monte. (-1 indica nessun secondo collegamento a monte, cioè per un link sorgente o un punto di monitoraggio interno dove la portata è logicamente divisa ma la rete non si biforca)</td>
<td></td>
</tr>
<tr>
<td>DSNODEID — Identificatore di nodo per il nodo all’estremità a valle del corso d’acqua. Questo identificatore corrisponde all’attributo «id» dello shapefile Outlets usato per designare i nodi</td>
<td></td>
</tr>
<tr>
<td>Order — Ordine flusso Strahler</td>
<td></td>
</tr>
<tr>
<td>Length — Lunghezza del collegamento. Le unità sono le unità orizzontali della griglia DEM sottostante</td>
<td></td>
</tr>
<tr>
<td>Magnitude — Magnitudine di Shreve del collegamento. Questo è il numero totale di sorgenti a monte</td>
<td></td>
</tr>
<tr>
<td>DS_Cont_Ar — Area di drenaggio all’estremità a valle del collegamento. Generalmente questa è una cella della griglia a monte dell’estremità a valle perché l’area di drenaggio alla cella della griglia dell’estremità a valle include l’area del corso d’acqua che viene unito</td>
<td></td>
</tr>
<tr>
<td>Drop — Caduta di quota dall’inizio alla fine del collegamento</td>
<td></td>
</tr>
<tr>
<td>Slope — Pendenza media del collegamento (calcolata come caduta/lunghezza)</td>
<td></td>
</tr>
<tr>
<td>Straight_L — Distanza in linea retta dall’inizio alla fine del collegamento</td>
<td></td>
</tr>
<tr>
<td>US_Cont_Ar — Area di drenaggio all’estremità a monte del collegamento</td>
<td></td>
</tr>
</tbody>
</table>
| WSNO — Numero bacino idrografico. Riferimento incrociato ai file *.w.shp e *
| e che danno il numero di identificazione del bacino idrografico che drena direttamente al link |
| DOUT_END — Distanza verso l’eventuale sbocco (cioè il punto più a valle nella rete del flusso) dall’estremità a valle del collegamento |
| DOUT_START — Distanza all’eventuale sbocco dall’estremità a monte del collegamento |
| DOUT_MID — Distanza all’eventuale sbocco dal punto medio del collegamento |

continues on next page
Tabella 24.228 – continua dalla pagina precedente

| Albero della connettività di rete | [file] | Questo output è un file di testo che dettaglia la connettività topologica della rete e memorizzato nel file Stream Network Tree. Le colonne sono le seguenti:

- **Link Number** (arbitrario — varierà a seconda del numero di processi utilizzati)
- **Start Point Number in coordinate di rete** (*file: file:*coord.dat) (indicizzato da 0)
- **End Point Number** nel file delle coordinate di rete (*coord.dat) (indicizzato da 0)
- **Next (Downstream) Link Number**. Indica il numero del collegamento. -1 indica che non ci sono collegamenti a valle, cioè un collegamento terminale
- **First Previous (Upstream) Link Number**. Riferito a Link Number. -1 indica che non ci sono collegamenti a monte
- **Second Previous (Upstream) Link Numbers**. Riferito al numero di collegamento. -1 indica nessun collegamento a monte. Se solo un collegamento precedente è -1, indica un punto di monitoraggio interno in cui la portata è logicamente divisa, ma la rete non si biforca
- **Ordine di Strahler del Link**
- **Identificatore del punto di monitoraggio all’estremità a valle del collegamento**. -1 indica che l’estremità a valle non è un punto di monitoraggio
- **Magnitudine di rete del collegamento**. Calcolata come il numero di fonti a monte (in base a Shreve)

| Coordinate della rete | [file] | Questo output è un file di testo che contiene le coordinate e gli attributi dei punti lungo la rete dei flussi. Le colonne sono le seguenti:

- **Coordinata X**
- **Coordinata Y**
- **Distanza lungo i canali fino all’estremità a valle di un collegamento terminale**
- **Elevazione**
- **Area contribuente**

**Codice Python**

**ID Algoritmo:** `taudem:streamnet`

```python
import processing
taudem:streamnet.run("algorithm_id", {parameter_dictionary})
```

L’**id algoritmo** viene visualizzato quando si passa il mouse sull’algoritmo nella finestra degli Strumenti di Processing. Il **dizionario dei parametri** fornisce i Nomi e i valori dei parametri. Vedi **Usare gli algoritmi di Processing dalla console dei comandi** per dettagli su come eseguire algoritmi di processing dalla console Python.

24.4. Fornitore di algoritmi TauDEM
24.5 Applicazioni fornite da OTB

OTB (Orfeo ToolBox) è una libreria di elaborazione delle immagini per i dati di telerilevamento. Fornisce anche applicazioni che realizzano funzioni di elaborazione delle immagini. L'elenco delle applicazioni e la loro documentazione sono disponibili in OTB CookBook.
25.1 Plugin di QGIS

QGIS è stato progettato con un’architettura a plugin. Questo permette di poter aggiungere numerosi nuovi elementi e funzioni all’applicazione. Molte delle funzioni di QGIS sono attualmente implementate come plugin.

25.1.1 Plugin di Base e Plugin Esterni

I plugins di QGIS sono implementati come Plugin di Base o come Plugin Esterni.

Core Plugins sono mantenuti dal team di sviluppo di QGIS e fanno automaticamente parte di ogni distribuzione QGIS. Sono scritti in uno dei due seguenti linguaggi: C++ o Python.

La maggior parte dei plugin esterni sono attualmente scritti in Python. Sono memorizzati sia nel Repository “Ufficiale” QGIS all’indirizzo https://plugins.qgis.org/plugins/ o in repository esterni e sono gestiti dai singoli autori. Una documentazione dettagliata sull’uso, la versione minima di QGIS, la home page, gli autori e altre informazioni importanti sono fornite per i plugin nel repository ufficiale. Per gli altri repository esterni, la documentazione potrebbe essere disponibile con i plugin esterni stessi. La documentazione dei plugin esterni non è inclusa in questo manuale.

Per installare o attivare un plugin, andare nel menu Plugins e selezionare Gestisci ed Installa Plugin….. I plugin esterni installati sono posizionati nella cartella python/plugins del path user profile.

Percorsi per librerie Personalizzate di plugin in C++ possono essere aggiunti in Impostazioni ➤ Opzioni ➤ Sistema.

Nota: Secondo le impostazioni fatte in plugin manager settings, l’interfaccia principale di QGIS può visualizzare un’icona a destra della barra di stato per informarti che ci sono aggiornamenti per i tuoi plugin installati o per nuovi plugin disponibili.
25.1.2 La finestra di dialogo Plugins

Le schede della finestra di dialogo dei Plugin consentono all’utente di installare, disinstallare e aggiornare i plugin in diversi modi. Ogni plugin ha alcuni metadati visualizzati nel pannello di destra:

- informazione se il plugin è in stato sperimentale
- descrizione
- voto(i) di valutazione (puoi valutare per il tuo plugin preferito!)
- etichette
- alcuni utili links come la home page, categoria e versione e repository in cui è disponibile
- autore(i)
- versione disponibile

Nella parte superiore della finestra di dialogo, una funzione Cerca ti aiuta a trovare qualsiasi plugin utilizzando le informazioni sui metadati (autore, nome, descrizione….). È disponibile in quasi tutte le schede (eccetto 🌇 Impostazioni).

La scheda Impostazioni

La scheda 🌇 Impostazioni è il luogo principale in cui puoi configurare quali plugin possono essere visualizzati nella tua applicazione. Puoi utilizzare le seguenti opzioni:

- **Controllo aggiornamenti all’avvio.** Ogni qualvolta è disponibile un nuovo plugin o è aggiornato un plugin, QGIS ti informa ‘ogni volta che QGIS parte’, ‘una volta al giorno’, ‘ogni 3 giorni’, ‘ogni settimana’, ‘ogni 2 settimane’ o ‘ogni mese’.
- **Mostra anche plugins sperimentali.** QGIS ti mostrerà i plugin in fase di sviluppo che generalmente non sono adatti per un uso di produzione.
- **Mostra anche plugins deprecati.** Poiché utilizzano funzioni che non sono più disponibili in QGIS, questi plugin sono deprecati e generalmente non idonei per l’uso di produzione. Appaiono nell’elenco dei plugin non validi.

Per impostazione predefinita, QGIS fornisce il suo repository ufficiale dei plugin con l’URL https://plugins.qgis.org/plugins/plugins.xml?qgis=3.0 (nel caso di QGIS 3.0) nella sezione Repository dei plugin. Per aggiungere repository di autori esterni, clicca su Aggiungi… e compila il modulo Dettagli repository con un nome e l’URL. L’URL può essere con protocollo del tipo http://o file://.

Il repository QGIS predefinito è un repository aperto e non è necessaria alcuna autenticazione per accedervi. Puoi tuttavia accedere ad altri repository di plugin tramite eventuali richiede di autenticazione (autenticazione di base, PKI). Puoi ottenere ulteriori informazioni sul supporto dell’autenticazione QGIS nel capitolo Autenticazione.

Se non vuoi più uno o più repository aggiunti, puoi disattivarli nella scheda Impostazioni tramite il pulsante Modifica…. oppure rimuoverli completamente con il pulsante Elimina.
La scheda Tutti

Nella scheda Tutti, sono elencati tutti i plugin disponibili, compresi sia i plugin core che esterni. Usa Aggiorna tutto per cercare nuove versioni dei plugin. Inoltre, puoi utilizzare Installa plugin se un plugin è elencato ma non installato, Disinstalla Plugin se un plugin è installato e Reinstalla Plugin. Un plugin installato può essere temporaneamente disattivato utilizzando la casella di controllo.

Fig. 25.1: La scheda Impostazioni
La scheda Installati

Nella scheda Installati, troverai elencati i plugin Core, che non è possibile disinstallare. Puoi estendere questa lista con plugin esterni che possono essere disinstallati e reinstallati in qualsiasi momento, usando i pulsanti Disinstalla Plugin e Reinstalla Plugin. Qui puoi anche fare Aggiorna tutto.

Fig. 25.2: La scheda Installati

Fig. 25.3: La scheda Installato
La scheda *Non installati*

La scheda Non installati elenca tutti i plugin disponibili che non sono installati. Puoi usare il pulsante Installa Plugin per implementare un plugin in QGIS.

![Screen Shot of QGIS Plugins Not Installed Tab](image)

Fig. 25.4: La scheda Non installato

**Le schede Aggiornabile e Nuovo**

Le schede Aggiornabile e Nuovo sono abilitate quando nuovi plugin vengono aggiunti al repository oppure viene rilasciata una nuova versione di un plugin installato. Se hai attivato Mostra anche plugins sperimentali nel menu Impostazioni, anche questi saranno visualizzati nella lista offrendo l’opportunità di testare in anticipo gli strumenti in arrivo.

L’installazione può essere effettuata con i pulsanti Installa plugin, Aggiorna plugin o Aggiorna tutti.
La scheda Non valido

La scheda **Non validi** elenca tutti i plugins che per qualche ragione non sono attualmente funzionanti (errori nei collegamenti, errori durante il caricamento, funzioni incompatibili con la versione di QGIS attiva…). Puoi provare con il pulsante **Reinstalla Plugin** per correggere un plugin non valido, ma la maggior parte delle volte la correzione sarà altrove (si potrebbe dover installare alcune librerie, cercare un altro plugin compatibile o provare a rimuovere le cause del mancato funzionamento).
La scheda Installa da ZIP

La scheda Installa da ZIP fornisce un widget per la scelta dei file da importare come plugin in formato zippato, ad esempio i plugin scaricati direttamente dal loro repository.

Fig. 25.7: La scheda Installa da ZIP

25.2 Uso dei plugin di base di QGIS

25.2.1 Plugin DB Manager

Il plugin DB Manager rappresenta lo strumento principale per integrare e gestire i formati di database spaziali supportati da QGIS (PostGIS, SpatiaLite, GeoPackage, Oracle Spatial, Layer Virtuali) in un’unica interfaccia utente.

Il plugin DB Manager fornisce diverse funzionalità. Puoi trascinare i layer dal Browser di QGIS nel DB Manager, ed esso importerà il tuo layer nel tuo database spaziale. Puoi trascinare e rilasciare le tabelle tra i database spaziali e queste verranno importate.
Il menu Database ti permette di connetterti a un database esistente, di avviare la finestra SQL e di uscire dal plugin DB Manager. Una volta che sei connesso ad un database esistente, appariranno i menù Schema (rilevante per i DBMS, come PostGIS / PostgreSQL) e Tabella.

Il menu Schema include strumenti per creare e eliminare (solo se vuoti) schemi e, se la topologia è disponibile (ad esempio con PostGIS topology), per avviare un TopoViewer.

Il menù :menuselection: Tabella ti permette di creare e modificare tabelle e di cancellare tabelle e viste. È anche possibile svuotare tabelle e spostare tabelle tra schemi. Puoi Run Vacuum Analyze per la tabella selezionata. Vacuum recupera lo spazio e lo rende disponibile per il riutilizzo, e analyze aggiorna le statistiche che sono usate per determinare il modo più efficiente di eseguire una query. Change Logging… ti permette di aggiungere il supporto per la registrazione delle modifiche ad una tabella. Infine, puoi eseguire Importa Layer/File… e Esporta su File….

La finestra Sorgenti dati elenca tutti i database esistenti supportati da QGIS. Con un doppio clic, puoi connetterti al database. Con il tasto destro del mouse, puoi rinominare e cancellare schemi e tabelle esistenti. Le tabelle possono anche essere aggiunte a QGIS con il menù contestuale.

Se connesso a un database, la finestra principale del DB Manager offre quattro schede. La scheda Informazioni fornisce informazioni sulla tabella e la sua geometria, così come su campi, vincoli e indici esistenti. Permette di creare un indice spasiale sulla tabella selezionata. La scheda Tabella mostra la tabella, e la scheda Anteprima visualizza le geometrie come anteprima. Quando si apre una Finestra SQL, questa viene inserita in una nuova scheda.

Fig. 25.8: La finestra di dialogo DB Manager
Lavorare con la Finestra SQL

Puoi usare il DB Manager per eseguire query SQL sul tuo database spaziale. Le query possono essere salvate e caricate, e li il Costruttore di interrogazioni SQL ti aiuterà a formulare le tue query. Puoi anche visualizzare l'output spaziale selezionando Carica come nuovo layer e specificando Colonna(e) con valori univoci (ID), Colonna geometria e Nome del layer (prefisso). É possibile evidenziare una parte dell'SQL per eseguire solo quella parte quando si preme Ctrl+R o si clicca il pulsante Esegui.

Il pulsante Storico delle Interrogazioni memorizza le ultime 20 interrogazioni di ogni database e provider.

Un doppio clic su una voce aggiunge la stringa alla finestra SQL.

![Fig. 25.9: Eseguire SQL nella finestra di dialogo SQL DB Manager](image)

Nota: La finestra SQL può anche essere utilizzata per creare Layer Virtuali. In questo caso, invece di selezionare un database, seleziona QGIS Layer sotto Layer Virtuali prima di aprire la finestra SQL. Per istruzioni sulla sintassi SQL da utilizzare vedi Creazione di layer virtuali.

25.2. Uso dei plugin di base di QGIS
25.2.2 Plugin Controllo Geometria

Controllo Geometrie è un potente plugin di base per controllare e correggere la validità della geometria di un layer. È disponibile dal menu Vettore (Controllo Geometrie…).

Configurare i controlli

La finestra di dialogo Controllo Geometrie mostra diverse impostazioni raggruppate nella prima scheda (Impostazioni):

- **Vettori in ingresso**: per selezionare il layer da controllare. Una casella di controllo Solo gli elementi selezionati può essere utilizzata per limitare i controlli alle geometrie degli elementi selezionati.
- **Tipi di geometria consentiti** dà la possibilità di limitare la tipologia di geometria dei layer di input a:
  - Punto
  - Multipunto
  - Linea
  - Multilinea
  - Poligono
  - Multipoligono
- **Validità geometria**. A seconda della tipologia di geometria puoi scegliere tra:
  - Auto intersezioni
  - Nodi duplicati
  - Auto contatti
  - Poligono con meno di 3 nodi.
- **Proprietà geometria**. A seconda dei tipi di geometria, sono disponibili diverse opzioni:
  - Poligoni e i multipoligoni non possono contenere buchi
  - Oggetti multi parte devono essere costituiti da più di una parte
  - Le linee non devono avere nodi sospesi
- **Condizioni geometriche**. Ti permette di aggiungere alcune condizioni per convalidare le geometrie:
  - Lunghezza minima del segmento (in unità della mappa)
  - Angolo minimo tra i segmenti (in gradi)
  - Area minima del poligono (in unità della mappa al quadrato)
  - Nessun frammento di poligono con una Massima sottigliezza e una Massima area (unità di mappa al quadrato)
- **Controlli topologici**. A seconda dei tipi di geometria, sono disponibili molte opzioni diverse:
  - Controllo dei duplicati
  - Controllo degli elementi all’interno di altri elementi
  - Controllo di sovrapposizioni inferiori a
– **Controllo di vuoti più piccoli di**

– **I punti devono essere coperti da linee**

– **I punti devono stare esattamente dentro un poligono**

– **Le linee non devono intersecare altre linee**

– **Le linee non devono intersecarsi con elementi del layer**

– **I poligoni devono seguire i confini del layer**

*• Tolerance. You can define the tolerance of the check in map layer units.*

*• Vettori in uscita dà la possibilità di scegliere:*

– **Modifica layer in ingresso**

– **Crea nuovi layer**

Quando sei soddisfatto con la configurazione, puoi fare clic sul pulsante **Esegui**.
Il Plugin Controllo Geometria può trovare i seguenti errori:

- Auto intersezioni: un poligono con un’autointersezione
- Nodi duplicati: due nodi duplicati in un segmento
- Buchi: buco in un poligono
- Lunghezza minima del segmento: una lunghezza del segmento inferiore a una soglia
- Angolo minimo fra segmenti: due segmenti con un angolo inferiore a una soglia
- Area minima del poligono: area del poligono inferiore a una soglia
• Poligono sottile: questo errore proviene da un poligono molto piccolo (con piccola area) con un grande perimetro
• Geometria duplicata
• Geometria dentro geometria
• Sovrapposizioni: sovrapposizione di poligoni
• Gaps: spazi vuoti tra i poligoni

La figura seguente mostra i diversi controlli effettuati dal plugin.

![Image of checks supported by the plugin](image)

**Fig. 25.11: Some checks supported by the plugin**

**Analisi dei risultati**

I risultati vengono visualizzati nella seconda scheda *(Risultato)* e come un layer panoramico degli errori nell'area di visualizzazione mappa (il cui nome ha il prefisso di default `verificato`). Una tabella elenca il *Risultato controllo geometrie* con un errore per riga e colonne contenenti: il nome del layer, un ID, il tipo di errore, poi le coordinate dell'errore, un valore (a seconda del tipo di errore) e infine la colonna di risoluzione che indica la risoluzione dell'errore. In fondo a questa tabella, puoi fare *Esporta* l'errore in diversi formati di file. Puoi anche avere un contatore con il numero di errori totali e degli errori corretti.

Puoi selezionare una riga per vedere la localizzazione dell'errore. Puoi cambiare questo comportamento selezionando un'altra azione tra ☑ Errore (default), ☑ Elemento, ☑ Non spostare, e ☑ **Evidenzia il contorno degli elementi selezionati**.

Sotto l'azione di zoom quando si clicca sulla riga della tabella, puoi:

- ☑ **Mostra gli elementi selezionati nella tabella attributi**
Ripara gli errori selezionati utilizzando la risoluzione predefinita

Ripara gli errori selezionati utilizzando la risoluzione predefinita Vedrai una finestra per scegliere il metodo di risoluzione tra cui:

- Fondi con il poligono adiacente avente il bordo condiviso più lungo
- Unisci con il poligono adiacente con l'area più grande
- Unire con un poligono adiacente con un valore di attributo identico, se presente, o lasciare così com'è
- Elimina elemento
- Nessuna azione

Impostazioni risoluzione errori ti permette di cambiare il metodo di risoluzione predefinito a seconda del tipo di errore

Suggerimento: Correzione errori multipli

Puoi correggere errori multipli selezionando più di una riga nella tabella con l'azione CTRL + click.

Infine, puoi scegliere quale Attributo usare quando si fondono elementi in base al valore dell'attributo.

25.2.3 Client Catalogo MetaSearch

Introduzione

MetaSearch è un plugin di QGIS per interfacciarsi con i servizi di catalogazione metadati, supporto standard del Catalogue Service for the Web (CSW) dell'OGC.

MetaSearch offre un approccio semplice ed intuitivo con un'interfaccia user-friendly per effettuare ricerche in cataloghi di metadati all'interno di QGIS.

Fig. 25.12: Ricerche e risultati di Servizi in MetaSearch
Lavorare con i cataloghi dei metadati in QGIS

MetaSearch è incluso di default in QGIS, con tutte le sue componenti, e può essere abilitato da QGIS Plugin Manager.

**CSW (Catalog Service for the Web)**

**CSW (Catalog Service for the Web)** è una specifica **OGC (Open Geospatial Consortium)**, che definisce un’interfaccia comune per scoprire, esplorare ed interrogare metadati associati ai dati, ai servizi e ad altre possibili risorse.

**Avvio**

Per avviare MetaSearch, fai click sull’icona oppure seleziona il menù **Web ➜ MetaSearch** nel menù principale di QGIS. Apparirà la finestra di dialogo MetaSearch. La GUI principale è composta da tre schede: **Servizi**, **Cerca** e **Impostazioni**.
Gestire i Servizi di Catalogo

La scheda *Servizi* permette all'utente di gestire tutti i servizi di catalogo disponibili. MetaSearch fornisce una lista predefinita di servizi di catalogo, che può essere aggiunta premendo il pulsante *Aggiungi Servizi Predefiniti*.

Per trovare tutte le voci dei Servizi di Catalogo presenti nell'elenco, fai clic sulla casella di selezione a discesa.

Per aggiungere una nuova iscrizione al Servizio di Catalogo:

1. Fai clic sul pulsante *Nuovo*…
2. Inserisci un *Nome* per il servizio, così come il *URL* (endpoint). Si noti che è richiesto solo l'URL di base (non un URL GetCapabilities completo).
3. Se il CSW richiede l'autenticazione, inserire le credenziali appropriate *Nome utente e Password*.

4. Fai clic su *OK* per aggiungere il servizio all'elenco delle registrazioni.

Per modificare una voce esistente del Servizio di Catalogo:

1. Seleziona la voce che vuoi modificare
2. Fai clic sul pulsante *Modifica…*
3. E modifica i valori *Nome o URL*.
4. Fai clic su *OK*.

Per cancellare un servizio di catalogazione esistente, scegilo e premi il pulsante *Elimina…* Ti verrà richiesta ulteriore conferma alla cancellazione.

MetaSearch permette di caricare e salvare le connessioni in un file XML. Questo è utile quando hai bisogno di condividere le impostazioni tra applicazioni. Qui sotto c’è un esempio del formato del file XML.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<qgsCSWConnections version="1.0">
 <csw name="Data.gov CSW" url="https://catalog.data.gov/csw-all"/>
 <csw name="Geonorge - National CSW service for Norway" url="https://www.geonorge.no/geonetwork/srv/eng/csw"/>
 <csw name="Geoportale Nazionale - Servizio di ricerca Italiano" url="http://www.pcn.minambiente.it/geoportal/csw"/>
 <csw name="LINZ Data Service" url="http://data.linz.govt.nz/feeds/csw"/>
 <csw name="Nazionea Georegister (Nederland)" url="http://www.nationaalgeoregister.nl/geonetwork/srv/eng/csw"/>
 <csw name="RNDT - Repertorio Nazionale dei Dati Territoriali - Servizio di ricerca" url="http://www.rndt.gov.it/RNDT/CSW"/>
</qgsCSWConnections>
```

Per caricare un elenco di connessioni:

1. Fai clic sul pulsante *Carica…* Una nuova finestra verrà mostrata.
2. Fai clic sul pulsante *Sfoglia* e naviga fino al file XML delle voci che vuoi caricare.
3. Fai clic su *Apri*. Verrà visualizzato l'elenco delle voci.
4. Seleziona le voci che vuoi aggiungere dalla lista e fai clic su *Carica*.

Fai clic sul pulsante *Informazioni sul servizio* per visualizzare le informazioni sul servizio di catalogo selezionato, come l'identificazione del servizio, il fornitore del servizio e le informazioni di contatto. Se vuoi visualizzare la risposta originale XML, fai clic sul pulsante *Risposta GetCapabilities*. Si apre una finestra separata che mostra le Capabilities XML.
La scheda Cerca permette all'utente di cercare servizi di catalogazione per dati e servizi, impostare i parametri di ricerca e visualizzare i risultati.

Sono disponibili i seguenti parametri di ricerca:

- **Parole chiave**: ricerca a testo libero sulle parole chiave;
- **Da**: il servizio di catalogazione su cui effettuare le interrogazioni;
- **Riquadro di delimitazione**: l'area spaziale di interesse da filtrare, definita da $X_{max}$, $X_{min}$, $Y_{max}$ e $Y_{min}$. Fai clic su **Imposta globalmente** per fare una ricerca globale, fai clic su **Estensione della mappa** per fare una ricerca nell'area visibile, o inserisci i valori manualmente.

Facendo clic sul pulsante Cerca si effettua una ricerca nel catalogo dei metadati selezionato. I risultati della ricerca sono visualizzati in un elenco e possono essere ordinati cliccando sull'intestazione della colonna. Puoi navigare tra i risultati della ricerca con i pulsanti direzionali sotto i risultati della ricerca.

Seleziona un risultato e:
• Fai clic sul pulsante **Mostra Risultati della Ricerca come XML** per aprire una finestra con la risposta del servizio in formato XML originale.

• Se il record di metadati ha un riquadro di delimitazione associato, una traccia del riquadro di delimitazione verrà visualizzata sulla mappa.

• Fai doppio clic sul record per visualizzare i metadati con tutti i link di accesso associati. Cliccando su un link si aprì il link nel browser web dell'utente.

• Se il record è un servizio web supportato (WMS/WMTS, WFS, WCS, ArcGIS Map Service, ArcGIS Feature Service, ecc.), il pulsante **Aggiungi Dati** sarà attivato. Quando si clicca questo pulsante, MetaSearch verificherà se questo è un OWS valido. Il servizio verrà quindi aggiunto all'appropriata lista di connessione di QGIS, e apparirà la relativa finestra di dialogo di connessione.

![Image of MetaSearch with Record Metadata](image)

**Fig. 25.15: Visualizzazione record Metadati**
Puoi configurare al meglio MetaSearch con le seguenti Impostazioni:

- **Server Timeout**: quando si cercano cataloghi di metadati, il numero di secondi per bloccare il tentativo di connessione. Il valore predefinito è 10.

- **Impaginazione dei risultati**: quando si cercano cataloghi di metadati, il numero di risultati da mostrare per pagina. Il valore predefinito è 10.
Errori Server CSW

In alcuni casi, il CSW funzionerà in un browser web, ma non in MetaSearch. Questo può essere dovuto alla configurazione/impostazione del server CSW. I fornitori di server CSW dovrebbero accertare che gli URL siano coerenti e aggiornati nella loro configurazione (questo è comune negli scenari di reindirizzamento HTTP -> HTTPS). Si prega di consultare la voce pyCsw FAQ per una spiegazione più approfondita del problema e della correzione. Sebbene la voce delle FAQ sia specifica per pyCsw, può anche essere applicata in generale ad altri server CSW.

25.2.4 Plugin Offline Editing

In progetti di acquisizione dati è situazione comune trovarsi a lavorare sul campo con computer portatili e palmari: idatiintalmodoacquisitivanno, poi, sincronizzati con la banca dati principale, (ad esempio un database PostGIS). Se più persone lavorano simultaneamente sullo stesso set di dati, risulta difficile aggiornare la banca dati principale manualmente, anche se le persone non stanno aggiornando gli stessi elementi.

Il plugin Editing Offline automatizza la sincronizzazione copiando il contenuto di un sorgente dati (solitamente PostGIS o WFS-T) in un database SpatiaLite o GeoPackage e memorizzando le modifiche offline in tabelle dedicate. Dopo essersi connessi di nuovo alla rete, è possibile applicare le modifiche offline al dataset principale.

Per usare il plugin:

1. Apri un progetto con alcuni layer vettoriali (ad esempio da PostGIS o da un WFS-T).
2. Supponendo che tu abbia già abilitato il plugin (vedi Plugin di Base e Plugin Esterni) vai su Database ➤ Editing Offline ➤ Converti a Progetto Offline…. Si apre la finestra di dialogo “Crea Progetto Offline”.
6. Puoi selezionare la casella di controllo Sincronizza solo gli elementi selezionati se è presente una selezione che ti permette di salvare e lavorare solo su un sottoinsieme. Può essere prezioso nel caso di layer di grandi dimensioni.

Questo è tutto!
7. Salva il tuo progetto e lavoraci su.
8. Modificare layer in modalità non in linea.
9. Dopo essersi nuovamente connessi, carica le modifiche utilizzando Database ➤ Editing Offline ➤ Sincronizza.

25.2. Uso dei plugin di base di QGIS
Fig. 25.17: Crea Progetto Offline
25.2.5 Plugin Validatore topologico

La topologia tratta le relazioni spaziali tra punti, linee e poligoni, che rappresentano le geometrie di una regione geografica. Con il Plugin Validatore Topologico puoi verificare se i tuoi vettori rispettano le regole topologiche. Queste regole verificano se le relazioni spaziale delle geometrie di un vettore sono “Uguali”, “Contiene”, “Sovrapponi”, “Sovraposta”, “Incrocio”, o se i vettori sono “Disgiunti”, “Intersecano”, Sovrastano” o “Toccano” altri vettori. Dipende dalle tue richieste su quali regole di topologia applicherai per i vettori (ad esempio, normalmente non accetterai superamento in vettori di linee se non nel caso di raffigurazione di strade senza uscita).

QGIS ha integrata una funzione di editing topologico molto utile per la creazione di nuove geometrie senza errori. Ma gli errori di dati esistenti e gli errori degli utenti sono difficili da trovare. Questo plugin ti aiuta a trovare tali errori attraverso un elenco di regole topologiche.

E’ molto semplice creare condizioni topologiche con il Plugin Validatore Topologico.

Sui vettori di punti puoi utilizzare le seguenti condizioni:

- **deve essere coperto da**: puoi scegliere un vettore dal progetto. I punti che non sono coperti da un dato vettore vengono messi nel campo “errore”.
- **deve essere coperto dai punti terminali**: puoi scegliere vettore di linee dal progetto.
- **deve essere dentro**: puoi scegliere un vettore poligonale dal progetto. I punti devono essere all’interno di un poligono. In caso contrario, segnala “Errore” per il punto.
- **non deve avere duplicati**: ogni volta che un punto è rappresentato due o più volte, apparirà nel campo “Errore”.
- **non deve avere geometrie non valide**: Verifica se le geometrie sono valide.
- **non deve avere geometrie multi-part**: Tutti i punti multipli sono segnalati come “Errore”.

Sui vettori di linee hai a disposizione le seguenti regole topologiche:

- **End points must be covered by**: Here you can select a point layer from your project.
• **non deve avere nodi sospesi**: individuerà le eccedenze nel vettore di linee.

• **non deve avere duplicati**: ogni volta che una linea è rappresentata due o più volte, apparirà nel campo “Errore”.

• **non deve avere geometrie non valide**: Verifica se le geometrie sono valide.

• **non deve avere geometrie multi-part**: alcune volte, una geometria è in realtà un insieme di geometrie semplici (single-parte). Tale geometria è chiamato geometria multi-part. Se contiene anche un solo elemento di geometria multi-part, noi lo chiamiamo punti multipli, linee-multiple o poligoni multipli. Tutte le linee multiple sono segnalate come “Errore”.

• **non deve avere pseudo**: il punto terminale di una linea dovrebbe essere collegato ai punti finali di altre due geometrie. Se il punto terminale è collegato al punto terminale di una sola altra geometria, il punto terminale è chiamato un nodo pseudo.

Per i vettori poligono hai a disposizione le seguenti regole:

• **deve contenere**: il vettore poligono deve contenere almeno un punto della geometria dal secondo vettore.

• **non deve avere duplicati**: i poligoni dello stesso vettore non devono avere geometrie identiche. Ogni volta che un poligono è rappresentato due o più volte apparirà nel campo “Errore”.

• **non deve avere vuoti**: poligoni adiacenti non devono formare spazi vuoti tra di loro. I confini amministrativi potrebbero essere citati come esempio (i poligoni stato degli Stati Uniti non hanno spazi vuoti tra di loro …).

• **non deve avere geometrie non valide**: verifica se le geometrie sono validi. Alcune delle regole che definiscono una geometria validi sono:
  
  – I poligoni anello devono essere chiusi.
  – Anelli che definiscono i buchi devono essere all’interno di anelli che definiscono i confini esterni.
  – Gli anelli non possono auto-intersecare (non si possono né toccare né incrociare l’un l’altro).
  – Gli anelli non tocchino altri anelli, tranne che in un punto.


• **non deve sovrapporsi**: poligoni adiacenti non devono condividere un’area comune.

• **non deve sovrapporsi con**: poligoni adiacenti da un vettore non devono condividere un’area comune con poligoni di un altro vettore.

Di seguito è riportato l’elenco dei plugin di base forniti con QGIS. Non sono necessariamente abilitati per impostazione predefinita.
25.3 Console python di QGIS

Come vedrai più avanti in questo capitolo, QGIS è stato progettato con un’architettura a plugin. I plugin possono essere scritti in Python, una lingua molto famosa nel mondo geospaziale.

QGIS ha un’API Python (vedi PyQGIS Developer Cookbook per alcuni esempi di codice) per permettere all’utente di interagire con i suoi oggetti (layer, elementi o interfacce). QGIS ha anche una console Python.

La Console QGIS Python è una shell interattiva per l’esecuzione dei comandi python. Ha anche un editor di file python che permette di modificare e salvare i tuoi script python. Sia la console che l’editor sono basati sul package PyQScintilla2. Per aprire la console vai in Plugins ➤ Console Python (Ctrl+Alt+P).

25.3.1 La Console Interattiva

La console interattiva è composta da una barra degli strumenti, un’area di input e una di output.

Barra degli Strumenti

La barra degli strumenti comprende i seguenti strumenti:

- ✂️ Pulisci Console: per cancellare l’area di output;
- 📘 Esegui Commando: disponibile nell’area di input; è come premere Enter;
- ⚙️ Mostra Editor: attiva la modalità L’”Editor di Codice”;
- 📄 Opzioni…: apre un finestra di dialogo per configurare le proprietà della console (vedi Impostazioni Console Python);
- 🎨 Aiuto…: visualizza la documentazione corrente.

<table>
<thead>
<tr>
<th>Icona</th>
<th>Plugin</th>
<th>Descrizione</th>
<th>Riferimento al manuale</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="DB Manager" /></td>
<td>DB Manager</td>
<td>Gestire i DB all’interno di QGIS</td>
<td>Plugin DB Manager</td>
</tr>
<tr>
<td><img src="image" alt="Controllo Geometria" /></td>
<td>Controllo Geometria</td>
<td>Verifica e elimina errori in geometrie vettoriali</td>
<td>Plugin Controllo Geometria</td>
</tr>
<tr>
<td><img src="image" alt="Strumenti GPS" /></td>
<td>Strumenti GPS</td>
<td>Strumenti per caricare e importare dati GPS</td>
<td>Plugin GPS</td>
</tr>
<tr>
<td><img src="image" alt="GRASS" /></td>
<td>GRASS</td>
<td>Attiva i potenti strumenti di GRASS</td>
<td>Integrazione con GRASS GIS</td>
</tr>
<tr>
<td><img src="image" alt="Client Catalogo MetaSearch" /></td>
<td>Client Catalogo MetaSearch</td>
<td>Interagisce con Catalog Service for the Web (CSW)</td>
<td>Client Catalogo MetaSearch</td>
</tr>
<tr>
<td><img src="image" alt="Offline Editing" /></td>
<td>Offline Editing</td>
<td>Consente l’editing offline e la sincronizzazione con il database</td>
<td>Plugin Offline Editing</td>
</tr>
<tr>
<td><img src="image" alt="Processing" /></td>
<td>Processing</td>
<td>Ambiente per l’elaborazione di dati spaziali</td>
<td>ambiente Processing di QGIS</td>
</tr>
<tr>
<td><img src="image" alt="Verifica topologica su vettori" /></td>
<td>Verifica topologica su vettori</td>
<td>Trova errori topologici nei layer vettoriali</td>
<td>Plugin Validatore topologico</td>
</tr>
</tbody>
</table>
Console

Le funzionalità principali della console sono:

- Completamento del codice, evidenziazione della sintassi e suggerimenti per le seguenti API:
  - Python
  - PyQGIS
  - PyQt5
  - QScintilla2
  - osgeo-gdal-ogr
- Ctrl+Alt+Space per visualizzare l’elenco di completamento automatico se abilitato nel *Impostazioni Console Python*;
- Eseguire frammenti di codice dall’area di input digitando e premendo *Enter o Esegui Comando*;
- Eseguire frammenti di codice dall’area di output usando *Enter Selected* dal menu contestuale o premendo Ctrl+E;
- Scorrere la cronologia dei comandi dall’area di input usando i tasti freccia Up e Down ed eseguire il comando che vuoi;
- Ctrl+Shift+Space per visualizzare la cronologia dei comandi: facendo doppio clic su una riga il comando verrà eseguito. La finestra di dialogo *Storico Comandi* può anche essere richiamata dal menu contestuale dell’area di input;
- Salva e cancella la cronologia dei comandi. La cronologia sarà salvata nel file *console_history.txt* nella cartella attiva *user profile*;
- Aprire QGIS C++ API documentazione digitando _api;
- Aprire QGIS Python API documentazione digitando _pyqgis.
- Aprire PyQGIS Cookbook digitando _cookbook.

**Suggerimento**: Riutilizzare comandi effettuati dal pannello di output

Puoi eseguire frammenti di codice dal pannello di output selezionando del testo e premendo Ctrl+E. Non importa se il testo selezionato contiene il prompt dell’interprete (>>>).
25.3.2 L’ Editor di Codice

Usa il pulsante [Mostra Editor] per abilitare il widget dell’editor. Permette di modificare e salvare i file Python e offre funzionalità avanzate per gestire il tuo codice (commentare e scommentare il codice, controllare la sintassi, condividere il codice tramite codepad.org e molto altro). Le caratteristiche principali sono:

• Completamento del codice, evidenziazione della sintassi e suggerimenti per le seguenti API:
  – Python
  – PyQGIS
  – PyQt5
  – QScintilla2
  – osgeo-gdal-ogr

• Ctrl+Space per visualizzare la lista di completamento automatico.

• Condividere frammenti di codice su codepad.org.

• Ctrl+4 Controllo della sintassi.

• Barra di ricerca (apre con la scorciatoia predefinita dell’ambiente desktop, di solito Ctrl+F):
  – Usa la scorciatoia predefinita dell’ambiente desktop per trovare il successivo/precedente (Ctrl+G e Shift+Ctrl+G);
  – Trova automaticamente la prima corrispondenza mentre si digita nella casella di ricerca;
  – Trova automaticamente la prima corrispondenza mentre si digita nella casella di ricerca;
  – Premendo Esc si chiude la barra di ricerca.

• Ispettore Oggetto: un visualizzatore di classi e funzioni;

• Vai alla definizione di un oggetto con un clic del mouse (da Ispettore Oggetto);

• Esegui frammenti di codice con il comando [Esegui selezionate] nel menu contestuale;

• Esegui l’intero script con il comando [Esegui Script] (questo crea un file compilato in byte con estensione .pyc).

Nota: L’esecuzione parziale o totale di uno script dal Editor del Codice produce il risultato nell’area di output della console.
Fig. 25.20: L’editor Console Python

**Suggerimento: Salvare le opzioni**

Per salvare lo stato dei widget della console devi chiudere la console Python dal pulsante di chiusura. Questo permette di salvare la geometria da ripristinare al prossimo avvio.
Aiuto e supporto

26.1 Le Mailing list

QGIS è in continuo sviluppo e, come tale, non funzionerà sempre come ti aspetti. Il miglior modo di ottenere aiuto è unirsi alla mailing list di qgis-users. Le tue domande raggiungeranno una audience più ampia e le risposte ottenute saranno anche a beneficio di altri.

26.1.1 QGIS Users

Questa mailing list è usata per discussioni su QGIS in generale, così come per domande specifiche riguardanti la sua installazione e il suo uso. Puoi iscriverti alla mailing list qgis-users visitando il seguente URL: https://lists.osgeo.org/mailman/listinfo/qgis-user

26.1.2 QGIS Developers

Se sei uno sviluppatore che affronta problemi di natura più tecnica, potresti volerti unire alla mailing list di qgis-developer. Questa lista è anche un luogo in cui le persone possono intervenire e raccogliere e discutere problemi di QGIS relativi a UX (User Experience)/usabilità. È qui: http://lists.osgeo.org/mailman/listinfo/qgis-developer

26.1.3 QGIS Community Team

Questa mailing list si occupa di argomenti come la documentazione, l’aiuto contestuale, la guida utente, i siti web e i lavori di traduzione. Se vuoi lavorare anche sulla guida utente, questa mailing list è un buon punto di partenza per fare le tue domande. Puoi sottoscriverla all’URL: http://lists.osgeo.org/mailman/listinfo/qgis-community-team
26.1.4 QGIS Translations

Questa lista si occupa delle traduzioni. Se vuoi lavorare alla traduzione del sito web, dei manuali o dell’interfaccia grafica (GUI) trovi in questa lista un buon punto di partenza per le tue domande. Puoi iscriverti tramite l’URL http://lists.osgeo.org/mailman/listinfo/qgis-tr

26.1.5 QGIS Project Steering Committee (PSC)

Questa lista viene utilizzata per discutere le questioni del Comitato Direttivo relative alla gestione e alla direzione generale di QGIS. Puoi iscriverti a questa lista su: http://lists.osgeo.org/mailman/listinfo/qgis-psc

26.1.6 QGIS User groups

Al fine di promuovere localmente QGIS e contribuire al suo sviluppo, alcune comunità QGIS sono organizzate in Gruppi di Utenti QGIS. Questi gruppi sono luoghi in cui discutere di argomenti locali, organizzare riunioni di utenti regionali o nazionali, organizzare sponsorizzazioni … L’elenco dei gruppi di utenti attuali è disponibile su http://qgis.org/en/site/forusers/usergroups.htm

Sei invitato ad iscriverti a una delle liste. Ricordati di contribuire alla lista rispondendo alle domande e condividendo le tue esperienze.

26.2 IRC

Siamo anche presenti su IRC - vieni a trovarci unendoti al canale #qgis su irc.freenode.net. Per favore aspetta una risposta alla tua domanda, dato che molte persone sul canale stanno facendo altre cose e potrebbe volerci un po’ prima che notino la tua domanda. Se ti sei perso una discussione su IRC, non è un problema! Noi registriamo tutte le discussioni, quindi puoi recuperare facilmente. Basta andare su http://irclogs.geoapt.com/qgis/ e leggere i log di IRC.

26.3 Supporto Commerciale

È disponibile anche il supporto commerciale per QGIS. Consulta il sito web https://qgis.org/en/site/forusers/commercial_support.html per maggiori informazioni.

26.4 BugTracker

Mentre la mailing list qgis-users è utile per domande generali del tipo «Come faccio a fare XYZ in QGIS?», potresti voler segnalare dei bug in QGIS. Puoi inviare segnalazioni di bug tramite QGIS bug tracker.

Ricordati che un bug da te segnalato potrebbe ricevere una priorità diversa da quella che ti aspetteresti (dipende della serietà del problema). Alcuni errori richiedono un significativo sforzo allo sviluppatore e non sempre ci sono abbastanza risorse umane disponibili.

Anche le proposte di nuove funzionalità possono essere inviate utilizzando lo stesso sistema di ticket utilizzato per i bug. Ricordati di selezionare il tipo Feature request.

Se hai trovato un bug e lhai risolto da solo, puoi inviare una Pull Request su Github QGIS Project.

Leggi Bugs, Features and Issues e submit_patch for maggiori dettagli.
26.5 Blog

La comunità QGIS gestisce anche un weblog all’indirizzo https://plugins.qgis.org/planet/, che ha alcuni articoli interessanti per utenti e sviluppatori. Esistono molti altri blog QGIS, e siete invitati a contribuire con il vostro blog QGIS!

26.6 Plugin

Il sito https://plugins.qgis.org è il portale web ufficiale dei plugin di QGIS. Qui si trova una lista di tutti i plugin QGIS stabili e sperimentali disponibili tramite il “Official QGIS Plugin Repository”.

26.7 Wiki

Infine, gestiamo un sito Web WIKI all’indirizzo http://hub.qgis.org/projects/quantum-gis/wiki dove puoi trovare una varietà di informazioni utili relative allo sviluppo di QGIS, piani di rilascio, collegamenti a siti di download, messaggi-suggerimenti per la traduzione e altro. Dai un’occhiata, ci sono alcune chicche dentro!
QGIS è un progetto open source sviluppato da un team di volontari e organizzazioni dedicate. Ci sforziamo di essere una comunità accogliente per persone di ogni razza, credo, genere e ceto sociale. In qualsiasi momento, puoi get involved.

### 27.1 Autori

Di seguito sono elencate le persone che dedicano il loro tempo e le loro energie a scrivere, rivedere e aggiornare l'intera documentazione di QGIS.

<table>
<thead>
<tr>
<th>Tim Sutton</th>
<th>Yves Jacolin</th>
<th>Jacob Lanstorp</th>
<th>Gary E. Sherman</th>
<th>Richard Duivenvoorde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tara Athan</td>
<td>Anita Graser</td>
<td>Arnaud Morvan</td>
<td>Gavin Macaulay</td>
<td>Luca Casagrande</td>
</tr>
<tr>
<td>K. Koy</td>
<td>Hugo Mercier</td>
<td>Akbar Gumbira</td>
<td>Marie Silvestre</td>
<td>Jürgen E. Fischer</td>
</tr>
<tr>
<td>Fran Raga</td>
<td>Eric Goddard</td>
<td>Martin Dobias</td>
<td>Diethard Jansen</td>
<td>Saber Razmjooei</td>
</tr>
<tr>
<td>Ko Nagase</td>
<td>Nyall Dawson</td>
<td>Matthias Kuhn</td>
<td>Andreas Neumann</td>
<td>Harrissou Sant-anna</td>
</tr>
<tr>
<td>Manel Clos</td>
<td>David Willis</td>
<td>Larissa Junek</td>
<td>Paul Blottière</td>
<td>Sebastian Dietrich</td>
</tr>
<tr>
<td>Chris Mayo</td>
<td>Stephan Holl</td>
<td>Magnus Homann</td>
<td>Bernhard Ströhl</td>
<td>Alessandro Pasotti</td>
</tr>
<tr>
<td>N. Horning</td>
<td>Radim Blazek</td>
<td>Joshua Arnott</td>
<td>Luca Manganelli</td>
<td>Marco Hugentobler</td>
</tr>
<tr>
<td>Andre Mano</td>
<td>Mie Winstrup</td>
<td>Frank Sokolic</td>
<td>Vincent Picavet</td>
<td>Jean-Roc Morreale</td>
</tr>
<tr>
<td>Andy Allan</td>
<td>Victor Olaya</td>
<td>Tyler Mitchell</td>
<td>René-Luc D'Hont</td>
<td>Marco Bernasocchi</td>
</tr>
<tr>
<td>Ilkka Rime</td>
<td>Werner Macho</td>
<td>Chris Berkhout</td>
<td>Nicholas Duggan</td>
<td>Jonathan Willitts</td>
</tr>
<tr>
<td>David Adler</td>
<td>Lars Luthman</td>
<td>Brendan Morely</td>
<td>Raymond Nijssen</td>
<td>Carson J.Q. Farmer</td>
</tr>
<tr>
<td>Jaka Kranjc</td>
<td>Mezene Worku</td>
<td>Patrick Sunter</td>
<td>Steven Cordwell</td>
<td>Stefan Blumentrath</td>
</tr>
<tr>
<td>Andy Schmid</td>
<td>Vincent Mora</td>
<td>Alexandre Neto</td>
<td>Hien Tran-Quang</td>
<td>Alexandre Busquets</td>
</tr>
<tr>
<td>João Gaspar</td>
<td>Tom Kralidis</td>
<td>Alexander Bruy</td>
<td>Paolo Cavallini</td>
<td>Milo Van der Linden</td>
</tr>
<tr>
<td>Peter Ersts</td>
<td>Ujaval Gandhi</td>
<td>Dominic Keller</td>
<td>Giovanni Manghi</td>
<td>Maximilian Krambach</td>
</tr>
<tr>
<td>Anne Ghisla</td>
<td>Dick Groskamp</td>
<td>Uros Preloznik</td>
<td>Stéphane Brunner</td>
<td>QGIS Korean Translator</td>
</tr>
<tr>
<td>Zoltan Siki</td>
<td>Hávard Tveite</td>
<td>Matteo Ghetta</td>
<td>Salvatore Larosa</td>
<td>Konstantinos Nikolau</td>
</tr>
<tr>
<td>Tom Chadwin</td>
<td>Larry Shaffer</td>
<td>Nathan Woodrow</td>
<td>Martina Savarese</td>
<td>Godofredo Contreras</td>
</tr>
<tr>
<td>Astrid Emde</td>
<td>Luigi Pirelli</td>
<td>Thomas Gratier</td>
<td>Giovanni Allegri</td>
<td>Giordano Pezzola</td>
</tr>
<tr>
<td>Paolo Corti</td>
<td>Tudor Bărăscu</td>
<td>Maning Sambale</td>
<td>Claudia A. Engel</td>
<td>Yoichi Katayama</td>
</tr>
<tr>
<td>Otto Dassau</td>
<td>Denis Rouzaud</td>
<td>Nick Bearman</td>
<td>embolding</td>
<td>ajazepk</td>
</tr>
<tr>
<td>Ramon</td>
<td>Andrei</td>
<td>zstadler</td>
<td>icephale</td>
<td>Rosa Aguilar</td>
</tr>
</tbody>
</table>
27.2 Traduttori

QGIS è un’applicazione multilingue e, come tale, pubblica anche una documentazione tradotta in diverse lingue. Molte altre lingue sono in fase di traduzione e saranno rilasciate non appena raggiungono una percentuale ragionevole di traduzione. Se vuoi aiutare a migliorare una lingua o richiederne una nuova, vedi https://qgis.org/en/site/getinvolved/index.html.

Le traduzioni attuali sono rese possibili grazie a:

<table>
<thead>
<tr>
<th>Lingua</th>
<th>Hanno contribuito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahasa Indonesia</td>
<td>Emir Hartato, I Made Anombawa, Januar V. Simarmata, Muhammad Iqnaul Haq Siregar, Trias Aditya</td>
</tr>
<tr>
<td>Cinese</td>
<td>Carlo van Rijswijk, Dick Groeskamp, Diethard Jansen, Raymond Nijssen, Richard Duivenvoorde, Willem Hoffman</td>
</tr>
<tr>
<td>Olandese</td>
<td>Matti Mäntynen, Kari Mikkonen</td>
</tr>
<tr>
<td>Francese</td>
<td>Arnaud Morvan, Augustin Roche, Didier Vanden Berghe, Dofabien, Etienne Trimaille, Francis Gasc, Harrissou Sant-anna, Jean-Roc Morreale, Jérémy Garniaux, Loïc Buscoz, Lsam, Marc-André Saia, Marie Silvestre, Mathieu Bossaert, Mathieu Lattes, Mayeul Kauffmann, Médéric Ribreux, Mehdi Semchaoui, Michael Douchin, Nicolas Boisteault, Nicolas Rochard, Pascal Obstetar, Robin Prest, Rod Bera, Stéphane Henried, Stéphane Possamai, sylther, Sylvain Badey, Sylvain Maillard, Vincent Picavet, Xavier Tardieu, Yann Leveille-Menez, yoda89</td>
</tr>
<tr>
<td>Galiziano</td>
<td>Xan Vieiro</td>
</tr>
<tr>
<td>Tedesco</td>
<td>Jürgen E. Fischer, Otto Dassau, Stephan Holl, Werner Macho</td>
</tr>
<tr>
<td>Italiano</td>
<td>Alessandro Fanna, Anne Ghisla, Flavio Rigolon, Giuliano Curti, Luca Casagrande, Luca Delucchi, Marco Braida, Matteo Ghetta, Maurizio Napolitano, Michele Beneventi, Michele Ferretti, Roberto Angeletti, Paolo Cavallini, Stefano Campus</td>
</tr>
<tr>
<td>Giapponese</td>
<td>Baba Yoshihiko, Minoru Akagi, Norhiro Yamate, Takayuki Mizutani, Takayuki Nuimura, Yoichi Kayama</td>
</tr>
<tr>
<td>Coreano</td>
<td>OSGeo Korean Chapter</td>
</tr>
<tr>
<td>Polacco</td>
<td>Andrzej Świąder, Borys Jurgiel, Ewelina Krawczak, Jakub Bobrowski, Mateusz Łoskot, Michal Kulachs, Michal Smoczyk, Milena Nowotarska, Radoslaw Pasiok, Robert Szczepanek, Tomasz Paul</td>
</tr>
<tr>
<td>Portoghese</td>
<td>Alexandre Neto, Duarte Carreira, Giovanni Manghi, João Gaspar, Joana Simões, Leandro Infantini, Nelson Silva, Pedro Palheiro, Pedro Pereira, Ricardo Sena</td>
</tr>
<tr>
<td>Portoghese (Brasile)</td>
<td>Arthur Nanni, Felipe Sodré Barros, Leónidas Descovi Filho, Marcelo Soares Souza, Narcélio de Sá Pereira Filho, Sidney Schaberle Goveia</td>
</tr>
<tr>
<td>Rumeno</td>
<td>Alex Bădescu, Bogdan Pacurar, Georgiana Ioanovici, Lonut Losifescu-Enescu, Sorin Călinică, Tudor Bărăscu</td>
</tr>
<tr>
<td>Russo</td>
<td>Alexander Bruy, Artem Popov</td>
</tr>
<tr>
<td>Spagnolo</td>
<td>Carlos Dávila, Diana Galindo, Edwin Amado, Gabriela Awad, Javier César Aldariz, Mayeul Kauffmann, Fran Raga</td>
</tr>
<tr>
<td>Ucraino</td>
<td>Alexander Bruy</td>
</tr>
</tbody>
</table>
Ef‌orts of translation for QGIS 3.16 Long Term Release are provided below.

(last update: 2021-11-16)

<table>
<thead>
<tr>
<th>Number of strings</th>
<th>Number of target languages</th>
<th>Overall Translation ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>32018</td>
<td>58</td>
<td>12.03%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lingua</th>
<th>Translation ratio (%)</th>
<th>Lingua</th>
<th>Translation ratio (%)</th>
<th>Lingua</th>
<th>Translation ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albanian</td>
<td>0.24</td>
<td>Arabic</td>
<td>4.06</td>
<td>Azerbaijani</td>
<td>0.02</td>
</tr>
<tr>
<td>Basque</td>
<td>1.44</td>
<td>Bengali</td>
<td>0.19</td>
<td>Bulgarian</td>
<td>2.61</td>
</tr>
<tr>
<td>Burmese</td>
<td>0.1</td>
<td>Catalan</td>
<td>1.53</td>
<td>Chinese</td>
<td>1.82</td>
</tr>
<tr>
<td>Chinese Traditional</td>
<td>0.69</td>
<td>Croatian</td>
<td>0.12</td>
<td>Czech</td>
<td>6.07</td>
</tr>
<tr>
<td>Danish</td>
<td>0.67</td>
<td>Olandese</td>
<td>100.0</td>
<td>Estonian</td>
<td>1.32</td>
</tr>
<tr>
<td>Finlandese</td>
<td>1.83</td>
<td>Frantese</td>
<td>98.93</td>
<td>Galiziano</td>
<td>0.6</td>
</tr>
<tr>
<td>Georgian</td>
<td>0.11</td>
<td>Tedesco</td>
<td>21.43</td>
<td>Greek</td>
<td>0.38</td>
</tr>
<tr>
<td>Hebrew</td>
<td>0.75</td>
<td>Hindi</td>
<td>0.31</td>
<td>Hungarian</td>
<td>0.99</td>
</tr>
<tr>
<td>Igbo</td>
<td>0.01</td>
<td>Indonesian</td>
<td>2.8</td>
<td>Italian</td>
<td>89.85</td>
</tr>
<tr>
<td>Giapponese</td>
<td>62.97</td>
<td>Kabyle</td>
<td>0.11</td>
<td>Coreano</td>
<td>85.59</td>
</tr>
<tr>
<td>Lao</td>
<td>0.0</td>
<td>Lithuanian</td>
<td>6.13</td>
<td>Macedonian</td>
<td>0.13</td>
</tr>
<tr>
<td>Malay</td>
<td>0.05</td>
<td>Malayalam</td>
<td>0.1</td>
<td>Marathi</td>
<td>0.19</td>
</tr>
<tr>
<td>Mongolian</td>
<td>0.12</td>
<td>N’ko</td>
<td>1.84</td>
<td>Norwegian</td>
<td>3.36</td>
</tr>
<tr>
<td>Norwegian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norwegian Bokmål</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persian</td>
<td>0.48</td>
<td>Polacco</td>
<td>1.87</td>
<td>Portuguese</td>
<td>37.38</td>
</tr>
<tr>
<td>Portuguese (Brazil)</td>
<td>8.59</td>
<td>Rumeno</td>
<td>30.74</td>
<td>Russo</td>
<td>15.1</td>
</tr>
<tr>
<td>Serbian</td>
<td>0.12</td>
<td>Slovak</td>
<td>0.84</td>
<td>Slovenian</td>
<td>3.23</td>
</tr>
<tr>
<td>Spagnolo</td>
<td>92.13</td>
<td>Swedish</td>
<td>1.16</td>
<td>Tagalog</td>
<td>0.1</td>
</tr>
<tr>
<td>Tamil</td>
<td>0.52</td>
<td>Telugu</td>
<td>0.03</td>
<td>Thai</td>
<td>0.12</td>
</tr>
<tr>
<td>Turkish</td>
<td>2.85</td>
<td>Ucraino</td>
<td>2.4</td>
<td>Urdu</td>
<td>0.0</td>
</tr>
<tr>
<td>Vietnamese</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendici

28.1 Appendix A: GNU General Public License

Versione 2, Giugno 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Ognuno ha la possibilità di copiare e distribuire copie letterali di questo documento di licenza, i cambi non sono permessi.

Introduzione

Le licenze della maggior parte dei software sono studiate per toglierti la libertà di condividerli e modificarli. Al contrario, la GNU General Public License ha lo scopo di garantire la libertà di condividere e modificare il software libero - per assicurarti che il software sia libero per tutti i suoi utenti. Questa General Public License si applica alla maggior parte del software della Free Software Foundation e ad ogni altro programma i cui autori si impegnano ad usarla. (Alcuni altri programmi della Free Software Foundation sono invece coperti dalla GNU License General Public License). Potete applicarla anche ai vostri programmi.

Quando parliamo di software libero, ci riferiamo alla libertà, non al prezzo. Le nostre General Public Licenses sono concepite per assicurarti che abbia la libertà di distribuire copie del software libero (e farvi pagare per questo servizio, se lo desiderate), che riceviate il codice sorgente o che possiate ottenerlo se lo volete, che possiate cambiare il software o usarne parti in nuovi programmi liberi; e che sappiate che potete fare queste cose.

Per proteggeri, dobbiamo fare delle restrizioni che vietano a chiunque di negarti questi diritti o di chiederti di rinunciarti. Queste restrizioni si traducono in certe conseguenze per te se distribuisce copie del software, o se lo modifichi.

Per esempio, se distribuisci copie di un tale programma, gratis o a pagamento, devi dare ai destinatari tutti i diritti che hai tu. Devi assicurarti che anche loro ricevano o possano ottenere il codice sorgente. E devi mostrare loro questi termini in modo che conoscano i loro diritti.

Proteggiamo i tuoi diritti in due fasi: (1) il copyright del software, e (2) ti offriamo questa licenza che ti dà il permesso legale di copiare, distribuire e/o modificare il software.

Inoltre, per la protezione di ogni autore e la nostra, vogliamo assicurarci che tutti capiscano che non c’è alcuna garanzia per questo software libero. Se il software viene modificato da qualcun altro e trasmesso, vogliamo che chi lo riceve sappia che quello che ha non è l’originale, in modo che eventuali problemi introdotti da altri non si riflettano sulla reputazione degli autori originali.
Infine, qualsiasi programma libero è costantemente minacciato dai brevetti software. Vogliamo evitare il pericolo che i ridistributori di un programma libero ottengano individualmente licenze di brevetto, rendendo di fatto il programma proprietario. Per prevenire questo, abbiamo chiarito che ogni eventuale brevetto deve essere concesso in licenza per l'uso libero di tutti o non essere concesso affatto.

Di seguito i termini e le condizioni precise per la copia, la distribuzione e la modifica. TERMINI E CONDIZIONI PER LA COPIA, LA DISTRIBUZIONE E LA MODIFICA

0. Questa Licenza si applica a qualsiasi programma o altra opera che contenga una nota posta dal detentore del copyright che dica che può essere distribuita secondo i termini di questa General Public License. Il «Programma», qui di seguito, si riferisce a qualsiasi programma o opera di questo tipo, e per «opera basata sul Programma» si intende il Programma o qualsiasi opera derivata ai sensi della legge sul diritto d'autore: cioè un'opera contenente il Programma o una sua parte, sia letteralmente sia con modifiche e/o tradotta in un'altra lingua. (Di seguito, la traduzione è inclusa senza limitazioni nel termine «modifica»). Ogni licenziatario è indicato come «voi».

Attività diverse dalla copia, dalla distribuzione e dalla modifica non sono coperte da questa Licenza; esse sono al di fuori del suo scopo. L’atto di eseguire il Programma non è limitato, e l'output del Programma è coperto solo se il suo contenuto costituisce un’opera basata sul Programma (indipendentemente dal fatto che sia stato realizzato eseguendo il Programma). Questo dipende da cosa fa il Programma.

1. Puoi copiare e distribuire copie integrali del codice sorgente del Programma così come lo ricevi, con qualsiasi mezzo, a condizione che tu pubblichis in modo visibile e appropriato su ogni copia un’appropriata nota di copyright e una dichiarazione di non garanzia; che tu mantenga intatti tutti gli avvisi che si riferiscono a questa Licenza e all’assenza di qualsiasi garanzia; e che tu dia ad ogni altro destinatario del Programma una copia di questa Licenza insieme al Programma.

Puoi addebitare una parcella per l’atto fisico di trasferire una copia, e puoi, a tua scelta, offrire la protezione della garanzia in cambio di una remunerazione.

2. Puoi modificare la tua copia o copie del Programma o qualsiasi parte di esso, formando così un’opera basata sul Programma, e copiare e distribuire tali modifiche o opere secondo i termini della Sezione 1 di cui sopra, a condizione che tu rispetti anche tutte queste condizioni:

   a) Devi fare in modo che i file modificati portino avvisi ben visibili che indicano che hai cambiato i file e la data di ogni cambiamento.

   b) Tu devi fare in modo che ogni opera che distribuisi o pubblichi, che in tutto o in parte contenga o sia derivata dal Programma o da una sua parte, sia concessa in licenza gratuita a tutti i terzi secondo i termini di questa Licenza.

   c) Se il programma modificato legge normalmente comandi in modo interattivo quando viene eseguito, devi fare in modo che, all’inizio dell’esecuzione per tale uso interattivo nel modo più ordinario, stampi o mostri un annuncio che includa un’appropriata nota di copyright e un avviso che non c’è garanzia (o altrimenti, che dica che si fornisce una garanzia) e che gli utenti possono ridistribuire il programma a queste condizioni, e che dica all’utente come vedere una copia di questa Licenza. (Eccezione: se il programma stesso è interattivo ma normalmente non stampa tale annuncio, la tua opera basata sul programma non è tenuta a stampare un annuncio).

Questi requisiti si applicano all’opera modificata nel suo complesso. Se sezioni identificabili dell’opera non sono derivate dal Programma, e possono essere ragionevolmente considerate opere indipendenti e separate in se stesse, allora questa Licenza, e i suoi termini, non si applicano a quelle sezioni quando le distribuisci come opere separate. Ma quando distribuisci le stesse sezioni come parte di un insieme che è un’opera basata sul Programma, la distribuzione dell’insieme deve avvenire secondo i termini di questa Licenza, i cui permessi per gli altri licenziatari si estendono all’intero insieme, e quindi ad ogni singola parte, indipendentemente da chi l’abbia scritta.

Quindi, l’intento di questa sezione non è quello di rivendicare diritti o contestare i tuoi diritti su lavori scritti interamente da te; piuttosto, l’intento è quello di esercitare il diritto di controllare la distribuzione di lavori derivati o collettivi basati sul Programma.

Inoltre, la semplice aggregazione di un’altra opera non basata sul Programma con il Programma (o con un’opera basata sul Programma) su un volume di un supporto di memorizzazione o distribuzione non porta l’altra opera sotto l’ambito di questa Licenza.
3. Puoi copiare e distribuire il Programma (o un’opera basata su di esso, secondo la Sezione 2) in codice oggetto o in forma eseguibile secondo i termini delle Sezioni 1 e 2 di cui sopra, a condizione che tu faccia anche una delle seguenti cose:

a) Accompagnalo con il corrispondente codice sorgente completo leggibile dalla macchina, che deve essere distribuito secondo i termini delle sezioni 1 e 2 di cui sopra su un mezzo usato abitualmente per lo scambio di software; o,

b) Accompagnalo con un’offerta scritta, valida per almeno tre anni, da dare a qualsiasi terza parte, per una spesa non superiore al costo per eseguire fisicamente la distribuzione del codice sorgente, una copia completa leggibile da macchina del codice sorgente corrispondente, da distribuire secondo i termini delle sezioni 1 e 2 di cui sopra su un supporto abitualmente utilizzato per lo scambio di software; oppure,

c) Accompagnalo con le informazioni che hai ricevuto sull’offerta di distribuire il codice sorgente corrispondente. (Questa alternativa è consentita solo per la distribuzione non commerciale e solo se hai ricevuto il programma in codice oggetto o in forma eseguibile con tale offerta, in accordo con la precedente sottosezione b).

Il codice sorgente di un’opera significa la forma preferita dell’opera per fare modifiche ad essa. Per un’opera eseguibile, il codice sorgente completo significa tutto il codice sorgente per tutti i moduli che contiene, più qualsiasi file di definizione di interfaccia associato, più gli script usati per controllare la compilazione e l’installazione dell’eseguibile. Tuttavia, come eccezione speciale, il codice sorgente distribuito non deve includere nulla che sia normalmente distribuito (in forma sorgente o binaria) con i componenti principali (compilatore, kernel, e così via) del sistema operativo su cui gira l’eseguibile, a meno che quel componente stesso non accompagni l’eseguibile.

Se la distribuzione di codice eseguibile o oggetto è fatta offrendo l’accesso alla copia da un luogo designato, allora offrire un accesso equivalente per copiare il codice sorgente dallo stesso luogo conta come distribuzione del codice sorgente, anche se i terzi non sono obbligati a copiare il sorgente insieme al codice oggetto.


5. Non sei obbligato ad accettare questa Licenza, dato che non l’hai firmata. Comunque, nulla ti da il permesso di modificare o distribuire il Programma o i suoi lavori derivati. Queste azioni sono proibite dalla legge se non si accetta questa Licenza. Perciò, modificando o distribuendo il Programma (o qualsiasi opera basata sul Programma), si indica l’accettazione di questa Licenza e di tutti i suoi termini e condizioni per copiare, distribuire o modificare il Programma o opere basate su di esso.

6. Ogni volta che ridistribuisi il Programma (o qualsiasi opera basata sul Programma), il destinatario riceve automaticamente una licenza dal licenziante originale per copiare, distribuire o modificare il Programma in base a questi termini e condizioni. Tu non può imporre ulteriori restrizioni all’esercizio dei diritti qui concessi da parte dei destinatari. Tu non sei responsabile del rispetto di questa Licenza da parte di terzi.

7. Se, come conseguenza di una sentenza del tribunale o di un’accusa di violazione di brevetto o per qualsiasi altra ragione (non limitata a questioni di brevetti), vengono imposte condizioni che contraddicono le condizioni di questa Licenza (per ordine del tribunale, accordo o altro), esse non esonerano l’acquirente dalle condizioni di questa Licenza. Se non puoi distribuire in modo da soddisfare contemporaneamente gli obblighi di questa Licenza e ogni altro obbligo pertinente, allora, di conseguenza, non puoi distribuire il Programma. Per esempio, se una licenza di brevetto non permettesse la ridistribuzione gratuita del Programma a tutti coloro che ne ricevono copie direttamente o indirettamente attraverso te, allora l’unico modo per soddisfare sia la licenza che questa Licenza sarebbe quello di astenersi completamente dalla distribuzione del Programma.

Se una qualsiasi parte di questa sezione è ritenuta non valida o inapplicabile in una particolare circostanza, il resto della sezione è destinato ad essere applicato e la sezione nel suo complesso è destinata ad essere applicata in altre circostanze.

Lo scopo di questa sezione non è quello di indurti ad infrangere alcun brevetto o altre rivendicazioni di diritti di proprietà o di contestare la validità di tali rivendicazioni; questa sezione ha il solo scopo di proteggere l’integrità del sistema di distribuzione del software libero, che è implementato da pratiche di licenza pubblica. Molte persone hanno dato generosi contributi alla vasta gamma di software distribuito attraverso quel sistema...
facendo affidamento sull’applicazione coerente di quel sistema; spetta all’autore/donatore decidere se è disposto a distribuire software attraverso qualsiasi altro sistema e un licenziatario non può imporre tale scelta.

Questa sezione ha lo scopo di chiarire a fondo ciò che si ritiene essere una conseguenza derivante da questa licenza.

8. Se la distribuzione e/o l’uso del Programma sono limitati in certi paesi da brevetti o da interfacce protette da copyright, il detentore originale del copyright che pone il Programma sotto questa Licenza può aggiungere una esplicita limitazione alla distribuzione geografica che escluda quei paesi, in modo che la distribuzione sia permessa solo in o tra paesi non esclusi. In tal caso, questa Licenza incorpora la limitazione come se fosse scritta nel corpo di questa Licenza.

9. La Free Software Foundation può pubblicare di tanto in tanto versioni rivedute e/o nuove della General Public License. Queste nuove versioni saranno simili nello spirito alla versione attuale, ma potrebbero differire nei dettagli per affrontare nuovi problemi o questioni.

Ad ogni versione è assegnato un numero di versione distintivo. Se il Programma specifica un numero di versione di questa Licenza che si applica ad esso e ad «ogni versione successiva», si ha la possibilità di seguire i termini e le condizioni di quella versione o di ogni versione successiva pubblicata dalla Free Software Foundation. Se il Programma non specifica un numero di versione di questa Licenza, si può scegliere qualsiasi versione pubblicata dalla Free Software Foundation.

10. Se vuoi incorporare parti del Programma in altri programmi liberi le cui condizioni di distribuzione sono diverse, scrivi all’autore per chiedere il permesso. Per il software che è protetto da copyright della Free Software Foundation, scrivete alla Free Software Foundation; a volte facciamo delle eccezioni per questo. La nostra decisione sarà guidata dai due obiettivi di preservare lo stato libero di tutti i derivati del nostro software libero e di promuovere la condivisione e il riutilizzo del software in generale.

NESSUNA GARANZIA

11. POICHÉ IL PROGRAMMA È CONcesso IN LICENZA GRATUITA, NON VI È ALCUNA GARANZIA PER IL PROGRAMMA, APPLICABILE AI SENSI DELLA LEGGE. TRANNE QUANDO DIVERSAMENTE INDICATO PER ISCRITTO, I DETENTORI DEL COPYRIGHT E/O ALTRE PARTI FORNISCONO IL PROGRAMMA «COSÌ COM’È» SENZA GARANZIE DI ALCUN TIPO, ESPRESSO O IMPLICITE, INCLUSE, MA NON SOLO, LE GARANZIE IMPLICITE DI COMMERCIALIZIBILITÀ E IDONEITÀ PER UNO SCOPO PARTICOLARE. L’INTERO RISCHIO RELATIVO ALLA QUALITÀ E ALLE PRESTAZIONI DEL PROGRAMMA È A TUO CARICO. SE IL PROGRAMMA DOVESSE RISULTARE DIFETTOSO, TI ASSUMI IL COSTO DI TUTTI I SERVIZI, LE RIPARAZIONI O LE CORREZIONI NECESSARIE.

12. IN NESSUN CASO, A MENO CHE NON SIA RICHIESTO DALLA LEGGE APPLICABILE O CONCORDATO PER ISCRITTO, IL DETENTORE DEL COPYRIGHT O QUALSIASI ALTRA PARTE CHE POSSA MODIFICARE E/O RIDISTRIBUIRE IL PROGRAMMA COME CONSENTITO SOPRA, SARÀ RESPONSABILE NEI TUOI CONFRONTI PER I DANNI, COMPRESI I DANNI GENERALI, SPECIALI, INCIDENTALI O CONSEQUENZIALI DERIVANTI DALL’USO O DALL’IMPOSSIBILITÀ DI UTILIZZARE IL PROGRAMMA (COMPRESI, MA NON LIMITATI ALLA PERDITA DI DATI O ALL’IMprecisione DEI DATI O ALLE PERDITE SUBITE DA TE O DA TERZI O AL Mancato Funzionamento del PROGRAMMA CON QUALSIASI ALTRo PROGRAMMA), ANCHE SE TALE DETENTORE O ALTRA PARTE È STATO AVVISATO DELLA POSSIBILITÀ DI TALI DANNI.

QGIS Qt eccezione per GPL

Inoltre, come eccezione speciale, il team di sviluppo QGIS dà il permesso di collegare il codice di questo programma con la libreria Qt, incluso ma non limitato alle seguenti versioni (sia libre che commerciali): Qt/Non-commerciale Windows, Qt/Windows, Qt/X11, Qt/Mac, e Qt/Embedded (o con versioni modificate di Qt che usano la stessa licenza di Qt), e distribuire combinazioni collegate tra loro. Devi rispettare la GNU General Public License in tutti gli aspetti per tutto il codice usato diverso da Qt. Se modifichi questo file, puoi estendere questa eccezione alla tua versione del file, ma non sei obbligato a farlo. Se non vuoi farlo, elimina questa dichiarazione di eccezione dalla tua versione.
28.2 Appendix B: GNU Free Documentation License

Versione 1.3, 3 Novembre 2008

http://fsf.org/

Ognuno ha la possibilità di copiare e distribuire copie letterali di questo documento di licenza, i cambi non sono permessi.

Preambolo

Lo scopo di questa licenza è di rendere un manuale, un testo o altri documenti scritti «liberi» nel senso di assicurare a tutti la libertà effettiva di copiarli e redistribuirli, con o senza modifiche, a fini di lucro o meno. In secondo luogo questa licenza prevede per autori ed editori il modo per ottenere il giusto riconoscimento del proprio lavoro, preservandoli dall’essere considerati responsabili per modifiche apportate da altri.

Questa licenza è un «copyleft»: ciò vuol dire che i lavori che derivano dal documento originale devono essere ugualmente liberi. È il complemento alla Licenza Pubblica Generale GNU, che è una licenza di tipo «copyleft» pensata per il software libero.

Abbiamo progettato questa licenza al fine di applicarla alla documentazione del software libero, perché il software libero ha bisogno di documentazione libera: un programma libero dovrebbe accompagnarsi a manuali che forniscono la stessa libertà del software. Ma questa licenza non è limitata alla documentazione del software; può essere utilizzata per ogni testo che tratti un qualsiasi argomento e al di là dell’avvenuta pubblicazione cartacea. Raccomandiamo principalmente questa licenza per opere che abbiano fini didattici o per manuali di consultazione.

1. APPLICABILITA’ E DEFINIZIONI

Questa licenza si applica a qualsiasi manuale o altra opera che contenga una nota messa dal detentore del copyright che dica che si può distribuire nei termini di questa licenza. Con Documento, in seguito ci si riferisce a qualsiasi manuale o opera. Ogni fruitore è un destinatario della licenza e viene indicato con voi. Voi accettate la licenza se copiate, modificate o distribuite l’opera in modo tale che questo richieda un permesso nell’ambito della legge sul copyright.

Una versione modificata di un documento è ogni opera contenente il documento stesso o parte di esso, sia riprodotto alla lettera che con modifiche, oppure traduzioni in un’altra lingua.

Una sezione secondaria è un’appendice cui si fa riferimento o una premessa del documento e riguarda esclusivamente il rapporto dell’editore o dell’autore del documento con l’argomento generale del documento stesso (o argomenti affini) e non contiene nulla che possa essere compreso nell’argomento principale. (Per esempio, se il documento è in parte un manuale di matematica, una sezione secondaria non può contenere spiegazioni di matematica). Il rapporto con l’argomento può essere un tema collegato storicamente con il soggetto principale o con soggetti affini, o essere costituito da argomentazioni legali, commerciali, filosofiche, etiche o politiche pertinenti.

Le sezioni non modificabili sono alcune sezioni secondarie i cui titoli sono esplicitamente dichiarati essere sezioni non modificabili, nella nota che indica che il documento è realizzato sotto questa licenza. Se una sezione non ricade nella suddetta definizione di secondaria, non può essere definita come non modificabile. Il documento può contenere zero sezioni non modificabili. Se il documento non identifica alcuna sezione non modificabile, allora non ne sono.

I testi copertina sono dei brevi brani di testo che sono elencati nella nota che indica che il documento è realizzato sotto questa licenza. Un testo di prima copertina può essere al massimo di 5 parole e un testo di retrocopertina può essere al massimo di 25 parole.

Una copia trasparente del documento indica una copia leggibile da un calcolatore, codificata in un formato le cui specifiche sono disponibili pubblicamente, i cui contenuti possono essere visti e modificati direttamente, ora e in futuro, con generici editor di testi o (per immagini composte da pixel) con generici editor di immagini o (per i disegni) con qualche editor di disegni ampiamente diffuso, e la copia deve essere adatta al trattamento per la formattazione o per la conversione in una varietà di formati atti alla successiva formattazione. Una copia fatta in un altro formato di file trasparente il cui markup è stato progettato per intralciare o scoraggiare modifiche future da parte dei lettori non è trasparente. Una copia che non è trasparente viene detta opaca.

Esempi di formati adatti per copie trasparenti sono l’ASCII puro senza markup, il formato di input per Texinfo, il formato di input per LaTeX, SGML o XML accoppiati ad una DTD pubblica e disponibile, e semplice HTML
conforme agli standard e progettato per essere modificato manualmente. Formati opachi sono PostScript, PDF, formati proprietari che possono essere letti e modificati solo con word processor proprietari, SGML o XML per cui non è in genere disponibile la DTD o gli strumenti per il trattamento, e HTML. Postscript o PDF generato automaticamente da qualche elaboratore di testi per il solo output.

La «pagina del titolo» di un libro stampato indica la pagina del titolo stessa, più qualche pagina seguente per quanto necessario a contenere in modo leggibile, il materiale che la licenza prevede che compia nella pagina del titolo. Per opere in formati in cui non sia contemplata esplicitamente la pagina del titolo, con «pagina del titolo» si intende il testo prossimo al titolo dell’opera, precedente l’inizio del corpo del testo.

L’«editore» rappresenta la persona o l'entità che distribuisce copie del Documento al pubblico.

Una sezione «Intitolata XYZ» significa una unità del Documento il cui titolo sia esattamente XYZ o contenga XYZ tra parentesi a seguito del testo che traduce XYZ in un altro linguaggio. (Qui XYZ sta per il nome di un paragrafo preciso riportato sotto, come «Ringraziamenti», «Dedica», «Approvato da» o «Storia»). «Conservare il titolo» di un tale paragrafo quando modificate il Documento significa che deve rimanere una sezione «Intitolata XYZ» secondo questa definizione.

Il Documento potrebbe contenere disconoscimenti della garanzia a fianco alla nota che indica che questa Licenza si applica al Documento. Tali disconoscimenti di garanzia sono considerati da includere in questa licenza, ma solo per quanto riguarda il disconoscimento delle garanzie: qualsiasi altra implica che tali disconoscimenti di garanzia potrebbero avere è nulla e non ha alcun effetto sul significato di questa Licenza.

2. COPIE LETTERALI

Puoi copiare e distribuire il documento con l’ausilio di qualsiasi mezzo, per fini di lucro e non, fornendo per tutte le copie questo documento, la nota sul copyright e l’avviso che questa licenza si applica al documento, e che non si aggiungano altre condizioni al di fuori di quello della licenza stessa. Non puoi usare misure tecniche per impedire o controllare la lettura o la produzione di copie successive alle copie che si producono o distribuiscono. Però si possono ricavare compensi per le copie fornite. Se si distribuiscono un numero sufficiente di copie si devono seguire anche le condizioni della sezione 3.

Si possono anche prestare copie e con le stesse condizioni sopra menzionate possono essere utilizzate in pubblico.

3. COPIARE IN NOTEVOLI QUANTITÀ

Se si pubblicano a mezzo stampa (o su supporti che abbiano normalmente una copertina stampata) più di 100 copie del documento, e la nota della licenza indica che esistono uno o più testi copertina, si devono includere nelle copie, in modo chiaro e leggibile, tutti i testi copertina indicati: il testo della prima di copertina in prima di copertina e il testo di quarta di copertina in quarta di copertina. Ambidue devono identificare l'editore che pubblica il documento. La prima di copertina deve presentare il titolo completo con tutte le parole che lo compongono e evidenti. Si può aggiungere altro materiale alle copertine. Il copiare con modifiche limitate alle sole copertine, purché si preservino il titolo e le altre condizioni viste in precedenza, è considerato alla stregua di copiare alla lettera.

Se il testo richiesto per le copertine è troppo voluminoso per essere riprodotto in modo leggibile, se ne può mettere una prima parte per quanto ragionevolmente può stare in copertina, e continuare nelle pagine immediatamente seguenti.

Se si pubblicano o distribuiscono copie opache del documento in numero superiore a 100, si deve anche includere una copia trasparente leggibile da un calcolatore per ogni copia o menzionare per ogni copia opaca un indirizzo di una rete di calcolatori pubblicamente accessibile in cui vi sia una copia trasparente completa del documento, spogliata di materiale aggiuntivo, e a cui si possa accedere anonimamente e gratuitamente per scaricare il documento usando i protocolli standard e pubblici generalmente usati. Se si adotta l'ultima opzione, si deve prestare la giusta attenzione, nel momento in cui si inizia la distribuzione in quantità elevata di copie opache, ad assicurarsi che la copia trasparente rimanga accessibile all'indirizzo stabilito fino ad almeno un anno di distanza dall'ultima distribuzione (direttamente o attraverso rivenditori) di quell'edizione al pubblico.

E' caldamente consigliato, benché obbligatorio, contattare l'autore del documento prima di distribuirne un numero considerevole di copie, per metterlo in grado di fornire una versione aggiornata del documento.

4. MODIFICHE

Puoi copiare e distribuire una Versione Modificata del Documento rispettando le condizioni delle precedenti sezioni 2 e 3, purché la Versione Modificata sia realizzata seguendo scrupolosamente questa stessa licenza, con la Versione Modificata che svolga il ruolo del Documento, così da estendere la licenza sulla distribuzione e la modifica della Versione Modificata a chiunque ne possieda una copia. Inoltre, devi fare le seguenti cose nella Versione Modificata:
A. Utilizza nella Pagina del Titolo (e sulle copertine, se presenti) un titolo diverso da quello del Documento e da quelli delle versioni precedenti (che dovrebbero, se ce ne fossero, essere elencati nella sezione Storia del Documento). È possibile usare lo stesso titolo di una versione precedente se l'editore originale di quella versione dà il permesso.

B. Elenca nel Frontespizio, in qualità di autori, una o più persone o entità responsabili della paternità delle modifiche nella Versione Modificata, insieme ad almeno cinque dei principali autori del Documento (tutti i suoi principali autori, se ha meno di cinque), a meno che non ti liberino da questo requisito.

C. Indica nella Pagina del Titolo il nome dell'editore della versione modificata, in qualità di editore.

D. Conserva tutte le note sul copyright del documento.

E. Aggiungi un avviso di copyright appropriato per le tue modifiche adiacente agli altri avvisi di copyright.

F. Includere, immediatamente dopo le note sul copyright, un avviso di licenza che dia al pubblico il permesso di utilizzare la versione modificata secondo i termini di questa licenza, nella forma mostrata nell'Appendice di seguito.

G. Conserva in tale avviso di licenza gli elenchi completi di Sezioni non Modificabili ed i Testi di Copertina richiesti forniti nell'avviso di licenza del Documento.

H. Includa una copia inalterata di questa Licenza.

I. Conserva la sezione intitolata «Storia», conserva il suo Titolo e aggiungi ad essa un elemento che indichi almeno il titolo, l'anno, i nuovi autori e l'editore della Versione Modificata come indicato nella Pagina del Titolo. Se nel Documento non è presente una sezione intitolata «Storia», crearne una indicando il titolo, l'anno, gli autori e l'editore del Documento come indicato nella sua Pagina del Titolo, quindi aggiungere un elemento che descriva la Versione Modificata come indicato nella frase precedente.

J. Conserva l'eventuale percorso di rete fornito nel Documento per l'accesso pubblico ad una copia trasparente del Documento, e allo stesso modo i percorsi di rete indicati nel Documento per le versioni precedenti su cui era basato. Questi possono essere inseriti nella sezione «Storia». È possibile omettere un percorso di rete per un'opera che è stata pubblicata almeno quattro anni prima del Documento stesso o se l'editore originale della versione a cui si riferisce dà il permesso.

K. Per ogni sezione intitolata «Riconoscimenti» o «Dediche», preservare il Titolo della sezione e preservare nella sezione tutta la sostanza e il tono di ciascuno dei riconoscimenti e/o dediche del collaboratore ivi forniti.

L. Conserva tutte le Sezioni non Modificabili del Documento, inalterate nel loro testo e nei loro titoli. I numeri delle sezioni o equivalenti non sono considerati parte dei titoli delle sezioni.

M. Elimina qualsiasi sezione intitolata «Riconoscimenti». Tale sezione potrebbe non essere inclusa nella Versione Modificata.

N. Non modificare il titolo di una sezione esistente in modo che venga intitolata «Endorsements» o in conflitto di titolo con qualsiasi Sezione non Modificabile.

O. Conserva eventuali Esclusioni di Garanzia.

Se la Versione Modificata include nuove sezioni di frontespizio o appendici che si qualificano come Sezioni Secondarie e non contengono materiale copiato dal Documento, puoi, a tua scelta, designare alcune o tutte queste sezioni come invarianti. A tale scopo, aggiungere i loro titoli all'elenco delle Sezioni non Modificabili nell'avviso di licenza della Versione Modificata. Questi titoli devono essere distinti da qualsiasi altro titolo di sezione.

Puoi aggiungere una sezione intitolata «Endorsements», a condizione che non contenga altro che l'approvazione della tua Versione Modificata da parte di terzi — ad esempio, dichiarazioni di revisione tra pari o che il testo è stato approvato da un'organizzazione come definizione autorevole di uno standard.

È possibile aggiungere un passaggio di un massimo di cinque parole come testo del Frontespizio e un passaggio di un massimo di 25 parole come testo del Retrospizio, alla fine dell'elenco dei testi di copertina nella Versione Modificata. Solo un passaggio del testo della copertina anteriore e uno del testo della copertina posteriore possono essere aggiunti da (o tramite accordi presi da) qualsiasi entità. Se il Documento include già un testo di copertina per la stessa copertina, precedentemente aggiunto da te o per accordo preso dalla stessa entità per cui stai agendo per conto, non puoi aggiungerne un altro; ma puoi sostituire quello vecchio, dietro esplicita autorizzazione dell'editore precedente che ha aggiunto quello vecchio.
Gli autori e gli editori del Documento non autorizzano con questa Licenza l’uso dei loro nomi per pubblicità o per affermare o implicare l’approvazione di qualsiasi Versione Modificata.

5. COMBINAZIONE DI DOCUMENTI
È possibile combinare il Documento con altri documenti rilasciati sotto questa licenza, secondo i termini definiti nella sezione 4 sopra per le versioni modificate, a condizione di includere nella combinazione tutte le sezioni non modificabili di tutti i documenti originali, non modificate, e di elencarle tutte come Sezioni non Modificabili della tua opera combinata nel relativo avviso di licenza e che conservi tutte le loro Esclusioni di Garanzia.

L’opera combinata deve contenere solo una copia di questa Licenza e più Sezioni non Modificabili identiche possono essere sostituite con una singola copia. Se sono presenti più sezioni non modificabili con lo stesso nome ma contenuti diversi, rendere unico il titolo di ciascuna di tali sezioni aggiungendo alla fine di esso, tra parentesi, il nome dell’autore originale o dell’editor di quella sezione se noto, oppure un numero unico. Apporta la stessa modifica ai titoli delle sezioni nell’elenco delle Sezioni non Modificabili nell’avviso di licenza dell’opera combinata.

Nella combinazione, è necessario unire le sezioni intitolate «Storia» nei vari documenti originali, formando una sezione intitolata «Storia»; allo stesso modo combina le sezioni intitolate «Acknowledgements» e le sezioni intitolate «Dediche». È necessario eliminare tutte le sezioni intitolate «Endorsements».

6. RACCOLTE DI DOCUMENTI
È possibile creare una raccolta composta dal Documento e altri documenti rilasciati ai sensi della presente Licenza, e sostituire le singole copie di questa Licenza nei vari documenti con una singola copia inclusa nella raccolta, a condizione che si seguano le regole di questa Licenza per copia letterale di ciascuno dei documenti sotto tutti gli altri aspetti.

È possibile estrarre un singolo documento da tale raccolta e distribuirlo individualmente sotto questa Licenza, a condizione di inserire una copia di questa Licenza nel documento estratto e seguire questa Licenza in tutti gli altri aspetti per quanto riguarda la copia letterale di quel documento.

7. AGGREGAZIONE CON LAVORI INDIPENDENTI
Una compilazione del Documento o dei suoi derivati con altri documenti o lavori separati e indipendenti, in o su un volume di un supporto di archiviazione o distribuzione, è chiamata «aggregato» se il diritto d’autore risultante dalla compilazione non viene utilizzato per limitare i diritti legali degli utenti della raccolta oltre a quanto consentito dalle singole opere. Quando il Documento è incluso in un aggregato, questa Licenza non si applica alle altre opere nell’aggregato che non sono esse stesse opere derivate dal Documento.

Se il requisito del Testo di Copertina della sezione 3 è applicabile a queste copie del Documento, allora se il Documento è inferiore alla metà dell’intero aggregato, i Testi di Copertina del Documento possono essere posizionati sulle copertine che racchiudono il equivalente elettronico delle copertine se il Documento è in formato elettronico. Altrimenti devono apparire sulle copertine stampate che racchiudono l’intero aggregato.

8. TRADUZIONE
La traduzione è considerata una sorta di modifica, quindi è possibile distribuire traduzioni del Documento secondo i termini della sezione 4. La sostituzione di Sezioni non Modificabili con traduzioni richiede un’autorizzazione speciale da parte dei detentori del copyright, ma è possibile includere traduzioni di alcune o tutte le Sezioni non Modificabili oltre a le versioni originali di queste sezioni non modificate. È possibile includere una traduzione di questa Licenza e tutti gli avvisi di licenza nel Documento e qualsiasi Dichiarazione di non responsabilità sulla Garanzia, a condizione che includa anche la versione Inglese originale di questa Licenza e le versioni originali di tali avvisi e dichiarazioni di non responsabilità. In caso di disaccordo tra la traduzione e la versione originale di questa Licenza o di un avviso o di una dichiarazione di non responsabilità, prevarrà la versione originale.

Se una sezione del documento è intitolata «Ringraziamenti», «Dediche» o «Storia», il requisito (sezione 4) per Preservarne il Titolo (sezione 1) richiederà in genere la modifica del titolo attuale.

9. RISOLUZIONE
Non è possibile copiare, modificare, concedere in licenza o distribuire il Documento salvo quanto espressamente previsto dalla presente Licenza. Altrimenti qualsiasi tentativo di copiarlo, modificarlo, concederlo in licenza o distribuirlo è nullo e terminerà automaticamente i tuoi diritti ai sensi della presente Licenza.

Tuttavia, se cessi ogni violazione di questa Licenza, la tua licenza da un particolare detentore del copyright viene ripristinata (a) provvisoriamente, a meno che e fino a quando il detentore del copyright non risolve esplicitamente e
definitivamente la tua licenza, e (b) in modo permanente, se il detentore del copyright fallisce per informarti della violazione con mezzi ragionevoli prima di 60 giorni dopo la cessazione.

Inoltre, la tua licenza da un particolare detentore del copyright viene ripristinata in modo permanente se il detentore del copyright ti notifica la violazione con qualche mezzo ragionevole, questa è la prima volta che hai ricevuto avviso di violazione di questa Licenza (per qualsiasi opera) da quel detentore del copyright, e risolvi la violazione prima di 30 giorni dal ricevimento della notifica.

La cessazione dei diritti ai sensi di questa sezione non comporta la revoca delle licenze delle parti che hanno ricevuto copie o diritti da te ai sensi della presente Licenza. Se i tuoi diritti sono stati revocati e non sono stati ripristinati in modo permanente, la ricezione di una copia di tutto o parte dello stesso materiale non ti dà alcun diritto di utilizzarlo.

10. REVISIONI FUTURE DI QUESTA LICENZA

La Free Software Foundation può pubblicare di tanto in tanto nuove versioni rivedute della GNU Free Documentation License. Queste nuove versioni saranno simili nello spirito alla versione attuale, ma potranno differire nei dettagli per affrontare nuovi problemi o questioni. Si veda http://www.gnu.org/copyleft/.

A ciascuna versione della Licenza viene assegnato un numero di versione distintivo. Se il Documento specifica che una particolare versione numerata di questa Licenza «o qualsiasi versione successiva» si applica ad essa, hai la possibilità di seguire i termini e le condizioni di quella versione specificata o di qualsiasi versione successiva che è stata pubblicata (non come bozza) dalla Free Software Foundation. Se il Documento non specifica un numero di versione di questa Licenza, puoi scegliere qualsiasi versione pubblicata (non come bozza) dalla Free Software Foundation. Se il Documento specifica che un delegato può decidere quali versioni future di questa Licenza possono essere utilizzate, la dichiarazione pubblica di accettazione di una versione di tale delegato autorizza permanentemente a scegliere quella versione per il Documento.

11. NUOVA LICENZA


«CC-BY-SA» indica la licenza Creative Commons Attribution-Share Alike 3.0 pubblicata da Creative Commons Corporation, una società senza scopo di lucro con sede principale a San Francisco, California, nonché future versioni copyleft di tale licenza pubblicate dall'organizzazione.

«Incorporare» significa pubblicare o ripubblicare un documento, in tutto o in parte, come parte di un altro documento. Una MMC è «idonea per la nuova licenza» se è concessa in licenza ai sensi della presente Licenza e se tutte le opere che sono state pubblicate per la prima volta sotto questa Licenza in un luogo diverso da questa MMC e successivamente incorporate in tutto o in parte nella MMC, testi di copertina o sezioni invarianti, e (2) sono stati quindi incorporati prima del 1° novembre 2008.

L’operatore di un sito MMC può ripubblicare una MMC contenuta nel sito sotto CC-BY-SA sullo stesso sito in qualsiasi momento prima del 1 agosto 2009, a condizione che MMC sia idonea per la nuova licenza.

APPENDICE: come utilizzare questa licenza per i tuoi documenti

Per utilizzare questa Licenza in un documento che hai scritto, includi una copia della Licenza nel documento e metti le seguenti note sul copyright e sulla licenza subito dopo il frontespizio:

Copyright © YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

Se hai sezioni non modificabili, testi di copertina anteriore e testi di retrocopertina, sostituisci «with … Texts.» con questo:

28.2. Appendix B: GNU Free Documentation License 1359
Se hai sezioni non modificabili senza testo di copertina o qualche altra combinazione delle tre, unisci queste due alternative per adattarle alla situazione.

Se il tuo documento contiene esempi non banali di codice di programma, ti consigliamo di rilasciare questi esempi in parallelo sotto la tua scelta di licenza per software libero, come la GNU General Public License, per consentirne l'uso nel software libero.

### 28.3 Appendice C: File QGIS di Formato

#### 28.3.1 QGS/QGZ - Il File di Formato di Progetto QGIS

Il formato QGS è un formato XML per memorizzare i progetti QGIS. Il formato QGZ è un archivio compresso (zip) contenente un file QGS e un file QGD. Il file QGD è il database sqlite associato al progetto qgis che contiene i dati ausiliari del progetto. Se non ci sono dati ausiliari, il file QGD sarà vuoto.

Un file QGIS contiene tutto ciò che è necessario per memorizzare un progetto QGIS, includendo:

- il titolo del progetto
- l'SR del progetto
- l'albero dei layer
- le impostazioni di aggancio
- le relazioni
- l'estensione della mappa
- i modelli del progetto
- legenda
- le mapview zone (2D e 3D)
- i layer con collegamenti ai set di dati sottostanti (fonti di dati) e altre proprietà dei layer tra cui estensione, SR, join, stili, visualizzazione, modalità di fusione, opacità e altro.
- le proprietà del progetto

Le figure seguenti mostrano i tag di primo livello in un file QGS e il tag espanso ProjectLayers.
Fig. 28.1: I tag di primo livello in un file QGS
QLR - Il file di definizione dei layer di QGIS

Un file definizione layer (QLR) è un file XML che contiene un puntatore all'origine dei dati del layer oltre alle informazioni di stile QGIS per il layer.

Il caso d'uso di questo file è semplice: Avere un unico file per aprire una fonte di dati e portare tutte le informazioni di stile relative. I file QLR permettono anche di proteggere la fonte di dati sottostante in un file facile da aprire.

Un esempio di utilizzo di QLR è per l'apertura dei layer MS SQL. Piuttosto che dover andare alla finestra di dialogo di connessione MS SQL, connettersi, selezionare, caricare e infine avere lo stile, si può semplicemente aggiungere un file .qlr che punta al corretto layer MS SQL con tutto lo stile necessario incluso.

In futuro un file .qlr potrà contenere un riferimento a più di un layer.
QML è un formato XML per memorizzare lo stile dei layer.

Un file QML contiene tutte le informazioni che QGIS può gestire per la rappresentazione delle geometrie, comprese le definizioni dei simboli, le dimensioni e le rotazioni, l’etichettatura, l’opacità e la modalità di fusione e altro ancora.

La figura qui sotto mostra il tag di primo livello di un file QML (con solo renderer_v2 e il suo tag symbol espanso).
28.4 Appendice D: Sintassi script R QGIS

Con il contributo di Matteo Ghetta - finanziato da Scuola Superiore Sant’Anna

Scrivere script R in Processing è un po’ complicato a causa della sintassi speciale.

Uno script Processing R inizia definendo i suoi Input e Output, ciascuno preceduto da due caratteri hash (##).

Prima degli input, si può specificare il gruppo in cui inserire l’algoritmo. Se il gruppo esiste già, l’algoritmo verrà aggiunto ad esso, altrimenti il gruppo verrà creato. Nell’esempio qui sotto, il nome del gruppo è My group:

```r
##My Group=group
```
28.4.1 Input

Tutti i dati e i parametri di input devono essere specificati. Ci sono diversi tipi di input:

- vettore: `##Layer = vector`
- campo vettoriale: `##F = Field Layer` (dove `Layer` è il nome di un layer vettoriale di input a cui il campo appartiene).
- raster: `##r = raster`
- tabella: `##t = table`
- numero: `##Num = number`
- stringa: `##Str = string`
- booleano: `##Bol = boolean`
- elementi in un menu a discesa. Gli elementi devono essere separati con punto e virgola ;:
  `##type=selection point;lines;point+lines`

28.4.2 In uscita:

Come per gli input, ogni output deve essere definito all’inizio dello script:

- vettore: `##output= output vector`
- raster: `##output= output raster`
- tabella: `##output= output table`
- grafici: `##output_plots_to_html` (#showplots nelle versioni precedenti)
- Per visualizzare l’output di R nel Visualizzatore di risultati, metti > davanti al comando di cui vuoi vedere l’output.

28.4.3 Sintesi sintassi per gli script QGIS R

Sono disponibili diversi tipi di parametri per gli input e gli output.
Tipi di parametri di input

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Esempio sintassi</th>
<th>Oggetti risultanti</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector</td>
<td>Layer = vettore</td>
<td>oggetto sf (o oggetto SpatialDataFrame, se è specificato #!load_vector_using_rgdal)</td>
</tr>
<tr>
<td>point</td>
<td>Layer = vettore di punti</td>
<td>oggetto sf (o oggetto SpatialDataFrame, se è specificato #!load_vector_using_rgdal)</td>
</tr>
<tr>
<td>line</td>
<td>Layer = vettore di linea</td>
<td>oggetto sf (o oggetto SpatialDataFrame, se è specificato #!load_vector_using_rgdal)</td>
</tr>
<tr>
<td>polygon</td>
<td>Layer = vector polygon</td>
<td>oggetto sf (o oggetti SpatialDataFrame se è specificato #!load_vector_using_rgdal)</td>
</tr>
<tr>
<td>multiple</td>
<td>Layer = vettore multiplo</td>
<td>oggetto sf (o oggetti SpatialDataFrame se è specificato #!load_vector_using_rgdal)</td>
</tr>
<tr>
<td>table</td>
<td>Layer = tabella</td>
<td>conversione di dataframe da csv, oggetto predefinito della funzione read.csv.</td>
</tr>
<tr>
<td>field</td>
<td>Field = Campo del Layer</td>
<td>nome del Campo selezionato, ad esempio &quot;Area&quot;.</td>
</tr>
<tr>
<td>raster</td>
<td>Layer = raster</td>
<td>Oggetti RasterBrick, oggetto predefinito del pacchetto raster.</td>
</tr>
<tr>
<td>multiple</td>
<td>Layer = raster multiplo</td>
<td>Oggetti RasterBrick, oggetto predefinito del pacchetto raster.</td>
</tr>
<tr>
<td>number</td>
<td>N = numero</td>
<td>numero intero o a virgola mobile scelto</td>
</tr>
<tr>
<td>string</td>
<td>S = stringa</td>
<td>stringa aggiunta nella casella</td>
</tr>
<tr>
<td>longstring</td>
<td>LS = stringa variabile</td>
<td>stringa aggiunta nella casella, può essere più lunga della stringa normale</td>
</tr>
<tr>
<td>selection</td>
<td>S = selezione primo;secondo;terzo</td>
<td>stringa dell’elemento selezionato scelto nel menu a tendina</td>
</tr>
<tr>
<td>crs</td>
<td>C = SR</td>
<td>stringa del SR risultante scelto, nel formato: &quot;EPSG:4326&quot;</td>
</tr>
<tr>
<td>extent</td>
<td>E = estensione</td>
<td>Estensione oggetto raster, puoi estrarre valori come E@xmin.</td>
</tr>
<tr>
<td>point</td>
<td>P = punto</td>
<td>quando si clicca sulla mappa, si hanno le coordinate del punto</td>
</tr>
<tr>
<td>file</td>
<td>F = file</td>
<td>percorso del file scelto, ad esempio »/home/matteo/file.txt»</td>
</tr>
<tr>
<td>folder</td>
<td>F = cartella</td>
<td>percorso della cartella scelta, ad esempio »/home/matteo/Downloads»</td>
</tr>
</tbody>
</table>

Un parametro può essere **OPZIONALE**, cioè può essere ignorato.

Per impostare un input come opzionale, aggiungi la stringa `optional prima` dell’input, ad esempio:

```
##Layer = vector
##Field1 = Field Layer
##Field2 = optional Field Layer
```

Tipi di parametri di output

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Esempio sintassi</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector</td>
<td>Output = output vettore</td>
</tr>
<tr>
<td>raster</td>
<td>Output = output raster</td>
</tr>
<tr>
<td>table</td>
<td>Output = output tabella</td>
</tr>
<tr>
<td>file</td>
<td>Output = output file</td>
</tr>
</tbody>
</table>

**Nota:** Puoi salvare i grafici come `png` dal **Visualizzatore Risultati di Processing**, oppure puoi scegliere di salvare il grafico direttamente dall’interfaccia dell’algoritmo.
Corpo dello script

Il corpo dello script usa la sintassi di R e il pannello Log può aiutarvi se c'è qualcosa di sbagliato nel vostro script. 
Ricorda che devi caricare tutte le librerie aggiuntive nello script:

```
library(sp)
```

28.4.4 Esempi

Esempio con vettore in uscita

Consideriamo un algoritmo dalla libreria online che crea punti casuali dall'estensione di un layer di input:

```
##Point pattern analysis=group
##Layer=vector polygon
##Size=number 10
##Output=output vector
library(sp)
spatpoly = as(Layer, "Spatial")
pts = spsample(spatpoly, Size, type = "random")
spdf = SpatialPointsDataFrame(pts, as.data.frame(pts))
Output = st_as_sf(spdf)
```

Spiegazione (per linea nello script):

1. **Point pattern analysis** è il gruppo dell' algoritmo.
2. **Layer** è il vettore in ingresso.
3. **Size** è un parametro **numerico** con un valore predefinito di 10.
4. **Output** è il vettore che sarà creato dall'algoritmo.
5. **library(sp)** carica la libreria **sp**
6. **spatpoly = as(Layer, "Spatial")** trasforma in un oggetto sp
7. Chiama la funzione **spsample** della libreria sp e la esegue usando l'input definito sopra (Layer e Size).
8. **Crea un oggetto SpatialPointsDataFrame** usando la funzione **SpatialPointsDataFrame**
9. **Crea il vettore di output usando la funzione st_as_sf**

Questo è tutto! Basta eseguire l'algoritmo con uno layer vettoriale che hai nella Legenda di QGIS, scegliere il numero di punti casuali. Il layer risultante sarà aggiunto alla tua mappa.

Esempio con raster in uscita

Il seguente script eseguirà il kriging ordinario di base per creare una mappa raster di valori interpolati da un campo specificato del layer vettoriale di punti in input usando la funzione **autoKrig** del software R automap. Prima calcola il modello di kriging e poi crea un raster. Il raster viene creato con la funzione **raster** del software raster R:

```
##Basic statistics=group
##Layer=vector point
##Field=Field Layer
##Output=output raster
##load_vector_using_rgdal
require("automap")
require("sp")
require("raster")
```

(continues on next page)
table = as.data.frame(Layer)
coordinates(table) = ~ coords.x1 + coords.x2
c = Layer[[Field]]
kriging_result = autoKrige(c~1, table)
prediction = raster(kriging_result$krige_output)
Output<-prediction

Usando `#load_vector_using_rgdal`, il layer vettoriale di input sarà reso disponibile come un oggetto SpatialDataFrame, cosi evitiamo di doverlo tradurre da un oggetto sf.

**Esempio con tabella in uscita**

Modifichiamo l’algoritmo Summary Statistics in modo che l’output sia un file tabella (csv).

Il corpo dello script è il seguente:

```r
Basic statistics = group
Layer = vector
Field = Field Layer
Stat = Output table
Summary_statistics <- data.frame(rbind(
 sum(Layer[[Field]]),
 length(Layer[[Field]]),
 length(unique(Layer[[Field]])),
 min(Layer[[Field]]),
 max(Layer[[Field]]),
 max(Layer[[Field]]) - min(Layer[[Field]]),
 mean(Layer[[Field]]),
 median(Layer[[Field]]),
 sd(Layer[[Field]]),
 row.names = c("Sum:","Count:","Unique values:","Minimum value:","Maximum value:","Range:","Mean value:","Median value:","Standard deviation:"))
colnames(Summary_statistics) <- c(Field)
Stat <- Summary_statistics
```

La terza linea specifica il Vector Field in ingresso e la quarta linea dice all'algoritmo che l'output sarà una tabella.

L’ultima linea utilizzerà l’oggetto Stat creato nello script e lo convertirà in una tabella csv.

**Esempi con la console di output**

Possiamo usare l'esempio precedente e invece di creare una tabella, stampare il risultato nel Visualizzatore di risultati:

```r
Basic statistics = group
Layer = vector
Field = Field Layer
Summary_statistics <- data.frame(rbind(
 sum(Layer[[Field]]),
 length(Layer[[Field]]),
 length(unique(Layer[[Field]])),
 min(Layer[[Field]]),
 max(Layer[[Field]]),
 max(Layer[[Field]]) - min(Layer[[Field]]),
 mean(Layer[[Field]]),
 median(Layer[[Field]]),
 sd(Layer[[Field]]),
 row.names = c("Sum:","Count:","Unique values:","Minimum value:","Maximum value:","Range:","Mean value:","Median value:","Standard deviation:"))
colnames(Summary_statistics) <- c(Field)
> Summary_statistics
```
Lo script è esattamente lo stesso di quello sopra, tranne che per due modifiche:

1. nessun output specificato (la quarta linea è stata rimossa)
2. l’ultima linea inizia con >, specificando a Processing di rendere l’oggetto disponibile attraverso il visualizzatore di risultati

**Esempio con grafico**

Per creare grafici, devi usare il parametro `##output_plots_to_html` come nel seguente script:

```
##Basic statistics=group
##Layer=vector
##Field=Field Layer
##output_plots_to_html
qqnorm(Layer[[Field]])
qqline(Layer[[Field]])
```

Lo script usa un campo (`Field`) di un layer vettoriale (`Layer`) come input, e crea un QQ Plot (per testare la normalità della distribuzione).

Il grafico viene aggiunto automaticamente al `Visualizzatore risultato` di Processing.
Letteratura e riferimenti web


