Outdated version of the documentation. Find the latest one here.

Inverse distance weighted

Description

Inverse distance grid interpolation from irregular distributed points.

Parameters

Points [vector: point]
<put parameter description here>
Attribute [tablefield: any]
<put parameter description here>
Target Grid [selection]

<put parameter description here>

Options:

  • 0 — [0] user defined

Default: 0

Distance Weighting [selection]

<put parameter description here>

Options:

  • 0 — [0] inverse distance to a power
  • 1 — [1] linearly decreasing within search radius
  • 2 — [2] exponential weighting scheme
  • 3 — [3] gaussian weighting scheme

Default: 0

Inverse Distance Power [number]

<put parameter description here>

Default: 2

Exponential and Gaussian Weighting Bandwidth [number]

<put parameter description here>

Default: 1

Search Range [selection]

<put parameter description here>

Options:

  • 0 — [0] search radius (local)
  • 1 — [1] no search radius (global)

Default: 0

Search Radius [number]

<put parameter description here>

Default: 100.0

Search Mode [selection]

<put parameter description here>

Options:

  • 0 — [0] all directions
  • 1 — [1] quadrants

Default: 0

Number of Points [selection]

<put parameter description here>

Options:

  • 0 — [0] maximum number of points
  • 1 — [1] all points

Default: 0

Maximum Number of Points [number]

<put parameter description here>

Default: 10

Output extent [extent]

<put parameter description here>

Default: 0,1,0,1

Cellsize [number]

<put parameter description here>

Default: 100.0

Outputs

Grid [raster]
<put output description here>

Console usage

processing.runalg('saga:inversedistanceweighted', shapes, field, target, weighting, power, bandwidth, range, radius, mode, points, npoints, output_extent, user_size, user_grid)

See also