Outdated version of the documentation. Find the latest one here.

Unsupervised KMeans image classification

Description

<put algortithm description here>

Parameters

Input Image [raster]
<put parameter description here>
Available RAM (Mb) [number]

<put parameter description here>

Default: 128

Validity Mask [raster]

Optional.

<put parameter description here>

Training set size [number]

<put parameter description here>

Default: 100

Number of classes [number]

<put parameter description here>

Default: 5

Maximum number of iterations [number]

<put parameter description here>

Default: 1000

Convergence threshold [number]

<put parameter description here>

Default: 0.0001

Outputs

Output Image [raster]
<put output description here>
Centroid filename [file]
<put output description here>

Console usage

processing.runalg('otb:unsupervisedkmeansimageclassification', -in, -ram, -vm, -ts, -nc, -maxit, -ct, -out, -outmeans)

See also