Em novembro de 2007, passamos a exigir que todos os novos recursos que vão para a versão master passem a ser acompanhado de um teste de unidade. Inicialmente nós limitamos este requisito ao qgis_core, e vamos estender este requisito a outras partes da base de código conforme as pessoas estão familiarizados com os procedimentos de teste de unidade explicado nas seções que se seguem.
O teste de unidade é realizada utilizando uma combinação de QTestLib (a biblioteca de testes Qt) e CTest (um quadro para compilar e executar testes como parte do CMake build process). Vamos dar uma visão geral do processo antes de eu entrar em detalhes:
Existe algum código que você deseja testar, por exemplo uma classe ou função. Os defensores do Extreme Programming sugerem que o código não deve ser escrito ainda quando você começar a construir seus testes, e então conforme você estiver implementando seu código, você pode validar imediatamente cada nova parte funcional que você adicionar ao seu teste. Na prática, você provavelmente precisará escrever testes para código pré-existente no QGIS, já que estamos iniciando com um framework de testes depois que muita lógica já foi implementada.
Right with that overview in mind, I will delve into a bit of detail. I’ve already done much of the configuration for you in CMake and other places in the source tree so all you need to do are the easy bits - writing unit tests!
Creating a unit test is easy - typically you will do this by just creating a single .cpp file (not .h file is used) and implement all your test methods as public methods that return void. I’ll use a simple test class for QgsRasterLayer throughout the section that follows to illustrate. By convention we will name our test with the same name as the class they are testing but prefixed with ‘Test’. So our test implementation goes in a file called testqgsrasterlayer.cpp and the class itself will be TestQgsRasterLayer. First we add our standard copyright banner:
/***************************************************************************
testqgsvectorfilewriter.cpp
--------------------------------------
Date : Friday, Jan 27, 2015
Copyright: (C) 2015 by Tim Sutton
Email: [email protected]
***************************************************************************
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
***************************************************************************/
Next we use start our includes needed for the tests we plan to run. There is one special include all tests should have:
#include <QtTest/QtTest>
Beyond that you just continue implementing your class as per normal, pulling in whatever headers you may need:
//Qt includes...
#include <QObject>
#include <QString>
#include <QObject>
#include <QApplication>
#include <QFileInfo>
#include <QDir>
//qgis includes...
#include <qgsrasterlayer.h>
#include <qgsrasterbandstats.h>
#include <qgsapplication.h>
Since we are combining both class declaration and implementation in a single file the class declaration comes next. We start with our doxygen documentation. Every test case should be properly documented. We use the doxygen ingroup directive so that all the UnitTests appear as a module in the generated Doxygen documentation. After that comes a short description of the unit test and the class must inherit from QObject and include the Q_OBJECT macro.
/** \ingroup UnitTests
* This is a unit test for the QgsRasterLayer class.
*/
class TestQgsRasterLayer: public QObject
{
Q_OBJECT
All our test methods are implemented as private slots. The QtTest framework will sequentially call each private slot method in the test class. There are four ‘special’ methods which if implemented will be called at the start of the unit test (initTestCase), at the end of the unit test (cleanupTestCase). Before each test method is called, the init() method will be called and after each test method is called the cleanup() method is called. These methods are handy in that they allow you to allocate and cleanup resources prior to running each test, and the test unit as a whole.
private slots:
// will be called before the first testfunction is executed.
void initTestCase();
// will be called after the last testfunction was executed.
void cleanupTestCase(){};
// will be called before each testfunction is executed.
void init(){};
// will be called after every testfunction.
void cleanup();
Then come your test methods, all of which should take no parameters and should return void. The methods will be called in order of declaration. I am implementing two methods here which illustrates two types of testing. In the first case I want to generally test the various parts of the class are working, I can use a functional testing approach. Once again, extreme programmers would advocate writing these tests before implementing the class. Then as you work your way through your class implementation you iteratively run your unit tests. More and more test functions should complete sucessfully as your class implementation work progresses, and when the whole unit test passes, your new class is done and is now complete with a repeatable way to validate it.
Typically your unit tests would only cover the public API of your class, and normally you do not need to write tests for accessors and mutators. If it should happen that an acccessor or mutator is not working as expected you would normally implement a regression test to check for this (see lower down).
//
// Functional Testing
//
/** Check if a raster is valid. */
void isValid();
// more functional tests here ...
Next we implement our regression tests. Regression tests should be implemented to replicate the conditions of a particular bug. For example I recently received a report by email that the cell count by rasters was off by 1, throwing off all the statistics for the raster bands. I opened a bug (ticket #832) and then created a regression test that replicated the bug using a small test dataset (a 10x10 raster). Then I ran the test and ran it, verifying that it did indeed fail (the cell count was 99 instead of 100). Then I went to fix the bug and reran the unit test and the regression test passed. I committed the regression test along with the bug fix. Now if anybody breakes this in the source code again in the future, we can immediatly identify that the code has regressed. Better yet before committing any changes in the future, running our tests will ensure our changes don’t have unexpected side effects - like breaking existing functionality.
There is one more benefit to regression tests - they can save you time. If you ever fixed a bug that involved making changes to the source, and then running the application and performing a series of convoluted steps to replicate the issue, it will be immediately apparent that simply implementing your regression test before fixing the bug will let you automate the testing for bug resolution in an efficient manner.
To implement your regression test, you should follow the naming convention of regression<TicketID> for your test functions. If no redmine ticket exists for the regression, you should create one first. Using this approach allows the person running a failed regression test easily go and find out more information.
//
// Regression Testing
//
/** This is our second test case...to check if a raster
* reports its dimensions properly. It is a regression test
* for ticket #832 which was fixed with change r7650.
*/
void regression832();
// more regression tests go here ...
Finally in our test class declaration you can declare privately any data members and helper methods your unit test may need. In our case I will declare a QgsRasterLayer * which can be used by any of our test methods. The raster layer will be created in the initTestCase() function which is run before any other tests, and then destroyed using cleanupTestCase() which is run after all tests. By declaring helper methods (which may be called by various test functions) privately, you can ensure that they wont be automatically run by the QTest executable that is created when we compile our test.
private:
// Here we have any data structures that may need to
// be used in many test cases.
QgsRasterLayer * mpLayer;
};
That ends our class declaration. The implementation is simply inlined in the same file lower down. First our init and cleanup functions:
void TestQgsRasterLayer::initTestCase()
{
// init QGIS's paths - true means that all path will be inited from prefix
QString qgisPath = QCoreApplication::applicationDirPath ();
QgsApplication::setPrefixPath(qgisPath, TRUE);
#ifdef Q_OS_LINUX
QgsApplication::setPkgDataPath(qgisPath + "/../share/qgis");
#endif
//create some objects that will be used in all tests...
std::cout << "PrefixPATH: " << QgsApplication::prefixPath().toLocal8Bit().data() << std::endl;
std::cout << "PluginPATH: " << QgsApplication::pluginPath().toLocal8Bit().data() << std::endl;
std::cout << "PkgData PATH: " << QgsApplication::pkgDataPath().toLocal8Bit().data() << std::endl;
std::cout << "User DB PATH: " << QgsApplication::qgisUserDbFilePath().toLocal8Bit().data() << std::endl;
//create a raster layer that will be used in all tests...
QString myFileName (TEST_DATA_DIR); //defined in CmakeLists.txt
myFileName = myFileName + QDir::separator() + "tenbytenraster.asc";
QFileInfo myRasterFileInfo ( myFileName );
mpLayer = new QgsRasterLayer ( myRasterFileInfo.filePath(),
myRasterFileInfo.completeBaseName() );
}
void TestQgsRasterLayer::cleanupTestCase()
{
delete mpLayer;
}
The above init function illustrates a couple of interesting things.
Qt also provides some other interesting mechanisms for data driven testing, so if you are interested to know more on the topic, consult the Qt documentation.
Next lets look at our functional test. The isValid() test simply checks the raster layer was correctly loaded in the initTestCase. QVERIFY is a Qt macro that you can use to evaluate a test condition. There are a few other use macros Qt provide for use in your tests including:
Some of these macros are useful only when using the Qt framework for data driven testing (see the Qt docs for more detail).
void TestQgsRasterLayer::isValid()
{
QVERIFY ( mpLayer->isValid() );
}
Normally your functional tests would cover all the range of functionality of your classes public API where feasible. With our functional tests out the way, we can look at our regression test example.
Since the issue in bug #832 is a misreported cell count, writing our test is simply a matter of using QVERIFY to check that the cell count meets the expected value:
void TestQgsRasterLayer::regression832()
{
QVERIFY ( mpLayer->getRasterXDim() == 10 );
QVERIFY ( mpLayer->getRasterYDim() == 10 );
// regression check for ticket #832
// note getRasterBandStats call is base 1
QVERIFY ( mpLayer->getRasterBandStats(1).elementCountInt == 100 );
}
With all the unit test functions implemented, there one final thing we need to add to our test class:
QTEST_MAIN(TestQgsRasterLayer)
#include "testqgsrasterlayer.moc"
The purpose of these two lines is to signal to Qt’s moc that his is a QtTest (it will generate a main method that in turn calls each test funtion.The last line is the include for the MOC generated sources. You should replace ‘testqgsrasterlayer’ with the name of your class in lower case.
Adding your unit test to the build system is simply a matter of editing the CMakeLists.txt in the test directory, cloning one of the existing test blocks, and then replacing your test class name into it. For example:
# QgsRasterLayer test
ADD_QGIS_TEST(rasterlayertest testqgsrasterlayer.cpp)
I’ll run through these lines briefly to explain what they do, but if you are not interested, just do the step explained in the above section and section.
MACRO (ADD_QGIS_TEST testname testsrc)
SET(qgis_${testname}_SRCS ${testsrc} ${util_SRCS})
SET(qgis_${testname}_MOC_CPPS ${testsrc})
QT4_WRAP_CPP(qgis_${testname}_MOC_SRCS ${qgis_${testname}_MOC_CPPS})
ADD_CUSTOM_TARGET(qgis_${testname}moc ALL DEPENDS ${qgis_${testname}_MOC_SRCS})
ADD_EXECUTABLE(qgis_${testname} ${qgis_${testname}_SRCS})
ADD_DEPENDENCIES(qgis_${testname} qgis_${testname}moc)
TARGET_LINK_LIBRARIES(qgis_${testname} ${QT_LIBRARIES} qgis_core)
SET_TARGET_PROPERTIES(qgis_${testname}
PROPERTIES
# skip the full RPATH for the build tree
SKIP_BUILD_RPATHTRUE
# when building, use the install RPATH already
# (so it doesn't need to relink when installing)
BUILD_WITH_INSTALL_RPATH TRUE
# the RPATH to be used when installing
INSTALL_RPATH ${QGIS_LIB_DIR}
# add the automatically determined parts of the RPATH
# which point to directories outside the build tree to the install RPATH
INSTALL_RPATH_USE_LINK_PATH true)
IF (APPLE)
# For Mac OS X, the executable must be at the root of the bundle's executable folder
INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX})
ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/qgis_${testname})
ELSE (APPLE)
INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX}/bin)
ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/bin/qgis_${testname})
ENDIF (APPLE)
ENDMACRO (ADD_QGIS_TEST)
Lets look a little more in detail at the individual lines. First we define the list of sources for our test. Since we have only one source file (following the methodology I described above where class declaration and definition are in the same file) its a simple statement:
SET(qgis_${testname}_SRCS ${testsrc} ${util_SRCS})
Since our test class needs to be run through the Qt meta object compiler (moc) we need to provide a couple of lines to make that happen too:
SET(qgis_${testname}_MOC_CPPS ${testsrc})
QT4_WRAP_CPP(qgis_${testname}_MOC_SRCS ${qgis_${testname}_MOC_CPPS})
ADD_CUSTOM_TARGET(qgis_${testname}moc ALL DEPENDS ${qgis_${testname}_MOC_SRCS})
Next we tell cmake that it must make an executable from the test class. Remember in the previous section on the last line of the class implementation I included the moc outputs directly into our test class, so that will give it (among other things) a main method so the class can be compiled as an executable:
ADD_EXECUTABLE(qgis_${testname} ${qgis_${testname}_SRCS})
ADD_DEPENDENCIES(qgis_${testname} qgis_${testname}moc)
Next we need to specify any library dependencies. At the moment, classes have been implemented with a catch-all QT_LIBRARIES dependency, but I will be working to replace that with the specific Qt libraries that each class needs only. Of course you also need to link to the relevant qgis libraries as required by your unit test.
TARGET_LINK_LIBRARIES(qgis_${testname} ${QT_LIBRARIES} qgis_core)
Next I tell cmake to install the tests to the same place as the qgis binaries itself. This is something I plan to remove in the future so that the tests can run directly from inside the source tree.
SET_TARGET_PROPERTIES(qgis_${testname}
PROPERTIES
# skip the full RPATH for the build tree
SKIP_BUILD_RPATHTRUE
# when building, use the install RPATH already
# (so it doesn't need to relink when installing)
BUILD_WITH_INSTALL_RPATH TRUE
# the RPATH to be used when installing
INSTALL_RPATH ${QGIS_LIB_DIR}
# add the automatically determined parts of the RPATH
# which point to directories outside the build tree to the install RPATH
INSTALL_RPATH_USE_LINK_PATH true)
IF (APPLE)
# For Mac OS X, the executable must be at the root of the bundle's executable folder
INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX})
ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/qgis_${testname})
ELSE (APPLE)
INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX}/bin)
ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/bin/qgis_${testname})
ENDIF (APPLE)
Finally the above uses ADD_TEST to register the test with cmake / ctest. Here is where the best magic happens - we register the class with ctest. If you recall in the overview I gave in the beginning of this section, we are using both QtTest and CTest together. To recap, QtTest adds a main method to your test unit and handles calling your test methods within the class. It also provides some macros like QVERIFY that you can use as to test for failure of the tests using conditions. The output from a QtTest unit test is an executable which you can run from the command line. However when you have a suite of tests and you want to run each executable in turn, and better yet integrate running tests into the build process, the CTest is what we use.
To build the unit test you need only to make sure that ENABLE_TESTS=true in the cmake configuration. There are two ways to do this:
Other than that, just build QGIS as per normal and the tests should build too.
A maneira mais simples de executar os testes é como parte do seu processo de criação normal:
make && make install && make test
The make test command will invoke CTest which will run each test that was registered using the ADD_TEST CMake directive described above. Typical output from make test will look like this:
Running tests...
Start processing tests
Test project /Users/tim/dev/cpp/qgis/build
## 13 Testing qgis_applicationtest***Exception: Other
## 23 Testing qgis_filewritertest *** Passed
## 33 Testing qgis_rasterlayertest*** Passed
## 0 tests passed, 3 tests failed out of 3
The following tests FAILED:
## 1- qgis_applicationtest (OTHER_FAULT)
Errors while running CTest
make: *** [test] Error 8
If a test fails, you can use the ctest command to examine more closely why it failed. Use the -R option to specify a regex for which tests you want to run and -V to get verbose output:
$ ctest -R appl -V
Start processing tests
Test project /Users/tim/dev/cpp/qgis/build
Constructing a list of tests
Done constructing a list of tests
Changing directory into /Users/tim/dev/cpp/qgis/build/tests/src/core
## 13 Testing qgis_applicationtest
Test command: /Users/tim/dev/cpp/qgis/build/tests/src/core/qgis_applicationtest
********* Start testing of TestQgsApplication *********
Config: Using QTest library 4.3.0, Qt 4.3.0
PASS : TestQgsApplication::initTestCase()
PrefixPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/../
PluginPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//lib/qgis
PkgData PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis
User DB PATH: /Users/tim/.qgis/qgis.db
PASS : TestQgsApplication::getPaths()
PrefixPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/../
PluginPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//lib/qgis
PkgData PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis
User DB PATH: /Users/tim/.qgis/qgis.db
QDEBUG : TestQgsApplication::checkTheme() Checking if a theme icon exists:
QDEBUG : TestQgsApplication::checkTheme()
/Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis/themes/default//mIconProjectionDisabled.png
FAIL!: TestQgsApplication::checkTheme() '!myPixmap.isNull()' returned FALSE. ()
Loc: [/Users/tim/dev/cpp/qgis/tests/src/core/testqgsapplication.cpp(59)]
PASS : TestQgsApplication::cleanupTestCase()
Totals: 3 passed, 1 failed, 0 skipped
********* Finished testing of TestQgsApplication *********
-- Process completed
***Failed
## 0 tests passed, 1 tests failed out of 1
The following tests FAILED:
## 1- qgis_applicationtest (Failed)
Errors while running CTest
Well that concludes this section on writing unit tests in QGIS. We hope you will get into the habit of writing test to test new functionality and to check for regressions. Some aspects of the test system (in particular the CMakeLists.txt parts) are still being worked on so that the testing framework works in a truly platform way. I will update this document as things progress.