Outdated version of the documentation. Find the latest one here.

Utilisation de couches vectorielles

Cette section résume les diverses actions possibles sur les couches vectorielles.

Récupérer les informations relatives aux attributs

You can retrieve information about the fields associated with a vector layer by calling pendingFields() on a QgsVectorLayer instance:

# "layer" is a QgsVectorLayer instance
for field in layer.pendingFields():
    print field.name(), field.typeName()

Note

Starting from QGIS 2.12 there is also a fields() in QgsVectorLayer which is an alias to pendingFields().

Sélection des entités

In QGIS desktop, features can be selected in different ways, the user can click on a feature, draw a rectangle on the map canvas or use an expression filter. Selected features are normally highlighted in a different color (default is yellow) to draw user’s attention on the selection. Sometimes can be useful to programmatically select features or to change the default color.

To change the selection color you can use setSelectionColor() method of QgsMapCanvas as shown in the following example:

iface.mapCanvas().setSelectionColor( QColor("red") )

To add add features to the selected features list for a given layer, you can call setSelectedFeatures() passing to it the list of features IDs:

# Get the active layer (must be a vector layer)
layer = iface.activeLayer()
# Get the first feature from the layer
feature = layer.getFeatures().next()
# Add this features to the selected list
layer.setSelectedFeatures([feature.id()])

To clear the selection, just pass an empty list:

layer.setSelectedFeatures([])

Itérer sur une couche vecteur

Iterating over the features in a vector layer is one of the most common tasks. Below is an example of the simple basic code to perform this task and showing some information about each feature. the layer variable is assumed to have a QgsVectorLayer object

iter = layer.getFeatures()
for feature in iter:
    # retrieve every feature with its geometry and attributes
    # fetch geometry
    geom = feature.geometry()
    print "Feature ID %d: " % feature.id()

    # show some information about the feature
    if geom.type() == QGis.Point:
        x = geom.asPoint()
        print "Point: " + str(x)
    elif geom.type() == QGis.Line:
        x = geom.asPolyline()
        print "Line: %d points" % len(x)
    elif geom.type() == QGis.Polygon:
        x = geom.asPolygon()
        numPts = 0
        for ring in x:
            numPts += len(ring)
        print "Polygon: %d rings with %d points" % (len(x), numPts)
    else:
        print "Unknown"

    # fetch attributes
    attrs = feature.attributes()

    # attrs is a list. It contains all the attribute values of this feature
    print attrs

Accès aux attributs

Attributes can be referred to by their name.

print feature['name']

Alternatively, attributes can be referred to by index. This is will be a bit faster than using the name. For example, to get the first attribute:

print feature[0]

Itérer sur une sélection d’entités

if you only need selected features, you can use the selectedFeatures() method from vector layer:

selection = layer.selectedFeatures()
print len(selection)
for feature in selection:
    # do whatever you need with the feature

Another option is the Processing features() method:

import processing
features = processing.features(layer)
for feature in features:
    # do whatever you need with the feature

By default, this will iterate over all the features in the layer, in case there is no selection, or over the selected features otherwise. Note that this behavior can be changed in the Processing options to ignore selections.

Itérer sur un sous-ensemble d’entités

If you want to iterate over a given subset of features in a layer, such as those within a given area, you have to add a QgsFeatureRequest object to the getFeatures() call. Here’s an example

request = QgsFeatureRequest()
request.setFilterRect(areaOfInterest)
for feature in layer.getFeatures(request):
    # do whatever you need with the feature

With setLimit() you can limit the number of requested features. Here’s an example

request = QgsFeatureRequest()
request.setLimit(2)
for feature in layer.getFeatures(request):
    # loop through only 2 features

If you need an attribute-based filter instead (or in addition) of a spatial one like shown in the examples above, you can build an QgsExpression object and pass it to the QgsFeatureRequest constructor. Here’s an example

# The expression will filter the features where the field "location_name"
# contains the word "Lake" (case insensitive)
exp = QgsExpression('location_name ILIKE \'%Lake%\'')
request = QgsFeatureRequest(exp)

See Expressions, Filtrage et Calcul de valeurs for the details about the syntax supported by QgsExpression.

La requête peut être utilisée pour définir les données à récupérer de chaque entité, de manière à ce que l’itérateur ne retourne que des données partielles pour toutes les entités.

# Only return selected fields
request.setSubsetOfAttributes([0,2])
# More user friendly version
request.setSubsetOfAttributes(['name','id'],layer.pendingFields())
# Don't return geometry objects
request.setFlags(QgsFeatureRequest.NoGeometry)

Astuce

Speed features request

If you only need a subset of the attributes or you don’t need the geometry information, you can significantly increase the speed of the features request by using QgsFeatureRequest.NoGeometry flag or specifying a subset of attributes (possibly empty) like shown in the example above.

Modifier des couches vecteur

Most vector data providers support editing of layer data. Sometimes they support just a subset of possible editing actions. Use the capabilities() function to find out what set of functionality is supported

caps = layer.dataProvider().capabilities()
# Check if a particular capability is supported:
caps & QgsVectorDataProvider.DeleteFeatures
# Print 2 if DeleteFeatures is supported

For a list of all available capabilities, please refer to the API Documentation of QgsVectorDataProvider

To print layer’s capabilities textual description in a comma separated list you can use capabilitiesString() as in the following example:

caps_string = layer.dataProvider().capabilitiesString()
# Print:
# u'Add Features, Delete Features, Change Attribute Values,
# Add Attributes, Delete Attributes, Create Spatial Index,
# Fast Access to Features at ID, Change Geometries,
# Simplify Geometries with topological validation'

En utilisant l’une des méthodes qui suivent pour l’édition de couches vectorielles, les changements sont directement validés dans le dispositif de stockage d’informations sous-jacent (base de données, fichier, etc.). Si vous désirez uniquement faire des changements temporaires, passez à la section suivante qui explique comment réaliser des modifications à l’aide d’un tampon d’édition.

Note

Si vous travaillez dans QGIS (soit à partir de la console, soit à partir d’une extension), il peut être nécessaire de forcer la mise à jour du canevas de cartes pour pouvoir voir les changements que vous avez effectués aux géométries, au style ou aux attributs

# If caching is enabled, a simple canvas refresh might not be sufficient
# to trigger a redraw and you must clear the cached image for the layer
if iface.mapCanvas().isCachingEnabled():
    layer.setCacheImage(None)
else:
    iface.mapCanvas().refresh()

Ajout d’Entités

Create some QgsFeature instances and pass a list of them to provider’s addFeatures() method. It will return two values: result (true/false) and list of added features (their ID is set by the data store).

To set up the attributes you can either initialize the feature passing a QgsFields instance or call initAttributes() passing the number of fields you want to be added.

if caps & QgsVectorDataProvider.AddFeatures:
    feat = QgsFeature(layer.pendingFields())
    feat.setAttributes([0, 'hello'])
    # Or set a single attribute by key or by index:
    feat.setAttribute('name', 'hello')
    feat.setAttribute(0, 'hello')
    feat.setGeometry(QgsGeometry.fromPoint(QgsPoint(123, 456)))
    (res, outFeats) = layer.dataProvider().addFeatures([feat])

Suppression d’Entités

To delete some features, just provide a list of their feature IDs

if caps & QgsVectorDataProvider.DeleteFeatures:
    res = layer.dataProvider().deleteFeatures([5, 10])

Modifier des Entités

It is possible to either change feature’s geometry or to change some attributes. The following example first changes values of attributes with index 0 and 1, then it changes the feature’s geometry

fid = 100   # ID of the feature we will modify

if caps & QgsVectorDataProvider.ChangeAttributeValues:
    attrs = { 0 : "hello", 1 : 123 }
    layer.dataProvider().changeAttributeValues({ fid : attrs })

if caps & QgsVectorDataProvider.ChangeGeometries:
    geom = QgsGeometry.fromPoint(QgsPoint(111,222))
    layer.dataProvider().changeGeometryValues({ fid : geom })

Astuce

Favor QgsVectorLayerEditUtils class for geometry-only edits

If you only need to change geometries, you might consider using the QgsVectorLayerEditUtils which provides some of useful methods to edit geometries (translate, insert or move vertex etc.).

Astuce

Directly save changes using with based command

Using with edit(layer): the changes will be commited automatically calling commitChanges() at the end. If any exception occurs, it will rollBack() all the changes. See Modifier des couches vecteur à l’aide d’un tampon d’édition.

Ajout et Suppression de Champs

Pour ajouter des champs (attributs) vous devez indiquer une liste de définitions de champs. Pour la suppression de champs, fournissez juste une liste des index des champs.

from PyQt4.QtCore import QVariant

if caps & QgsVectorDataProvider.AddAttributes:
    res = layer.dataProvider().addAttributes(
        [QgsField("mytext", QVariant.String),
        QgsField("myint", QVariant.Int)])

if caps & QgsVectorDataProvider.DeleteAttributes:
    res = layer.dataProvider().deleteAttributes([0])

Après l’ajout ou la suppression de champs dans le pilote de données, les champs de la couche doivent être rafraîchis car les changements ne sont pas automatiquement propagés.

layer.updateFields()

Modifier des couches vecteur à l’aide d’un tampon d’édition

When editing vectors within QGIS application, you have to first start editing mode for a particular layer, then do some modifications and finally commit (or rollback) the changes. All the changes you do are not written until you commit them — they stay in layer’s in-memory editing buffer. It is possible to use this functionality also programmatically — it is just another method for vector layer editing that complements the direct usage of data providers. Use this option when providing some GUI tools for vector layer editing, since this will allow user to decide whether to commit/rollback and allows the usage of undo/redo. When committing changes, all changes from the editing buffer are saved to data provider.

To find out whether a layer is in editing mode, use isEditable() — the editing functions work only when the editing mode is turned on. Usage of editing functions

from PyQt4.QtCore import QVariant

# add two features (QgsFeature instances)
layer.addFeatures([feat1,feat2])
# delete a feature with specified ID
layer.deleteFeature(fid)

# set new geometry (QgsGeometry instance) for a feature
layer.changeGeometry(fid, geometry)
# update an attribute with given field index (int) to given value (QVariant)
layer.changeAttributeValue(fid, fieldIndex, value)

# add new field
layer.addAttribute(QgsField("mytext", QVariant.String))
# remove a field
layer.deleteAttribute(fieldIndex)

In order to make undo/redo work properly, the above mentioned calls have to be wrapped into undo commands. (If you do not care about undo/redo and want to have the changes stored immediately, then you will have easier work by editing with data provider.) How to use the undo functionality

layer.beginEditCommand("Feature triangulation")

# ... call layer's editing methods ...

if problem_occurred:
  layer.destroyEditCommand()
  return

# ... more editing ...

layer.endEditCommand()

The beginEditCommand() will create an internal “active” command and will record subsequent changes in vector layer. With the call to endEditCommand() the command is pushed onto the undo stack and the user will be able to undo/redo it from GUI. In case something went wrong while doing the changes, the destroyEditCommand() method will remove the command and rollback all changes done while this command was active.

To start editing mode, there is startEditing() method, to stop editing there are commitChanges() and rollBack() — however normally you should not need these methods and leave this functionality to be triggered by the user.

Vous pouvez également utiliser le: code: with edit (layer) -déclaration pour envelopper l’acceptation et l’annulation dans un bloc de code plus sémantique comme illustré dans l’exemple ci-dessous:

with edit(layer):
  feat = layer.getFeatures().next()
  feat[0] = 5
  layer.updateFeature(feat)

This will automatically call commitChanges() in the end. If any exception occurs, it will rollBack() all the changes. In case a problem is encountered within commitChanges() (when the method returns False) a QgsEditError exception will be raised.

Utilisation des index spatiaux

Les index spatiaux peuvent améliorer fortement les performances de votre code si vous réalisez de fréquentes requêtes sur une couche vecteur. Imaginez par exemple que vous écrivez un algorithme d’interpolation et que pour une position donnée, vous devez déterminer les 10 points les plus proches dans une couche de points, dans l’objectif d’utiliser ces points pour calculer une valeur interpolée. Sans index spatial, la seule méthode pour QGIS de trouver ces 10 points est de calculer la distance entre tous les points de la couche et l’endroit indiqué et de comparer ces distances entre-elles. Cela peut prendre beaucoup de temps spécialement si vous devez répeter l’opération sur plusieurs emplacements. Si index spatial existe pour la couche, l’opération est bien plus efficace.

Vous pouvez vous représenter une couche sans index spatial comme un annuaire dans lequel les numéros de téléphone ne sont pas ordonnés ou indexés. Le seul moyen de trouver le numéro de téléphone d’une personne est de lire l’annuaire en commençant du début jusqu’à ce que vous le trouviez.

Les index spatiaux ne sont pas créés par défaut pour une couche vectorielle QGIS, mais vous pouvez les créer facilement. C’est ce que vous devez faire:

  • create spatial index — the following code creates an empty index

    index = QgsSpatialIndex()
    
  • add features to index — index takes QgsFeature object and adds it to the internal data structure. You can create the object manually or use one from previous call to provider’s nextFeature()

    index.insertFeature(feat)
    
  • Alternativement, vous pouvez charger toutes les entités de la couche en une fois en utilisant un chargement en volume.

    index = QgsSpatialIndex(layer.getFeatures())
    
  • Une fois que l’index est rempli avec des valeurs, vous pouvez lancer vos requêtes:

    # returns array of feature IDs of five nearest features
    nearest = index.nearestNeighbor(QgsPoint(25.4, 12.7), 5)
    
    # returns array of IDs of features which intersect the rectangle
    intersect = index.intersects(QgsRectangle(22.5, 15.3, 23.1, 17.2))
    

Writing Vector Layers

You can write vector layer files using QgsVectorFileWriter class. It supports any other kind of vector file that OGR supports (shapefiles, GeoJSON, KML and others).

There are two possibilities how to export a vector layer:

  • from an instance of QgsVectorLayer

    error = QgsVectorFileWriter.writeAsVectorFormat(layer, "my_shapes.shp", "CP1250", None, "ESRI Shapefile")
    
    if error == QgsVectorFileWriter.NoError:
        print "success!"
    
    error = QgsVectorFileWriter.writeAsVectorFormat(layer, "my_json.json", "utf-8", None, "GeoJSON")
    if error == QgsVectorFileWriter.NoError:
        print "success again!"
    

    The third parameter specifies output text encoding. Only some drivers need this for correct operation - shapefiles are one of those — however in case you are not using international characters you do not have to care much about the encoding. The fourth parameter that we left as None may specify destination CRS — if a valid instance of QgsCoordinateReferenceSystem is passed, the layer is transformed to that CRS.

    Consultez les formats gérés par OGR pour trouver les noms de pilote valides. Vous devez indiquer la valeur dans la colonne” Code “comme nom du pilote. En option, vous pouvez définir si vous souhaitez exporter uniquement les fonctions sélectionnées, transmettre d’autres options spécifiques au pilote pour la création ou indiquer à l’auteur de ne pas créer d’attributs. Consultez la documentation pour connaître la syntaxe complète.

  • directly from features

    from PyQt4.QtCore import QVariant
    
    # define fields for feature attributes. A QgsFields object is needed
    fields = QgsFields()
    fields.append(QgsField("first", QVariant.Int))
    fields.append(QgsField("second", QVariant.String))
    
    """ create an instance of vector file writer, which will create the vector file.
    Arguments:
    1. path to new file (will fail if exists already)
    2. encoding of the attributes
    3. field map
    4. geometry type - from WKBTYPE enum
    5. layer's spatial reference (instance of
       QgsCoordinateReferenceSystem) - optional
    6. driver name for the output file """
    writer = QgsVectorFileWriter("my_shapes.shp", "CP1250", fields, QGis.WKBPoint, None, "ESRI Shapefile")
    
    if writer.hasError() != QgsVectorFileWriter.NoError:
        print "Error when creating shapefile: ",  w.errorMessage()
    
    # add a feature
    fet = QgsFeature()
    fet.setGeometry(QgsGeometry.fromPoint(QgsPoint(10,10)))
    fet.setAttributes([1, "text"])
    writer.addFeature(fet)
    
    # delete the writer to flush features to disk
    del writer
    

Memory Provider

Memory provider is intended to be used mainly by plugin or 3rd party app developers. It does not store data on disk, allowing developers to use it as a fast backend for some temporary layers.

Le fournisseur gère les champs en chaînes de caractères, en entiers et en réels.

The memory provider also supports spatial indexing, which is enabled by calling the provider’s createSpatialIndex() function. Once the spatial index is created you will be able to iterate over features within smaller regions faster (since it’s not necessary to traverse all the features, only those in specified rectangle).

A memory provider is created by passing "memory" as the provider string to the QgsVectorLayer constructor.

Le constructeur utilise également une URI qui définit le type de géométrie de la couche parmi: "Point", "LineString", "Polygon", "MultiPoint", "MultiLineString", ou "MultiPolygon".

L’URI peut également indiquer un système de coordonnée de référence, des champs et l’indexation. La syntaxe est la suivante:

crs=définition
Specifies the coordinate reference system, where definition may be any of the forms accepted by QgsCoordinateReferenceSystem.createFromString()
index=yes

Spécifie que le fournisseur utilisera un index spatial

field=nom:type(longueur,précision)

Spécifie un attribut de la couche. L’attribut dispose d’un nom et optionnellement d’un type (integer, double ou string), d’une longueur et d’une précision. Il peut y avoir plusieurs définitions de champs.

L’exemple suivant montre une URI intégrant toutes ces options

"Point?crs=epsg:4326&field=id:integer&field=name:string(20)&index=yes"

L’exemple suivant illustre la création et le remplissage d’un fournisseur de données en mémoire

from PyQt4.QtCore import QVariant

# create layer
vl = QgsVectorLayer("Point", "temporary_points", "memory")
pr = vl.dataProvider()

# add fields
pr.addAttributes([QgsField("name", QVariant.String),
                    QgsField("age",  QVariant.Int),
                    QgsField("size", QVariant.Double)])
vl.updateFields() # tell the vector layer to fetch changes from the provider

# add a feature
fet = QgsFeature()
fet.setGeometry(QgsGeometry.fromPoint(QgsPoint(10,10)))
fet.setAttributes(["Johny", 2, 0.3])
pr.addFeatures([fet])

# update layer's extent when new features have been added
# because change of extent in provider is not propagated to the layer
vl.updateExtents()

Finalement, vérifions que tout s’est bien déroulé

# show some stats
print "fields:", len(pr.fields())
print "features:", pr.featureCount()
e = layer.extent()
print "extent:", e.xMiniminum(), e.yMinimum(), e.xMaximum(), e.yMaximum()

# iterate over features
f = QgsFeature()
features = vl.getFeatures()
for f in features:
    print "F:", f.id(), f.attributes(), f.geometry().asPoint()

Apparence (Symbologie) des couches vecteur

Lorsqu’une couche vecteur est en cours de rendu, l’apparence des données est assurée par un moteur de rendu et des symboles associés à la couche. Les symboles sont des classes qui gèrent le dessin de la représentation visuelle des entités alors que les moteurs de rendu déterminent quel symbole doit être utilisé pour une entité particulière.

The renderer for a given layer can obtained as shown below:

renderer = layer.rendererV2()

Munis de cette référence, faisons un peu d’exploration:

print "Type:", rendererV2.type()

There are several known renderer types available in QGIS core library:

Type

Classe

Description
singleSymbol QgsSingleSymbolRendererV2

Affiche toutes les entités avec le même symbole.

categorizedSymbol QgsCategorizedSymbolRendererV2

Affiche les entités en utilisant un symbole différent pour chaque catégorie.

graduatedSymbol QgsGraduatedSymbolRendererV2

Affiche les entités en utilisant un symbole différent pour chaque plage de valeurs.

There might be also some custom renderer types, so never make an assumption there are just these types. You can query QgsRendererV2Registry singleton to find out currently available renderers:

print QgsRendererV2Registry.instance().renderersList()
# Print:
[u'singleSymbol',
u'categorizedSymbol',
u'graduatedSymbol',
u'RuleRenderer',
u'pointDisplacement',
u'invertedPolygonRenderer',
u'heatmapRenderer']

Il est possible d’obtenir un extrait du contenu d’un moteur de rendu sous forme de texte, ce qui peut être utile lors du débogage:

print rendererV2.dump()

Moteur de rendu à symbole unique

You can get the symbol used for rendering by calling symbol() method and change it with setSymbol() method (note for C++ devs: the renderer takes ownership of the symbol.)

You can change the symbol used by a particular vector layer by calling setSymbol() passing an instance of the appropriate symbol instance. Symbols for point, line and polygon layers can be created by calling the createSimple() function of the corresponding classes QgsMarkerSymbolV2, QgsLineSymbolV2 and QgsFillSymbolV2.

The dictionary passed to createSimple() sets the style properties of the symbol.

For example you can replace the symbol used by a particular point layer by calling setSymbol() passing an instance of a QgsMarkerSymbolV2 as in the following code example:

symbol = QgsMarkerSymbolV2.createSimple({'name': 'square', 'color': 'red'})
layer.rendererV2().setSymbol(symbol)

name indique la forme du marqueur, et peut être l’une des valeurs suivantes :

  • circle
  • square
  • cross
  • rectangle
  • diamond
  • pentagon
  • triangle
  • equilateral_triangle
  • star
  • regular_star
  • arrow
  • filled_arrowhead
  • x

To get the full list of properties for the first symbol layer of a simbol instance you can follow the example code:

print layer.rendererV2().symbol().symbolLayers()[0].properties()
# Prints
{u'angle': u'0',
u'color': u'0,128,0,255',
u'horizontal_anchor_point': u'1',
u'name': u'circle',
u'offset': u'0,0',
u'offset_map_unit_scale': u'0,0',
u'offset_unit': u'MM',
u'outline_color': u'0,0,0,255',
u'outline_style': u'solid',
u'outline_width': u'0',
u'outline_width_map_unit_scale': u'0,0',
u'outline_width_unit': u'MM',
u'scale_method': u'area',
u'size': u'2',
u'size_map_unit_scale': u'0,0',
u'size_unit': u'MM',
u'vertical_anchor_point': u'1'}

Cela peut être utile si vous souhaitez modifier certaines propriétés:

# You can alter a single property...
layer.rendererV2().symbol().symbolLayer(0).setName('square')
# ... but not all properties are accessible from methods,
# you can also replace the symbol completely:
props = layer.rendererV2().symbol().symbolLayer(0).properties()
props['color'] = 'yellow'
props['name'] = 'square'
layer.rendererV2().setSymbol(QgsMarkerSymbolV2.createSimple(props))

Moteur de rendu à symboles catégorisés

You can query and set attribute name which is used for classification: use classAttribute() and setClassAttribute() methods.

Pour obtenir la liste des catégories

for cat in rendererV2.categories():
    print "%s: %s :: %s" % (cat.value().toString(), cat.label(), str(cat.symbol()))

Where value() is the value used for discrimination between categories, label() is a text used for category description and symbol() method returns assigned symbol.

The renderer usually stores also original symbol and color ramp which were used for the classification: sourceColorRamp() and sourceSymbol() methods.

Moteur de rendu à symboles gradués

Ce moteur de rendu est très similaire au moteur de rendu par symbole catégorisé ci-dessus mais au lieu d’utiliser une seule valeur d’attribut par classe, il utilise une classification par plages de valeurs et peut donc être employé uniquement sur des attributs numériques.

Pour avoir plus d’informations sur les plages utilisées par le moteur de rendu:

for ran in rendererV2.ranges():
    print "%f - %f: %s %s" % (
        ran.lowerValue(),
        ran.upperValue(),
        ran.label(),
        str(ran.symbol())
      )

Vous pouvez à nouveau utiliser classAttribute() pour trouver le nom de l’attribut de classification ainsi que les méthodes sourceSymbol() et sourceColorRamp(). Il existe en plus une méthode mode() qui permet de déterminer comment les classes ont été créées: en utilisant des intervalles égaux, des quantiles ou tout autre méthode.

Si vous souhaitez créer votre propre moteur de rendu gradué, vous pouvez utiliser l’extrait de code qui est présenté dans l’exemple ci-dessous (qui créé simplement un arrangement en deux classes):

from qgis.core import *

myVectorLayer = QgsVectorLayer(myVectorPath, myName, 'ogr')
myTargetField = 'target_field'
myRangeList = []
myOpacity = 1
# Make our first symbol and range...
myMin = 0.0
myMax = 50.0
myLabel = 'Group 1'
myColour = QtGui.QColor('#ffee00')
mySymbol1 = QgsSymbolV2.defaultSymbol(myVectorLayer.geometryType())
mySymbol1.setColor(myColour)
mySymbol1.setAlpha(myOpacity)
myRange1 = QgsRendererRangeV2(myMin, myMax, mySymbol1, myLabel)
myRangeList.append(myRange1)
#now make another symbol and range...
myMin = 50.1
myMax = 100
myLabel = 'Group 2'
myColour = QtGui.QColor('#00eeff')
mySymbol2 = QgsSymbolV2.defaultSymbol(
     myVectorLayer.geometryType())
mySymbol2.setColor(myColour)
mySymbol2.setAlpha(myOpacity)
myRange2 = QgsRendererRangeV2(myMin, myMax, mySymbol2 myLabel)
myRangeList.append(myRange2)
myRenderer = QgsGraduatedSymbolRendererV2('', myRangeList)
myRenderer.setMode(QgsGraduatedSymbolRendererV2.EqualInterval)
myRenderer.setClassAttribute(myTargetField)

myVectorLayer.setRendererV2(myRenderer)
QgsMapLayerRegistry.instance().addMapLayer(myVectorLayer)

Travailler avec les symboles

For representation of symbols, there is QgsSymbolV2 base class with three derived classes:

  • QgsMarkerSymbolV2 — for point features
  • QgsLineSymbolV2 — for line features
  • QgsFillSymbolV2 — for polygon features

Every symbol consists of one or more symbol layers (classes derived from QgsSymbolLayerV2). The symbol layers do the actual rendering, the symbol class itself serves only as a container for the symbol layers.

Having an instance of a symbol (e.g. from a renderer), it is possible to explore it: type() method says whether it is a marker, line or fill symbol. There is a dump() method which returns a brief description of the symbol. To get a list of symbol layers

for i in xrange(symbol.symbolLayerCount()):
    lyr = symbol.symbolLayer(i)
    print "%d: %s" % (i, lyr.layerType())

To find out symbol’s color use color() method and setColor() to change its color. With marker symbols additionally you can query for the symbol size and rotation with size() and angle() methods, for line symbols there is width() method returning line width.

La taille et la largeur sont exprimées en millimètres par défaut, les angles sont en degrés.

Travailler avec des couches de symboles

As said before, symbol layers (subclasses of QgsSymbolLayerV2) determine the appearance of the features. There are several basic symbol layer classes for general use. It is possible to implement new symbol layer types and thus arbitrarily customize how features will be rendered. The layerType() method uniquely identifies the symbol layer class — the basic and default ones are SimpleMarker, SimpleLine and SimpleFill symbol layers types.

You can get a complete list of the types of symbol layers you can create for a given symbol layer class like this

from qgis.core import QgsSymbolLayerV2Registry
myRegistry = QgsSymbolLayerV2Registry.instance()
myMetadata = myRegistry.symbolLayerMetadata("SimpleFill")
for item in myRegistry.symbolLayersForType(QgsSymbolV2.Marker):
    print item

Output

EllipseMarker
FontMarker
SimpleMarker
SvgMarker
VectorField

QgsSymbolLayerV2Registry class manages a database of all available symbol layer types.

To access symbol layer data, use its properties() method that returns a key-value dictionary of properties which determine the appearance. Each symbol layer type has a specific set of properties that it uses. Additionally, there are generic methods color(), size(), angle(), width() with their setter counterparts. Of course size and angle is available only for marker symbol layers and width for line symbol layers.

Créer des types personnalisés de couches de symbole

Imaginons que vous souhaitez personnaliser la manière dont sont affichées les données. Vous pouvez créer votre propre classe de couche de symbole qui dessinera les entités de la manière voulue. Voici un exemple de marqueur qui dessine des cercles rouges avec un rayon spécifique.

class FooSymbolLayer(QgsMarkerSymbolLayerV2):

  def __init__(self, radius=4.0):
      QgsMarkerSymbolLayerV2.__init__(self)
      self.radius = radius
      self.color = QColor(255,0,0)

  def layerType(self):
     return "FooMarker"

  def properties(self):
      return { "radius" : str(self.radius) }

  def startRender(self, context):
    pass

  def stopRender(self, context):
      pass

  def renderPoint(self, point, context):
      # Rendering depends on whether the symbol is selected (QGIS >= 1.5)
      color = context.selectionColor() if context.selected() else self.color
      p = context.renderContext().painter()
      p.setPen(color)
      p.drawEllipse(point, self.radius, self.radius)

  def clone(self):
      return FooSymbolLayer(self.radius)

The layerType() method determines the name of the symbol layer, it has to be unique among all symbol layers. Properties are used for persistence of attributes. clone() method must return a copy of the symbol layer with all attributes being exactly the same. Finally there are rendering methods: startRender() is called before rendering first feature, stopRender() when rendering is done. And renderPoint() method which does the rendering. The coordinates of the point(s) are already transformed to the output coordinates.

For polylines and polygons the only difference would be in the rendering method: you would use renderPolyline() which receives a list of lines, resp. renderPolygon() which receives list of points on outer ring as a first parameter and a list of inner rings (or None) as a second parameter.

En général, il est pratique d’ajouter une interface graphique pour paramétrer les attributs des couches de symbole pour permettre aux utilisateurs de personnaliser l’apparence. Dans le cadre de notre exemple ci-dessus, nous laissons l’utilisateur paramétrer le rayon du cercle. Le code qui suit implémente une telle interface:

class FooSymbolLayerWidget(QgsSymbolLayerV2Widget):
    def __init__(self, parent=None):
        QgsSymbolLayerV2Widget.__init__(self, parent)

        self.layer = None

        # setup a simple UI
        self.label = QLabel("Radius:")
        self.spinRadius = QDoubleSpinBox()
        self.hbox = QHBoxLayout()
        self.hbox.addWidget(self.label)
        self.hbox.addWidget(self.spinRadius)
        self.setLayout(self.hbox)
        self.connect(self.spinRadius, SIGNAL("valueChanged(double)"), \
            self.radiusChanged)

    def setSymbolLayer(self, layer):
        if layer.layerType() != "FooMarker":
            return
        self.layer = layer
        self.spinRadius.setValue(layer.radius)

    def symbolLayer(self):
        return self.layer

    def radiusChanged(self, value):
        self.layer.radius = value
        self.emit(SIGNAL("changed()"))

Cette interface peut être incorporée dans la boîte de dialogue sur les propriétés de symbole. Lorsque le type couche de symbole est sélectionné dans la boîte de dialogue des propriétés de symbole, cela créé une instance de la couche de symbole et une instance de l’interface. Ensuite, la méthode setSymbolLayer() est appelée pour affecter la couche de symbole à l’interface. Dans cette méthode, l’interface doit rafraîchir l’environnement graphique pour afficher les attributs de la couche de symbole. La fonction symbolLayer() est utilisée pour retrouver la couche de symbole des propriétés de la boîte de dialogue afin de l’utiliser pour le symbole.

A chaque changement d’attributs, l’interface doit émettre le signal changed() pour laisser les propriétés de la boîte de dialogue mettre à jour l’aperçu de sumbole.

Maintenant, il nous manque un dernier détail: informer QGIS de ces nouvelles classes. On peut le faire en ajoutant la couche de symbole au registre. Il est possible d’utiliser la couche de symbole sans l’ajouter au registre mais certaines fonctionnalités ne fonctionneront pas comme le chargement de fichiers de projet avec une couche de symbole personnalisée ou l’impossibilité d’éditer les attributs de la couche dans l’interface graphique.

Nous devons ensuite créer les métadonnées de la couche de symbole.

class FooSymbolLayerMetadata(QgsSymbolLayerV2AbstractMetadata):

  def __init__(self):
    QgsSymbolLayerV2AbstractMetadata.__init__(self, "FooMarker", QgsSymbolV2.Marker)

  def createSymbolLayer(self, props):
    radius = float(props[QString("radius")]) if QString("radius") in props else 4.0
    return FooSymbolLayer(radius)

  def createSymbolLayerWidget(self):
    return FooSymbolLayerWidget()

QgsSymbolLayerV2Registry.instance().addSymbolLayerType(FooSymbolLayerMetadata())

You should pass layer type (the same as returned by the layer) and symbol type (marker/line/fill) to the constructor of parent class. createSymbolLayer() takes care of creating an instance of symbol layer with attributes specified in the props dictionary. (Beware, the keys are QString instances, not “str” objects). And there is createSymbolLayerWidget() method which returns settings widget for this symbol layer type.

La dernière étape consiste à ajouter la couche de symbole au registre et c’est terminé !

Créer ses propres moteurs de rendu

Il est parfois intéressant de créer une nouvelle implémentation de moteur de rendu si vous désirez personnaliser les règles de sélection des symboles utilisés pour l’affichage des entités. Voici quelques exemples d’utilisation: le symbole est déterminé par une combinaison de champs, la taille des symboles change selon l’échelle courante, etc.

Le code qui suit montre un moteur de rendu personnalisé simple qui crée deux symboles de marqueur et choisit au hasard l’un d’entre eux pour chaque entité.

import random

class RandomRenderer(QgsFeatureRendererV2):
  def __init__(self, syms=None):
    QgsFeatureRendererV2.__init__(self, "RandomRenderer")
    self.syms = syms if syms else [QgsSymbolV2.defaultSymbol(QGis.Point), QgsSymbolV2.defaultSymbol(QGis.Point)]

  def symbolForFeature(self, feature):
    return random.choice(self.syms)

  def startRender(self, context, vlayer):
    for s in self.syms:
      s.startRender(context)

  def stopRender(self, context):
    for s in self.syms:
      s.stopRender(context)

  def usedAttributes(self):
    return []

  def clone(self):
    return RandomRenderer(self.syms)

The constructor of parent QgsFeatureRendererV2 class needs renderer name (has to be unique among renderers). symbolForFeature() method is the one that decides what symbol will be used for a particular feature. startRender() and stopRender() take care of initialization/finalization of symbol rendering. usedAttributes() method can return a list of field names that renderer expects to be present. Finally clone() function should return a copy of the renderer.

Like with symbol layers, it is possible to attach a GUI for configuration of the renderer. It has to be derived from QgsRendererV2Widget. The following sample code creates a button that allows user to set symbol of the first symbol

class RandomRendererWidget(QgsRendererV2Widget):
  def __init__(self, layer, style, renderer):
    QgsRendererV2Widget.__init__(self, layer, style)
    if renderer is None or renderer.type() != "RandomRenderer":
      self.r = RandomRenderer()
    else:
      self.r = renderer
    # setup UI
    self.btn1 = QgsColorButtonV2()
    self.btn1.setColor(self.r.syms[0].color())
    self.vbox = QVBoxLayout()
    self.vbox.addWidget(self.btn1)
    self.setLayout(self.vbox)
    self.connect(self.btn1, SIGNAL("clicked()"), self.setColor1)

  def setColor1(self):
    color = QColorDialog.getColor(self.r.syms[0].color(), self)
    if not color.isValid(): return
    self.r.syms[0].setColor(color);
    self.btn1.setColor(self.r.syms[0].color())

  def renderer(self):
    return self.r

The constructor receives instances of the active layer (QgsVectorLayer), the global style (QgsStyleV2) and current renderer. If there is no renderer or the renderer has different type, it will be replaced with our new renderer, otherwise we will use the current renderer (which has already the type we need). The widget contents should be updated to show current state of the renderer. When the renderer dialog is accepted, widget’s renderer() method is called to get the current renderer — it will be assigned to the layer.

Le dernier élément qui manque concerne les métadonnées du moteur ainsi que son enregistrement dans le registre. Sans ces éléments, le chargement de couches avec le moteur de rendu ne sera pas possible et l’utilisateur ne pourra pas le sélectionner dans la liste des moteurs de rendus. Finissons notre exemple sur RandomRenderer:

class RandomRendererMetadata(QgsRendererV2AbstractMetadata):
  def __init__(self):
    QgsRendererV2AbstractMetadata.__init__(self, "RandomRenderer", "Random renderer")

  def createRenderer(self, element):
    return RandomRenderer()
  def createRendererWidget(self, layer, style, renderer):
    return RandomRendererWidget(layer, style, renderer)

QgsRendererV2Registry.instance().addRenderer(RandomRendererMetadata())

De la même manière que pour les couches de symbole, le constructeur des métadonnées attend le nom du moteur de rendu, le nom visible pour les utilisateurs et optionnellement le nom des icônes du moteur de rendu. La méthode createRenderer() fait passer une instance de QDomElement qui peut être utilisée pour restaurer l’état du moteur de rendu en utilisant un arbre DOM. La méthode createRendererWidget() créé l’interface graphique de configuration. Elle n’est pas obligatoire et peut renvoyer None si le moteur de rendu n’a pas d’interface graphique.

To associate an icon with the renderer you can assign it in QgsRendererV2AbstractMetadata constructor as a third (optional) argument — the base class constructor in the RandomRendererMetadata __init__() function becomes

QgsRendererV2AbstractMetadata.__init__(self,
       "RandomRenderer",
       "Random renderer",
       QIcon(QPixmap("RandomRendererIcon.png", "png")))

The icon can be associated also at any later time using setIcon() method of the metadata class. The icon can be loaded from a file (as shown above) or can be loaded from a Qt resource (PyQt4 includes .qrc compiler for Python).

Sujets complémentaires

A FAIRE :

  • création/modification des symboles

  • working with style (QgsStyleV2)
  • working with color ramps (QgsVectorColorRampV2)
  • rule-based renderer (see this blogpost)
  • Explorer les couches de symboles et les registres de rendus