Hablemos sobre Sistemas de Referencia de Coordenadas (SRCs) de nuevo. Lo hemos visto brevemente antes, pero no hemos discutido su significado práctico.
El objetivo de esta lección: Reproyectar y transformar conjuntos de datos vectoriales.
El SRC en el que se encuentran todos los datos además del propio mapa en este momento se llama WGS84. Es un Sistema Geográfico de Coordenadas (SGC) para la representación de datos. Pero como veremos, hay un problema.
Notice the scale changing? That’s because you’re moving away from the one point that you zoomed into at 1:5000000, which was at the center of your screen. All around that point, the scale is different.
Para entender por qué, piensa en el Globo Terráqueo. Tiene lineas discurriendo de Norte a Sur. Estas líneas están alejadas en el ecuador, pero se encuentran en los polos.
En un SGC, tú trabajas en esa esfera, pero tu pantalla es plana. Cuando intentas representar la esfera en una superficie plana, hay distorsiones, de forma similar a si cortaras una pelota de tenis e intentaras aplanarla. Lo que pasa en el mapa es que las líneas longitudinales se conservan a la misma distancia, incluso en los polos (donde se supone que se conectan). Esto significa que, cuando te alejas del ecuador en tu mapa, la escala de los objetos que tu ves se va agrandando. Lo que significa para nosotros es, prácticamente, ¡que no hay una escala constante en nuestro mapa!
Para solucionar esto, utilicemos en su lugar un Sistema de Coordenadas Proyectado (SCP). Un SCP “proyecta” o convierte los datos en una forma que permite a la escala cambiar y corregirse. Además, para mantener la escala constante, deberiamos reproyectar nuestros datos a usar un SCP.
QGIS allows you to reproject data “on the fly”. What this means is that even if the data itself is in another CRS, QGIS can project it as if it were in a CRS of your choice.
Observa cómo cambia la forma de Sudáfrica. Todas las proyecciones funcionan cambiando las formas aparentes de los objetos de la Tierra.
Desplázate sobre el mapa.
¡Observa cómo la escala permanece igual!
La transformación” al vuelo” también se usa para combinar conjuntos de datos que están en diferentes SRCs.
¿Qué observas?
The layer isn’t visible! But that’s easy to fix, right?
OK, so now we see South Africa... but where is the rest of the world?
It turns out that we can zoom between these two layers, but we can’t ever see them at the same time. That’s because their Coordinate Reference Systems are so different. The continents dataset is in degrees, but the RSA dataset is in meters. So, let’s say that a given point in Cape Town in the RSA dataset is about 4 100 000 meters away from the equator. But in the continents dataset, that same point is about 33.9 degrees away from the equator.
This is the same distance - but QGIS doesn’t know that. You haven’t told it to reproject the data. So as far as it’s concerned, the version of South Africa that we see in the RSA dataset has Cape Town at the correct distance of 4 100 000 meters from the equator. But in the continents dataset, Cape Town is only 33.9 meters away from the equator! You can see why this is a problem.
QGIS doesn’t know where Cape Town is supposed to be - that’s what the data should be telling it. If the data tells QGIS that Cape Town is 34 meters away from the equator and that South Africa is only about 12 meters from north to south, then that is what QGIS will draw.
To correct this:
Now, because they’re made to project in the same CRS, the two datasets fit perfectly:
When combining data from different sources, it’s important to remember that they might not be in the same CRS. “On the fly” reprojection helps you to display them together.
Before you go on, you probably want to have the ‘on the fly’ reprojection to be automatically activated whenever you open datasets having different CRS:
Remember when you calculated areas for the buildings in the Classification lesson? You did it so that you could classify the buildings according to area.
Notice how the areas are all very small; probably zero. This is because these areas are given in degrees - the data isn’t in a Projected Coordinate System. In order to calculate the area for the farms in square meters, the data has to be in square meters as well. So, we’ll need to reproject it.
But it won’t help to just use ‘on the fly’ reprojection. ‘On the fly’ does what it says - it doesn’t change the data, it just reprojects the layers as they appear on the map. To truly reproject the data itself, you need to export it to a new file using a new projection.
The Save vector layer as... dialog now looks like this:
Refer back to the lesson on Classification to remember how you calculated areas.
This will add an AREA field with the size of each building in square meters
Look at the new values in your attribute table. This is much more useful, as people actually quote building size in meters, not in degrees. This is why it’s a good idea to reproject your data, if necessary, before calculating areas, distances, and other values that are dependent on the spatial properties of the layer.
Hay muchos más proyecciones que las incluidas en QGIS por defecto. Además, también puedes crear tus propias proyecciones.
An interesting projection to use is called Van der Grinten I.
Esta proyección representa la Tierra en un campo circular en lugar de una zona rectangular, como la mayoría de proyecciones hacen.
+proj=vandg +lon_0=0 +x_0=0 +y_0=0 +R_A +a=6371000 +b=6371000 +units=m +no_defs
Aplicando esta proyección, el mapa será reproyectado así:
Proyecciones diferentes son útiles para diferentes propósitos. Eligiendo la proyección correcta, puedes asegurarte que los elementos de tu mapa se están representando de forma precisa.
Materials for the Advanced section of this lesson were taken from this article.
Further information on Coordinate Reference Systems is available here.
En la siguiente lección aprenderás a analizar datos vectoriales utilizando varias herramientas de análisis vectorial de QGIS.